1
|
Kobrlová L, Jandová M, Vojtěchová K, Šafářová L, Duchoslav M. New estimates and synthesis of chromosome numbers, ploidy levels and genome size variation in Allium sect. Codonoprasum: advancing our understanding of the unresolved diversification and evolution of this section. BOTANICAL STUDIES 2024; 65:40. [PMID: 39718713 DOI: 10.1186/s40529-024-00446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND The genus Allium is known for its high chromosomal variability, but most chromosome counts are based on a few individuals and genome size (GS) reports are limited in certain taxonomic groups. This is evident in the Allium sect. Codonoprasum, a species-rich (> 150 species) and taxonomically complex section with weak morphological differences between taxa, the presence of polyploidy and frequent misidentification of taxa. Consequently, a significant proportion of older karyological reports may be unreliable and GS data are lacking for the majority of species within the section. This study, using chromosome counting and flow cytometry (FCM), provides the first comprehensive and detailed insight into variation in chromosome number, polyploid frequency and distribution, and GS in section members, marking a step towards understanding the unresolved diversification and evolution of this group. RESULTS We analysed 1578 individuals from 316 populations of 25 taxa and reported DNA ploidy levels and their GS, with calibration from chromosome counts in 22 taxa. Five taxa had multiple ploidy levels. First estimates of GS were obtained for 16 taxa. A comprehensive review of chromosome number and DNA-ploidy levels in 129 taxa of the section revealed that all taxa have x = 8, except A. rupestre with two polyploid series (x = 8, descending dysploidy x = 7), unique for this section. Diploid taxa dominated (72.1%), while di- & polyploid (12.4%) and exclusively polyploid (15.5%) taxa were less common. Ploidy diversity showed that diploid taxa dominated in the eastern Mediterranean and decreased towards the west and north, whereas only polyploid cytotypes of di- & polyploid taxa or exclusively polyploid taxa dominated in northern and northwestern Europe. A 4.1-fold variation in GS was observed across 33 taxa analysed so far (2C = 22.3-92.1 pg), mainly due to polyploidy, with GS downsizing observed in taxa with multiple ploidy levels. Intra-sectional GS variation suggests evolutionary relationships, and intraspecific GS variation within some taxa may indicate taxonomic heterogeneity and/or historical migration patterns. CONCLUSIONS Our study showed advantages of FCM as an effective tool for detecting ploidy levels and determining GS within the section. GS could be an additional character in understanding evolution and phylogenetic relationships within the section.
Collapse
Affiliation(s)
- Lucie Kobrlová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacky University, Šlechtitelů 11, 779 00, Olomouc, Czech Republic
| | - Michaela Jandová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacky University, Šlechtitelů 11, 779 00, Olomouc, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Kateřina Vojtěchová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacky University, Šlechtitelů 11, 779 00, Olomouc, Czech Republic
| | - Lenka Šafářová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacky University, Šlechtitelů 11, 779 00, Olomouc, Czech Republic
- East Bohemian Museum, Zámek 2, 530 02, Pardubice, Czech Republic
| | - Martin Duchoslav
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacky University, Šlechtitelů 11, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Hörandl E. Apomixis and the paradox of sex in plants. ANNALS OF BOTANY 2024; 134:1-18. [PMID: 38497809 PMCID: PMC11161571 DOI: 10.1093/aob/mcae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The predominance of sex in eukaryotes, despite the high costs of meiosis and mating, remains an evolutionary enigma. Many theories have been proposed, none of them being conclusive on its own, and they are, in part, not well applicable to land plants. Sexual reproduction is obligate in embryophytes for the great majority of species. SCOPE This review compares the main forms of sexual and asexual reproduction in ferns and angiosperms, based on the generation cycling of sporophyte and gametophyte (leaving vegetative propagation aside). The benefits of sexual reproduction for maintenance of genomic integrity in comparison to asexuality are discussed in the light of developmental, evolutionary, genetic and phylogenetic studies. CONCLUSIONS Asexual reproduction represents modifications of the sexual pathway, with various forms of facultative sexuality. For sexual land plants, meiosis provides direct DNA repair mechanisms for oxidative damage in reproductive tissues. The ploidy alternations of meiosis-syngamy cycles and prolonged multicellular stages in the haploid phase in the gametophytes provide a high efficiency of purifying selection against recessive deleterious mutations. Asexual lineages might buffer effects of such mutations via polyploidy and can purge the mutational load via facultative sexuality. The role of organelle-nuclear genome compatibility for maintenance of genome integrity is not well understood. In plants in general, the costs of mating are low because of predominant hermaphroditism. Phylogenetic patterns in the archaeplastid clade suggest that high frequencies of sexuality in land plants are concomitant with a stepwise increase of intrinsic and extrinsic stress factors. Furthermore, expansion of genome size in land plants would increase the potential mutational load. Sexual reproduction appears to be essential for keeping long-term genomic integrity, and only rare combinations of extrinsic and intrinsic factors allow for shifts to asexuality.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), University of Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Girard C. The tri-flow adaptiveness of codes in major evolutionary transitions. Biosystems 2024; 237:105133. [PMID: 38336225 DOI: 10.1016/j.biosystems.2024.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Life codes increase in both number and variety with biological complexity. Although our knowledge of codes is constantly expanding, the evolutionary progression of organic, neural, and cultural codes in response to selection pressure remains poorly understood. Greater clarification of the selective mechanisms is achieved by investigating how major evolutionary transitions reduce spatiotemporal and energetic constraints on transmitting heritable code to offspring. Evolution toward less constrained flows is integral to enduring flow architecture everywhere, in both engineered and natural flow systems. Beginning approximately 4 billion years ago, the most basic level for transmitting genetic material to offspring was initiated by protocell division. Evidence from ribosomes suggests that protocells transmitted comma-free or circular codes, preceding the evolution of standard genetic code. This rudimentary information flow within protocells is likely to have first emerged within the geo-energetic and geospatial constraints of hydrothermal vents. A broad-gauged hypothesis is that major evolutionary transitions overcame such constraints with tri-flow adaptations. The interconnected triple flows incorporated energy-converting, spatiotemporal, and code-based informational dynamics. Such tri-flow adaptations stacked sequence splicing code on top of protein-DNA recognition code in eukaryotes, prefiguring the transition to sexual reproduction. Sex overcame the spatiotemporal-energetic constraints of binary fission with further code stacking. Examples are tubulin code and transcription initiation code in vertebrates. In a later evolutionary transition, language reduced metabolic-spatiotemporal constraints on inheritance by stacking phonetic, phonological, and orthographic codes. In organisms that reproduce sexually, each major evolutionary transition is shown to be a tri-flow adaptation that adds new levels of code-based informational exchange. Evolving biological complexity is also shown to increase the nongenetic transmissibility of code.
Collapse
Affiliation(s)
- Chris Girard
- Department of Global and Sociocultural Studies, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
4
|
Kolarčik V, Kocová V, Mikoláš V, Mártonfiová L, Hajdučeková N, Mártonfi P. Variability of Reproduction Pathways in the Central-European Populations of Hawthorns with Emphasis on Triploids. PLANTS (BASEL, SWITZERLAND) 2022; 11:3497. [PMID: 36559608 PMCID: PMC9786806 DOI: 10.3390/plants11243497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The role of apomeiosis, parthenogenesis, and pseudogamy in the asexual reproduction of some plant groups has not been fully elucidated in relation to species diversification. Quantitative analyses of seed origin may help in gaining better understanding of intercytotypic interactions. Asexual reproduction associated with polyploidy and frequent hybridization plays a crucial role in the evolutionary history of the genus Crataegus in North America. In Europe, the genus represents a taxonomically complex and very difficult species group not often studied using a modern biosystematic approach. We investigated the reproduction pathways in mixed-cytotype populations of selected taxa of Crataegus in eastern Slovakia, Central Europe. The investigated accessions were characterized by seed production data and the ploidy level of mature plants as well as the embryo and endosperm tissues of their seeds determined via flow cytometry. Diploid and polyploid hawthorns reproduce successfully; they also produce high numbers of seeds. An exception is represented by an almost sterile triploid. Diploids reproduce sexually. Polyploids shift to asexual reproduction, but pseudogamy seems to be essential for regular seed development. In rare cases, fertilization of unreduced gametes occurs, which offers opportunity for the establishment of new polyploid cytotypes between diploid sexuals and polyploid asexuals. Opposite to sexual diploids, triploids are obligate, and tetraploids almost obligate apomicts. Apomixis is considered to help stabilize individual weakly differentiated polyploid microspecies. Pseudogamy is a common feature and usually leads to unbalanced maternal to paternal contribution in the endosperm of triploid accessions. Parental contribution to endosperm gene dosage is somehow relaxed in triploids. Our Crataegus plant system resembles reproduction in the diploids and polyploids of North American hawthorns. Our data provide support for the hypothesis that polyploidization, shifts in reproduction modes, and hybridization shape the genus diversity also in Central Europe.
Collapse
Affiliation(s)
- Vladislav Kolarčik
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovakia
| | - Valéria Kocová
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovakia
| | | | - Lenka Mártonfiová
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovakia
| | | | - Pavol Mártonfi
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovakia
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovakia
| |
Collapse
|
5
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
6
|
Hörandl E. Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:204. [PMID: 35050093 PMCID: PMC8781807 DOI: 10.3390/plants11020204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as "units". Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
7
|
Brandeis M. Were eukaryotes made by sex?: Sex might have been vital for merging endosymbiont and host genomes giving rise to eukaryotes. Bioessays 2021; 43:e2000256. [PMID: 33860546 DOI: 10.1002/bies.202000256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/10/2022]
Abstract
I hypothesize that the appearance of sex facilitated the merging of the endosymbiont and host genomes during early eukaryote evolution. Eukaryotes were formed by symbiosis between a bacterium that entered an archaeon, eventually giving rise to mitochondria. This entry was followed by the gradual transfer of most bacterial endosymbiont genes into the archaeal host genome. I argue that the merging of the mitochondrial genes into the host genome was vital for the evolution of genuine eukaryotes. At the time this process commenced it was unprecedented and required a novel mechanism. I suggest that this mechanism was meiotic sex, and that its appearance might have been THE crucial step that enabled the evolution of proper eukaryotes from early endosymbiont containing proto-eukaryotes. Sex might continue to be essential today for keeping genome insertions in check. Also see the video abstract here: https://youtu.be/aVMvWMpomac.
Collapse
Affiliation(s)
- Michael Brandeis
- The Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Duchoslav M, Jandová M, Kobrlová L, Šafářová L, Brus J, Vojtěchová K. Intricate Distribution Patterns of Six Cytotypes of Allium oleraceum at a Continental Scale: Niche Expansion and Innovation Followed by Niche Contraction With Increasing Ploidy Level. FRONTIERS IN PLANT SCIENCE 2020; 11:591137. [PMID: 33362819 PMCID: PMC7755979 DOI: 10.3389/fpls.2020.591137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/06/2020] [Indexed: 05/23/2023]
Abstract
The establishment and success of polyploids are thought to often be facilitated by ecological niche differentiation from diploids. Unfortunately, most studies compared diploids and polyploids, ignoring variation in ploidy level in polyploids. To fill this gap, we performed a large-scale study of 11,163 samples from 1,283 populations of the polyploid perennial geophyte Allium oleraceum with reported mixed-ploidy populations, revealed distribution ranges of cytotypes, assessed their niches and explored the pattern of niche change with increasing ploidy level. Altogether, six ploidy levels (3x-8x) were identified. The most common were pentaploids (53.6%) followed by hexaploids (22.7%) and tetraploids (21.6%). Higher cytotype diversity was found at lower latitudes than at higher latitudes (>52° N), where only tetraploids and pentaploids occurred. We detected 17.4% of mixed-ploidy populations, usually as a combination of two, rarely of three, cytotypes. The majority of mixed-ploidy populations were found in zones of sympatry of the participating cytotypes, suggesting they have arisen through migration (secondary contact zone). Using coarse-grained variables (climate, soil), we found evidence of both niche expansion and innovation in tetraploids related to triploids, whereas higher ploidy levels showed almost zero niche expansion, but a trend of increased niche unfilling of tetraploids. Niche unfilling in higher ploidy levels was caused by a contraction of niche envelopes toward lower continentality of the climate and resulted in a gradual decrease of niche breadth and a gradual shift in niche optima. Field-recorded data indicated wide habitat breadth of tetraploids and pentaploids, but also a pattern of increasing synanthropy in higher ploidy levels. Wide niche breadth of tetra- and pentaploids might be related to their multiple origins from different environmental conditions, higher "age", and retained sexuality, which likely preserve their adaptive potential. In contrast, other cytotypes with narrower niches are mostly asexual, probably originating from a limited range of contrasting environments. Persistence of local ploidy mixtures could be enabled by the perenniality of A. oleraceum and its prevalence of vegetative reproduction, facilitating the establishment and decreasing exclusion of minority cytotype due to its reproductive costs. Vegetative reproduction might also significantly accelerate colonization of new areas, including recolonization of previously glaciated areas.
Collapse
Affiliation(s)
- Martin Duchoslav
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Michaela Jandová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
- Institute of Botany, Czech Academy of Sciences, Pruhonice, Czechia
| | - Lucie Kobrlová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Lenka Šafářová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jan Brus
- Department of Geoinformatics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Kateřina Vojtěchová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
9
|
Hörandl E, Hadacek F. Oxygen, life forms, and the evolution of sexes in multicellular eukaryotes. Heredity (Edinb) 2020; 125:1-14. [PMID: 32415185 PMCID: PMC7413252 DOI: 10.1038/s41437-020-0317-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 12/27/2022] Open
Abstract
The evolutionary advantage of different sexual systems in multicellular eukaryotes is still not well understood, because the differentiation into male and female individuals halves offspring production compared with asexuality. Here we propose that various physiological adaptations to oxidative stress could have forged sessility versus motility, and consequently the evolution of sexual systems in multicellular animals, plants, and fungi. Photosynthesis causes substantial amounts of oxidative stress in photoautotrophic plants and, likewise, oxidative chemistry of polymer breakdown, cellulose and lignin, for saprotrophic fungi. In both cases, its extent precludes motility, an additional source of oxidative stress. Sessile life form and the lack of neuronal systems, however, limit options for mate recognition and adult sexual selection, resulting in inefficient mate-searching systems. Hence, sessility requires that all individuals can produce offspring, which is achieved by hermaphroditism in plants and/or by multiple mating types in fungi. In animals, motility requires neuronal systems, and muscle activity, both of which are highly sensitive to oxidative damage. As a consequence, motility has evolved in animals as heterotrophic organisms that (1) are not photosynthetically active, and (2) are not primary decomposers. Adaptations to motility provide prerequisites for an active mating behavior and efficient mate-searching systems. These benefits compensate for the "cost of males", and may explain the early evolution of sex chromosomes in metazoans. We conclude that different sexual systems evolved under the indirect physiological constraints of lifestyles.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Göttingen, Germany.
| | - Franz Hadacek
- Department of Plant Biochemistry, University of Goettingen, Göttingen, Germany
| |
Collapse
|
10
|
Hofstatter PG, Ribeiro GM, Porfírio‐Sousa AL, Lahr DJG. The Sexual Ancestor of all Eukaryotes: A Defense of the “Meiosis Toolkit”. Bioessays 2020; 42:e2000037. [DOI: 10.1002/bies.202000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paulo G. Hofstatter
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Giulia M. Ribeiro
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Alfredo L. Porfírio‐Sousa
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Daniel J. G. Lahr
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| |
Collapse
|
11
|
Chasing the Apomictic Factors in the Ranunculus auricomus Complex: Exploring Gene Expression Patterns in Microdissected Sexual and Apomictic Ovules. Genes (Basel) 2020; 11:genes11070728. [PMID: 32630035 PMCID: PMC7397075 DOI: 10.3390/genes11070728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
Apomixis, the asexual reproduction via seeds, is associated to polyploidy and hybridization. To identify possible signatures of apomixis, and possible candidate genes underlying the shift from sex to apomixis, microarray-based gene expression patterns of live microdissected ovules at four different developmental stages were compared between apomictic and sexual individuals of the Ranunculus auricomus complex. Following predictions from previous work on mechanisms underlying apomixis penetrance and expressivity in the genus, gene expression patterns were classified into three categories based on their relative expression in apomicts compared to their sexual parental ancestors. We found evidence of misregulation and differential gene expression between apomicts and sexuals, with the highest number of differences detected during meiosis progression and emergence of aposporous initial (AI) cells, a key developmental stage in the ovule of apomicts where a decision between divergent reproductive pathways takes place. While most of the differentially expressed genes (DEGs) could not be annotated, gene expression was classified into transgressive, parent of origin and ploidy effects. Genes related to gametogenesis and meiosis demonstrated patterns reflective of transgressive and genome dosage effects, which support the hypothesis of a dominant factor controlling apomixis in Ranunculus and modulated by secondary modifiers. Three genes with probable functions in sporogenesis and gametogenesis development are identified and characterized for future studies.
Collapse
|
12
|
Breeding Systems in Diploid and Polyploid Hawthorns (Crataegus): Evidence from Experimental Pollinations of C. monogyna, C. subsphaerica, and Natural Hybrids. FORESTS 2019. [DOI: 10.3390/f10121059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background and Objectives: Polyploidisation and frequent hybridisation play an important role in speciation processes and evolutionary history and have a large impact on reproductive systems in the genus Crataegus. Reproductive modes in selected diploid and polyploid taxa in eastern Slovakia were investigated and analysed for the first time. Materials and Methods: Diploid, triploid, and tetraploid hawthorns were tested for self-pollination, self-compatibility, and self-fertilisation. Pollination experiments were performed within and between diploid and triploid species to determine the possibilities and directions of pollen transfer under natural conditions. Seeds from crossing experiments and open pollinations were analysed using the flow cytometric seed screen method. Results: These experiments demonstrated that sexual reproduction, cross-pollination, and self-incompatibility are typical of the diploid species Crataegus monogyna and C. kyrtostyla. Seeds produced by self-fertile tetraploid C. subsphaerica were derived from both meiotically reduced and unreduced megagametophytes. Conclusions: Experimental results concerning triploid C. subsphaerica and C. laevigata × C. subsphaerica are ambiguous but suggest that seeds are almost exclusively created through apomixis, although a few sexually generated seeds were observed. In the genus Crataegus, pseudogamy is a common feature of polyploid taxa, as in all cases pollination is essential for regular seed development. Research Highlights: We suggest that all studied Crataegus taxa produce reduced pollen irrespective of ploidy level. Moreover, we emphasise that triploids produce apparently aneuploid pollen grains as a result of irregular meiosis. They are also capable of utilising pollen from 2x, 3x, or 4x donors for pseudogamous formation of endosperm.
Collapse
|
13
|
Dordet-Frisoni E, Faucher M, Sagné E, Baranowski E, Tardy F, Nouvel LX, Citti C. Mycoplasma Chromosomal Transfer: A Distributive, Conjugative Process Creating an Infinite Variety of Mosaic Genomes. Front Microbiol 2019; 10:2441. [PMID: 31708906 PMCID: PMC6819513 DOI: 10.3389/fmicb.2019.02441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The capacity of Mycoplasmas to engage in horizontal gene transfers has recently been highlighted. Despite their small genome, some of these wall-less bacteria are able to exchange multiple, large portions of their chromosome via a conjugative mechanism that does not conform to canonical Hfr/oriT models. To understand the exact features underlying mycoplasma chromosomal transfer (MCT), extensive genomic analyses were performed at the nucleotide level, using individual mating progenies derived from our model organism, Mycoplasma agalactiae. Genome reconstruction showed that MCT resulted in the distributive transfer of multiple chromosomal DNA fragments and generated progenies composed of a variety of mosaic genomes, each being unique. Analyses of macro- and micro-events resulting from MCT revealed that the vast majority of the acquired fragments were unrelated and co-transferred independently from the selection marker, these resulted in up to 17% of the genome being exchanged. Housekeeping and accessory genes were equally affected by MCT, with up to 35 CDSs being gained or lost. This efficient HGT process also created a number of chimeric genes and genetic micro-variations that may impact gene regulation and/or expression. Our study unraveled the tremendous plasticity of M. agalactiae genome and point toward MCT as a major player in diversification and adaptation to changing environments, offering a significant advantage to this minimal pathogen.
Collapse
Affiliation(s)
| | - Marion Faucher
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Eveline Sagné
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | | | - Florence Tardy
- UMR Mycoplasmoses des Ruminants, VetAgro Sup, Laboratoire de Lyon, ANSES, Université de Lyon, Marcy-l'Étoile, France
| | | | | |
Collapse
|
14
|
Usher J. The Mechanisms of Mating in Pathogenic Fungi-A Plastic Trait. Genes (Basel) 2019; 10:E831. [PMID: 31640207 PMCID: PMC6826560 DOI: 10.3390/genes10100831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 01/20/2023] Open
Abstract
The impact of fungi on human and plant health is an ever-increasing issue. Recent studies have estimated that human fungal infections result in an excess of one million deaths per year and plant fungal infections resulting in the loss of crop yields worth approximately 200 million per annum. Sexual reproduction in these economically important fungi has evolved in response to the environmental stresses encountered by the pathogens as a method to target DNA damage. Meiosis is integral to this process, through increasing diversity through recombination. Mating and meiosis have been extensively studied in the model yeast Saccharomyces cerevisiae, highlighting that these mechanisms have diverged even between apparently closely related species. To further examine this, this review will inspect these mechanisms in emerging important fungal pathogens, such as Candida, Aspergillus, and Cryptococcus. It shows that both sexual and asexual reproduction in these fungi demonstrate a high degree of plasticity.
Collapse
Affiliation(s)
- Jane Usher
- Medical Research Council Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK.
| |
Collapse
|
15
|
Hodač L, Klatt S, Hojsgaard D, Sharbel TF, Hörandl E. A little bit of sex prevents mutation accumulation even in apomictic polyploid plants. BMC Evol Biol 2019; 19:170. [PMID: 31412772 PMCID: PMC6694583 DOI: 10.1186/s12862-019-1495-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/08/2019] [Indexed: 01/30/2023] Open
Abstract
Background In the absence of sex and recombination, genomes are expected to accumulate deleterious mutations via an irreversible process known as Muller’s ratchet, especially in the case of polyploidy. In contrast, no genome-wide mutation accumulation was detected in a transcriptome of facultative apomictic, hexaploid plants of the Ranunculus auricomus complex. We hypothesize that mutations cannot accumulate in flowering plants with facultative sexuality because sexual and asexual development concurrently occurs within the same generation. We assume a strong effect of purging selection on reduced gametophytes in the sexual developmental pathway because previously masked recessive deleterious mutations would be exposed to selection. Results We test this hypothesis by modeling mutation elimination using apomictic hexaploid plants of the R. auricomus complex. To estimate mean recombination rates, the mean number of recombinants per generation was calculated by genotyping three F1 progeny arrays with six microsatellite markers and character incompatibility analyses. We estimated the strength of purging selection in gametophytes by calculating abortion rates of sexual versus apomictic development at the female gametophyte, seed and offspring stage. Accordingly, we applied three selection coefficients by considering effects of purging selection against mutations on (1) male and female gametophytes in the sexual pathway (additive, s = 1.000), (2) female gametophytes only (s = 0.520), and (3) on adult plants only (sporophytes, s = 0.212). We implemented recombination rates into a mathematical model considering the three different selection coefficients, and a genomic mutation rate calculated from genome size of our plants and plant-specific mutation rates. We revealed a mean of 6.05% recombinants per generation. This recombination rate eliminates mutations after 138, 204 or 246 generations, depending on the respective selection coefficients (s = 1.000, 0.520, and 0.212). Conclusions Our results confirm that the empirically observed frequencies of facultative recombination suffice to prevent accumulation of deleterious mutations via Muller’s ratchet even in a polyploid genome. The efficiency of selection is in flowering plants strongly increased by acting on the haplontic (reduced) gametophyte stage. Electronic supplementary material The online version of this article (10.1186/s12862-019-1495-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Timothy F Sharbel
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
16
|
Hörandl E, Speijer D. How oxygen gave rise to eukaryotic sex. Proc Biol Sci 2019; 285:rspb.2017.2706. [PMID: 29436502 PMCID: PMC5829205 DOI: 10.1098/rspb.2017.2706] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
How did full meiotic eukaryotic sex evolve and what was the immediate advantage allowing it to develop? We propose that the crucial determinant can be found in internal reactive oxygen species (ROS) formation at the start of eukaryotic evolution approximately 2 × 109 years ago. The large amount of ROS coming from a bacterial endosymbiont gave rise to DNA damage and vast increases in host genome mutation rates. Eukaryogenesis and chromosome evolution represent adaptations to oxidative stress. The host, an archaeon, most probably already had repair mechanisms based on DNA pairing and recombination, and possibly some kind of primitive cell fusion mechanism. The detrimental effects of internal ROS formation on host genome integrity set the stage allowing evolution of meiotic sex from these humble beginnings. Basic meiotic mechanisms thus probably evolved in response to endogenous ROS production by the ‘pre-mitochondrion’. This alternative to mitosis is crucial under novel, ROS-producing stress situations, like extensive motility or phagotrophy in heterotrophs and endosymbiontic photosynthesis in autotrophs. In multicellular eukaryotes with a germline–soma differentiation, meiotic sex with diploid–haploid cycles improved efficient purging of deleterious mutations. Constant pressure of endogenous ROS explains the ubiquitous maintenance of meiotic sex in practically all eukaryotic kingdoms. Here, we discuss the relevant observations underpinning this model.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Göttingen, Germany
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Centre (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
León-Martínez G, Vielle-Calzada JP. Apomixis in flowering plants: Developmental and evolutionary considerations. Curr Top Dev Biol 2019; 131:565-604. [DOI: 10.1016/bs.ctdb.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Chouaref J, de Boer E, Fransz P, Stam M. Protocol for Chromatin Immunoprecipitation of Meiotic-Stage-Specific Tomato Anthers. ACTA ACUST UNITED AC 2018; 3:e20074. [PMID: 30208267 DOI: 10.1002/cppb.20074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interactions occurring between DNA and proteins across the nuclear genome regulate numerous processes, including meiosis. Meiosis ensures genetic variation and balanced segregation of homologous chromosomes. It involves complex DNA-protein interactions across the entire genome to regulate a broad range of processes, including formation and repair of double-strand DNA breaks (DSBs), chromosome compaction, homolog pairing, synapsis, and homologous recombination. The latter meiotic event, meiotic recombination, often occurs at discrete locations in a genome, within a tight time window. The identification of genomic binding sites of meiotic proteins is a major step toward understanding the molecular mechanisms underlying meiotic recombination and provides important information for plant breeding. Collecting meiotic cells from plants is challenging, tedious, and time consuming, since the meiocyte-producing organs, the anthers, are generally small and limited to certain developmental stages of plants. Here we provide a protocol to isolate meiotic-stage-specific anthers and perform ChIP on this material. We have developed a ChIP protocol specifically suited to (1) small amounts of input material and (2) proteins that bind transiently to chromatin and at very low frequency. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jihed Chouaref
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther de Boer
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Fransz
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Maike Stam
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Wang Z, Xie L, Prather CM, Guo H, Han G, Ma C. What drives the shift between sexual and clonal reproduction of Caragana stenophylla along a climatic aridity gradient? BMC PLANT BIOLOGY 2018; 18:91. [PMID: 29788911 PMCID: PMC5964679 DOI: 10.1186/s12870-018-1313-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The reasons that clonal plants shift between sexual and clonal reproduction have persisted as a knowledge gap in ecological literature. We hypothesized that clonal plants' shifts between sexual and clonal reproduction in different environments are driven by the relative costs of sexual and clonal reproduction. Moreover, we hypothesized plants prioritize sexual reproduction over clonal reproduction. To test these hypotheses, we determined the costs of sexual and clonal reproduction, and proportions of sexual and clonal reproduction of Caragana stenophylla along a climatic aridity gradient (semi-arid, arid, very arid and intensively arid zones) in the Inner Mongolia Steppe using several complementary field experiments. RESULTS The cost of sexual reproduction increased while the cost of clonal reproduction decreased as climatic drought stress increased from the semi-arid to the intensively arid zones. The changes in the costs of these reproductive modes drove a shift in the reproductive mode of C. stenophylla from more sexual reproduction in the semi-arid zone to more clonal propagation in the intensively arid zone. However, because of the evolutionary advantages of sexual reproduction, sexual reproduction still held priority over clonal production in C. stenophylla, with the priority of sexual reproduction gradually increasing from the semi-arid to the intensively arid zones. CONCLUSIONS Our study suggested that sexual reproduction has relatively high priority in propagation of C. stenophylla. However, if the costs of sexual reproduction are too high, C. stenophylla likely chooses clonal reproduction, and the ratio between sexual and clonal reproduction could be mediated by reproductive cost. These reproductive strategies reflect optimal resource utilization, and allow the persistence of both reproductive modes across stressful conditions depending on their evolutionary advantages.
Collapse
Affiliation(s)
- Zhongwu Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 China
- College of Life Sciences, Nankai University, Tianjin, 300071 China
| | | | - Hongyu Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 China
| | - Guodong Han
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Chengcang Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 China
| |
Collapse
|
20
|
Wallen RM, Perlin MH. An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi. Front Microbiol 2018; 9:503. [PMID: 29619017 PMCID: PMC5871698 DOI: 10.3389/fmicb.2018.00503] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction likely evolved as protection from environmental stresses, specifically, to repair DNA damage, often via homologous recombination. In higher eukaryotes, meiosis and the production of gametes with allelic combinations different from parental type provides the side effect of increased genetic variation. In fungi it appears that while the maintenance of meiosis is paramount for success, outcrossing is not a driving force. In the subkingdom Dikarya, fungal members are characterized by existence of a dikaryon for extended stages within the life cycle. Such fungi possess functional or, in some cases, relictual, loci that govern sexual reproduction between members of their own species. All mating systems identified so far in the Dikarya employ a pheromone/receptor system for haploid organisms to recognize a compatible mating partner, although the paradigm in the Ascomycota, e.g., Saccharomyces cerevisiae, is that genes for the pheromone precursor and receptor are not found in the mating-type locus but rather are regulated by its products. Similarly, the mating systems in the Ascomycota are bipolar, with two non-allelic idiomorphs expressed in cells of opposite mating type. In contrast, for the Basidiomycota, both bipolar and tetrapolar mating systems have been well characterized; further, at least one locus directly encodes the pheromone precursor and the receptor for the pheromone of a different mating type, while a separate locus encodes proteins that may regulate the first locus and/or additional genes required for downstream events. Heterozygosity at both of two unlinked loci is required for cells to productively mate in tetrapolar systems, whereas in bipolar systems the two loci are tightly linked. Finally, a trade-off exists in wild fungal populations between sexual reproduction and the associated costs, with adverse conditions leading to mating. For fungal mammal pathogens, the products of sexual reproduction can be targets for the host immune system. The opposite appears true for phytopathogenic fungi, where mating and pathogenicity are inextricably linked. Here, we explore, compare, and contrast different strategies used among the Dikarya, both saprophytic and pathogenic fungi, and highlight differences between pathogens of mammals and pathogens of plants, providing context for selective pressures acting on this interesting group of fungi.
Collapse
Affiliation(s)
| | - Michael H. Perlin
- Department of Biology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
21
|
Dias ACC, Serra AC, Sampaio DS, Borba EL, Bonetti AM, Oliveira PE. Unexpectedly high genetic diversity and divergence among populations of the apomictic Neotropical tree Miconia albicans. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:244-251. [PMID: 29069536 DOI: 10.1111/plb.12654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Since tropical trees often have long generation times and relatively small reproductive populations, breeding systems and genetic variation are important for population viability and have consequences for conservation. Miconia albicans is an obligate, diplosporous, apomictic species widespread in the Brazilian Cerrado, the savanna areas in central Brazil and elsewhere in the Neotropics. The genetic variability would be, theoretically, low within these male-sterile and possibly clonal populations, although some variation would be expected due to recombination during restitutional meiosis. We used ISSR markers to assess genetic diversity of M. albicans and to compare with other tropical trees, including invasive species of Melastomataceae. A total of 120 individuals from six populations were analysed using ten ISSR primers, which produced 153 fully reproducible fragments. The populations of M. albicans presented mean Shannon's information index (I) of 0.244 and expected heterozygosity (He ) of 0.168. Only two pairs of apparently clonal trees were identified, and genetic diversity was relatively high. A hierarchical amova for all ISSR datasets showed that 74% of the variance was found among populations, while only 26% of the variance was found within populations of this species. Multivariate and Bayesian analyses indicated marked separation between the studied populations. The genetic diversity generated by restitutional meiosis, polyploidy and possibly other genome changes may explain the morpho-physiological plasticity and the ability of these plants to differentiate and occupy such a wide territory and different environmental conditions. Producing enormous amounts of bird-dispersed fruits, M. albicans possess weedy potential that may rival other Melastomataceae alien invaders.
Collapse
Affiliation(s)
- A C C Dias
- Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Uberlândia, Brazil
| | - A C Serra
- Universidade Federal de Uberlândia, Instituto de Biologia, Uberlândia, Brazil
| | - D S Sampaio
- Universidade Federal de Uberlândia, Instituto de Biologia, Uberlândia, Brazil
| | - E L Borba
- Departamento Botânica, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - A M Bonetti
- Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Uberlândia, Brazil
| | - P E Oliveira
- Universidade Federal de Uberlândia, Instituto de Biologia, Uberlândia, Brazil
| |
Collapse
|
22
|
Speijer D. What can we infer about the origin of sex in early eukaryotes? Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0530. [PMID: 27619694 DOI: 10.1098/rstb.2015.0530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 12/21/2022] Open
Abstract
Current analysis shows that the last eukaryotic common ancestor (LECA) was capable of full meiotic sex. The original eukaryotic life cycle can probably be described as clonal, interrupted by episodic sex triggered by external or internal stressors. The cycle could have started in a highly flexible form, with the interruption of either diploid or haploid clonal growth determined by stress signals only. Eukaryotic sex most likely evolved in response to a high mutation rate, arising from the uptake of the endosymbiont, as this (proto) mitochondrion generated internal reactive oxygen species. This is consistent with the likely development of full meiotic sex from a diverse set of existing archaeal (the host of the endosymbiont) repair and signalling mechanisms. Meiotic sex could thus have been one of the fruits of symbiogenesis at the basis of eukaryotic origins: a product of the merger by which eukaryotic cells arose. Symbiogenesis also explains the large-scale migration of organellar DNA to the nucleus. I also discuss aspects of uniparental mitochondrial inheritance and mitonuclear interactions in the light of the previous analysis.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
Brandeis M. New-age ideas about age-old sex: separating meiosis from mating could solve a century-old conundrum. Biol Rev Camb Philos Soc 2017; 93:801-810. [PMID: 28913952 DOI: 10.1111/brv.12367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/01/2022]
Abstract
Ever since Darwin first addressed it, sexual reproduction reigns as the 'queen' of evolutionary questions. Multiple theories tried to explain how this apparently costly and cumbersome method has become the universal mode of eukaryote reproduction. Most theories stress the adaptive advantages of sex by generating variation, they fail however to explain the ubiquitous persistence of sexual reproduction also where adaptation is not an issue. I argue that the obstacle for comprehending the role of sex stems from the conceptual entanglement of two distinct processes - gamete production by meiosis and gamete fusion by mating (mixis). Meiosis is an ancient, highly rigid and evolutionary conserved process identical and ubiquitous in all eukaryotes. Mating, by contrast, shows tremendous evolutionary variability even in closely related clades and exhibits wonderful ecological adaptability. To appreciate the respective roles of these two processes, which are normally linked and alternating, we require cases where one takes place without the other. Such cases are rather common. The heteromorphic sex chromosomes Y and W, that do not undergo meiotic recombination are an evolutionary test case for demonstrating the role of meiosis. Substantial recent genomic evidence highlights the accelerated rates of change and attrition these chromosomes undergo in comparison to those of recombining autosomes. I thus propose that the most basic role of meiosis is conserving integrity of the genome. A reciprocal case of meiosis without bi-parental mating, is presented by self-fertilization, which is fairly common in flowering plants, as well as most types of apomixis. I argue that deconstructing sex into these two distinct processes - meiosis and mating - will greatly facilitate their analysis and promote our understanding of sexual reproduction.
Collapse
Affiliation(s)
- Michael Brandeis
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
24
|
Bui LT, Pandzic D, Youngstrom CE, Wallace S, Irish EE, Szövényi P, Cheng CL. A fern AINTEGUMENTA gene mirrors BABY BOOM in promoting apogamy in Ceratopteris richardii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:122-132. [PMID: 28078730 DOI: 10.1111/tpj.13479] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 05/05/2023]
Abstract
Asexual reproduction is widespread in land plants, including ferns where 10% of all species are obligate asexuals. In these ferns, apogamous sporophytes are generated directly from gametophytes, bypassing fertilization. In the model fern Ceratopteris richardii, a sexual species, apogamy can be induced by culture on high sugar media. BABY BOOM (BBM) genes in angiosperms are known to promote somatic embryogenesis, which like apogamy produce sporophytes without fertilization. Here, a Brassica napus BBM (BnBBM) was used to investigate genetic similarity between apogamy in ferns and somatic embryogenesis in angiosperms. A C. richardii transcriptome was constructed from which one AINTEGUMENTA-LIKE unigene, CrANT, was identified. Whole mount in situ hybridization showed that CrANT is expressed in sperm and fertilized eggs. Phylogenetic analysis grouped CrANT with other non-seed-plant ANT genes to the euANT clade but in a branch separate from BBM genes. Overexpression of CrANT or BnBBM promotes apogamy in C. richardii without sugar supplement. CrANT knockdown gametophytes responded weakly to sugar for apogamy promotion. Theses results suggest some genetic conservation between apogamy and somatic embryogenesis and that such asexual reproduction may be ancient.
Collapse
Affiliation(s)
- Linh T Bui
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Dzevida Pandzic
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Simon Wallace
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Erin E Irish
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, CH-8008, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
- MTA ELTE-MTM Ecology Research Group, ELTE, Biological Institute, Budapest, Hungary
| | - Chi-Lien Cheng
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
25
|
Mirzaghaderi G, Hörandl E. The evolution of meiotic sex and its alternatives. Proc Biol Sci 2016; 283:20161221. [PMID: 27605505 PMCID: PMC5031655 DOI: 10.1098/rspb.2016.1221] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and for all eukaryotes the shared component of sexual reproduction. The benefits and functions of meiosis, however, are still under discussion, especially considering the costs of meiotic sex. To get a novel view on this old problem, we filter out the most conserved elements of meiosis itself by reviewing the various modifications and alterations of modes of reproduction. Our rationale is that the indispensable steps of meiosis for viability of offspring would be maintained by strong selection, while dispensable steps would be variable. We review evolutionary origin and processes in normal meiosis, restitutional meiosis, polyploidization and the alterations of meiosis in forms of uniparental reproduction (apomixis, apomictic parthenogenesis, automixis, selfing) with a focus on plants and animals. This overview suggests that homologue pairing, double-strand break formation and homologous recombinational repair at prophase I are the least dispensable elements, and they are more likely optimized for repair of oxidative DNA damage rather than for recombination. Segregation, ploidy reduction and also a biparental genome contribution can be skipped for many generations. The evidence supports the theory that the primary function of meiosis is DNA restoration rather than recombination.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Klatt S, Hadacek F, Hodač L, Brinkmann G, Eilerts M, Hojsgaard D, Hörandl E. Photoperiod Extension Enhances Sexual Megaspore Formation and Triggers Metabolic Reprogramming in Facultative Apomictic Ranunculus auricomus. FRONTIERS IN PLANT SCIENCE 2016; 7:278. [PMID: 27014302 PMCID: PMC4781874 DOI: 10.3389/fpls.2016.00278;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Meiosis, the key step of sexual reproduction, persists in facultative apomictic plants functional to some extent. However, it still remains unclear how and why proportions of reproductive pathways vary under different environmental stress conditions. We hypothesized that oxidative stress mediates alterations of developmental pathways. In apomictic plants we expected that megasporogenesis, the stage directly after meiosis, would be more affected than later stages of seed development. To simulate moderate stress conditions we subjected clone-mates of facultative apomictic Ranunculus auricomus to 10 h photoperiods, reflecting natural conditions, and extended ones (16.5 h). Reproduction mode was screened directly after megasporogenesis (microscope) and at seed stage (flow cytometric seed screening). Targeted metabolite profiles were performed with HPLC-DAD to explore if and which metabolic reprogramming was caused by the extended photoperiod. Prolonged photoperiods resulted in increased frequencies of sexual vs. aposporous initials directly after meiosis, but did not affect frequencies of sexual vs. asexual seed formation. Changes in secondary metabolite profiles under extended photoperiods affected all classes of compounds, and c. 20% of these changes separated the two treatments. Unexpectedly, the renowned antioxidant phenylpropanoids and flavonoids added more to clone-mate variation than to treatment differentiation. Among others, chlorophyll degradation products, non-assigned phenolic compounds and more lipophilic metabolites also contributed to the dissimilarity of the metabolic profiles of plants that had been exposed to the two different photoperiods. The hypothesis of moderate light stress effects was supported by increased proportions of sexual megaspore development at the expense of aposporous initial formation. The lack of effects at the seed stage confirms the basic assumption that only meiosis and sporogenesis would be sensitive to light stress. The concomitant change of secondary metabolite profiles, as a systemic response at this early developmental stage, supports the notion that oxidative stress could have affected megasporogenesis by causing the observed metabolic reprogramming. Hypotheses of genotype-specific responses to prolonged photoperiods are rejected.
Collapse
Affiliation(s)
- Simone Klatt
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
| | - Franz Hadacek
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Ladislav Hodač
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
| | - Gina Brinkmann
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
| | - Marius Eilerts
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
| | - Diego Hojsgaard
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
| | - Elvira Hörandl
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
- *Correspondence: Elvira Hörandl,
| |
Collapse
|
27
|
Klatt S, Hadacek F, Hodač L, Brinkmann G, Eilerts M, Hojsgaard D, Hörandl E. Photoperiod Extension Enhances Sexual Megaspore Formation and Triggers Metabolic Reprogramming in Facultative Apomictic Ranunculus auricomus. FRONTIERS IN PLANT SCIENCE 2016; 7:278. [PMID: 27014302 PMCID: PMC4781874 DOI: 10.3389/fpls.2016.00278] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/21/2016] [Indexed: 05/20/2023]
Abstract
Meiosis, the key step of sexual reproduction, persists in facultative apomictic plants functional to some extent. However, it still remains unclear how and why proportions of reproductive pathways vary under different environmental stress conditions. We hypothesized that oxidative stress mediates alterations of developmental pathways. In apomictic plants we expected that megasporogenesis, the stage directly after meiosis, would be more affected than later stages of seed development. To simulate moderate stress conditions we subjected clone-mates of facultative apomictic Ranunculus auricomus to 10 h photoperiods, reflecting natural conditions, and extended ones (16.5 h). Reproduction mode was screened directly after megasporogenesis (microscope) and at seed stage (flow cytometric seed screening). Targeted metabolite profiles were performed with HPLC-DAD to explore if and which metabolic reprogramming was caused by the extended photoperiod. Prolonged photoperiods resulted in increased frequencies of sexual vs. aposporous initials directly after meiosis, but did not affect frequencies of sexual vs. asexual seed formation. Changes in secondary metabolite profiles under extended photoperiods affected all classes of compounds, and c. 20% of these changes separated the two treatments. Unexpectedly, the renowned antioxidant phenylpropanoids and flavonoids added more to clone-mate variation than to treatment differentiation. Among others, chlorophyll degradation products, non-assigned phenolic compounds and more lipophilic metabolites also contributed to the dissimilarity of the metabolic profiles of plants that had been exposed to the two different photoperiods. The hypothesis of moderate light stress effects was supported by increased proportions of sexual megaspore development at the expense of aposporous initial formation. The lack of effects at the seed stage confirms the basic assumption that only meiosis and sporogenesis would be sensitive to light stress. The concomitant change of secondary metabolite profiles, as a systemic response at this early developmental stage, supports the notion that oxidative stress could have affected megasporogenesis by causing the observed metabolic reprogramming. Hypotheses of genotype-specific responses to prolonged photoperiods are rejected.
Collapse
Affiliation(s)
- Simone Klatt
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
| | - Franz Hadacek
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Ladislav Hodač
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
| | - Gina Brinkmann
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
| | - Marius Eilerts
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
| | - Diego Hojsgaard
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
| | - Elvira Hörandl
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Göttingen, Germany
- *Correspondence: Elvira Hörandl,
| |
Collapse
|
28
|
Shah JN, Kirioukhova O, Pawar P, Tayyab M, Mateo JL, Johnston AJ. Depletion of Key Meiotic Genes and Transcriptome-Wide Abiotic Stress Reprogramming Mark Early Preparatory Events Ahead of Apomeiotic Transition. FRONTIERS IN PLANT SCIENCE 2016; 7:1539. [PMID: 27833618 PMCID: PMC5080521 DOI: 10.3389/fpls.2016.01539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/30/2016] [Indexed: 05/19/2023]
Abstract
Molecular dissection of apomixis - an asexual reproductive mode - is anticipated to solve the enigma of loss of meiotic sex, and to help fixing elite agronomic traits. The Brassicaceae genus Boechera comprises of both sexual and apomictic species, permitting comparative analyses of meiotic circumvention (apomeiosis) and parthenogenesis. Whereas previous studies reported local transcriptome changes during these events, it remained unclear whether global changes associated with hybridization, polyploidy and environmental adaptation that arose during evolution of Boechera might serve as (epi)genetic regulators of early development prior apomictic initiation. To identify these signatures during vegetative stages, we compared seedling RNA-seq transcriptomes of an obligate triploid apomict and a diploid sexual, both isolated from a drought-prone habitat. Uncovered were several genes differentially expressed between sexual and apomictic seedlings, including homologs of meiotic genes ASYNAPTIC 1 (ASY1) and MULTIPOLAR SPINDLE 1 (MPS1) that were down-regulated in apomicts. An intriguing class of apomict-specific deregulated genes included several NAC transcription factors, homologs of which are known to be transcriptionally reprogrammed during abiotic stress in other plants. Deregulation of both meiotic and stress-response genes during seedling stages might possibly be important in preparation for meiotic circumvention, as similar transcriptional alteration was discernible in apomeiotic floral buds too. Furthermore, we noted that the apomict showed better tolerance to osmotic stress in vitro than the sexual, in conjunction with significant upregulation of a subset of NAC genes. In support of the current model that DNA methylation epigenetically regulates stress, ploidy, hybridization and apomixis, we noted that ASY1, MPS1 and NAC019 homologs were deregulated in Boechera seedlings upon DNA demethylation, and ASY1 in particular seems to be repressed by global DNA methylation exclusively in the apomicts. Variability in stress and transcriptional response in a diploid apomict, which is geographically distinct from the triploid apomict, pinpoints both common and independent features of apomixis evolution. Our study provides a molecular frame-work to investigate how the adaptive traits associated with the evolutionary history of apomicts co-adapted with meiotic gene deregulation at early developmental stage, in order to predate meiotic recombination, which otherwise is thought to be favorable in stress and low-fitness conditions.
Collapse
Affiliation(s)
- Jubin N. Shah
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Olga Kirioukhova
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Pallavi Pawar
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Muhammad Tayyab
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Juan L. Mateo
- Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- *Correspondence: Amal J. Johnston, ; Juan L. Mateo,
| | - Amal J. Johnston
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- *Correspondence: Amal J. Johnston, ; Juan L. Mateo,
| |
Collapse
|
29
|
Speijer D, Lukeš J, Eliáš M. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc Natl Acad Sci U S A 2015; 112:8827-34. [PMID: 26195746 PMCID: PMC4517231 DOI: 10.1073/pnas.1501725112] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sexual reproduction and clonality in eukaryotes are mostly seen as exclusive, the latter being rather exceptional. This view might be biased by focusing almost exclusively on metazoans. We analyze and discuss reproduction in the context of extant eukaryotic diversity, paying special attention to protists. We present results of phylogenetically extended searches for homologs of two proteins functioning in cell and nuclear fusion, respectively (HAP2 and GEX1), providing indirect evidence for these processes in several eukaryotic lineages where sex has not been observed yet. We argue that (i) the debate on the relative significance of sex and clonality in eukaryotes is confounded by not appropriately distinguishing multicellular and unicellular organisms; (ii) eukaryotic sex is extremely widespread and already present in the last eukaryotic common ancestor; and (iii) the general mode of existence of eukaryotes is best described by clonally propagating cell lines with episodic sex triggered by external or internal clues. However, important questions concern the relative longevity of true clonal species (i.e., species not able to return to sexual procreation anymore). Long-lived clonal species seem strikingly rare. We analyze their properties in the light of meiotic sex development from existing prokaryotic repair mechanisms. Based on these considerations, we speculate that eukaryotic sex likely developed as a cellular survival strategy, possibly in the context of internal reactive oxygen species stress generated by a (proto) mitochondrion. Thus, in the context of the symbiogenic model of eukaryotic origin, sex might directly result from the very evolutionary mode by which eukaryotic cells arose.
Collapse
Affiliation(s)
- Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands;
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8
| | - Marek Eliáš
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
30
|
Kleiman M, Hadany L. The evolution of obligate sex: the roles of sexual selection and recombination. Ecol Evol 2015; 5:2572-83. [PMID: 26257871 PMCID: PMC4523354 DOI: 10.1002/ece3.1516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022] Open
Abstract
The evolution of sex is one of the greatest mysteries in evolutionary biology. An even greater mystery is the evolution of obligate sex, particularly when competing with facultative sex and not with complete asexuality. Here, we develop a stochastic simulation of an obligate allele invading a facultative population, where males are subject to sexual selection. We identify a range of parameters where sexual selection can contribute to the evolution of obligate sex: Especially when the cost of sex is low, mutation rate is high, and the facultative individuals do not reproduce sexually very often. The advantage of obligate sex becomes larger in the absence of recombination. Surprisingly, obligate sex can take over even when the population has a lower mean fitness as a result. We show that this is due to the high success of obligate males that can compensate the cost of sex.
Collapse
Affiliation(s)
- Maya Kleiman
- Department of Chemistry, Ben-Gurion University of the Negev Be'er-Sheva, 8410501, Israel
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University Ramat Aviv, 69978, Israel
| |
Collapse
|
31
|
Garcia-Cisneros A, Pérez-Portela R, Almroth BC, Degerman S, Palacín C, Sköld HN. Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina. Heredity (Edinb) 2015; 115:437-43. [PMID: 25990879 DOI: 10.1038/hdy.2015.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/23/2015] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
Telomeres usually shorten during an organism's lifespan and have thus been used as an aging and health marker. When telomeres become sufficiently short, senescence is induced. The most common method of restoring telomere length is via telomerase reverse transcriptase activity, highly expressed during embryogenesis. However, although asexual reproduction from adult tissues has an important role in the life cycles of certain species, its effect on the aging and fitness of wild populations, as well as its implications for the long-term survival of populations with limited genetic variation, is largely unknown. Here we compare relative telomere length of 58 individuals from four populations of the asexually reproducing starfish Coscinasterias tenuispina. Additionally, 12 individuals were used to compare telomere lengths in regenerating and non-regenerating arms, in two different tissues (tube feet and pyloric cecum). The level of clonality was assessed by genotyping the populations based on 12 specific microsatellite loci and relative telomere length was measured via quantitative PCR. The results revealed significantly longer telomeres in Mediterranean populations than Atlantic ones as demonstrated by the Kruskal-Wallis test (K=24.17, significant value: P-value<0.001), with the former also characterized by higher levels of clonality derived from asexual reproduction. Telomeres were furthermore significantly longer in regenerating arms than in non-regenerating arms within individuals (pyloric cecum tissue: Mann-Whitney test, V=299, P-value<10(-6); and tube feet tissue Student's t=2.28, P-value=0.029). Our study suggests that one of the mechanisms responsible for the long-term somatic maintenance and persistence of clonal populations is telomere elongation.
Collapse
Affiliation(s)
- A Garcia-Cisneros
- Department of Animal Biology (Invertebrates), University of Barcelona, and Biodiversity Research Institute (IRBIO), Barcelona, Spain
| | - R Pérez-Portela
- Center for Advanced Studies of Blanes (CEAB-CSIC), Acesso a la Cala Sant Francesc 14, Blanes, Girona, Spain
| | - B C Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - S Degerman
- Department of Medical Biosciensces, Umeå University, Umeå, Sweden
| | - C Palacín
- Department of Animal Biology (Invertebrates), University of Barcelona, and Biodiversity Research Institute (IRBIO), Barcelona, Spain
| | - H Nilsson Sköld
- Sven Lovén Centre for Marine Sciences-Kristineberg, University of Gothenburg, Fiskebäckskil, Sweden
| |
Collapse
|
32
|
Hojsgaard D, Hörandl E. A little bit of sex matters for genome evolution in asexual plants. FRONTIERS IN PLANT SCIENCE 2015; 6:82. [PMID: 25750646 PMCID: PMC4335465 DOI: 10.3389/fpls.2015.00082] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/01/2015] [Indexed: 05/10/2023]
Abstract
Genome evolution in asexual organisms is theoretically expected to be shaped by various factors: first, hybrid origin, and polyploidy confer a genomic constitution of highly heterozygous genotypes with multiple copies of genes; second, asexuality confers a lack of recombination and variation in populations, which reduces the efficiency of selection against deleterious mutations; hence, the accumulation of mutations and a gradual increase in mutational load (Muller's ratchet) would lead to rapid extinction of asexual lineages; third, allelic sequence divergence is expected to result in rapid divergence of lineages (Meselson effect). Recent transcriptome studies on the asexual polyploid complex Ranunculus auricomus using single-nucleotide polymorphisms confirmed neutral allelic sequence divergence within a short time frame, but rejected a hypothesis of a genome-wide accumulation of mutations in asexuals compared to sexuals, except for a few genes related to reproductive development. We discuss a general model that the observed incidence of facultative sexuality in plants may unmask deleterious mutations with partial dominance and expose them efficiently to purging selection. A little bit of sex may help to avoid genomic decay and extinction.
Collapse
Affiliation(s)
- Diego Hojsgaard
- *Correspondence: Diego Hojsgaard and Elvira Hörandl, Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University of Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany e-mail: ;
| | - Elvira Hörandl
- *Correspondence: Diego Hojsgaard and Elvira Hörandl, Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University of Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany e-mail: ;
| |
Collapse
|
33
|
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:297-327. [PMID: 25494464 DOI: 10.1146/annurev-arplant-050213-035923] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.
Collapse
Affiliation(s)
- Raphaël Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; , , , ,
| | | | | | | | | |
Collapse
|
34
|
Hojsgaard D, Greilhuber J, Pellino M, Paun O, Sharbel TF, Hörandl E. Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation. THE NEW PHYTOLOGIST 2014; 204:1000-12. [PMID: 25081588 PMCID: PMC4260133 DOI: 10.1111/nph.12954] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/24/2014] [Indexed: 05/03/2023]
Abstract
Hybridisation and polyploidy are major forces contributing to plant speciation. Homoploid (2x) and heteroploid (3x) hybrids, however, represent critical stages for evolution due to disturbed meiosis and reduced fertility. Apomixis--asexual reproduction via seeds--can overcome hybrid sterility, but requires several concerted alterations of developmental pathways to result in functional seed formation. Here, we analyse the reproductive behaviours of homo- and heteroploid synthetic hybrids from crosses between sexual diploid and tetraploid Ranunculus auricomus species to test the hypothesis that developmental asynchrony in hybrids triggers the shift to apomictic reproduction. Evaluation of male and female gametophyte development, viability and functionality of gametes shows developmental asynchrony, whereas seed set and germinability indicate reduced fitness in synthetic hybrids compared to sexual parents. We present the first experimental evidence for spontaneous apospory in most hybrids as an alternative pathway to meiosis, and the appearance of functional apomictic seeds in triploids. Bypassing meiosis permits these triploid genotypes to form viable seed and new polyploid progeny. Asynchronous development causes reduced sexual seed set and emergence of apospory in synthetic Ranunculus hybrids. Apomixis is functional in triploids and associated with drastic meiotic abnormalities. Selection acts to stabilise developmental patterns and to tolerate endosperm dosage balance shifts which facilitates successful seed set and establishment of apomictic lineages.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg August University of GöttingenUntere Karspüle 2, D-37073, Göttingen, Germany
| | - Johann Greilhuber
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of ViennaRennweg 14, A-1030, Vienna, Austria
| | - Marco Pellino
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant ResearchCorrensstraβe 3, D-06466, Gatersleben, Germany
| | - Ovidiu Paun
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of ViennaRennweg 14, A-1030, Vienna, Austria
| | - Timothy F Sharbel
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant ResearchCorrensstraβe 3, D-06466, Gatersleben, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg August University of GöttingenUntere Karspüle 2, D-37073, Göttingen, Germany
| |
Collapse
|
35
|
Hojsgaard D, Klatt S, Baier R, Carman JG, Hörandl E. Taxonomy and Biogeography of Apomixis in Angiosperms and Associated Biodiversity Characteristics. CRITICAL REVIEWS IN PLANT SCIENCES 2014; 33:414-427. [PMID: 27019547 PMCID: PMC4786830 DOI: 10.1080/07352689.2014.898488] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Apomixis in angiosperms is asexual reproduction from seed. Its importance to angiospermous evolution and biodiversity has been difficult to assess mainly because of insufficient taxonomic documentation. Thus, we assembled literature reporting apomixis occurrences among angiosperms and transferred the information to an internet database (http://www.apomixis.uni-goettingen.de). We then searched for correlations between apomixis occurrences and well-established measures of taxonomic diversity and biogeography. Apomixis was found to be taxonomically widespread with no clear tendency to specific groups and to occur with sexuality at all taxonomic levels. Adventitious embryony was the most frequent form (148 genera) followed by apospory (110) and diplospory (68). All three forms are phylogenetically scattered, but this scattering is strongly associated with measures of biodiversity. Across apomictic-containing orders and families, numbers of apomict-containing genera were positively correlated with total numbers of genera. In general, apomict-containing orders, families, and subfamilies of Asteraceae, Poaceae, and Orchidaceae were larger, i.e., they possessed more families or genera, than non-apomict-containing orders, families or subfamilies. Furthermore, many apomict-containing genera were found to be highly cosmopolitan. In this respect, 62% occupy multiple geographic zones. Numbers of genera containing sporophytic or gametophytic apomicts decreased from the tropics to the arctic, a trend that parallels general biodiversity. While angiosperms appear to be predisposed to shift from sex to apomixis, there is also evidence of reversions to sexuality. Such reversions may result from genetic or epigenetic destabilization events accompanying hybridization, polyploidy, or other cytogenetic alterations. Because of increased within-plant genetic and genomic heterogeneity, range expansions and diversifications at the species and genus levels may occur more rapidly upon reversion to sexuality. The significantly-enriched representations of apomicts among highly diverse and geographically-extensive taxa, from genera to orders, support this conclusion.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Georg August University Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Göttingen, Germany
| | - Simone Klatt
- Georg August University Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Göttingen, Germany
| | - Roland Baier
- Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), Arbeitsgruppe Anwendungs- und Informationssysteme, Göttingen, Germany
| | - John G. Carman
- Plants, Soils and Climate Department, Utah State University, Logan, UT, USA
| | - Elvira Hörandl
- Georg August University Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Göttingen, Germany
| |
Collapse
|
36
|
Kolarčik V, Zozomová-Lihová J, Ducár E, Mártonfi P. Evolutionary significance of hybridization inOnosma(Boraginaceae): analyses of stabilized hemisexual odd polyploids and recent sterile hybrids. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Vladislav Kolarčik
- Institute of Biology and Ecology; Faculty of Science; P. J. Šafárik University; Mánesova 23 Košice SK-041 54 Slovak Republic
| | - Judita Zozomová-Lihová
- Institute of Botany; Slovak Academy of Sciences; Dúbravská cesta 9 Bratislava SK-845 23 Slovak Republic
| | - Erik Ducár
- Institute of Biology and Ecology; Faculty of Science; P. J. Šafárik University; Mánesova 23 Košice SK-041 54 Slovak Republic
| | - Pavol Mártonfi
- Institute of Biology and Ecology; Faculty of Science; P. J. Šafárik University; Mánesova 23 Košice SK-041 54 Slovak Republic
| |
Collapse
|
37
|
Hörandl E, Hadacek F. The oxidative damage initiation hypothesis for meiosis. PLANT REPRODUCTION 2013; 26:351-367. [PMID: 23995700 DOI: 10.1007/s00497-013-0234-237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/17/2013] [Indexed: 05/20/2023]
Abstract
The maintenance of sexual reproduction in eukaryotes is still a major enigma in evolutionary biology. Meiosis represents the only common feature of sex in all eukaryotic kingdoms, and thus, we regard it a key issue for discussing its function. Almost all asexuality modes maintain meiosis either in a modified form or as an alternative pathway, and facultatively apomictic plants increase frequencies of sexuality relative to apomixis after abiotic stress. On the physiological level, abiotic stress causes oxidative stress. We hypothesize that repair of oxidative damage on nuclear DNA could be a major driving force in the evolution of meiosis. We present a hypothetical model for the possible redox chemistry that underlies the binding of the meiosis-specific protein Spo11 to DNA. During prophase of meiosis I, oxidized sites at the DNA molecule are being targeted by the catalytic tyrosine moieties of Spo11 protein, which acts like an antioxidant reducing the oxidized target. The oxidized tyrosine residues, tyrosyl radicals, attack the phosphodiester bonds of the DNA backbone causing DNA double strand breaks that can be repaired by various mechanisms. Polyploidy in apomictic plants could mitigate oxidative DNA damage and decrease Spo11 activation. Our hypothesis may contribute to explaining various enigmatic phenomena: first, DSB formation outnumbers crossovers and, thus, effective recombination events by far because the target of meiosis may be the removal of oxidative lesions; second, it offers an argument for why expression of sexuality is responsive to stress in many eukaryotes; and third, repair of oxidative DNA damage turns meiosis into an essential characteristic of eukaryotic reproduction.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematic Botany, Albrecht-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany,
| | | |
Collapse
|
38
|
Hörandl E, Hadacek F. The oxidative damage initiation hypothesis for meiosis. PLANT REPRODUCTION 2013; 26:351-367. [PMID: 23995700 DOI: 10.1007s0049701302347/s00497-013-0234-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/17/2013] [Indexed: 05/27/2023]
Abstract
The maintenance of sexual reproduction in eukaryotes is still a major enigma in evolutionary biology. Meiosis represents the only common feature of sex in all eukaryotic kingdoms, and thus, we regard it a key issue for discussing its function. Almost all asexuality modes maintain meiosis either in a modified form or as an alternative pathway, and facultatively apomictic plants increase frequencies of sexuality relative to apomixis after abiotic stress. On the physiological level, abiotic stress causes oxidative stress. We hypothesize that repair of oxidative damage on nuclear DNA could be a major driving force in the evolution of meiosis. We present a hypothetical model for the possible redox chemistry that underlies the binding of the meiosis-specific protein Spo11 to DNA. During prophase of meiosis I, oxidized sites at the DNA molecule are being targeted by the catalytic tyrosine moieties of Spo11 protein, which acts like an antioxidant reducing the oxidized target. The oxidized tyrosine residues, tyrosyl radicals, attack the phosphodiester bonds of the DNA backbone causing DNA double strand breaks that can be repaired by various mechanisms. Polyploidy in apomictic plants could mitigate oxidative DNA damage and decrease Spo11 activation. Our hypothesis may contribute to explaining various enigmatic phenomena: first, DSB formation outnumbers crossovers and, thus, effective recombination events by far because the target of meiosis may be the removal of oxidative lesions; second, it offers an argument for why expression of sexuality is responsive to stress in many eukaryotes; and third, repair of oxidative DNA damage turns meiosis into an essential characteristic of eukaryotic reproduction.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematic Botany, Albrecht-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany,
| | | |
Collapse
|
39
|
Hörandl E, Hadacek F. The oxidative damage initiation hypothesis for meiosis. PLANT REPRODUCTION 2013; 26:351-67. [PMID: 23995700 PMCID: PMC3825497 DOI: 10.1007/s00497-013-0234-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/17/2013] [Indexed: 05/21/2023]
Abstract
The maintenance of sexual reproduction in eukaryotes is still a major enigma in evolutionary biology. Meiosis represents the only common feature of sex in all eukaryotic kingdoms, and thus, we regard it a key issue for discussing its function. Almost all asexuality modes maintain meiosis either in a modified form or as an alternative pathway, and facultatively apomictic plants increase frequencies of sexuality relative to apomixis after abiotic stress. On the physiological level, abiotic stress causes oxidative stress. We hypothesize that repair of oxidative damage on nuclear DNA could be a major driving force in the evolution of meiosis. We present a hypothetical model for the possible redox chemistry that underlies the binding of the meiosis-specific protein Spo11 to DNA. During prophase of meiosis I, oxidized sites at the DNA molecule are being targeted by the catalytic tyrosine moieties of Spo11 protein, which acts like an antioxidant reducing the oxidized target. The oxidized tyrosine residues, tyrosyl radicals, attack the phosphodiester bonds of the DNA backbone causing DNA double strand breaks that can be repaired by various mechanisms. Polyploidy in apomictic plants could mitigate oxidative DNA damage and decrease Spo11 activation. Our hypothesis may contribute to explaining various enigmatic phenomena: first, DSB formation outnumbers crossovers and, thus, effective recombination events by far because the target of meiosis may be the removal of oxidative lesions; second, it offers an argument for why expression of sexuality is responsive to stress in many eukaryotes; and third, repair of oxidative DNA damage turns meiosis into an essential characteristic of eukaryotic reproduction.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematic Botany, Albrecht-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany,
| | | |
Collapse
|
40
|
Pellino M, Hojsgaard D, Schmutzer T, Scholz U, Hörandl E, Vogel H, Sharbel TF. Asexual genome evolution in the apomicticRanunculus auricomuscomplex: examining the effects of hybridization and mutation accumulation. Mol Ecol 2013; 22:5908-21. [DOI: 10.1111/mec.12533] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Marco Pellino
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK); D-06466 Gatersleben Germany
| | - Diego Hojsgaard
- Department of Systematic Botany; Albrecht-von-Haller Institute for Plant Sciences; Georg-August-University of Goettingen; Untere Karspuele 2 D-37073 Goettingen Germany
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK); D-06466 Gatersleben Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK); D-06466 Gatersleben Germany
| | - Elvira Hörandl
- Department of Systematic Botany; Albrecht-von-Haller Institute for Plant Sciences; Georg-August-University of Goettingen; Untere Karspuele 2 D-37073 Goettingen Germany
| | - Heiko Vogel
- Department of Entomology; Max Planck Institute for Chemical Ecology; D-07745 Jena Germany
| | - Timothy F. Sharbel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK); D-06466 Gatersleben Germany
| |
Collapse
|
41
|
Chevasco V, Elzinga JA, Galarza JA, Mappes J, Grapputo A. Investigating the Origin of Parthenogenesis and Ploidy Level inDahlica fennicella(Lepidoptera: Psychidae). ANN ZOOL FENN 2013. [DOI: 10.5735/086.050.0301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Doums C, Cronin AL, Ruel C, Fédérici P, Haussy C, Tirard C, Monnin T. Facultative use of thelytokous parthenogenesis for queen production in the polyandrous ant Cataglyphis cursor. J Evol Biol 2013; 26:1431-44. [PMID: 23639217 DOI: 10.1111/jeb.12142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/30/2013] [Accepted: 02/13/2013] [Indexed: 11/27/2022]
Abstract
The evolutionary paradox of sex remains one of the major debates in evolutionary biology. The study of species capable of both sexual and asexual reproduction can elucidate factors important in the evolution of sex. One such species is the ant Cataglyphis cursor, where the queen maximizes the transmission of her genes by producing new queens (gynes) asexually while simultaneously maintaining a genetically diverse workforce via the sexual production of workers. We show that the queen can also produce gynes sexually and may do so to offset the costs of asexual reproduction. We genotyped 235 gynes from 18 colonies and found that half were sexually produced. A few colonies contained both sexually and asexually produced gynes. Although workers in this species can also use thelytoky, we found no evidence of worker production of gynes based on genotypes of 471 workers from the six colonies producing sexual gynes. Gynes are thus mainly, and potentially exclusively, produced by the queen. Simulations of gynes inbreeding level following one to ten generations of automictic thelytoky suggest that the queen switches between or combines thelytoky and sex, which may reduce the costs of inbreeding. This is supported by the relatively small size of inbred gynes in one colony, although we found no relationship between the level of inbreeding and immune parameters. Such facultative use of sex and thelytoky by individual queens contrasts with other known forms of parthenogenesis in ants, which are typically characterized by distinct lineages specializing in one strategy or the other.
Collapse
Affiliation(s)
- C Doums
- Laboratoire Ecologie & Evolution CNRS UMR 7625, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
The Evolutionary Dynamics of Apomixis in Ferns: A Case Study from Polystichoid Ferns. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/510478] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The disparate distribution of apomixis between the major plant lineages is arguably one of the most paradoxical phenomena in plant evolution. Ferns are particularly interesting for addressing this issue because apomixis is more frequent than in any other group of plants. Here, we use a phylogenetic framework to explore some aspects of the evolution of apomixis in ferns and in particular in the polystichoid ferns. Our findings indicate that apomixis evolved several times independently in three different clades of polystichoid ferns. A lineage-wide perspective across ferns indicates a correlation between apomixis and the species richness of lineages; however BiSSE tests did not recover evidence for a correlation of apomixis and diversification rates. Instead, evidence was recovered supporting an association between the establishment of apomixis and reticulate evolution, especially in the establishment of triploid hybrids. Diversification time estimates supported the hypothesis of short living apomictic lineages and indicated a link between the establishment of apomixis and the strengthening of the monsoons caused by the lifting of the Qinghai-Tibetan plateau. In general our results supported the hypothesis for the rare establishment of apomictic lineages, high extinction risks, and low speciation rates.
Collapse
|
44
|
Checchi PM, Engebrecht J. Heteromorphic sex chromosomes: navigating meiosis without a homologous partner. Mol Reprod Dev 2011; 78:623-32. [PMID: 22113949 DOI: 10.1002/mrd.21369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/20/2011] [Indexed: 11/10/2022]
Abstract
Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have been modified in many different ways to ensure segregation of heteromorphic sex chromosomes at the first meiotic division. Additionally, an almost universal feature of heteromorphic sex chromosomes during meiosis is transcriptional silencing, or meiotic sex chromosome inactivation, an essential process proposed to prevent expression of genes deleterious to meiosis in the heterogametic sex as well as to shield unpaired sex chromosomes from recognition by meiotic checkpoints. Comparative analyses of the meiotic behavior of sex chromosomes in nematodes, mammals, and birds reveal important conserved features as well as provide insight into sex chromosome evolution.
Collapse
Affiliation(s)
- Paula M Checchi
- Molecular and Cellular Biology, University of California, Davis, California, USA
| | | |
Collapse
|
45
|
Hörandl E, Dobeš C, Suda J, Vít P, Urfus T, Temsch EM, Cosendai AC, Wagner J, Ladinig U. Apomixis is not prevalent in subnival to nival plants of the European Alps. ANNALS OF BOTANY 2011; 108:381-90. [PMID: 21724654 PMCID: PMC3143052 DOI: 10.1093/aob/mcr142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/28/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS High alpine environments are characterized by short growing seasons, stochastic climatic conditions and fluctuating pollinator visits. These conditions are rather unfavourable for sexual reproduction of flowering plants. Apomixis, asexual reproduction via seed, provides reproductive assurance without the need of pollinators and potentially accelerates seed development. Therefore, apomixis is expected to provide selective advantages in high-alpine biota. Indeed, apomictic species occur frequently in the subalpine to alpine grassland zone of the European Alps, but the mode of reproduction of the subnival to nival flora was largely unknown. METHODS The mode of reproduction in 14 species belonging to seven families was investigated via flow cytometric seed screen. The sampling comprised 12 species typical for nival to subnival plant communities of the European Alps without any previous information on apomixis (Achillea atrata, Androsace alpina, Arabis caerulea, Erigeron uniflorus, Gnaphalium hoppeanum, Leucanthemopsis alpina, Oxyria digyna, Potentilla frigida, Ranunculus alpestris, R. glacialis, R. pygmaeus and Saxifraga bryoides), and two high-alpine species with apomixis reported from other geographical areas (Leontopodium alpinum and Potentilla crantzii). KEY RESULTS Flow cytometric data were clearly interpretable for all 46 population samples, confirming the utility of the method for broad screenings on non-model organisms. Formation of endosperm in all species of Asteraceae was documented. Ratios of endosperm : embryo showed pseudogamous apomixis for Potentilla crantzii (ratio approx. 3), but sexual reproduction for all other species (ratios approx. 1·5). CONCLUSIONS The occurrence of apomixis is not correlated to high altitudes, and cannot be readily explained by selective forces due to environmental conditions. The investigated species have probably other adaptations to high altitudes to maintain reproductive assurance via sexuality. We hypothesize that shifts to apomixis are rather connected to frequencies of polyploidization than to ecological conditions.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, A-1030 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Artacho P, Figueroa CC, Cortes PA, Simon JC, Nespolo RF. Short-term consequences of reproductive mode variation on the genetic architecture of energy metabolism and life-history traits in the pea aphid. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:986-994. [PMID: 21539843 DOI: 10.1016/j.jinsphys.2011.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/12/2011] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
Cyclically parthenogenetic animals such as aphids are able alternating sexual and asexual reproduction during its life cycle, and represent good models for studying short-term evolutionary consequences of sex. In aphids, different morphs, whether sexual or asexual, winged or wingless, are produced in response to specific environmental cues. The production of these morphs could imply a differential energy investment between the two reproductive phases (i.e., sexual and asexual), which can also be interpreted in terms of changes in genetic variation and/or trade-offs between the associated traits. In this study we compared the G-matrices of energy metabolism, life-history traits and morph production in 10 clonal lineages (genotypes) of the pea aphid, Acyrthosiphon pisum, during both sexual and asexual phases. The heritabilities (broad-sense) were significant for almost all traits in both phases; however the only significant genetic correlation we found was a positive correlation between resting metabolic rate and production of winged parthenogenetic females during the asexual phase. These results suggest the pea aphid shows some lineage specialization in terms of energy costs, but a higher specialization in the production of the different morphs (e.g., winged parthenogenetic females). Moreover, the production of winged females during the asexual phase appears to be more costly than wingless females. Finally, the structures of genetic variance-covariance matrices differed between both phases. These differences were mainly due to the correlation between resting metabolic rate and winged parthenogenetic females in the asexual phase. This structural difference would be indicating that energy allocation rules changes between phases, emphasizing the dispersion role of asexual morphs.
Collapse
Affiliation(s)
- P Artacho
- Instituto de Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Chile
| | | | | | | | | |
Collapse
|
47
|
PANTEL JH, JUENGER TE, LEIBOLD MA. Environmental gradients structure Daphnia pulex × pulicaria clonal distribution. J Evol Biol 2011; 24:723-32. [DOI: 10.1111/j.1420-9101.2010.02196.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Geographic parthenogenesis in a consumer-resource model for sexual reproduction. J Theor Biol 2010; 273:55-62. [PMID: 21182848 DOI: 10.1016/j.jtbi.2010.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 11/02/2010] [Accepted: 12/13/2010] [Indexed: 11/20/2022]
Abstract
The phenomenon of geographic parthenogenesis is closely tied to the question of why sexual reproduction is the dominant mode of reproduction in animals and plants. Geographic parthenogenesis describes the fact that many species reproduce asexually at the boundaries of their range. We present a mathematical model that derives the dominance of sexuals at the center and the dominance of asexuals at the boundary of a species' range from exactly the same mechanism. Our model is based on a set of resources that regrow slowly and that can be consumed only by those individuals that have a suitable genotype. Genotype is implemented by a multilocus model with two alleles at each locus, and with free recombination during production of sexual offspring. The model is tailored to seasonal species with intermittent mixis and low survival of offspring, such as Daphnia and aphids. Several patches of resources are arranged in a row, with a gradient of those parameters that typically vary through the range of species. By letting sexually and asexually reproducing populations compete, we obtain the typical patterns of geographic parthenogenesis.
Collapse
|
49
|
Hörandl E. The evolution of self-fertility in apomictic plants. SEXUAL PLANT REPRODUCTION 2010; 23:73-86. [PMID: 20165965 PMCID: PMC2854795 DOI: 10.1007/s00497-009-0122-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 11/03/2009] [Indexed: 11/28/2022]
Abstract
Self-fertilization and apomixis have often been seen as alternative evolutionary strategies of flowering plants that are advantageous for colonization scenarios and in bottleneck situations. Both traits have multiple origins, but different genetic control mechanisms; possible connections between the two phenomena have long been overlooked. Most apomictic plants, however, need a fertilization of polar nuclei for normal seed development (pseudogamy). If self-pollen is used for this purpose, self-compatibility is a requirement for successful pollen tube growth. Apomictic lineages usually evolve from sexual self-incompatible outcrossing plants, but pseudogamous apomicts frequently show a breakdown of self-incompatibility. Two possible pathways may explain the evolution of SC: (1) Polyploidy not only may trigger gametophytic apomixis, but also may result in a partial breakdown of SI systems. (2) Alternatively, frequent pseudo self-compatibility (PSC) via aborted pollen may induce selfing of pseudogamous apomicts (mentor effects). Self-fertile pseudogamous genotypes will be selected for within mixed sexual-apomictic populations because of avoidance of interploidal crosses; in founder situations, SC provides reproductive assurance independent from pollinators and mating partners. SI pseudogamous genotypes will be selected against in mixed populations because of minority cytotype problems and high pollen discounting; in founder populations, SI reactions among clone mates will reduce seed set. Selection for SC genotypes will eliminate SI unless the apomict maintains a high genotypic diversity and thus a diversity of S-alleles within a population, or shifts to pollen-independent autonomous apomixis. The implications of a breakdown of SI in apomictic plants for evolutionary questions and for agricultural sciences are being discussed.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030, Vienna, Austria.
| |
Collapse
|
50
|
Abstract
Self-fertilization and apomixis have often been seen as alternative evolutionary strategies of flowering plants that are advantageous for colonization scenarios and in bottleneck situations. Both traits have multiple origins, but different genetic control mechanisms; possible connections between the two phenomena have long been overlooked. Most apomictic plants, however, need a fertilization of polar nuclei for normal seed development (pseudogamy). If self-pollen is used for this purpose, self-compatibility is a requirement for successful pollen tube growth. Apomictic lineages usually evolve from sexual self-incompatible outcrossing plants, but pseudogamous apomicts frequently show a breakdown of self-incompatibility. Two possible pathways may explain the evolution of SC: (1) Polyploidy not only may trigger gametophytic apomixis, but also may result in a partial breakdown of SI systems. (2) Alternatively, frequent pseudo self-compatibility (PSC) via aborted pollen may induce selfing of pseudogamous apomicts (mentor effects). Self-fertile pseudogamous genotypes will be selected for within mixed sexual-apomictic populations because of avoidance of interploidal crosses; in founder situations, SC provides reproductive assurance independent from pollinators and mating partners. SI pseudogamous genotypes will be selected against in mixed populations because of minority cytotype problems and high pollen discounting; in founder populations, SI reactions among clone mates will reduce seed set. Selection for SC genotypes will eliminate SI unless the apomict maintains a high genotypic diversity and thus a diversity of S-alleles within a population, or shifts to pollen-independent autonomous apomixis. The implications of a breakdown of SI in apomictic plants for evolutionary questions and for agricultural sciences are being discussed.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030, Vienna, Austria.
| |
Collapse
|