1
|
Zhang Z, Yang B, Ren L, Li Q, Liu S. SNP Fingerprinting for Germplasm Identification of the Fast-Growing Pacific oyster (Crassostrea gigas) "Haida No. 1" Variety. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:7. [PMID: 39586896 DOI: 10.1007/s10126-024-10392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
The Pacific oyster (Crassostrea gigas) is a global aquaculture species of economic significance. Selective breeding programs have been conducted to produce multiple strains with fast growth as well as other desirable traits. However, due to the phenotypic plasticity of oysters, challenges existed for precise germplasm identification among selectively bred strains. In this work, we identified selection signatures of three fast-growing Pacific oyster strains originated from wild populations collected from China, Japan, and Korea, respectively, which were used for development of SNP-based molecular fingerprinting for precise identification of germplasm. We performed whole-genome resequencing of 59 oysters from three selectively bred strains and a wild population for genome-wide SNP analyses. Population structure analysis with these SNPs revealed significant genetic differentiation among the selectively bred strains. Based on the FST index, we identified 41, 49, and 36 strain-specific SNPs from the three selectively bred strains. Taking into account the "hitch-hiking effect" that occurs in the genome during positive selection, we identified two, three, and two molecular fingerprints for the three strains, respectively. We validated the molecular fingerprints of the China selectively bred strain (i.e., "Haida No. 1" variety) with a separate population of 42 oysters with diverse genetic background, demonstrating the accuracy of germplasm identification of over 96%. This work provides a reliable tool for precise germplasm identification of the "Haida No. 1" variety as well as other two selectively bred strains, which is valuable in germplasm conservation and breeding design in the C. gigas.
Collapse
Affiliation(s)
- Zihao Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Liting Ren
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China.
| |
Collapse
|
2
|
Barbosa CFC, Asunto JC, Koh RBL, Santos DMC, Zhang D, Cao EP, Galvez LC. Genome-Wide SNP and Indel Discovery in Abaca ( Musa textilis Née) and among Other Musa spp. for Abaca Genetic Resources Management. Curr Issues Mol Biol 2023; 45:5776-5797. [PMID: 37504281 PMCID: PMC10377871 DOI: 10.3390/cimb45070365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Abaca (Musa textilis Née) is an economically important fiber crop in the Philippines. Its economic potential, however, is hampered by biotic and abiotic stresses, which are exacerbated by insufficient genomic resources for varietal identification vital for crop improvement. To address these gaps, this study aimed to discover genome-wide polymorphisms among abaca cultivars and other Musa species and analyze their potential as genetic marker resources. This was achieved through whole-genome Illumina resequencing of abaca cultivars and variant calling using BCFtools, followed by genetic diversity and phylogenetic analyses. A total of 20,590,381 high-quality single-nucleotide polymorphisms (SNP) and DNA insertions/deletions (InDels) were mined across 16 abaca cultivars. Filtering based on linkage disequilibrium (LD) yielded 130,768 SNPs and 13,620 InDels, accounting for 0.396 ± 0.106 and 0.431 ± 0.111 of gene diversity across these cultivars. LD-pruned polymorphisms across abaca, M. troglodytarum, M. acuminata and M. balbisiana enabled genetic differentiation within abaca and across the four Musa spp. Phylogenetic analysis revealed the registered varieties Abuab and Inosa to accumulate a significant number of mutations, eliciting further studies linking mutations to their advantageous phenotypes. Overall, this study pioneered in producing marker resources in abaca based on genome-wide polymorphisms vital for varietal authentication and comparative genotyping with the more studied Musa spp.
Collapse
Affiliation(s)
- Cris Francis C Barbosa
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Building, Department of Agriculture (DA) Compound, Quezon City 1101, Philippines
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Jayson C Asunto
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Building, Department of Agriculture (DA) Compound, Quezon City 1101, Philippines
| | - Rhosener Bhea L Koh
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Daisy May C Santos
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ernelea P Cao
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Leny C Galvez
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Building, Department of Agriculture (DA) Compound, Quezon City 1101, Philippines
| |
Collapse
|
3
|
Li JW, Li H, Liu ZW, Wang YX, Chen Y, Yang N, Hu ZH, Li T, Zhuang J. Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification, and molecular breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107704. [PMID: 37086694 DOI: 10.1016/j.plaphy.2023.107704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Tea plants have a long cultivation history in the world, and the beverage (tea) made from its leaves is well known in the world. Due to the characteristics of self-incompatibility, long-term natural and artificial hybridization, tea plants have a very complex genetic background, which make the classification of tea plants unclear. Molecular marker, one type of genetic markers, has the advantages of stable inheritance, large amount of information, and high reliability. The development of molecular marker has facilitated the understanding of complex tea germplasm resources. So far, molecular markers had played important roles in the study of the origin and evolution, the preservation and identification of tea germplasms, and the excellent cultivars breeding of tea plants. However, the information is scattered, making it difficult to understand the advance of molecular markers in tea plants. In this paper, we summarized the development process and types of molecular markers in tea plants. In addition, the application advance of these molecular markers in tea plants was reviewed. Perspectives of molecular markers in tea plants were also systematically provided and discussed. The elaboration of molecular markers in this paper should help us to renew understanding of its application in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Target Metabolome and Transcriptome Analysis Reveal Molecular Mechanism Associated with Changes of Tea Quality at Different Development Stages. Mol Biotechnol 2023; 65:52-60. [PMID: 35780278 DOI: 10.1007/s12033-022-00525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/14/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to explore the molecular mechanisms underlying the differential quality of tea made from leaves at different development stages. Fresh Camellia sinensis (L.) O. Kuntze "Sichuan Colonial" leaves of various development stages, from buds to old leaves, were subjected to transcriptome sequencing and metabolome analysis, and the DESeq package was used for differential expression analysis, followed by functional enrichment analyses and protein interaction analysis. Target metabolome analysis indicated that the contents of most compounds, including theobromine and epicatechin gallate, were lowest in old leaves, and transcriptome analysis revealed that DEGs were significantly involved in extracellular regions and phenylpropanoid biosynthesis, photosynthesis-related pathways, and the oleuropein steroid biosynthesis pathway. Protein-protein interaction analysis identified LOC114256852 as a hub gene. Caffeine, theobromine, L-theanine, and catechins were the main metabolites of the tea leaves, and the contents of all four main metabolites were the lowest in old leaves. Phenylpropanoid biosynthesis, photosynthesis, and brassinosteroid biosynthesis may be important targets for breeding efforts to improve tea quality.
Collapse
|
5
|
Wang L, Xun H, Aktar S, Zhang R, Wu L, Ni D, Wei K, Wang L. Development of SNP Markers for Original Analysis and Germplasm Identification in Camellia sinensis. PLANTS (BASEL, SWITZERLAND) 2022; 12:162. [PMID: 36616292 PMCID: PMC9824298 DOI: 10.3390/plants12010162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Tea plants are widely grown all over the world because they are an important economic crop. The purity and authenticity of tea varieties are frequent problems in the conservation and promotion of germplasm resources in recent years, which has brought considerable inconvenience and uncertainty to the selection of parental lines for breeding and the research and cultivation of superior varieties. However, the development of core SNP markers can quickly and accurately identify the germplasm, which plays an important role in germplasm identification and the genetic relationship analysis of tea plants. In this study, based on 179,970 SNP loci from the whole genome of the tea plant, all of 142 cultivars were clearly divided into three groups: Assam type (CSA), Chinese type (CSS), and transitional type. Most CSA cultivars are from Yunnan Province, which confirms that Yunnan Province is the primary center of CSA origin and domestication. Most CSS cultivars are distributed in east China; therefore, we deduced that east China (mainly Zhejiang and Fujian provinces) is most likely the area of origin and domestication of CSS. Moreover, 45 core markers were screened using strict criteria to 179,970 SNP loci, and we analyzed 117 well-Known tea cultivars in China with 45 core SNP markers. The results were as follows: (1) In total, 117 tea cultivars were distinguished by eight markers, which were selected to construct the DNA fingerprint, and the remaining markers were used as standby markers for germplasm identification. (2) Ten pairs of parent and offspring relationships were confirmed or identified, and among them, seven pairs were well-established pedigree relationships; the other three pairs were newly identified. In this study, the east of China (mainly Zhejiang and Fujian provinces) is most likely the area of origin and domestication of CSS. The 45 core SNP markers were developed, which provide a scientific basis at the molecular level to identify the superior tea germplasm, undertake genetic relationship analysis, and benefit subsequent breeding work.
Collapse
Affiliation(s)
- Liubin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanshuo Xun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Shirin Aktar
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Rui Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Liyun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Dejiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| |
Collapse
|
6
|
Chen Y, Zhang HL, Zhang L, Nizamani MM, Zhou T, Zhang H, Liu T. Genetic diversity assessment of Hopea hainanensis in Hainan Island. FRONTIERS IN PLANT SCIENCE 2022; 13:1075102. [PMID: 36570896 PMCID: PMC9767952 DOI: 10.3389/fpls.2022.1075102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Hopea hainanensis (Dipterocarpaceae) is an endangered tree species restricted to Hainan Island, China, and a small part of Northern Vietnam. On Hainan Island, it is an important indicator species for tropical forests. The wood of Hopea hainanensis has a very high utilization value in nature since it is compact in structure, hard in texture, not easily deformed after drying, durable, and resistant to sunlight and water. As a result of its high quality, it has been felled and mined by humans without restraint, resulting in a reduction of its population size, severe habitat fragmentation, and a sharp decline in its population. Therefore, its conservation biology needs to be researched urgently. Researchers are currently focusing on the ecological factors and seed germination in the habitat of Hopea hainanensis to determine its endangered status. In the literature, there are no systematic analyses of the endangered mechanism of Hopea hainanensis in terms of genetic diversity. It focuses especially on the systematic genetic diversity of Hopea hainanensis in fragmented habitats. Using single nucleotide polymorphism (SNP) and genotyping-by-sequencing (GBS) technology, 42 samples from seven different cohabitation groups were genotyped. The results showed that the average heterozygosity of the six populations of Hopea hainanensis was 19.77%, which indicated that the genetic diversity of Hopea hainanensis was low. Genetic diversity research is essential for rare and endangered plant protection research. We can find a scientific basis for protecting endangered plants on slope bases by analyzing genetic differences and relationships among populations.
Collapse
Affiliation(s)
- Yukai Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Hai-Li Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, Haikou, China
| | - Li Zhang
- Guizhou Normal University Museum, Guizhou Normal University, Guizhou, China
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, China
| | - Taoxiu Zhou
- College of Biological Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiyang Zhang
- College of International Studies, Sichuan University, Chengdu, China
| | - Tingting Liu
- Guizhou Normal University Museum, Guizhou Normal University, Guizhou, China
| |
Collapse
|
7
|
Lin Y, Yu W, Cai C, Wang P, Gao S, Zhang J, Fan X, Fang W, Ye N. Rapid varietal authentication of oolong tea products by microfluidic-based SNP genotyping. Food Res Int 2022; 162:111970. [DOI: 10.1016/j.foodres.2022.111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
8
|
D’Auria JC, Cohen SP, Leung J, Glockzin K, Glockzin KM, Gervay-Hague J, Zhang D, Meinhardt LW. United States tea: A synopsis of ongoing tea research and solutions to United States tea production issues. FRONTIERS IN PLANT SCIENCE 2022; 13:934651. [PMID: 36212324 PMCID: PMC9538180 DOI: 10.3389/fpls.2022.934651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/25/2022] [Indexed: 06/01/2023]
Abstract
Tea is a steeped beverage made from the leaves of Camellia sinensis. Globally, this healthy, caffeine-containing drink is one of the most widely consumed beverages. At least 50 countries produce tea and most of the production information and tea research is derived from international sources. Here, we discuss information related to tea production, genetics, and chemistry as well as production issues that affect or are likely to affect emerging tea production and research in the United States. With this review, we relay current knowledge on tea production, threats to tea production, and solutions to production problems to inform this emerging market in the United States.
Collapse
Affiliation(s)
- John C. D’Auria
- Metabolic Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Stephen P. Cohen
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Jason Leung
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Kyle Mark Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jacquelyn Gervay-Hague
- Department of Chemistry, University of California, University of California, Davis, Davis, CA, United States
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
9
|
Sun H, Wen B, Wu Z, Xing A, Xu X, Chang Y, Guo G, Wang Y. The performance of water-soluble fluoride transformation in soil-tea-tea infusion chain system and the potential health risk assessment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2893-2902. [PMID: 34755346 DOI: 10.1002/jsfa.11630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Water-soluble fluoride (WS-F) can be absorbed directly by tea plants from soil and comprises a major source of dietary F in tea consumers. To reveal the WS-F accumulation in tea leaves and assess WS-F health risks, 70 sets of samples including tea leaves at three maturity stages and corresponding topsoil were collected from Xinyang, China. The WS-F contents in tea samples and pH values in soil samples were determined. RESULTS The contents of WS-F in tea leaves exhibited a positive correlation with leaf maturity. The contents of WS-F in tea leaves showed a positive correlation with WS-F contents in the soil as the soil pH value exceeds 5. All the bud with two leaves samples, 84.29% of the third to sixth leaves samples, and 78.57% mature leaves samples in 5-min infusion tend to be no health threat. The leaching characteristics of WS-F from tea leaves were influenced by the leaf maturity and soaking time. CONCLUSION Taking measures to control pH and WS-F concentration of plantations soil, as well as drinking tea infusion made from young leaves or reducing soaking time could decrease the WS-F health risk. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Bo Wen
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, P. R. China
| | - Zichen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Anqi Xing
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xiaohan Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yali Chang
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, P. R. China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, P. R. China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
10
|
Quantitative detection of caffeine in beverages using flowing atmospheric-pressure afterglow (FAPA) ionization high-resolution mass spectrometry imaging and performance evaluation of different thin-layer chromatography plates as sample substrates. Anal Bioanal Chem 2022; 414:4481-4495. [PMID: 35441859 PMCID: PMC9142459 DOI: 10.1007/s00216-022-04045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/01/2022]
Abstract
Ambient desorption/ionization mass spectrometry (ADI-MS) is widely used as a rapid screening tool of samples in their native state without sample preparation. While analysis times are much less than 1 min per sample, one challenge of ADI-MS is the possibility to perform quantitative analysis of analytes in complex matrices. Typically, the goal is to probe a variety of different analytes in a complex matrix from a solid, liquid, or otherwise uncharacterized surface in the open air in front of the MS inlet. In this study, it is demonstrated that a carefully selected surface for analyte spot sampling and co-deposited isotopically labeled standards both significantly improve the capabilities of flowing atmospheric-pressure afterglow (FAPA) high-resolution (HR) MS for direct quantitative analysis. Specifically, a systematic study of different surfaces (glass, steel mesh, high-performance thin-layer chromatography (HPTLC) stationary phases including silica, reversed-phase (RP)-modified silica, and cyano (CN)-modified silica) and their suitability for spot sampling with FAPA-MS was performed. A set of different caffeine-containing standards and beverages (Red Bull, Coca-Cola, coffee, and black tea) was deposited on the surfaces and direct FAPA-HR-MS analysis of caffeine was performed using internal calibration with co-deposited 13C3-caffeine. For TLC surfaces, it was demonstrated that quantitative results could be achieved with the matrix and concomitants present and that a preceding chromatographic separation was not mandatory for this application. In addition, the use of a CN-HPTLC surface resulted in a significantly more intense caffeine signal in the beverage samples compared to the other surfaces studied, with the highest increase compared to the silica (200-fold higher) and the lowest increase compared to the steel mesh (30-fold higher). The utilization of TLC-based surfaces as sample carriers is considered an attractive tool in the ADI-MS toolbox for fast and efficient mass spectrometric investigations of complex samples without time-consuming sample preparation.
Collapse
|
11
|
Fanelli V, Mascio I, Miazzi MM, Savoia MA, De Giovanni C, Montemurro C. Molecular Approaches to Agri-Food Traceability and Authentication: An Updated Review. Foods 2021; 10:1644. [PMID: 34359514 PMCID: PMC8306823 DOI: 10.3390/foods10071644] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decades, the demand for molecular tools for authenticating and tracing agri-food products has significantly increased. Food safety and quality have gained an increased interest for consumers, producers, and retailers, therefore, the availability of analytical methods for the determination of food authenticity and the detection of major adulterations takes on a fundamental role. Among the different molecular approaches, some techniques such as the molecular markers-based methods are well established, while some innovative approaches such as isothermal amplification-based methods and DNA metabarcoding have only recently found application in the agri-food sector. In this review, we provide an overview of the most widely used molecular techniques for fresh and processed agri-food authentication and traceability, showing their recent advances and applications and discussing their main advantages and limitations. The application of these techniques to agri-food traceability and authentication can contribute a great deal to the reassurance of consumers in terms of transparency and food safety and may allow producers and retailers to adequately promote their products.
Collapse
Affiliation(s)
- Valentina Fanelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Michele Antonio Savoia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Claudio De Giovanni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
- Spin off Sinagri s.r.l., University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Institute for Sustainable Plant Protection–Support Unit Bari, National Research Council of Italy (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
12
|
Effects of geographic locations and topographical factors on secondary metabolites distribution in green tea at a regional scale. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106979] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Cao H, Li J, Ye Y, Lin H, Hao Z, Ye N, Yue C. Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant ( Camellia Sinensis). Biomolecules 2020; 10:biom10020311. [PMID: 32079100 PMCID: PMC7072466 DOI: 10.3390/biom10020311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022] Open
Abstract
Trichomes, which develop from epidermal cells, are regarded as one of the key features that are involved in the evaluation of tea quality and tea germplasm resources. The metabolites from trichomes have been well characterized in tea products. However, little is known regarding the metabolites in fresh tea trichomes and the molecular differences in trichomes and tea leaves per se. In this study, we developed a method to collect trichomes from tea plant tender shoots, and their main secondary metabolites, including catechins, caffeine, amino acids, and aroma compounds, were determined. We found that the majority of these compounds were significantly less abundant in trichomes than in tea leaves. RNA-Seq was used to investigate the differences in the molecular regulatory mechanism between trichomes and leaves to gain further insight into the differences in trichomes and tea leaves. In total, 52.96 Gb of clean data were generated, and 6560 differentially expressed genes (DEGs), including 4471 upregulated and 2089 downregulated genes, were identified in the trichomes vs. leaves comparison. Notably, the structural genes of the major metabolite biosynthesis pathways, transcription factors, and other key DEGs were identified and comparatively analyzed between trichomes and leaves, while trichome-specific genes were also identified. Our results provide new insights into the differences between tea trichomes and leaves at the metabolic and transcriptomic levels, and open up new doors to further recognize and re-evaluate the role of trichomes in tea quality formation and tea plant growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuan Yue
- Correspondence: ; Tel.: +86-591-83789281
| |
Collapse
|
14
|
Liu S, An Y, Tong W, Qin X, Samarina L, Guo R, Xia X, Wei C. Characterization of genome-wide genetic variations between two varieties of tea plant (Camellia sinensis) and development of InDel markers for genetic research. BMC Genomics 2019; 20:935. [PMID: 31805860 PMCID: PMC6896268 DOI: 10.1186/s12864-019-6347-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) are the major genetic variations and are distributed extensively across the whole plant genome. However, few studies of these variations have been conducted in the long-lived perennial tea plant. Results In this study, we investigated the genome-wide genetic variations between Camellia sinensis var. sinensis ‘Shuchazao’ and Camellia sinensis var. assamica ‘Yunkang 10’, identified 7,511,731 SNPs and 255,218 InDels based on their whole genome sequences, and we subsequently analyzed their distinct types and distribution patterns. A total of 48 InDel markers that yielded polymorphic and unambiguous fragments were developed when screening six tea cultivars. These markers were further deployed on 46 tea cultivars for transferability and genetic diversity analysis, exhibiting information with an average 4.02 of the number of alleles (Na) and 0.457 of polymorphism information content (PIC). The dendrogram showed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or original places. Interestingly, we observed that the catechin/caffeine contents between ‘Shuchazao’ and ‘Yunkang 10’ were significantly different, and a large number of SNPs/InDels were identified within catechin/caffeine biosynthesis-related genes. Conclusion The identified genome-wide genetic variations and newly-developed InDel markers will provide a valuable resource for tea plant genetic and genomic studies, especially the SNPs/InDels within catechin/caffeine biosynthesis-related genes, which may serve as pivotal candidates for elucidating the molecular mechanism governing catechin/caffeine biosynthesis.
Collapse
Affiliation(s)
- Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, China
| | - Xiuju Qin
- Guangxi LuYI Institute of Tea Tree Species, 17 Jinji Road, Guilin, China
| | - Lidia Samarina
- Department of Biotechnology, Russian Research Institute of Floriculture and Subtropical Crops, Sochi, Russia
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, China.
| |
Collapse
|
15
|
Abstract
Tea clones and seed varieties released from Tocklai Tea Research Institutes are suitable primarily for manufacturing black tea (CTC/orthodox) while green tea manufactured from these clones are poor in quality. This led to identifying germplasm suitable for manufacturing green tea of high quality. Physiological parameters on net photosynthesis, transpiration, stomatal conductance, water-use efficiency, leaf temperature, and carboxylation efficiency of six selected germplasm (DH 1 and 2, DH 3 and 4, DH 5 and 6, DL 13, DL 25, and DL 39) were measured in first flush, second flush, rain flush, and autumn flush. Seasonal Yield, biochemical (L-theanine to total polyphenol ratio), and taster’s score were compared among seasons. Two protocols were used for green tea manufacturing, i.e., roasting and steaming. Significant differences in net photosynthesis (pn), stomatal conductance (gs), carboxylation efficiency (ci/ca), and yield were observed between flushes. Among the six test clones, the L-theanine to total polyphenol ratio found was highest in DH 5 and 6 in the roasting method. Structural and cluster analysis revealed that the DH clones genotypically occupied the same position as that of the popular green tea clone Longjing 43 of China and Yabukita of Japan, indicating suitability of these germplasm to develop new green tea clones. Clones DH 5 and 6 are suitable for green tea manufacturing and they can be released to the industry as new green tea clones. As far as manufacturing protocol is concerned, the roasting method of tea manufacturing was found superior over steaming.
Collapse
|
16
|
Identification of tea varieties by mid‐infrared diffuse reflectance spectroscopy coupled with a possibilistic fuzzy c‐means clustering with a fuzzy covariance matrix. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Niu S, Song Q, Koiwa H, Qiao D, Zhao D, Chen Z, Liu X, Wen X. Genetic diversity, linkage disequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou plateau, using genome-wide SNPs developed by genotyping-by-sequencing. BMC PLANT BIOLOGY 2019; 19:328. [PMID: 31337341 PMCID: PMC6652003 DOI: 10.1186/s12870-019-1917-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 07/02/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND To efficiently protect and exploit germplasm resources for marker development and breeding purposes, we must accurately depict the features of the tea populations. This study focuses on the Camellia sinensis (C. sinensis) population and aims to (i) identify single nucleotide polymorphisms (SNPs) on the genome level, (ii) investigate the genetic diversity and population structure, and (iii) characterize the linkage disequilibrium (LD) pattern to facilitate next genome-wide association mapping and marker-assisted selection. RESULTS We collected 415 tea accessions from the Origin Center and analyzed the genetic diversity, population structure and LD pattern using the genotyping-by-sequencing (GBS) approach. A total of 79,016 high-quality SNPs were identified; the polymorphism information content (PIC) and genetic diversity (GD) based on these SNPs showed a higher level of genetic diversity in cultivated type than in wild type. The 415 accessions were clustered into three groups by STRUCTURE software and confirmed using principal component analyses (PCA)-wild type, cultivated type, and admixed wild type. However, unweighted pair group method with arithmetic mean (UPGMA) trees indicated the accessions should be grouped into more clusters. Further analyses identified four groups, the Pure Wild Type, Admixed Wild Type, ancient landraces and modern landraces using STRUCTURE, and the results were confirmed by PCA and UPGMA tree method. A higher level of genetic diversity was detected in ancient landraces and Admixed Wild Type than that in the Pure Wild Type and modern landraces. The highest differentiation was between the Pure Wild Type and modern landraces. A relatively fast LD decay with a short range (kb) was observed, and the LD decays of four inferred populations were different. CONCLUSIONS This study is, to our knowledge, the first population genetic analysis of tea germplasm from the Origin Center, Guizhou Plateau, using GBS. The LD pattern, population structure and genetic differentiation of the tea population revealed by our study will benefit further genetic studies, germplasm protection, and breeding.
Collapse
Affiliation(s)
- Suzhen Niu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Molecular and Environmental Plant Sciences Program, MS2133 Texas A&M University, College Station, TX 77843-2133 USA
- Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou Province People’s Republic of China
| | - Qinfei Song
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Molecular and Environmental Plant Sciences Program, MS2133 Texas A&M University, College Station, TX 77843-2133 USA
| | - Dahe Qiao
- Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou Province People’s Republic of China
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
- Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou Province People’s Republic of China
| | - Zhengwu Chen
- Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou Province People’s Republic of China
| | - Xia Liu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Xiaopeng Wen
- Institute of Agro-bioengineering/College of Life Science, Guizhou University, Huaxi Avenue, Guiyang, 550025 Guizhou Province People’s Republic of China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Xiahui Road, Huaxi, Guiyang, 550025 Guizhou Province People’s Republic of China
| |
Collapse
|
18
|
Zhu B, Chen LB, Lu M, Zhang J, Han J, Deng WW, Zhang ZZ. Caffeine Content and Related Gene Expression: Novel Insight into Caffeine Metabolism in Camellia Plants Containing Low, Normal, and High Caffeine Concentrations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3400-3411. [PMID: 30830771 DOI: 10.1021/acs.jafc.9b00240] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Caffeine is a crucial secondary metabolic product in tea plants. Although the presence of caffeine in tea plants has been identified, the molecular mechanisms regulating relevant caffeine metabolism remain unclear. For the elucidation of the caffeine biosynthesis and catabolism in Camellia plants, fresh, germinated leaves from four Camellia plants with low (2), normal (1), and high (1) caffeine concentrations, namely, low-caffeine tea 1 (LCT1, Camellia crassicolumna), low-caffeine tea 2 (LCT2, C. crassicolumna), Shuchazao (SCZ, C. sinensis), and Yunkang 43 (YK43, C. sinensis) were used in this research. Transcriptome and purine alkaloids analyses of these Camellia leaves were performed using RNA-Seq and liquid chromatography-mass spectrometry (LC-MS). Moreover, 15N-caffeine tracing was performed to determine the metabolic fate of caffeine in leaves of these plants. Caffeine content was correlated with related gene expression levels, and a quantitative real-time (qRT) PCR analysis of specific genes showed a consistent tendency with the obtained transcriptomic analysis. On the basis of the results of stable isotope-labeled tracer experiments, we discovered a degradation pathway of caffeine to theobromine. These findings could assist researchers in understanding the caffeine-related mechanisms in Camellia plants containing low, normal, and high caffeine content and be applied to caffeine regulation and breeding improvement in future research.
Collapse
Affiliation(s)
- Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Lin-Bo Chen
- Tea Research Institute , Yunnan Academy of Agricultural Sciences , Menghai , Yunnan 666201 , China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Jing Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Jieyun Han
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| |
Collapse
|
19
|
Li L, Wen B, Zhang X, Zhao Y, Duan Y, Song X, Ren S, Wang Y, Fang W, Zhu X. Geographical origin traceability of tea based on multi-element spatial distribution and the relationship with soil in district scale. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Wen B, Li L, Duan Y, Zhang Y, Shen J, Xia M, Wang Y, Fang W, Zhu X. Zn, Ni, Mn, Cr, Pb and Cu in soil-tea ecosystem: The concentrations, spatial relationship and potential control. CHEMOSPHERE 2018; 204:92-100. [PMID: 29653327 DOI: 10.1016/j.chemosphere.2018.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Excessive accumulation of heavy metals in tea has certain health risk to the consumers. To discuss the spatial relationship between heavy metals in tea leaves and soil in a county scale, 74 samples of tea leaves and corresponding subsoil (15-30 cm) were collected in the tea plantations of Lishui, Nanjing, China. The total Zn, Ni, Mn, Cr, Pb and Cu in both tea leaves and soil samples, as well as pH value in soil were analyzed. The results of regression showed that the Mn and Cr in tea leaves were increased when the Mn and Cr in soil were at high levels, and higher pH decreased Zn, Ni, Mn and Cu contents in tea leaves. Moreover, distance to village and metal industry had negative impacts on the Mn level in soil. It is necessary to control the pH of soil in tea plantations which are close to villages or metal industries, as well as, to search more appropriate areas, where are far away from villages or metal industries, to plant tea should be taken into consideration. In addition, 17.57% of the samples have higher concentration of Pb than the maximum limits was found in tea plantation of Lishui. Heavy metals (Cr) standards regarding leafy vegetables is used for reference in this study, as there are no maximum levels of contaminants (MLC) in tea. It is significant to construct a targeted standard of heavy metals contents that could applicable throughout the world for reduce the health risks to the consumers.
Collapse
Affiliation(s)
- Bo Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Lei Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanyuan Zhang
- College of Economics and Management, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Jiazhi Shen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Min Xia
- College of Public Administration, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Next generation crop improvement program: Progress and prospect in tea ( Camellia sinensis (L.) O. Kuntze). ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aasci.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Wang YX, Liu ZW, Wu ZJ, Li H, Wang WL, Cui X, Zhuang J. Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis). Sci Rep 2018; 8:3949. [PMID: 29500448 PMCID: PMC5834537 DOI: 10.1038/s41598-018-22275-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
GRAS proteins are important transcription factors that play multifarious roles in regulating the growth and development as well as stress responses of plants. Tea plant is an economically important leaf -type beverage crop. Information concerning GRAS family transcription factors in tea plant is insufficient. In this study, 52 CsGRAS genes encoding GRAS proteins were identified from tea plant genome database. Phylogenetic analysis of the identified GRAS proteins from tea plant, Arabidopsis, and rice divided these proteins into at least 13 subgroups. Conserved motif analysis revealed that the gene structure and motif compositions of the proteins were considerably conserved among the same subgroup. Functional divergence analysis indicated that the shifted evolutionary rate might act as a major evolutionary force driving subfamily-specific functional diversification. Transcriptome analysis showed that the transcriptional levels of CsGRAS genes under non-stress conditions varied among different tea plant cultivars. qRT-PCR analysis revealed tissue and development stage-specific expression patterns of CsGRAS genes in tea plant. The expression patterns of CsGRAS genes in response to abiotic stresses and gibberellin treatment suggested the possible multiple functions of these genes. This study provides insights into the potential functions of GRAS genes.
Collapse
Affiliation(s)
- Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen-Li Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Cui
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Belaj A, de la Rosa R, Lorite IJ, Mariotti R, Cultrera NGM, Beuzón CR, González-Plaza JJ, Muñoz-Mérida A, Trelles O, Baldoni L. Usefulness of a New Large Set of High Throughput EST-SNP Markers as a Tool for Olive Germplasm Collection Management. FRONTIERS IN PLANT SCIENCE 2018; 9:1320. [PMID: 30298075 PMCID: PMC6160578 DOI: 10.3389/fpls.2018.01320] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/22/2018] [Indexed: 05/08/2023]
Abstract
Germplasm collections are basic tools for conservation, characterization, and efficient use of olive genetic resources. The identification of the olive cultivars maintained in the collections is an important ongoing task which has been performed by both, morphological and molecular markers. In the present study, based on the sequencing results of previous genomic projects, a new set of 1,043 EST-SNP markers has been identified. In order to evaluate its discrimination capacity and utility in diversity studies, this set of markers was used in a representative number of accessions from 20 different olive growing countries and maintained at the World Olive Germplasm Collection of IFAPA Centre 'Alameda del Obispo' (Córdoba, Spain), one of the world's largest olive germplasm bank. Thus, the cultivated material included: cultivars belonging to previously defined core collections by means of SSR markers and agronomical traits, well known homonymy cases, possible redundancies previously identified in the collection, and recently introduced accessions. Marker stability was tested in repeated analyses of a selected number of accessions, as well as in different trees and accessions belonging to the same cultivar. In addition, 15 genotypes from a cross 'Picual' × 'Arbequina' cultivars from the IFAPA olive breeding program and a set of 89 wild genotypes were also included in the study. Our results indicate that, despite their relatively wide variability, the new set of EST-SNPs displayed lower levels of genetic diversity than SSRs in the set of olive core collections tested. However, the EST-SNP markers displayed consistent and reliable results from different plant material sources and plant propagation events. The EST-SNPs revealed a clear cut off between inter- and intra-cultivar variation in olive. Besides, they were able to reliably discriminate among different accessions, to detect possible homonymy cases as well as efficiently ascertain the presence of redundant germplasm in the collection. Additionally, these markers were highly transferable to the wild genotypes. These results, together with the low genotyping error rates and the easy and fully automated procedure used to get the genotyping data, validate the new set of EST-SNPs as possible markers of choice for olive cultivar identification.
Collapse
Affiliation(s)
- Angjelina Belaj
- IFAPA Centro Alameda del Obispo, Córdoba, Spain
- *Correspondence: Angjelina Belaj,
| | | | | | | | | | - Carmen R. Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - J. J. González-Plaza
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
- Present address: J. J. González-Plaza, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - A. Muñoz-Mérida
- CIBIO, InBIO – Research Network in Biodiversity and Evolutionary Biology, University of Porto, Porto, Portugal
| | - O. Trelles
- Department of Integrated Bioinformatics, National Institute for Bioinformatics, Universidad de Málaga, Málaga, Spain
| | - Luciana Baldoni
- CNR – Institute of Biosciences and Bioresources, Perugia, Italy
| |
Collapse
|
24
|
Guo F, Guo Y, Wang P, Wang Y, Ni D. Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development. PLANTA 2017; 246:1139-1152. [PMID: 28825226 DOI: 10.1007/s00425-017-2760-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 05/18/2023]
Abstract
A total of 299,113 unigenes were generated and 15,817 DEGs were identified. We identified candidate genes associated with the regulation of catechins biosynthesis during leaf development in tea plant. The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most economically significant crops worldwide because of its positive effects on human health. The health benefits of tea are mainly attributed to catechins, which are the predominant polyphenols that accumulate in tea. Catechins are products of the phenylpropanoid and flavonoid biosynthetic pathways. Although catechins were identified in tea leaves long ago, the molecular mechanisms regulating catechins biosynthesis remain unclear. To identify candidate genes involved in catechins biosynthesis, we analyzed the transcriptomes of tea leaves during five different leaf stages of development using RNA-seq. Approximately 809 million high-quality reads were obtained, trimmed, and assembled into 299,113 unigenes with an average length of 565 bp. A total of 15,817 unigenes were differentially expressed during the different stages of leaf development. These differentially expressed genes were enriched in a variety of processes such as the regulation of the cell cycle, starch and sucrose metabolism, photosynthesis, phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis. Based on their annotations, 51 of these differentially expressed unigenes are involved in phenylpropanoid and flavonoid biosynthesis. Furthermore, transcription factors such as MYB, bHLH and MADS, which may involve in the regulation of catechins biosynthesis, were identified through co-expression analysis of transcription factors and structural genes. Real-time PCR analysis of candidate genes indicated a good correlation with the transcriptome data. These findings increase our understanding of the molecular mechanisms regulating catechins biosynthesis in the tea plant.
Collapse
Affiliation(s)
- Fei Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yafei Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
25
|
DNA barcode and identification of the varieties and provenances of Taiwan's domestic and imported made teas using ribosomal internal transcribed spacer 2 sequences. J Food Drug Anal 2017; 25:260-274. [PMID: 28911667 PMCID: PMC9332525 DOI: 10.1016/j.jfda.2016.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 01/17/2023] Open
Abstract
The major aim of made tea identification is to identify the variety and provenance of the tea plant. The present experiment used 113 tea plants [Camellia sinensis (L.) O. Kuntze] housed at the Tea Research and Extension Substation, from which 113 internal transcribed spacer 2 (ITS2) fragments, 104 trnL intron, and 98 trnL-trnF intergenic sequence region DNA sequences were successfully sequenced. The similarity of the ITS2 nucleotide sequences between tea plants housed at the Tea Research and Extension Substation was 0.379–0.994. In this polymerase chain reaction-amplified noncoding region, no varieties possessed identical sequences. Compared with the trnL intron and trnL-trnF intergenic sequence fragments of chloroplast cpDNA, the proportion of ITS2 nucleotide sequence variation was large and is more suitable for establishing a DNA barcode database to identify tea plant varieties. After establishing the database, 30 imported teas and 35 domestic made teas were used in this model system to explore the feasibility of using ITS2 sequences to identify the varieties and provenances of made teas. A phylogenetic tree was constructed using ITS2 sequences with the unweighted pair group method with arithmetic mean, which indicated that the same variety of tea plant is likely to be successfully categorized into one cluster, but contamination from other tea plants was also detected. This result provides molecular evidence that the similarity between important tea varieties in Taiwan remains high. We suggest a direct, wide collection of made tea and original samples of tea plants to establish an ITS2 sequence molecular barcode identification database to identify the varieties and provenances of tea plants. The DNA barcode comparison method can satisfy the need for a rapid, low-cost, frontline differentiation of the large amount of made teas from Taiwan and abroad, and can provide molecular evidence of their varieties and provenances.
Collapse
|
26
|
Wang RJ, Gao XF, Kong XR, Yang J. An efficient identification strategy of clonal tea cultivars using long-core motif SSR markers. SPRINGERPLUS 2016; 5:1152. [PMID: 27504250 PMCID: PMC4958088 DOI: 10.1186/s40064-016-2835-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/14/2016] [Indexed: 02/02/2023]
Abstract
Microsatellites, or simple sequence repeats (SSRs), especially those with long-core motifs (tri-, tetra-, penta-, and hexa-nucleotide) represent an excellent tool for DNA fingerprinting. SSRs with long-core motifs are preferred since neighbor alleles are more easily separated and identified from each other, which render the interpretation of electropherograms and the true alleles more reliable. In the present work, with the purpose of characterizing a set of core SSR markers with long-core motifs for well fingerprinting clonal cultivars of tea (Camellia sinensis), we analyzed 66 elite clonal tea cultivars in China with 33 initially-chosen long-core motif SSR markers covering all the 15 linkage groups of tea plant genome. A set of 6 SSR markers were conclusively selected as core SSR markers after further selection. The polymorphic information content (PIC) of the core SSR markers was >0.5, with ≤5 alleles in each marker containing 10 or fewer genotypes. Phylogenetic analysis revealed that the core SSR markers were not strongly correlated with the trait 'cultivar processing-property'. The combined probability of identity (PID) between two random cultivars for the whole set of 6 SSR markers was estimated to be 2.22 × 10(-5), which was quite low, confirmed the usefulness of the proposed SSR markers for fingerprinting analyses in Camellia sinensis. Moreover, for the sake of quickly discriminating the clonal tea cultivars, a cultivar identification diagram (CID) was subsequently established using these core markers, which fully reflected the identification process and provided the immediate information about which SSR markers were needed to identify a cultivar chosen among the tested ones. The results suggested that long-core motif SSR markers used in the investigation contributed to the accurate and efficient identification of the clonal tea cultivars and enabled the protection of intellectual property.
Collapse
Affiliation(s)
- Rang Jian Wang
- Institute of Tea, Fu Jian Academy of Agricultural Sciences, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China ; Fu Jian Branch, National Center for Tea Improvement, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China
| | - Xiang Feng Gao
- Institute of Tea, Fu Jian Academy of Agricultural Sciences, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China ; Fu Jian Branch, National Center for Tea Improvement, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China
| | - Xiang Rui Kong
- Institute of Tea, Fu Jian Academy of Agricultural Sciences, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China ; Fu Jian Branch, National Center for Tea Improvement, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China
| | - Jun Yang
- Institute of Tea, Fu Jian Academy of Agricultural Sciences, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China ; Fu Jian Branch, National Center for Tea Improvement, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China
| |
Collapse
|
27
|
Fang W, Meinhardt LW, Tan H, Zhou L, Mischke S, Wang X, Zhang D. Identification of the varietal origin of processed loose-leaf tea based on analysis of a single leaf by SNP nanofluidic array. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Shi A, Mou B. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea). Genome 2016; 59:581-8. [PMID: 27490441 DOI: 10.1139/gen-2016-0075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leafminer (Liriomyza langei) is a major insect pest of many important agricultural crops, including spinach (Spinacia oleracea). Use of genetic resistance is an efficient, economic, and environment-friendly method to control this pest. The objective of this research was to conduct association analysis and identify single nucleotide polymorphism (SNP) markers associated with leafminer resistance in spinach germplasm. A total of 300 USDA spinach germplasm accessions were used for the association analysis of leafminer resistance. Genotyping by sequencing (GBS) was used for genotyping and 783 SNPs from GBS were used for association analysis. The leafminer resistance showed a near normal distribution with a wide range from 1.1 to 11.7 stings per square centimeter leaf area, suggesting that the leafminer resistance in spinach is a complex trait controlled by multiple genes with minor effect in this spinach panel. Association analysis indicated that five SNP markers, AYZV02040968_7171, AYZV02076752_412, AYZV02098618_4615, AYZV02147304_383, and AYZV02271373_398, were associated with the leafminer resistance with LOD 2.5 or higher. The SNP markers may be useful for breeders to select plants and lines for leafminer resistance in spinach breeding programs through marker-assisted selection.
Collapse
Affiliation(s)
- Ainong Shi
- a Department of Horticulture, 316 PTSC, University of Arkansas, Fayetteville, AR 72701, USA
| | - Beiquan Mou
- b US Department of Agriculture, Agricultural Research Service (USDA-ARS), 1636 E. Alisal Street, Salinas, CA 93905, USA
| |
Collapse
|
29
|
Meegahakumbura MK, Wambulwa MC, Thapa KK, Li MM, Möller M, Xu JC, Yang JB, Liu BY, Ranjitkar S, Liu J, Li DZ, Gao LM. Indications for Three Independent Domestication Events for the Tea Plant (Camellia sinensis (L.) O. Kuntze) and New Insights into the Origin of Tea Germplasm in China and India Revealed by Nuclear Microsatellites. PLoS One 2016; 11:e0155369. [PMID: 27218820 PMCID: PMC4878758 DOI: 10.1371/journal.pone.0155369] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
Background Tea is the world’s most popular non-alcoholic beverage. China and India are known to be the largest tea producing countries and recognized as the centers for the domestication of the tea plant (Camellia sinensis (L.) O. Kuntze). However, molecular studies on the origin, domestication and relationships of the main teas, China type, Assam type and Cambod type are lacking. Methodology/Principal Findings Twenty-three nuclear microsatellite markers were used to investigate the genetic diversity, relatedness, and domestication history of cultivated tea in both China and India. Based on a total of 392 samples, high levels of genetic diversity were observed for all tea types in both countries. The cultivars clustered into three distinct genetic groups (i.e. China tea, Chinese Assam tea and Indian Assam tea) based on STRUCTURE, PCoA and UPGMA analyses with significant pairwise genetic differentiation, corresponding well with their geographical distribution. A high proportion (30%) of the studied tea samples were shown to possess genetic admixtures of different tea types suggesting a hybrid origin for these samples, including the Cambod type. Conclusions We demonstrate that Chinese Assam tea is a distinct genetic lineage from Indian Assam tea, and that China tea sampled from India was likely introduced from China directly. Our results further indicate that China type tea, Chinese Assam type tea and Indian Assam type tea are likely the result of three independent domestication events from three separate regions across China and India. Our findings have important implications for the conservation of genetic stocks, as well as future breeding programs.
Collapse
Affiliation(s)
- M. K. Meegahakumbura
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
- Coconut Research Institute, Lunuwila, Sri Lanka
| | - M. C. Wambulwa
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
- World Agroforestry Centre, Nairobi, Kenya
| | - K. K. Thapa
- Department of Botany, Dinhata College, Dinhata– 736135, West Bengal, India
| | - M. M. Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
| | - M. Möller
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, United Kingdom
| | - J. C. Xu
- Centre for Mountain Ecosystem Studies and World Agroforestry Centre East and Central Asia Regional Office, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - J. B. Yang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - B. Y. Liu
- Tea Research Institute of Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - S. Ranjitkar
- Centre for Mountain Ecosystem Studies and World Agroforestry Centre East and Central Asia Regional Office, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - J. Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - D. Z. Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
- * E-mail: (LMG); (DZL)
| | - L. M. Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- * E-mail: (LMG); (DZL)
| |
Collapse
|
30
|
Yang XD, Tan HW, Zhu WM. SpinachDB: A Well-Characterized Genomic Database for Gene Family Classification and SNP Information of Spinach. PLoS One 2016; 11:e0152706. [PMID: 27148975 PMCID: PMC4858205 DOI: 10.1371/journal.pone.0152706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/17/2016] [Indexed: 01/08/2023] Open
Abstract
Spinach (Spinacia oleracea L.), which originated in central and western Asia, belongs to the family Amaranthaceae. Spinach is one of most important leafy vegetables with a high nutritional value as well as being a perfect research material for plant sex chromosome models. As the completion of genome assembly and gene prediction of spinach, we developed SpinachDB (http://222.73.98.124/spinachdb) to store, annotate, mine and analyze genomics and genetics datasets efficiently. In this study, all of 21702 spinach genes were annotated. A total of 15741 spinach genes were catalogued into 4351 families, including identification of a substantial number of transcription factors. To construct a high-density genetic map, a total of 131592 SSRs and 1125743 potential SNPs located in 548801 loci of spinach genome were identified in 11 cultivated and wild spinach cultivars. The expression profiles were also performed with RNA-seq data using the FPKM method, which could be used to compare the genes. Paralogs in spinach and the orthologous genes in Arabidopsis, grape, sugar beet and rice were identified for comparative genome analysis. Finally, the SpinachDB website contains seven main sections, including the homepage; the GBrowse map that integrates genome, genes, SSR and SNP marker information; the Blast alignment service; the gene family classification search tool; the orthologous and paralogous gene pairs search tool; and the download and useful contact information. SpinachDB will be continually expanded to include newly generated robust genomics and genetics data sets along with the associated data mining and analysis tools.
Collapse
Affiliation(s)
- Xue-Dong Yang
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hua-Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei-Min Zhu
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
31
|
Yang H, Wei CL, Liu HW, Wu JL, Li ZG, Zhang L, Jian JB, Li YY, Tai YL, Zhang J, Zhang ZZ, Jiang CJ, Xia T, Wan XC. Genetic Divergence between Camellia sinensis and Its Wild Relatives Revealed via Genome-Wide SNPs from RAD Sequencing. PLoS One 2016; 11:e0151424. [PMID: 26962860 PMCID: PMC4786323 DOI: 10.1371/journal.pone.0151424] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 02/28/2016] [Indexed: 12/19/2022] Open
Abstract
Tea is one of the most popular beverages across the world and is made exclusively from cultivars of Camellia sinensis. Many wild relatives of the genus Camellia that are closely related to C. sinensis are native to Southwest China. In this study, we first identified the distinct genetic divergence between C. sinensis and its wild relatives and provided a glimpse into the artificial selection of tea plants at a genome-wide level by analyzing 15,444 genomic SNPs that were identified from 18 cultivated and wild tea accessions using a high-throughput genome-wide restriction site-associated DNA sequencing (RAD-Seq) approach. Six distinct clusters were detected by phylogeny inferrence and principal component and genetic structural analyses, and these clusters corresponded to six Camellia species/varieties. Genetic divergence apparently indicated that C. taliensis var. bangwei is a semi-wild or transient landrace occupying a phylogenetic position between those wild and cultivated tea plants. Cultivated accessions exhibited greater heterozygosity than wild accessions, with the exception of C. taliensis var. bangwei. Thirteen genes with non-synonymous SNPs exhibited strong selective signals that were suggestive of putative artificial selective footprints for tea plants during domestication. The genome-wide SNPs provide a fundamental data resource for assessing genetic relationships, characterizing complex traits, comparing heterozygosity and analyzing putatitve artificial selection in tea plants.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Hong-Wei Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jun-Lan Wu
- School of Information & Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Zheng-Guo Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | | | - Ye-Yun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yu-Ling Tai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Chang-Jun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- * E-mail:
| |
Collapse
|
32
|
Mukhopadhyay M, Mondal TK, Chand PK. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. PLANT CELL REPORTS 2016; 35:255-87. [PMID: 26563347 DOI: 10.1007/s00299-015-1884-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 05/28/2023]
Abstract
This article presents a comprehensive review on the success and limitations of biotechnological approaches aimed at genetic improvement of tea with a purpose to explore possibilities to address challenging areas. Tea is a woody perennial tree with a life span of more than 100 years. Conventional breeding of tea is slow and limited primarily to selection which leads to narrowing down of its genetic base. Harnessing the benefits of wild relatives has been negligible due to low cross-compatibility, genetic drag and undesirable alleles for low yield. Additionally, being a recalcitrant species, in vitro propagation of tea is constrained too. Nevertheless, maneuvering with tissue/cell culture techniques, a considerable success has been achieved in the area of micropropagation, somatic embryogenesis as well as genetic transformation. Besides, use of molecular markers, "expressomics" (transcriptomics, proteomics, metabolomics), map-based cloning towards construction of physical maps, generation of expressed sequenced tags (ESTs) have facilitated the identification of QTLs and discovery of genes associated with abiotic or biotic stress tolerance and agronomic traits. Furthermore, the complete genome (or at least gene space) sequence of tea is expected to be accessible in the near future which will strengthen combinational approaches for improvement of tea. This review presents a comprehensive account of the success and limitations of the biotechnological tools and techniques hitherto applied to tea and its wild relatives. Expectedly, this will form a basis for making further advances aimed at genetic improvement of tea in particular and of economically important woody perennials in general.
Collapse
Affiliation(s)
- Mainaak Mukhopadhyay
- Department of Botany, University of Kalyani, Kalyani, 741235, Nadia, West Bengal, India.
| | - Tapan K Mondal
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India.
| | - Pradeep K Chand
- Plant Cell and Tissue Culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| |
Collapse
|
33
|
Wu ZJ, Tian C, Jiang Q, Li XH, Zhuang J. Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis). Sci Rep 2016; 6:19748. [PMID: 26813576 PMCID: PMC4728435 DOI: 10.1038/srep19748] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/17/2015] [Indexed: 12/16/2022] Open
Abstract
Tea plant (Camellia sinensis) leaf is an important non-alcoholic beverage resource. The application of quantitative real time polymerase chain reaction (qRT-PCR) has a profound significance for the gene expression studies of tea plant, especially when applied to tea leaf development and metabolism. In this study, nine candidate reference genes (i.e., CsACT7, CsEF-1α, CseIF-4α, CsGAPDH, CsPP2A, CsSAND, CsTBP, CsTIP41, and CsTUB) of C. sinensis were cloned. The quantitative expression data of these genes were investigated in five tea leaf developmental stages (i.e., 1st, 2nd, 3rd, 4th, and older leaves) and normal growth tea leaves subjected to five hormonal stimuli (i.e., ABA, GA, IAA, MeJA, and SA), and gene expression stability was calculated using three common statistical algorithms, namely, geNorm, NormFinder, and Bestkeeper. Results indicated that CsTBP and CsTIP41 were the most stable genes in tea leaf development and CsTBP was the best gene under hormonal stimuli; by contrast, CsGAPDH and CsTUB genes showed the least stability. The gene expression profile of CsNAM gene was analyzed to confirm the validity of the reference genes in this study. Our data provide basis for the selection of reference genes for future biological research in the leaf development and hormonal stimuli of C. sinensis.
Collapse
Affiliation(s)
- Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chang Tian
- State Key Laboratory of Crop Genetics and Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
34
|
Wang B, Tan HW, Fang W, Meinhardt LW, Mischke S, Matsumoto T, Zhang D. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm. HORTICULTURE RESEARCH 2015; 2:14065. [PMID: 26504559 PMCID: PMC4595986 DOI: 10.1038/hortres.2014.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 05/03/2023]
Abstract
Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (F st=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification.
Collapse
Affiliation(s)
- Boyi Wang
- Yunnan Forestry Technological College, Kunming 650224, Yunnan, China
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Hua-Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Lyndel W Meinhardt
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Sue Mischke
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Tracie Matsumoto
- Tropical Plant Genetic Resources and Disease Research, USDA-ARS, Hilo, HI 96720, USA
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| |
Collapse
|
35
|
Liu M, Tian HL, Wu JH, Cang RR, Wang RX, Qi XH, Xu Q, Chen XH. Relationship between gene expression and the accumulation of catechin during spring and autumn in tea plants (Camellia sinensis L.). HORTICULTURE RESEARCH 2015; 2:15011. [PMID: 26504566 PMCID: PMC4595990 DOI: 10.1038/hortres.2015.11] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 05/03/2023]
Abstract
The tea plant (Camellia sinensis L.) is an important commercial crop with remarkably high catechin concentrations. Tea is popular worldwide given the plant's health benefits. Catechins are the main astringent substance in tea and are synthesized mainly via the phenylpropanoid pathway. In this study, eight cultivars of tea plants harvested both in spring and autumn were used to investigate differences in catechin concentrations by using high-performance liquid chromatography. The expression levels of genes associated with catechin biosynthesis were investigated using reverse transcription-quantitative polymerase chain reaction. The results indicated that the total catechin (TC) concentrations were significantly higher in tea plants harvested in autumn than in those harvested in spring, based on higher concentrations of epigallocatechin (EGC) in autumn tea (P<0.01). The expression of the genes phenylalanine ammonia-lyase (PAL), flavanone 3-hydroxylase (F3H), flavonoid 3',5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) is closely related to the TC content of tea plants in both spring and autumn. Positive correlations between PAL, cinnamate 4-hydroxylase (C4H), F3H, and DFR expression and EGC accumulation in autumn tea were identified, with correlation coefficients of 0.710, 0.763, 0.884, and 0.707, respectively. A negative correlation between ANS expression level and EGC concentrations in tea plants harvested in spring was noted (r=-0.732). Additionally, negative correlations between F3H and ANS expression levels and the catechin content were identified in spring tea, whereas the correlations were positive in autumn tea. Significant differences in the F3H and ANS expression levels between spring and autumn tea indicate that F3H and ANS are potentially key genes affecting catechin accumulation in tea plants.
Collapse
Affiliation(s)
- Min Liu
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, P. R. China
| | - Heng-lu Tian
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, P. R. China
| | - Jian-Hua Wu
- Vocational and Technical College of Agriculture and Forestry (School of Agriculture), 18 Wenchang East Road, Jurong, Jiangsu 212400, P. R. China
| | - Ren-Rong Cang
- Tea Research Institute, Jurong, Jiangsu 212400, P. R. China
| | - Run-Xian Wang
- Tea Research Institute, Jurong, Jiangsu 212400, P. R. China
| | - Xiao-Hua Qi
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, P. R. China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, P. R. China
| | - Xue-Hao Chen
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, P. R. China
- ()
| |
Collapse
|