1
|
Wu HL, Zhang SL, Feng X, Zhang YQ, Zhou BJ, Cao M, Wang YP, Guo BS, Hou ZX. Possible Mechanism of Sucrose and Trehalose-6-Phosphate in Regulating the Secondary Flower on the Strong Upright Spring Shoots of Blueberry Planted in Greenhouse. PLANTS (BASEL, SWITZERLAND) 2024; 13:2350. [PMID: 39273834 PMCID: PMC11397707 DOI: 10.3390/plants13172350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Secondary flowering is the phenomenon in which a tree blooms twice or more times a year. Along with the development of blueberry (Vaccinium corymbosum L.) fruits in spring, a large number of secondary flowers on the strong upright spring shoots were noticed in blueberries planted in the greenhouse. To reveal the cause and possible regulatory mechanism of the phenomenon, we clarified the phenological characteristics of flower bud differentiation and development on the spring shoots by combining phenological phenotype with anatomical observation. Furthermore, the changes in carbohydrates, trehalose-6-phosphate (Tre6P), and the relationship among the key enzyme regulatory genes for Tre6P metabolism and the key regulatory genes for flower formation during the differentiation process of apical buds and axillary buds were investigated. The results showed that the process of flower bud differentiation and flowering of apical and axillary buds was consistent, accompanied by a large amount of carbohydrate consumption. This process was positively correlated with the expression trends of VcTPS1/2, VcSnRK1, VcFT, VcLFY2, VcSPL43, VcAP1, and VcDAM in general, and negatively correlated with that of VcTPP. In addition, there is a certain difference in the differentiation progress of flower buds between the apical and axillary buds. Compared with axillary buds, apical buds had higher contents of sucrose, fructose, glucose, Tre6P, and higher expression levels of VcTPS2, VcFT, VcSPL43, and VcAP1. Moreover, VcTPS1 and VcTPS2 were more closely related to the physiological substances (sucrose and Tre6P) in axillary bud and apical bud differentiation, respectively. It was suggested that sucrose and trehalose-6-phosphate play a crucial role in promoting flower bud differentiation in strong upright spring shoots, and VcTPS1 and VcTPS2 might play a central role in these activities. Our study provided substantial sight for further study on the mechanism of multiple flowering of blueberries and laid a foundation for the regulation and utilization of the phenomenon of multiple flowering in a growing season of perennial woody plants.
Collapse
Affiliation(s)
- Hui-Ling Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Sui-Lin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Ya-Qian Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Bing-Jie Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Man Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Ya-Ping Wang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Bao-Shi Guo
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Zhi-Xia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Chen J, Tao Y, Yang S, Jiang F, Zhou G, Qian X, Zhu Y, Li L. A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry method for determination of phytohormones in the medicinal plant saffron. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1347-1356. [PMID: 38334707 DOI: 10.1039/d4ay00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Saffron (Crocus sativus L.) is a valuable Chinese herb with high medicinal value. Saffron pistils are used as medicine, so increasing the number of flowers can increase the yield. Plant hormones have essential roles in the growth and development of saffron, as well as the response to biotic and abiotic stresses (especially in floral initiation), which may directly affect the number of flowers. Quantitative analysis of plant hormones provides a basis for more efficient research on their synthesis, transportation, metabolism, and action. However, starch (which interferes with extraction) is present in high levels, and hormone levels are extremely low, in saffron corms, thereby hampering accurate determination of plant-hormone levels in saffron. Herein, we screened an efficient and convenient pre-treatment method for plant materials containing abundant amounts of starch. Also, we proposed an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the quantification of abscisic acid (ABA) and auxin (IAA). Then, the method was applied for the detection of hormone-content differences between flowering and non-flowering top buds, as well as between lateral and top buds. Our method showed high sensitivity, reproducibility, and reliability. Specifically, good linearity in the range 2-100 ng ml-1 was achieved in the determination of ABA and IAA, and the correlation coefficient (R2) was >0.9982. The relative standard deviation was 2.956-14.51% (intraday) and 9.57-18.99% (interday), and the recovery range was 89.04-101.1% (n = 9). The matrix effect was 80.38-90.50% (n = 3). The method was thoroughly assessed employing various "green" chemistry evaluation tools: Blue Applicability Grade Index (BAGI), Complementary Green Analytical Procedure Index (Complex GAPI) and Red Green Blue 12 Algorithm (RGB12). These tools revealed the good greenness, analytical performance, applicability, and overall sustainability alignment of our method. Quantitative results showed that, compared with saffron with a flowering phenotype cultivated at 25 °C, the contents of IAA and ABA in the terminal buds of saffron cultivated at 16 °C decreased significantly. When cultivated at 25 °C, the IAA and ABA contents in the terminal buds of saffron were 1.54- and 4.84-times higher than those in the lateral buds, respectively. A simple, rapid, and accurate UPLC-MS/MS method was established to determine IAA and ABA contents. Using this method, a connection between the contents of IAA and ABA and the flowering phenotype was observed in the quantification results. Our data lay a foundation for studying the flowering mechanism of saffron.
Collapse
Affiliation(s)
- Jing Chen
- TCM Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou Hospital, Zhejiang University, Huzhou, China.
| | - Yuanyuan Tao
- TCM Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou Hospital, Zhejiang University, Huzhou, China.
| | - Shuhui Yang
- TCM Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou Hospital, Zhejiang University, Huzhou, China.
| | - Fengqin Jiang
- TCM Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou Hospital, Zhejiang University, Huzhou, China.
| | - Guifen Zhou
- Department of Chinese Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Xiaodong Qian
- TCM Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou Hospital, Zhejiang University, Huzhou, China.
| | - Yuehong Zhu
- TCM Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou Hospital, Zhejiang University, Huzhou, China.
| | - Liqin Li
- TCM Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou Hospital, Zhejiang University, Huzhou, China.
| |
Collapse
|
3
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
4
|
Wu Q, Zheng D, Lian N, Zhu X, Wu J. Hormonal Regulation and Stimulation Response of Jatropha curcas L. Homolog Overexpression on Tobacco Leaf Growth by Transcriptome Analysis. Int J Mol Sci 2023; 24:13183. [PMID: 37685991 PMCID: PMC10487882 DOI: 10.3390/ijms241713183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
The Flowering locus T (FT) gene encodes the florigen protein, which primarily regulates the flowering time in plants. Recent studies have shown that FT genes also significantly affect plant growth and development. The FT gene overexpression in plants promotes flowering and suppresses leaf and stem development. This study aimed to conduct a transcriptome analysis to investigate the multiple effects of Jatropha curcas L. homolog (JcFT) overexpression on leaf growth in tobacco plants. The findings revealed that JcFT overexpression affected various biological processes during leaf development, including plant hormone levels and signal transduction, lipid oxidation metabolism, terpenoid metabolism, and the jasmonic-acid-mediated signaling pathway. These results suggested that the effects of FT overexpression in plants were complex and multifaceted, and the combination of these factors might contribute to a reduction in the leaf size. This study comprehensively analyzed the effects of JcFT on leaf development at the transcriptome level and provided new insights into the function of FT and its homologous genes.
Collapse
Affiliation(s)
- Qiuhong Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
| | - Dongchao Zheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Na Lian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Xuli Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Jun Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
- Sichuan-Chongqing Key Laboratory of Characteristic Biological Resources Research and Utilization, Chengdu 610065, China
| |
Collapse
|
5
|
Qin X, Hu J, Xu G, Song H, Zhang L, Cao Y. An Efficient Transformation System for Fast Production of VcCHS Transgenic Blueberry Callus and Its Expressional Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2905. [PMID: 37631118 PMCID: PMC10458251 DOI: 10.3390/plants12162905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
The Agrobacterium tumefaciens-mediated transformation for blueberries remains less efficient than is desirable. A new leaf callus regeneration and genetic transformation system was investigated in blueberries in this study. The leaf explants of cv. 'Legacy' and 'Northland' were used to establish the stable callus induction system when placed on the woody plant medium (WPM) supplemented with 1.0 mg·L-1 2, 4-D, 0.4 mg·L-1 6-BA for 30 d; then, the callus was sub-cultured in the proliferation medium supplemented with 1.5 mg·L-1 2, 4-D, 0.4 mg·L-1 6-BA in the darkness at 25 °C every 30 days. The co-cultivation of callus with A. tumefaciens was operated on WPM plus 100 μM acetosyringone for 4 days; then, the transferred callus was grown in WPM supplemented with 1.5 mg·L-1 2,4-D, 0.4 mg·L-1 6-BA, 50 mg·L-1 hygromycin, and 200 mg·L-1 cefotaxime. The VcCHS transgenic blueberry callus with both GFP signal and Hyg resistance was obtained from the transformed callus of cv. 'Northland'. The rate of GFP signal detected in the transformed callus was as high as 49.02%, which was consistent with the PCR assay. Collectively, this study provides a highly efficient genetic transformation system in blueberry callus and a powerful approach for the molecular breeding of blueberries.
Collapse
Affiliation(s)
- Xuejing Qin
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.Q.); (J.H.); (H.S.)
| | - Jing Hu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.Q.); (J.H.); (H.S.)
| | - Guohui Xu
- College of Life and Health, Dalian University, Dalian 116000, China;
| | - Huifang Song
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.Q.); (J.H.); (H.S.)
| | - Lingyun Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.Q.); (J.H.); (H.S.)
| | - Yibo Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.Q.); (J.H.); (H.S.)
| |
Collapse
|
6
|
Song GQ, Carter BB, Zhong GY. Multiple transcriptome comparisons reveal the essential roles of FLOWERING LOCUS T in floral initiation and SOC1 and SVP in floral activation in blueberry. Front Genet 2023; 14:1105519. [PMID: 37091803 PMCID: PMC10113452 DOI: 10.3389/fgene.2023.1105519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
The flowering mechanisms, especially chilling requirement-regulated flowering, in deciduous woody crops remain to be elucidated. Flower buds of northern highbush blueberry cultivar Aurora require approximately 1,000 chilling hours to bloom. Overexpression of a blueberry FLOWERING LOCUS T (VcFT) enabled precocious flowering of transgenic “Aurora” mainly in non-terminated apical buds during flower bud formation, meanwhile, most of the mature flower buds could not break until they received enough chilling hours. In this study, we highlighted two groups of differentially expressed genes (DEGs) in flower buds caused by VcFT overexpression (VcFT-OX) and full chilling. We compared the two groups of DEGs with a focus on flowering pathway genes. We found: 1) In non-chilled flower buds, VcFT-OX drove a high VcFT expression and repressed expression of a major MADS-box gene, blueberry SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (VcSOC1) resulting an increased VcFT/VcSOC1 expression ratio; 2) In fully chilled flower buds that are ready to break, the chilling upregulated VcSOC1 expression in non-transgenic “Aurora” and repressed VcFT expression in VcFT-OX “Aurora”, and each resulted in a decreased ratio of VcFT to VcSOC1; additionally, expression of a blueberry SHORT VEGETATIVE PHASE (VcSVP) was upregulated in chilled flower buds of both transgenic and non-transgenic’ “Aurora”. Together with additional analysis of VcFT and VcSOC1 in the transcriptome data of other genotypes and tissues, we provide evidence to support that VcFT expression plays a significant role in promoting floral initiation and that VcSOC1 expression is a key floral activator. We thus propose a new hypothesis on blueberry flowering mechanism, of which the ratios of VcFT-to-VcSOC1 at transcript levels in the flowering pathways determine flower bud formation and bud breaking. Generally, an increased VcFT/VcSOC1 ratio or increased VcSOC1 in leaf promotes precocious flowering and flower bud formation, and a decreased VcFT/VcSOC1 ratio with increased VcSOC1 in fully chilled flower buds contributes to flower bud breaking.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
- *Correspondence: Guo-qing Song,
| | - Benjamin B. Carter
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Gan-Yuan Zhong
- Grape Genetics Research Unit, USDA-Agricultural Research Service, Geneva, NY, United States
| |
Collapse
|
7
|
Cardon CH, de Oliveira RR, Lesy V, Ribeiro THC, Fust C, Pereira LP, Colasanti J, Chalfun-Junior A. Expression of coffee florigen CaFT1 reveals a sustained floral induction window associated with asynchronous flowering in tropical perennials. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111479. [PMID: 36181945 DOI: 10.1016/j.plantsci.2022.111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The behavior of florigen(s) and environment-influenced regulatory pathways that control floral initiation in tropical perennials species with complex phenological cycles is poorly understood. Understanding the mechanisms underlying this process is important for food production in the face of climate change, thus, we used Coffea sp. L. (Rubiaceae) as a model to explore this issue. Homologs of FLOWERING LOCUS T (CaFT1) and environment-related regulators CONSTANS (CaCO), PHYTOCHROME INTERACTING FACTOR 4 (CaPIF4) and FLOWERING LOCUS C (CaFLC) were retrieved from coffee genomes and identified through phylogenetic analysis. Overexpression of CaFT1 in Arabidopsis caused early-flowering phenotype and yeast two hybrid studies indicated CaFT1 binding to bZIP floral regulator FD, which suggests that CaFT1 is a coffee florigen. Expression of CaFT1 and other floral regulators, together with carbohydrate analysis, were evaluated over one year using three contrasting genotypes, two C. arabica cultivars and C. canephora. All genotypes showed active and variable CaFT1 transcription from February until October, indicating the potential window for floral induction that reached a maximum in the cold period of June. CaCO expression, as expected, varied over a 24-hour day period and monthly with day length, whereas expression of temperature-responsive homologs, CaFLC and CaPIF4, did not correlate with temperature changes nor CaFT1 expression, suggesting alternative FT regulatory pathways in coffee. Based on our results, we suggest a continuum of floral induction that allows different starting points for floral activation, which explains developmental asynchronicity and prolonged anthesis events in tropical perennial species.
Collapse
Affiliation(s)
- Carlos Henrique Cardon
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil; Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| | - Victoria Lesy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| | - Catherine Fust
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Luísa Peloso Pereira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| |
Collapse
|
8
|
Ren H, Xu Y, Lixie H, Kuang J, Wang Y, Jin Q. Integrated Transcriptome and Targeted Metabolite Analysis Reveal miRNA-mRNA Networks in Low-Light-Induced Lotus Flower Bud Abortion. Int J Mol Sci 2022; 23:9925. [PMID: 36077323 PMCID: PMC9456346 DOI: 10.3390/ijms23179925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Most Nelumbo nucifera (lotus) flower buds were aborted during the growing season, notably in low-light environments. How lotus produces so many aborted flower buds is largely unknown. An integrated transcriptome and targeted metabolite analysis was performed to reveal the genetic regulatory networks underlying lotus flower bud abortion. A total of 233 miRNAs and 25,351 genes were identified in lotus flower buds, including 68 novel miRNAs and 1108 novel genes. Further enrichment analysis indicated that sugar signaling plays a potential central role in regulating lotus flower bud abortion. Targeted metabolite analysis showed that trehalose levels declined the most in the aborting flower buds. A potential regulatory network centered on miR156 governs lotus flower bud abortion, involving multiple miRNA-mRNA pairs related to cell integrity, cell proliferation and expansion, and DNA repair. Genetic analysis showed that miRNA156-5p-overexpressing lotus showed aggravated flower bud abortion phenotypes. Trehalose-6-P synthase 1 (TPS1), which is required for trehalose synthase, had a negative regulatory effect on miR156 expression. TPS1-overexpression lotus showed significantly decreased flower bud abortion rates both in normal-light and low-light environments. Our study establishes a possible genetic basis for how lotus produces so many aborted flower buds, facilitating genetic improvement of lotus' shade tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Cui F, Ye X, Li X, Yang Y, Hu Z, Overmyer K, Brosché M, Yu H, Salojärvi J. Chromosome-level genome assembly of the diploid blueberry Vaccinium darrowii provides insights into its subtropical adaptation and cuticle synthesis. PLANT COMMUNICATIONS 2022; 3:100307. [PMID: 35605198 PMCID: PMC9284290 DOI: 10.1016/j.xplc.2022.100307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
Vaccinium darrowii is a subtropical wild blueberry species that has been used to breed economically important southern highbush cultivars. The adaptive traits of V. darrowii to subtropical climates can provide valuable information for breeding blueberry and perhaps other plants, especially against the background of global warming. Here, we assembled the V. darrowii genome into 12 pseudochromosomes using Oxford Nanopore long reads complemented with Hi-C scaffolding technologies, and we predicted 41 815 genes using RNA-sequencing evidence. Syntenic analysis across three Vaccinium species revealed a highly conserved genome structure, with the highest collinearity between V. darrowii and Vaccinium corymbosum. This conserved genome structure may explain the high fertility observed during crossbreeding of V. darrowii with other blueberry cultivars. Analysis of gene expansion and tandem duplication indicated possible roles for defense- and flowering-associated genes in the adaptation of V. darrowii to the subtropics. Putative SOC1 genes in V. darrowii were identified based on phylogeny and expression analysis. Blueberries are covered in a thick cuticle layer and contain anthocyanins, which confer their powdery blue color. Using RNA sequencing, we delineated the cuticle biosynthesis pathways of Vaccinium species in V. darrowii. This result can serve as a reference for breeding berries whose colors are appealing to customers. The V. darrowii reference genome, together with the unique traits of this species, including its diploid genome, short vegetative phase, and high compatibility in hybridization with other blueberries, make V. darrowii a potential research model for blueberry species.
Collapse
Affiliation(s)
- Fuqiang Cui
- College of Forestry and Biotechnology, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| | - Xiaoxue Ye
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiaoxiao Li
- College of Forestry and Biotechnology, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yifan Yang
- College of Forestry and Biotechnology, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and the Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and the Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Hong Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and the Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland.
| |
Collapse
|
10
|
Li X, Zhang X, Shi T, Chen M, Jia C, Wang J, Hou Z, Han J, Bian S. Identification of ARF family in blueberry and its potential involvement of fruit development and pH stress response. BMC Genomics 2022; 23:329. [PMID: 35477362 PMCID: PMC9047364 DOI: 10.1186/s12864-022-08556-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Auxin responsive factor (ARF) family is one of core components in auxin signalling pathway, which governs diverse developmental processes and stress responses. Blueberry is an economically important berry-bearing crop and prefers to acidic soil. However, the understandings of ARF family has not yet been reported in blueberry. Results In the present study, 60 ARF genes (VcARF) were identified in blueberry, and they showed diverse gene structures and motif compositions among the groups and similar within each group in the phylogenetic tree. Noticeably, 9 digenic, 5 trigenic and 6 tetragenic VcARF pairs exhibited more than 95% identity to each other. Computational analysis indicated that 23 VcARFs harbored the miRNA responsive element (MRE) of miR160 or miR167 like other plant ARF genes. Interestingly, the MRE of miR156d/h-3p was observed in the 5’UTR of 3 VcARFs, suggesting a potentially novel post-transcriptional control. Furthermore, the transcript accumulations of VcARFs were investigated during fruit development, and three categories of transcript profiles were observed, implying different functional roles. Meanwhile, the expressions of VcARFs to different pH conditions (pH4.5 and pH6.5) were surveyed in pH-sensitive and tolerant blueberry species, and a number of VcARFs showed different transcript accumulations. More importantly, distinct transcriptional response to pH stress (pH6.5) were observed for several VcARFs (such as VcARF6s and VcARF19-3/19–4) between pH-sensitive and tolerant species, suggesting their potential roles in adaption to pH stress. Conclusions Sixty VcARF genes were identified and characterized, and their transcript profiles were surveyed during fruit development and in response to pH stress. These findings will contribute to future research for eliciting the functional roles of VcARFs and regulatory mechanisms, especially fruit development and adaption to pH stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08556-y.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaoyi Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Tianran Shi
- College of Plant Science, Jilin University, Changchun, China
| | - Min Chen
- College of Plant Science, Jilin University, Changchun, China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, China
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Research & Development Center of Blueberry, Beijing, 100083, China
| | - Junyou Han
- College of Plant Science, Jilin University, Changchun, China.
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China.
| |
Collapse
|
11
|
Sun B, Shang L, Li Y, Zhang Q, Chu Z, He S, Yang W, Ding X. Ectopic Expression of OsJAZs Alters Plant Defense and Development. Int J Mol Sci 2022; 23:ijms23094581. [PMID: 35562972 PMCID: PMC9103030 DOI: 10.3390/ijms23094581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
A key step in jasmonic acid (JA) signaling is the ligand-dependent assembly of a coreceptor complex comprising the F-box protein COI1 and JAZ transcriptional repressors. The assembly of this receptor complex results in proteasome-mediated degradation of JAZ repressors, which in turn bind and repress MYC transcription factors. Many studies on JAZs have been performed in Arabidopsis thaliana, but the function of JAZs in rice is largely unknown. To systematically reveal the function of OsJAZs, in this study, we compared the various phenotypes resulting from 13 OsJAZs via ectopic expression in Arabidopsis thaliana and the phenotypes of 12 AtJAZs overexpression (OE) lines. Phylogenetic analysis showed that the 25 proteins could be divided into three major groups. Yeast two-hybrid (Y2H) assays revealed that most OsJAZ proteins could form homodimers or heterodimers. The statistical results showed that the phenotypes of the OsJAZ OE plants were quite different from those of AtJAZ OE plants in terms of plant growth, development, and immunity. As an example, compared with other JAZ OE plants, OsJAZ11 OE plants exhibited a JA-insensitive phenotype and enhanced resistance to Pst DC3000. The protein stability after JA treatment of OsJAZ11 emphasized the specific function of the protein. This study aimed to explore the commonalities and characteristics of different JAZ proteins functions from a genetic perspective, and to screen genes with disease resistance value. Overall, the results of this study provide insights for further functional analysis of rice JAZ family proteins.
Collapse
Affiliation(s)
- Baolong Sun
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Luyue Shang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Qiang Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Shengyang He
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Wei Yang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, College of Modern Agricultural, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (W.Y.); (X.D.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
- Correspondence: (W.Y.); (X.D.)
| |
Collapse
|
12
|
Edger PP, Iorizzo M, Bassil NV, Benevenuto J, Ferrão LFV, Giongo L, Hummer K, Lawas LMF, Leisner CP, Li C, Munoz PR, Ashrafi H, Atucha A, Babiker EM, Canales E, Chagné D, DeVetter L, Ehlenfeldt M, Espley RV, Gallardo K, Günther CS, Hardigan M, Hulse-Kemp AM, Jacobs M, Lila MA, Luby C, Main D, Mengist MF, Owens GL, Perkins-Veazie P, Polashock J, Pottorff M, Rowland LJ, Sims CA, Song GQ, Spencer J, Vorsa N, Yocca AE, Zalapa J. There and back again; historical perspective and future directions for Vaccinium breeding and research studies. HORTICULTURE RESEARCH 2022; 9:uhac083. [PMID: 35611183 PMCID: PMC9123236 DOI: 10.1093/hr/uhac083] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2022] [Indexed: 06/02/2023]
Abstract
The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.
Collapse
Affiliation(s)
- Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- MSU AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nahla V Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Juliana Benevenuto
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Luis Felipe V Ferrão
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Lara Giongo
- Fondazione Edmund Mach - Research and Innovation CentreItaly
| | - Kim Hummer
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Lovely Mae F Lawas
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changying Li
- Phenomics and Plant Robotics Center, College of Engineering, University of Georgia, Athens, USA
| | - Patricio R Munoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Amaya Atucha
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ebrahiem M Babiker
- USDA-ARS Southern Horticultural Laboratory, Poplarville, MS 39470-0287, USA
| | - Elizabeth Canales
- Department of Agricultural Economics, Mississippi State University, Mississippi State, MS 39762, USA
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Lisa DeVetter
- Department of Horticulture, Washington State University Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98221, USA
| | - Mark Ehlenfeldt
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Karina Gallardo
- School of Economic Sciences, Washington State University, Puyallup, WA 98371, USA
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Michael Hardigan
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Amanda M Hulse-Kemp
- USDA-ARS, Genomics and Bioinformatics Research Unit, Raleigh, NC 27695, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - MacKenzie Jacobs
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Claire Luby
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| | - Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | | | | | - James Polashock
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Lisa J Rowland
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705, USA
| | - Charles A Sims
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Jessica Spencer
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nicholi Vorsa
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Juan Zalapa
- USDA-ARS, VCRU, Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Farneti B, Khomenko I, Ajelli M, Emanuelli F, Biasioli F, Giongo L. Ethylene Production Affects Blueberry Fruit Texture and Storability. FRONTIERS IN PLANT SCIENCE 2022; 13:813863. [PMID: 35401635 PMCID: PMC8990881 DOI: 10.3389/fpls.2022.813863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Ethylene, produced endogenously by plants and their organs, can induce a wide array of physiological responses even at very low concentrations. Nevertheless, the role of ethylene in regulating blueberry (Vaccinium spp.) ripening and storability is still unclear although an increase in ethylene production has been observed in several studies during blueberry ripening. To overcome this issue, we evaluated the endogenous ethylene production of a Vaccinium germplasm selection at different fruit ripening stages and after cold storage, considering also textural modifications. Ethylene and texture were further assessed also on a bi-parental full-sib population of 124 accessions obtained by the crossing between "Draper" and "Biloxi", two cultivars characterized by a different chilling requirement and storability performances. Our results were compared with an extensive literature research, carried out to collect all accessible information on published works related to Vaccinium ethylene production and sensitivity. Results of this study illustrate a likely role of ethylene in regulating blueberry shelf life. However, a generalisation valid for all Vaccinium species is not attainable because of the high variability in ethylene production between genotypes, which is strictly genotype-specific. These differences in ethylene production are related with blueberry fruit storage performances based on textural alterations. Specifically, blueberry accessions characterized by the highest ethylene production had a more severe texture decay during storage. Our results support the possibility of tailoring ad hoc preharvest and postharvest strategies to extend blueberry shelf life and quality according with the endogenous ethylene production level of each cultivar.
Collapse
Affiliation(s)
- Brian Farneti
- Berries Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Iuliia Khomenko
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Matteo Ajelli
- Berries Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Francesco Emanuelli
- Berries Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Franco Biasioli
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Lara Giongo
- Berries Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| |
Collapse
|
14
|
Wu J, Wu Q, Bo Z, Zhu X, Zhang J, Li Q, Kong W. Comprehensive Effects of Flowering Locus T-Mediated Stem Growth in Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:922919. [PMID: 35783923 PMCID: PMC9243646 DOI: 10.3389/fpls.2022.922919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/31/2022] [Indexed: 05/13/2023]
Abstract
In flowering plants, Flowering locus T (FT) encodes a major florigen. It is a key flowering hormone in controlling flowering time and has a wide range of effects on plant development. Although the mechanism by which FT promotes flowering is currently clearly understood, comprehensive effects of the FT gene on plant growth have not been evaluated. Therefore, the effects of FT on vegetative growth need to be explored for a complete understanding of the molecular functions of the FT gene. In this study, the Jatropha curcas L. FT gene was overexpressed in tobacco (JcFTOE) in order to discover multiple aspects and related mechanisms of how the FT gene affects plant development. In JcFTOE plants, root, stem, and leaf development was strongly affected. Stem tissues were selected for further transcriptome analysis. In JcFTOE plants, stem growth was affected because of changes in the nucleus, cytoplasm, and cell wall. In the nucleus of JcFTOE plants, the primary effect was to weaken all aspects of DNA replication, which ultimately affected the cell cycle and cell division. The number of stem cells decreased significantly in JcFTOE plants, which decreased the thickness and height of tobacco stems. In the cell wall of JcFTOE plants, hemicellulose and cellulose contents increased, with the increase in hemicellulose associated with up-regulation of xylan synthase-related genes expression. In the cytoplasm of JcFTOE plants, the primary effects were on biogenesis of ribonucleoprotein complexes, photosynthesis, carbohydrate biosynthesis, and the cytoskeleton. In addition, in the cytoplasm of JcFTOE plants, there were changes in certain factors of the core oscillator, expression of many light-harvesting chlorophyll a/b binding proteins was down-regulated, and expression of fructose 1,6-bisphosphatase genes was up-regulated to increase starch content in tobacco stems. Changes in the xylem and phloem of JcFTOE plants were also identified, and in particular, xylem development was affected by significant increases in expression of irregular xylem genes.
Collapse
Affiliation(s)
- Jun Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
- *Correspondence: Jun Wu,
| | - Qiuhong Wu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Zhongjian Bo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuli Zhu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Junhui Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qingying Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenqing Kong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Gao X, Wang L, Zhang H, Zhu B, Lv G, Xiao J. Transcriptome analysis and identification of genes associated with floral transition and fruit development in rabbiteye blueberry (Vaccinium ashei). PLoS One 2021; 16:e0259119. [PMID: 34710165 PMCID: PMC8553168 DOI: 10.1371/journal.pone.0259119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Flowering and fruit set are important traits affecting fruit quality and yield in rabbiteye blueberry (Vaccinium ashei). Intense efforts have been made to elucidate the influence of vernalization and phytohormones on flowering, but the molecular mechanisms of flowering and fruit set remain unclear. To unravel these mechanisms, we performed transcriptome analysis to explore blueberry transcripts from flowering to early fruit stage. We divided flowering and fruit set into flower bud (S2), initial flower (S3), bloom flower (S4), pad fruit (S5), and cup fruit (S6) based on phenotype and identified 1,344, 69, 658, and 189 unique differentially expressed genes (DEGs) in comparisons of S3/S2, S4/S3, S5/S4, and S6/S5, respectively. There were obviously more DEGs in S3/S2 and S5/S4 than in S4/S3, and S6/S5, suggesting that S3/S2 and S5/S4 represent major transitions from buds to fruit in blueberry. GO and KEGG enrichment analysis indicated these DEGs were mostly enriched in phytohormone biosynthesis and signaling, transporter proteins, photosynthesis, anthocyanins biosynthesis, disease resistance protein and transcription factor categories, in addition, transcript levels of phytohormones and transporters changed greatly throughout the flowering and fruit set process. Gibberellic acid and jasmonic acid mainly acted on the early stage of flowering development like expression of the florigen gene FT, while the expression of auxin response factor genes increased almost throughout the process from bud to fruit development. Transporter proteins were mainly associated with minerals during the early flowering development stage and sugars during the early fruit stage. At the early fruit stage, anthocyanins started to accumulate, and the fruit was susceptible to diseases such as fungal infection. Expression of the transcription factor MYB86 was up-regulated during initial fruit development, which may promote anthocyanin accumulation. These results will aid future studies exploring the molecular mechanism underlying flowering and fruit set of rabbiteye blueberry.
Collapse
Affiliation(s)
- Xuan Gao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
| | - Lida Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
| | - Hong Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
- Anhui Microanaly Gene Limited Liability Company, Hefei, Anhui, China
| | - Bo Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
| | - Guosheng Lv
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
| | - Jiaxin Xiao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
- * E-mail:
| |
Collapse
|
16
|
Song GQ, Walworth A, Lin T, Chen Q, Han X, Irina Zaharia L, Zhong GY. VcFT-induced mobile florigenic signals in transgenic and transgrafted blueberries. HORTICULTURE RESEARCH 2019; 6:105. [PMID: 31645960 PMCID: PMC6804590 DOI: 10.1038/s41438-019-0188-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 05/03/2023]
Abstract
FLOWERING LOCUS T (FT) can promote early flowering in annual species, but such role has not been well demonstrated in woody species. We produced self and reciprocal grafts involving non-transgenic blueberry (NT) and transgenic blueberry (T) carrying a 35S-driven blueberry FT (VcFT-OX). We demonstrated that the transgenic VcFT-OX rootstock promoted flowering of non-transgenic blueberry scions in the NT (scion):T (rootstock) grafts. We further analyzed RNA-Seq profiles and six groups of phytohormones in both NT:T and NT:NT plants. We observed content changes of several hormone metabolites, in a descending order, in the transgenic NT:T, non-transgenic NT:T, and non-transgenic NT:NT leaves. By comparing differential expression transcripts (DETs) of these tissues in relative to their control, we found that the non-transgenic NT:T leaves had many DETs shared with the transgenic NT:T leaves, but very few with the transgenic NT:T roots. Interestingly, a number of these shared DETs belong to hormone pathway genes, concurring with the content changes of hormone metabolites in both transgenic and non-transgenic leaves of the NT:T plants. These results suggest that phytohormones induced by VcFT-OX in the transgenic leaves might serve as part of the signals that resulted in early flowering in both transgenic plants and the non-transgenic NT:T scions.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Aaron Walworth
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Tianyi Lin
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Qiuxia Chen
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Xiumei Han
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - L. Irina Zaharia
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva, NY 14456 USA
| |
Collapse
|
17
|
Lin T, Walworth A, Zong X, Danial GH, Tomaszewski EM, Callow P, Han X, Irina Zaharia L, Edger PP, Zhong GY, Song GQ. VcRR2 regulates chilling-mediated flowering through expression of hormone genes in a transgenic blueberry mutant. HORTICULTURE RESEARCH 2019; 6:96. [PMID: 31645954 PMCID: PMC6804727 DOI: 10.1038/s41438-019-0180-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 05/18/2023]
Abstract
The molecular mechanism underlying dormancy release and the induction of flowering remains poorly understood in woody plants. Mu-legacy is a valuable blueberry mutant, in which a transgene insertion caused increased expression of a RESPONSE REGULATOR 2-like gene (VcRR2). Mu-legacy plants, compared with nontransgenic 'Legacy' plants, show dwarfing, promotion of flower bud formation, and can flower under nonchilling conditions. We conducted transcriptomic comparisons in leaves, chilled and nonchilled flowering buds, and late-pink buds, and analyzed a total of 41 metabolites of six groups of hormones in leaf tissues of both Mu-legacy and 'Legacy' plants. These analyses uncovered that increased VcRR2 expression promotes the expression of a homolog of Arabidopsis thaliana ENT-COPALYL DIPHOSPHATE SYNTHETASE 1 (VcGA1), which induces new homeostasis of hormones, including increased gibberellin 4 (GA4) levels in Mu-legacy leaves. Consequently, increased expression of VcRR2 and VcGA1, which function in cytokinin responses and gibberellin synthesis, respectively, initiated the reduction in plant height and the enhancement of flower bud formation of the Mu-legacy plants through interactions of multiple approaches. In nonchilled flower buds, 29 differentially expressed transcripts of 17 genes of five groups of hormones were identified in transcriptome comparisons between Mu-legacy and 'Legacy' plants, of which 22 were chilling responsive. Thus, these analyses suggest that increased expression of VcRR2 was collectively responsible for promoting flower bud formation in highbush blueberry under nonchilling conditions. We report here for the first time the importance of VcRR2 to induce a suite of downstream hormones that promote flowering in woody plants.
Collapse
Affiliation(s)
- Tianyi Lin
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Aaron Walworth
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Xiaojuan Zong
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Gharbia H. Danial
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Elise M. Tomaszewski
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Pete Callow
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Xiumei Han
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - L. Irina Zaharia
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - Patrick P. Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva, NY 14456 USA
| | - Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
18
|
Zhang H, Cui X, Guo Y, Luo C, Zhang L. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. PLANT MOLECULAR BIOLOGY 2018; 98:471-493. [PMID: 30406468 DOI: 10.1007/s11103-018-0792-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/14/2018] [Indexed: 05/25/2023]
Abstract
Picea wilsonii transcription factor PwNAC2 enhanced plant tolerance to salt and drought stress through multiple signaling pathway and interacted with PwRFCP1 to participate in flowering regulation. NAC is one of the largest transcription factor families in plants, however, its role is not yet fully understood. Here, we identified a transcription factor PwNAC2 in Picea wilsonii, which localized in nucleus with transcriptional activity in C-terminal region and can form homodimer by itself. Expression analysis by real-time PCR showed that PwNAC2 was induced by multiple abiotic stresses and phytohormones stimuli. PwRFCP1 (Resemble-FCA-contain-PAT1 domain), an interaction protein of PwNAC2 was screened via yeast two hybrid. Luciferase complementation assay confirmed the interaction in vivo and bimolecular fluorescence complementation assay showed the interaction in nucleus. PwNAC2 overexpression retarded Arabidopsis hypocotyls growth which is closely related to light, whereas promotion of hypocotyls growth by PwRFCP1 is independent on light. Under drought or salt treatment, overexpression of PwNAC2 in Arabidopsis showed more vigorous seed germination and significant tolerance for seedlings by ROS scavenging, reducing of membrane damage, slower water loss and increased stomatal closure. ABA or CBF-pathway marker genes were substantially higher in PwNAC2 transgenic Arabidopsis. Overexpression of PwRFCP1 promotes flowering in transgenic Arabidopsis, whereas PwNAC2 delayed flowering by altering the expression of FT, SOC1 and FLC. In addtioin, PwRFCP1 overexpression plants showed no higher tolerance to stress treatment than Col-0. Collectively, our results indicate that PwNAC2 enhanced plant tolerance to abiotic stress through multiple signaling pathways and participated in PwRFCP1-regulated flowering time.
Collapse
Affiliation(s)
- Hehua Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiaoyue Cui
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yuxiao Guo
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chaobing Luo
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Lingyun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
19
|
Song GQ, Chen Q. Overexpression of the MADS-box gene K-domain increases the yield potential of blueberry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:22-31. [PMID: 30348321 DOI: 10.1016/j.plantsci.2018.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/18/2018] [Accepted: 07/29/2018] [Indexed: 05/27/2023]
Abstract
MADS-box genes play a significant role for plant flowering. Keratin-like (K) domains are involved in protein-to-protein interactions in the formation of the MIKC-type MADS-box domain proteins. In this study, the potential of utilizing the K domain of a Vaccinium corymbosum SOC1-like gene (VcSOC1K) was investigated to modulate expression of other blueberry MADS-box genes for increasing blueberry productivity. Chilled transgenic blueberry plants overexpressing the VcSOC1K showed a significant increase in the number of canes, floral buds, and flower and fruit clusters compared to chilled non-transgenic plants. Additionally, nonchilled transgenic plants flowered whereas nonchilled non-transgenic plants did not. Transgenic plants showed an increase in tolerance to high soil pH. Comparative transcriptome analysis of transgenic and non-transgenic leaves showed differential expression of 17% of the MADS-box genes identified in blueberry. These differentially expressed (DE) MADS-box genes were associated with genes related to plant flowering, phytohormones, and response to various biotic and abiotic stimuli. The phenotypic changes and the DE MADS-box genes caused by the overexpression of VcSOC1K not only reveal that the MADS-box genes are involved in chilling/vernalization-mediated flowering in blueberry but also demonstrated that the overexpression of the K domain can effectively modulate plant reproductive processes.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| | - Qiuxia Chen
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Song GQ, Walworth A. An invaluable transgenic blueberry for studying chilling-induced flowering in woody plants. BMC PLANT BIOLOGY 2018; 18:265. [PMID: 30382848 PMCID: PMC6211425 DOI: 10.1186/s12870-018-1494-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Many deciduous woody crops require a minimum level of chilling to break dormancy and allow the seasonal growth of vegetative and floral buds. In this study, we report the discovery of an invaluable transgenic event of the blueberry cultivar 'Legacy' (hereafter, Mu-Legacy) for studying chilling-induced flowering in woody plants. Mu-legacy and its progeny provide a unique material to study the unknown mechanism of chilling-mediated flowering in woody plants. RESULTS Unlike nontransgenic 'Legacy' and plants of 48 other transgenic events, Mu-Legacy plants were able to flower under nonchilling conditions and had early flower bud formation, reduced plant size, and reduced chilling requirement for normal flowering. These characteristics were heritable and also observed in self-pollinated, transgenic T1 progenies of Mu-Legacy. A 47-Kbp genomic sequence surrounding the transgene insertion position was identified. RNA-sequencing data showed increased expression of a RESPONSE REGULATOR 2-like gene (VcRR2), located adjacent to the insertion position in Mu-Legacy and likely driven by the CaMV 35S promoter of the transgene. The Mu-Legacy showed 209 differentially expressed genes (DEGs) in nonchilled flower buds (compared to nontransgenic 'Legacy'), of which only four DEGs were in the flowering pathway. This suggests altered expression of these few genes, VcRR2 and four flowering DEGs, is sufficient to significantly change flowering behavior in Mu-Legacy. CONCLUSIONS The significance of VcRR2 in Mu-Legacy suggests that the VcRR2-involved cytokinin pathway likely contributes to the major differences in chilling-mediated flowering between woody and herbaceous plants. More importantly, Mu-Legacy shows increased yield potential, a decreased chilling requirement, and better winter hardiness than many low-chilling cultivars growing in southern warm winter conditions.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Aaron Walworth
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
21
|
Song GQ, Chen Q. Comparative transcriptome analysis of nonchilled, chilled, and late-pink bud reveals flowering pathway genes involved in chilling-mediated flowering in blueberry. BMC PLANT BIOLOGY 2018; 18:98. [PMID: 29855262 PMCID: PMC5984463 DOI: 10.1186/s12870-018-1311-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/15/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND Blueberry cultivars require a fixed quantity of chilling hours during winter endo-dormancy for vernalization. In this study, transcriptome analysis using RNA sequencing data from nonchilled, chilled, and late pink buds of southern highbush blueberry 'Legacy' was performed to reveal genes associated with chilling accumulation and bud break. RESULTS Fully chilled 'Legacy' plants flowered normally whereas nonchilled plants could not flower. Compared to nonchilled flower buds, chilled flower buds showed differential expression of 89% of flowering pathway genes, 86% of MADS-box genes, and 84% of cold-regulated genes. Blueberry orthologues of FLOWERING LOCUS T (FT) did not show a differential expression in chilled flower buds (compared to nonchilled flower bud) but were up-regulated in late-pink buds (compared to chilled flower bud). Orthologoues of major MADS-box genes were significantly up-regulated in chilled flower buds and down-regulated in late-pink buds. Functional orthologues of FLOWERING LOCUS C (FLC) were not found in blueberry. Orthologues of Protein FD (FD), TERMINAL FLOWER 1 (TFL1), and LEAFY (LFY) were down-regulated in chilled flower buds and in late-pink buds compared to nonchilled flower bud. CONCLUSIONS The changes from nonchilled to chilled and chilled to late-pink buds are associated with transcriptional changes in a large number of differentially expressed (DE) phytohormone-related genes and DE flowering pathway genes. The profile of DE genes suggests that orthologues of FT, FD, TFL1, LFY, and MADS-box genes are the major genes involved in chilling-mediated blueberry bud-break. The results contribute to the comprehensive investigation of the vernalization-mediated flowering mechanism in woody plants.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| | - Qiuxia Chen
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
22
|
Song GQ, Gao X. Transcriptomic changes reveal gene networks responding to the overexpression of a blueberry DWARF AND DELAYED FLOWERING 1 gene in transgenic blueberry plants. BMC PLANT BIOLOGY 2017; 17:106. [PMID: 28629320 PMCID: PMC5477172 DOI: 10.1186/s12870-017-1053-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 06/06/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Constitutive expression of the CBF/DREB1 for increasing freezing tolerance in woody plants is often associated with other phenotypic changes including dwarf plant and delayed flowering. These phenotypic changes have been observed when Arabidopsis DWARF AND DELAYED FLOWERING 1 (DDF1) was overexpressed in A. thaliana plants. To date, the DDF1 orthologues have not been studied in woody plants. The aim of this study is to investigate transcriptomic responses to the overexpression of blueberry (Vaccinium corymbosum) DDF1 (herein, VcDDF1-OX). RESULTS The VcDDF1-OX resulted in enhanced freezing tolerance in tetraploid blueberry plants and did not result in significant changes in plant size, chilling requirement, and flowering time. Comparative transcriptome analysis of transgenic 'Legacy-VcDDF1-OX' plants containing an overexpressed VcDDF1 with non-transgenic highbush blueberry 'Legacy' plants revealed the VcDDF1-OX derived differentially expressed (DE) genes and transcripts in the pathways of cold-response, plant flowering, DELLA proteins, and plant phytohormones. The increase in freezing tolerance was associated to the expression of cold-regulated genes (CORs) and the ethylene pathway genes. The unchanged plant size, dormancy and flowering were due to the minimal effect of the VcDDF1-OX on the expression of DELLA proteins, flowering pathway genes, and the other phytohormone genes related to plant growth and development. The DE genes in auxin and cytokinin pathways suggest that the VcDDF1-OX has also altered plant tolerance to drought and high salinity. CONCLUSION A DDF1 orthologue in blueberry functioned differently from the DDF1 reported in Arabidopsis. The overexpression of VcDDF1 or its orthologues is a new approach to increase freezing tolerance of deciduous woody plant species with no obvious effect on plant size and plant flowering time.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Xuan Gao
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000 China
| |
Collapse
|
23
|
Noman A, Aqeel M, Deng J, Khalid N, Sanaullah T, Shuilin H. Biotechnological Advancements for Improving Floral Attributes in Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:530. [PMID: 28473834 PMCID: PMC5397496 DOI: 10.3389/fpls.2017.00530] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
Developing new ornamental cultivars with improved floral attributes is a major goal in floriculture. Biotechnological approach together with classical breeding methods has been used to modify floral color, appearance as well as for increasing disease resistance. Transgenic strategies possess immense potential to produce novel flower phenotypes that are not found in nature. Adoption of Genetic engineering has supported the idea of floral trait modification. Ornamental plant attributes like floral color, fragrance, disease resistance, and vase life can be improved by means of genetic manipulation. Therefore, we witness transgenic plant varieties of high aesthetic and commercial value. This review focuses on biotechnological advancements in manipulating key floral traits that contribute in development of diverse ornamental plant lines. Data clearly reveals that regulation of biosynthetic pathways related to characteristics like pigment production, flower morphology and fragrance is both possible and predictable. In spite of their great significance, small number of genetically engineered varieties of ornamental plants has been field tested. Today, novel flower colors production is regarded as chief commercial benefit obtained from transgenic plants. But certain other floral traits are much more important and have high commercial potential. Other than achievements such as novel architecture, modified flower color, etc., very few reports are available regarding successful transformation of other valuable horticultural characteristics. Our review also summarized biotechnological efforts related to enhancement of fragrance and induction of early flowering along with changes in floral anatomy and morphology.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
| | - Noreen Khalid
- Department of Botany, Government College Women University SialkotSialkot, Pakistan
| | | | - He Shuilin
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
24
|
Chen F, Zhang X, Liu X, Zhang L. Evolutionary Analysis of MIKC c-Type MADS-Box Genes in Gymnosperms and Angiosperms. FRONTIERS IN PLANT SCIENCE 2017; 8:895. [PMID: 28611810 PMCID: PMC5447709 DOI: 10.3389/fpls.2017.00895] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/12/2017] [Indexed: 05/02/2023]
Abstract
MIKCc-type MADS-box genes encode transcription factors that control floral organ morphogenesis and flowering time in flowering plants. Here, in order to determine when the subfamilies of MIKCc originated and their early evolutionary trajectory, we sampled and analyzed the genomes and large-scale transcriptomes representing all the orders of gymnosperms and basal angiosperms. Through phylogenetic inference, the MIKCc-type MADS-box genes were subdivided into 14 monophyletic clades. Among them, the gymnosperm orthologs of AGL6, SEP, AP1, GMADS, SOC1, AGL32, AP3/PI, SVP, AGL15, ANR1, and AG were identified. We identified and characterized the origin of a novel subfamily GMADS within gymnosperms but lost orthologs in monocots and Brassicaceae. ABCE model prototype genes were relatively conserved in terms of gene number in gymnosperms, but expanded in angiosperms, whereas SVP, SOC1, and GMADS had dramatic expansions in gymnosperms but conserved in angiosperms. Our results provided the most detailed evolutionary history of all MIKCc gene clades in gymnosperms and angiosperms. We proposed that although the near complete set of MIKCc genes had evolved in gymnosperms, the duplication and expressional transition of ABCE model MIKCc genes in the ancestor of angiosperms triggered the first flower.
Collapse
|