1
|
Castanospermine reduces Zika virus infection-associated seizure by inhibiting both the viral load and inflammation in mouse models. Antiviral Res 2020; 183:104935. [PMID: 32949636 PMCID: PMC7492813 DOI: 10.1016/j.antiviral.2020.104935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) outbreaks have been reported worldwide, including a recent occurrence in Brazil where it spread rapidly, and an association with increased cases of microcephaly was observed in addition to neurological issues such as GBS that were reported during previous outbreaks. Following infection of neuronal tissues, ZIKV can cause inflammation, which may lead to neuronal abnormalities, including seizures and paralysis. Therefore, a drug containing both anti-viral and immunosuppressive properties would be of great importance in combating ZIKV related neurological abnormalities. Castanospermine (CST) is potentially a right candidate drug as it reduced viral load and brain inflammation with the resulting appearance of delayed neuronal disorders, including seizures and paralysis in an Ifnar1−/− mouse. Anti-ZIKV activity of castanospermine (CST) In vivo and in vitro. CST reduces ZIKV induced inflammation of brain. CST delays the ZIKV induced seizure and improves neuronal disorders such as motor function. CST gives marginal improvement in survivability in Ifnar1−/− mice.
Collapse
|
2
|
Seledtsov VI, Malashchenko VV, Meniailo ME, Atochin DN, Seledtsova GV, Schepetkin IA. Inhibitory effect of IQ-1S, a selective c-Jun N-terminal kinase (JNK) inhibitor, on phenotypical and cytokine-producing characteristics in human macrophages and T-cells. Eur J Pharmacol 2020; 878:173116. [PMID: 32315671 DOI: 10.1016/j.ejphar.2020.173116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
c-Jun N-terminal kinase (JNK) is a critical mitogen activated protein kinase (MAPK) implicated in inflammatory processes, with IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt) being a high-affinity JNK inhibitor with pronounced anti-inflammatory properties. Here, we studied direct effects of IQ-1S on phenotypical and cytokine-producing characteristics of activated human monocytes/macrophages and T cells in vitro. Purified monocyte/macrophage cells were activated by bacterial lipopolysaccharide (LPS, 1 μg/ml) for 24 h, while T cells were activated by particles conjugated with antibodies (Abs) against human CD2, CD3, and CD28 for 48 h. Treatment with IQ-1S (0.5-25 μМ) in the presence of LPS reduced percentages of CD197 (CCR7)-positive cells in macrophage cultures, without affecting CD16+ (FcγRIII, low-affinity Fc-receptor), CD119+ (interferon-γ receptor 1), and CD124+ (IL-4 receptor α-subunit) cells. In addition, IQ-1S reduced production of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10 in macrophage cultures. In activated T cell cultures, IQ-1S decreased CD25+ cell numbers in both CD4-positive and CD4-negative T cell compartments. Central memory СD45RA-/СD197+ and effector memory СD45RA-/СD197- T cells were more sensitive to IQ-1S-mediated suppression, as compared to naïve СD45RA+/СD197+ and terminally-differentiated effector СD45RA+/СD197- T cells. IQ-1S also suppressed T-cell cytokine production (IL-2, interferon-ɣ, IL-4, and IL-10). Collectively, the results suggest that both human macrophage and T cells could be immediate cell targets for IQ-1S-based anti-inflammatory immunotherapy. IQ-1S-mediated suppressive effects were unlikely to be associated with macrophage/T helper polariation.
Collapse
Affiliation(s)
- Victor I Seledtsov
- Center for Medical Biotechnologies, Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia; Innovita Research Company, Vilnius, LT-06118, Lithuania.
| | - Vladimir V Malashchenko
- Center for Medical Biotechnologies, Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
| | - Maksim E Meniailo
- Center for Medical Biotechnologies, Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
| | - Dmitriy N Atochin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Galina V Seledtsova
- Laboratory for Cellular Technologies, Scientific Research Institute for Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| | - Igor A Schepetkin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
3
|
Effects of Castanospermine on Inflammatory Response in a Rat Model of Experimental Severe Acute Pancreatitis. Arch Med Res 2016; 47:436-445. [DOI: 10.1016/j.arcmed.2016.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/21/2016] [Indexed: 12/26/2022]
|
4
|
Hibberd AD, Clark DA, Trevillian PR, Mcelduff P. Interaction between castanospermine an immunosuppressant and cyclosporin A in rat cardiac transplantation. World J Transplant 2016; 6:206-214. [PMID: 27011919 PMCID: PMC4801797 DOI: 10.5500/wjt.v6.i1.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/05/2015] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the interaction between castanospermine and cyclosporin A (CsA) and to provide an explanation for it.
METHODS: The alkaloid castanospermine was prepared from the seeds of Castanospermum austral consistently achieving purity. Rat heterotopic cardiac transplantation and mixed lymphocyte reactivity were done using genetically inbred strains of PVG (donor) and DA (recipient). For the mixed lymphocyte reaction stimulator cells were irradiated with 3000 rads using a linear accelerator. Cyclosporin A was administered by gavage and venous blood collected 2 h later (C2). The blood levels of CsA (Neoral) were measured by immunoassay which consisted of a homogeneous enzyme assay (EMIT) on Cobas Mira. Statistical analyses of interactions were done by an accelerated failure time model with Weibull distribution for allograft survival and logistic regression for the mixed lymphocyte reactivity.
RESULTS: Castanospermine prolonged transplant survival times as a function of dose even at relatively low doses. Cyclosporin A also prolonged transplant survival times as a function of dose particularly at doses above 2 mg/kg. There were synergistic interactions between castanospermine and CsA in the prolongation of cardiac allograft survival for dose ranges of CsA by castanospermine of (0 to 2) mg/kg by (0 to 200) mg/kg (HR = 0.986; 95%CI: 0.981-0.992; P < 0.001) and (0 to 3) mg/kg by (0 to 100) mg/kg (HR = 0.986; 95%CI: 0.981-0.992; P < 0.001) respectively. The addition of castanospermine did not significantly increase the levels of cyclosporin A on day 3 or day 6 for all doses of CsA. On the contrary, cessation of castanospermine in the presence of CsA at 2 mg/kg significantly increased the CsA level (P = 0.002). Castanospermine inhibited mixed lymphocyte reactivity in a dose dependent manner but without synergistic interaction.
CONCLUSION: There is synergistic interaction between castanospermine and CsA in rat cardiac transplantation. Neither the mixed lymphocyte reaction nor the metabolism of CsA provides an explanation.
Collapse
|
5
|
Schilter H, Cantemir-Stone CZ, Leksa V, Ohradanova-Repic A, Findlay AD, Deodhar M, Stockinger H, Song X, Molloy M, Marsh CB, Jarolimek W. The mannose-6-phosphate analogue, PXS64, inhibits fibrosis via TGF-β1 pathway in human lung fibroblasts. Immunol Lett 2015; 165:90-101. [DOI: 10.1016/j.imlet.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
6
|
Schepetkin IA, Kirpotina LN, Hammaker D, Kochetkova I, Khlebnikov AI, Lyakhov SA, Firestein GS, Quinn MT. Anti-Inflammatory Effects and Joint Protection in Collagen-Induced Arthritis after Treatment with IQ-1S, a Selective c-Jun N-Terminal Kinase Inhibitor. J Pharmacol Exp Ther 2015; 353:505-16. [PMID: 25784649 DOI: 10.1124/jpet.114.220251] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/17/2015] [Indexed: 12/16/2022] Open
Abstract
c-Jun N-terminal kinases (JNKs) participate in many physiologic and pathologic processes, including inflammatory diseases. We recently synthesized the sodium salt of IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime) and demonstrated that it is a high-affinity JNK inhibitor and inhibits murine delayed-type hypersensitivity. Here we show that IQ-1S is highly specific for JNK and that its neutral form is the most abundant species at physiologic pH. Molecular docking of the IQ-1S syn isomer into the JNK1 binding site gave the best pose, which corresponded to the position of cocrystallized JNK inhibitor SP600125 (1,9-pyrazoloanthrone). Evaluation of the therapeutic potential of IQ-1S showed that it inhibited matrix metalloproteinase 1 and 3 gene expression induced by interleukin-1β in human fibroblast-like synoviocytes and significantly attenuated development of murine collagen-induced arthritis (CIA). Treatment with IQ-1S either before or after induction of CIA resulted in decreased clinical scores, and joint sections from IQ-1S-treated CIA mice exhibited only mild signs of inflammation and minimal cartilage loss compared with those from control mice. Collagen II-specific antibody responses were also reduced by IQ-1S treatment. By contrast, the inactive ketone derivative 11H-indeno[1,2-b]quinoxalin-11-one had no effect on CIA clinical scores or collagen II-specific antibody titers. IQ-1S treatment also suppressed proinflammatory cytokine and chemokine levels in joints and lymph node cells. Finally, treatment with IQ-1S increased the number of Foxp3(+)CD4(+)CD25(+) regulatory T cells in lymph nodes. Thus, IQ-1S can reduce inflammation and cartilage loss associated with CIA and can serve as a small-molecule modulator for mechanistic studies of JNK function in rheumatoid arthritis.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Deepa Hammaker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Irina Kochetkova
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Andrei I Khlebnikov
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Sergey A Lyakhov
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Gary S Firestein
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana (I.A.S., L.N.K., I.K., M.T.Q.); Division of Rheumatology, Allergy, and Immunology, University of California, San Diego School of Medicine, La Jolla, California (D.H., G.S.F.); Department of Chemistry, Altai State Technical University, Barnaul, Russia (A.I.K.); Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia (A.I.K.); and A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine (S.A.L.)
| |
Collapse
|
7
|
Dengler EC, Alberti LA, Bowman BN, Kerwin AA, Wilkerson JL, Moezzi DR, Limanovich E, Wallace JA, Milligan ED. Improvement of spinal non-viral IL-10 gene delivery by D-mannose as a transgene adjuvant to control chronic neuropathic pain. J Neuroinflammation 2014; 11:92. [PMID: 24884664 PMCID: PMC4046049 DOI: 10.1186/1742-2094-11-92] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Peri-spinal subarachnoid (intrathecal; i.t.) injection of non-viral naked plasmid DNA encoding the anti-inflammatory cytokine, IL-10 (pDNA-IL-10) suppresses chronic neuropathic pain in animal models. However, two sequential i.t. pDNA injections are required within a discrete 5 to 72-hour period for prolonged efficacy. Previous reports identified phagocytic immune cells present in the peri-spinal milieu surrounding the i.t injection site that may play a role in transgene uptake resulting in subsequent IL-10 transgene expression. METHODS In the present study, we aimed to examine whether factors known to induce pro-phagocytic anti-inflammatory properties of immune cells improve i.t. IL-10 transgene uptake using reduced naked pDNA-IL-10 doses previously determined ineffective. Both the synthetic glucocorticoid, dexamethasone, and the hexose sugar, D-mannose, were factors examined that could optimize i.t. pDNA-IL-10 uptake leading to enduring suppression of neuropathic pain as assessed by light touch sensitivity of the rat hindpaw (allodynia). RESULTS Compared to dexamethasone, i.t. mannose pretreatment significantly and dose-dependently prolonged pDNA-IL-10 pain suppressive effects, reduced spinal IL-1β and enhanced spinal and dorsal root ganglia IL-10 immunoreactivity. Macrophages exposed to D-mannose revealed reduced proinflammatory TNF-α, IL-1β, and nitric oxide, and increased IL-10 protein release, while IL-4 revealed no improvement in transgene uptake. Separately, D-mannose dramatically increased pDNA-derived IL-10 protein release in culture supernatants. Lastly, a single i.t. co-injection of mannose with a 25-fold lower pDNA-IL-10 dose produced prolonged pain suppression in neuropathic rats. CONCLUSIONS Peri-spinal treatment with D-mannose may optimize naked pDNA-IL-10 transgene uptake for suppression of allodynia, and is a novel approach to tune spinal immune cells toward pro-phagocytic phenotype for improved non-viral gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Erin D Milligan
- Department of Neurosciences, UNM School of Medicine, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
8
|
Hibberd AD, Trevillian PR, Clark DA, McElduff P, Cowden WB. The effects of Castanospermine, an oligosaccharide processing inhibitor, on mononuclear/endothelial cell binding and the expression of cell adhesion molecules. Transpl Immunol 2012; 27:39-47. [PMID: 22647882 DOI: 10.1016/j.trim.2012.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 01/28/2023]
Abstract
INTRODUCTION In this study we aimed to determine whether Castanospermine, a transplant immunosuppressive agent, impaired mononuclear/endothelial cell binding and expression of their cell adhesion molecules. METHODS The binding of human umbilical vein endothelial cells with peripheral blood mononuclear cells was measured by a binding assay using Chromium 51 label; the membrane expression of cell adhesion molecules was measured by flow cytometry expressed as mean fluorescence intensity ratios. RESULTS Castanospermine decreased mononuclear/endothelial cell binding if and only if both cell types were treated with Castanospermine: this impairment occurred if endothelial cells were treated with a range of doses of Castanospermine and mononuclear cells were treated with a constant dose of Castanospermine (p<0.001 versus untreated p=0.978) or vice versa (p=0.004 versus untreated p=0.582). Upon human umbilical vein endothelial cells Castanospermine reduced the mean fluorescence intensity ratios of E-selectin (p=0.003), ICAM-1 (p<0.001), ICAM-2 (p=0.004) and PECAM-1 (p<0.001) but increased it for P-selectin (p<0.001). Upon peripheral blood mononuclear cells Castanospermine reduced the mean fluorescence intensity ratios of L-selectin (P<0.001), LFA-1α (p<0.001), VLA-4 (p<0.001), Mac-1 (P<0.001) and CR4 (p<0.001) but increased the mean fluorescence intensity ratios of PSGL-1 (p<0.001) and PECAM-1 (p=0.001). Similar changes in mean fluorescence intensity ratios were found in the subset of lymphocytes and monocytes but the reductions in LFA-1α and VLA-4 on lymphocytes and Mac-1 and CR4 on monocytes were greater. CONCLUSIONS The reduction in mononuclear/endothelial cell binding mediated by CAST and the reduction in expression of multiple cell adhesion molecules on these cell types help to explain the mechanism of its established immunosuppressive effect.
Collapse
Affiliation(s)
- Adrian D Hibberd
- Newcastle Transplant Unit, Division of Surgery, John Hunter Hospital, New Lambton, Australia.
| | | | | | | | | |
Collapse
|
9
|
Kalamkar NB, Puranik VG, Dhavale DD. Synthesis of C1- and C8a-epimers of (+)-castanospermine from d-glucose derived γ,δ-epoxyazide: intramolecular 5-endo epoxide opening approach. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
van den Broek L, Vermaas D, van Boeckel C, Rotteveel F, Zandberg P, van Kemenade F, Miedema F, Butters T, Tan M, Ploegh H. Synthesis of oxygen-substituted N-alkyl 1-deoxynojirimycin derivatives: Aza sugar α-glucosidase inhibitors showing antiviral (HIV-1) and immunosuppressive activity. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19941131104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Ceccon J, Danoun G, Greene AE, Poisson JF. Asymmetric synthesis of (+)-castanospermine through enol ether metathesis–hydroboration/oxidation. Org Biomol Chem 2009; 7:2029-31. [DOI: 10.1039/b901488h] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Miao HQ, Navarro E, Patel S, Sargent D, Koo H, Wan H, Plata A, Zhou Q, Ludwig D, Bohlen P, Kussie P. Cloning, expression, and purification of mouse heparanase. Protein Expr Purif 2002; 26:425-31. [PMID: 12460766 DOI: 10.1016/s1046-5928(02)00558-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heparanase is an endoglucuronidase that plays an important role in tumor invasion and metastasis. A full-length heparanase gene was cloned from a mouse embryo cDNA library and determined to encode a protein of 535 amino acids that is 77% identical to human heparanase. The full-length mouse gene was stably expressed in NS0 myeloma cells. The recombinant mouse heparanase protein was purified to homogeneity from cell lysates by a combination of Con-A affinity chromatography, heparin affinity chromatography, and size exclusion chromatography. The purified protein consisted of a non-covalent heterodimer of 50- and 8-kDa polypeptides, similar to the human homolog. The protein was enzymatically active in assays using radiolabeled ECM and heparan sulfate as substrates. The maximum heparanase activity was observed at acidic conditions; however, significant activity was also detected at neutral pH. The enzymatic activity of mouse heparanase was blocked by known heparanase inhibitors.
Collapse
Affiliation(s)
- Hua-Quan Miao
- ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Walter S, Fassbender K, Gulbins E, Liu Y, Rieschel M, Herten M, Bertsch T, Engelhardt B. Glycosylation processing inhibition by castanospermine prevents experimental autoimmune encephalomyelitis by interference with IL-2 receptor signal transduction. J Neuroimmunol 2002; 132:1-10. [PMID: 12417427 DOI: 10.1016/s0165-5728(02)00308-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, we explored the therapeutic targets of the glycosylation processing inhibitor, castanospermine (CAST), in murine passive transfer experimental autoimmune encephalomyelitis (EAE), a model disease of multiple sclerosis. By using lymphocytic-endothelial adhesion and transmigration assays, FACScan and Western blotting, we defined the effects of CAST on expression, function and signal transduction of glycoproteins crucial in the pathophysiology of this disease. CAST prevented clinical signs of EAE and completely inhibited inflammatory CNS infiltrates associated with this disease. Here, we showed that CAST blocks antigen-induced lymphocytic activation and clonal expansion in a dose-dependent manner. Importantly, we observed that CAST strongly impairs IL-2-induced signal transduction of the IL-2 receptor. In contrast, neither expression nor binding ability of the IL-2 receptor was affected by this drug. In addition, we were able to exclude major effects of CAST on expression and function of different glycoproteins important in antigen presentation as well as lymphocytic-endothelial adhesion and transmigration. In conclusion, CAST strongly interferes in the signal transduction of the IL-2 receptor. This could explain both inhibitory effects of CAST in clonal T cell expansion and development of transfer EAE. This relatively selective pharmacological effect of CAST highlights its potential as a novel immunomodulatory approach in multiple sclerosis.
Collapse
Affiliation(s)
- Silke Walter
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Michael JP. Simple indolizidine and quinolizidine alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2002; 55:91-258. [PMID: 11704985 DOI: 10.1016/s0099-9598(01)55004-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- J P Michael
- Centre for Molecular Design, Department of Chemistry, University of the Witwatersrand, Wits 2050, South Africa
| |
Collapse
|
15
|
Hindmarsh EJ, Staykova MA, Willenborg DO, Parish CR. Cell surface expression of the 300 kDa mannose-6-phosphate receptor by activated T lymphocytes. Immunol Cell Biol 2001; 79:436-43. [PMID: 11564151 DOI: 10.1046/j.1440-1711.2001.01026.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphosugars, such as mannose-6-phosphate (M6P), have been shown previously to display anti-inflammatory properties, notably inhibition of experimental autoimmune encephalomyelitis (EAE) and adjuvant-induced arthritis in rats. It has been proposed that M6P exerts its anti-inflammatory effect by displacing lysosomal enzymes, which are involved in T-cell extravasation into inflammatory sites, from the 300 kDa mannose-6- phosphate receptor (MPR-300) on the surface of T cells. If this model is correct MPR-300 should be selectively expressed on the surface of activated T cells, as T cell entry into the central nervous system in EAE depends on the T cells being in an activated state. Thus, the present study examines whether cell surface expression of MPR-300 by T lymphocytes correlates with their state of activation and whether T cells in inflammatory sites express the receptor. Flow cytometric studies showed MPR-300 to be absent from the surface of unstimulated rat T cells isolated from peripheral blood and lymphoid tissues, and T cells resident within the peritoneal cavity. In contrast, MPR-300 was expressed on activated T cells derived from an inflammatory peritoneal exudate. In vitro studies demonstrated transient expression of MPR-300 on the surface of splenic T cells following stimulation with Con A. MPR-300 was also induced on T-cell lines by antigen stimulation. These data demonstrate that T cells in inflammatory sites express MPR-300 on their surface and activation of T lymphocytes induces cell surface expression of MPR-300. Such findings are consistent with the hypothesis that cell surface MPR-300 is required for the entry of T cells into inflammatory sites.
Collapse
Affiliation(s)
- E J Hindmarsh
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | |
Collapse
|
16
|
Watson AA, Fleet GW, Asano N, Molyneux RJ, Nash RJ. Polyhydroxylated alkaloids -- natural occurrence and therapeutic applications. PHYTOCHEMISTRY 2001; 56:265-295. [PMID: 11243453 DOI: 10.1016/s0031-9422(00)00451-9] [Citation(s) in RCA: 542] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Over one hundred polyhydroxylated alkaloids have been isolated from plants and micro-organisms. These alkaloids can be potent and highly selective glycosidase inhibitors and are arousing great interest as tools to study cellular recognition and as potential therapeutic agents. However, only three of the natural products so far have been widely studied for therapeutic potential due largely to the limited commercial availability of the other compounds.
Collapse
Affiliation(s)
- A A Watson
- Molecular Nature Limited, Aberystwyth, Cardiganshire, UK
| | | | | | | | | |
Collapse
|
17
|
El Ashry ESH, Abdel-Rahman AAH, Kattab M, Shobier AH, Schmidt RR. Analogues of Moranoline and Mdl 73945. Methyl 6(5)-Deoxy-6(5)-(Morpholin-4-Yl)-α-D-Glycosides as Glucosidase Inhibitors. J Carbohydr Chem 2000. [DOI: 10.1080/07328300008544083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
El Ashry ESH, Abdel-Rahman AAH, El Kilany Y, Schmidt RR. Acyclic analogues of glucosamidine, 1-deoxynojirimycin and N-(1,3-dihydroxyprop-2-yl) derivative of valiolamine as potential glucosidase inhibitors. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(99)00031-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Smith JR, Hart PH, Parish CR, Standfield SD, Coster DJ, Williams KA. Experimental melanin-induced uveitis in the Fischer 344 rat is inhibited by anti-CD4 monoclonal antibody, but not by mannose-6-phosphate. Clin Exp Immunol 1999; 115:64-71. [PMID: 9933421 PMCID: PMC1905186 DOI: 10.1046/j.1365-2249.1999.00765.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experimental melanin-induced uveitis (EMIU) is a rodent model of acute anterior uveitis which was described in 1993. We investigated strain susceptibility, and age and gender characteristics of the model, undertook histological and immunohistochemical studies to investigate underlying cellular mechanisms, and examined several treatment options. Rats were immunized with bovine ocular melanin (250 microg), and disease was followed by slit lamp examination. Lewis, Fischer 344 and Porton rats were found to be susceptible to EMIU, whereas Wistar-Furth, DA, and Hooded Wistar strains were resistant. EMIU was neither age- nor gender-dependent. In Fischer 344 rats, EMIU was characterized clinically by florid anterior segment inflammation. Histopathological findings included infiltration of ciliary body and iris with mononuclear cells and neutrophils. Both CD4+ and CD8+ T lymphocytes were prominent. Rats were then treated with intraperitoneal injections of anti-CD4, anti-CD8 or irrelevant isotype-matched MoAb on days -3, 0, 3, 6 and 9 with respect to melanin immunization. Incidence of uveitis was significantly reduced in rats treated with a non-depleting cocktail of anti-CD4 MoAbs (P = 0.007), whereas a depleting anti-CD8 antibody had no effect on the disease. Mannose-6-phosphate inhibits lymphocyte migration in some models of T cell-mediated inflammation. This simple sugar was administered to additional rats via intraperitoneal osmotic pumps for 14 days following disease induction, but did not influence the uveitis. We conclude that EMIU is controlled by CD4+ T cells, and disease may be abrogated by treatment with anti-CD4 MoAbs.
Collapse
Affiliation(s)
- J R Smith
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Parish CR, Hindmarsh EJ, Bartlett MR, Staykova MA, Cowden WB, Willenborg DO. Treatment of central nervous system inflammation with inhibitors of basement membrane degradation. Immunol Cell Biol 1998; 76:104-13. [PMID: 9553782 DOI: 10.1046/j.1440-1711.1998.00722.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently available anti-inflammatory drugs for the treatment of multiple sclerosis (MS) and other inflammatory diseases are generally inadequate, with disease progression not being arrested by the treatments and undesirable side effects posing problems. In response to these deficiencies our laboratories have, over the past 10 years, been developing novel drugs that interfere with the entry of leucocytes into inflammatory sites by inhibiting their passage through the subendothelial basement membrane (BM). This review initially summarizes evidence supporting the hypothesis that the subendothelial BM is a major barrier to the accumulation of leucocytes in inflammatory sites. An important point that has emerged is that breaching of the BM is probably a cooperative process, involving activation- and cytokine-induced degradative enzymes contributed by leucocytes, endothelial cells and platelets. The review then discusses the properties of three separate classes of anti-inflammatory compounds we have developed, namely sulfated polysaccharides/oligosaccharides, phosphosugars, and castanospermine (CS), which inhibit the passage of leukocytes through BM. Each drug type appears to prevent BM degradation by a different mechanism. Sulfated polysaccharides/oligosaccharides mediate their anti-inflammatory effect by inhibiting the endoglycosidase, heparanase, which plays a key role in the solubilization of BM by invading leucocytes. In fact, our studies have highlighted the heparanase enzyme as a major target for future drug development. Phosphosugars probably inhibit inflammation by displacing lysosomal enzymes, which are involved in BM degradation, from cell surface mannose 6-phosphate receptors. This mechanism of expressing degradative enzymes on the cell surface is particularly evident with activated T lymphocytes. On the other hand, CS interferes with appropriate targeting of lysosomal enzymes involved in BM degradation. For reasons which are still unclear, CS specifically inhibits BM degradation by endothelial cells, which results in a characteristic perivascular arrest of leucocytes in inflammatory sites. Overall, our studies have established that inhibitors of subendothelial BM degradation represent viable anti-inflammatory agents. It is hoped that future work will result in the development of a totally new class of highly effective, subtle and non-toxic anti-inflammatory drugs for the treatment of MS and other inflammatory diseases.
Collapse
Affiliation(s)
- C R Parish
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Grochowicz PM, Hibberd AD, Smart YC, Bowen KM, Clark DA, Cowden WB, Willenborg DO. Castanospermine, an oligosaccharide processing inhibitor, reduces membrane expression of adhesion molecules and prolongs heart allograft survival in rats. Transpl Immunol 1996; 4:275-85. [PMID: 8972557 DOI: 10.1016/s0966-3274(96)80048-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The inhibition of intracellular oligosaccharide processing is a new approach to immunosuppression in allotransplantation. The net effect of such inhibition is reduction in the membrane expression of certain glycoproteins. Hence cell-cell interaction in allorejection may be impaired in the presence of glycoprotein processing inhibitors because the expression of key ligand-receptor pairs of N-linked glycoproteins including adhesion molecules is inhibited. The aims of this study were to measure the immunosuppressive ability of castanospermine (CAST) in a rat heart allograft model, to measure its effect on membrane expression of adhesion molecules (LFA-1 alpha, LFA-1 beta, ICAM-1), class I and class II MHC antigens and on other T cell associated molecules (CD4, CD8, CD39, CD45, W3/13), to test its tolerogenic potential and its toxicity. Membrane expression of these molecules was measured by flow cytometry for single cells and by immunoperoxidase staining for the allograft. In grafted rats CAST significantly reduced the expression of LFA-1 alpha on lymphoid cells in the thymus, lymph node, spleen and heart allografts. ICAM-1 expression on endothelial cells of the allograft vasculature, class I and class II MHC expression on lymphoid cells in the thymus, class II MHC expression on lymphoid cells in the allograft; and CD4, CD8, CD45 and W3/13 expression on lymphoid cells in some organs. By contrast, in non-grafted rats CAST significantly upregulated expression of class I MHC and CD45 in the thymus, lymph node and spleen, ICAM-1 and CD4 on lymphoid cells in the spleen, but reduced expression of LFA-1 alpha on lymphoid cells in the thymus. It also prolonged rat heart allograft survival in a dose-dependent manner and with limited testing was relatively non-toxic. In conclusion, CAST is an immunosuppressive molecule which may work by downregulation of the ligand-receptor adhesion molecule pair, LFA-1 alpha-ICAM-1 although subtle downregulation of class I and II MHC, CD4 and CD8 molecules could also contribute to its immunosuppressive activity. Hence, both lymphocyte-endothelial cell binding and lymphocyte activation may be inhibited by CAST. This work suggests that CAST may hold significant potential as a transplant immunosuppressant probably as an adjuvant agent to inhibitors of interleukin 2 secretion.
Collapse
Affiliation(s)
- P M Grochowicz
- Newcastle Transplant Unit, John Hunter Hospital, New Lambton, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
van den Broek LA, Kat-Van Den Nieuwenhof MW, Butters TD, Van Boeckel CA. Synthesis of alpha-glucosidase I inhibitors showing antiviral (HIV-1) and immunosuppressive activity. J Pharm Pharmacol 1996; 48:172-8. [PMID: 8935166 DOI: 10.1111/j.2042-7158.1996.tb07117.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The synthesis of a series of analogues of the monosaccharide alpha-glucosidase I inhibitor N-decyl-1-deoxynojirimycin (1) is described. With the incorporation of a single oxygen atom particularly at position seven in the N-decyl side chain, i.e. to give N-7-oxadecyl-dNM (4), the therapeutic ratio (alpha-glucosidase I inhibitory activity over toxicity in HepG2 cells) increases considerably. N-7-Oxadecyl-dNM inhibits purified porcine liver alpha-glucosidase I with an IC50 value of 0.28 microM. The position of the oxygen atom in the N-decyl side chain is of importance since N-3-oxadecyl-dNM is less active and, moreover, is toxic to HepG2 cells at 3 mM. Subsequently, the synthesis of a disaccharide inhibitor of alpha-glucosidase I is described. The aminodisaccharide ManNH2 alpha 1,2Glc (12) inhibits alpha-glucosidase I with an IC50 value of 15.7 microM. Two closely related monosaccharide derivatives of 12 did not inhibit the enzyme at low microM concentrations (no inhibition at 5 microM), showing the additional effect of binding of the aglycon fragment of the molecule to the active site of alpha-glucosidase I. Next, the N-alkyl-dNM derivatives were analysed for antiviral and immunomodulatory activity in-vitro. It is found that the most potent alpha-glucosidase I inhibitor from this study, N-7-oxadecyl-dNM (4) inhibits HIV-1 induced syncytia formation and lymphocyte proliferation in-vitro. Finally, compound 4 was also investigated in-vivo. N-7-Oxadecyl-dNM (4) reduced adjuvant-induced arthritis in rats making this compound a potential candidate for treating autoimmune diseases like rheumatoid arthritis.
Collapse
|
23
|
Bartlett MR, Warren HS, Cowden WB, Parish CR. Effects of the anti-inflammatory compounds castanospermine, mannose-6-phosphate and fucoidan on allograft rejection and elicited peritoneal exudates. Immunol Cell Biol 1994; 72:367-74. [PMID: 7835980 DOI: 10.1038/icb.1994.55] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The glycoprotein processing inhibitor castanospermine (CS) and the monosaccharide mannose-6-phosphate (M6P), as well as some sulfated polysaccharides (SPS), have been shown to inhibit inflammation in rat models of experimental autoimmune encephalomyelitis and adjuvant-induced arthritis. Here, the anti-inflammatory effects of these agents have been further explored in murine models of allograft rejection and elicitation of peritoneal exudates. CS, M6P and the SPS, fucoidan, partially inhibited rejection of permanently accepted thyroid allografts induced by the i.p. injection of donor strain (H-2d) spleen cells with a reduction in leucocyte infiltration of 25-36%. However none of these agents reduced the more extensive leucocyte infiltration induced by the i.p. injection of P815 (H-2d) unless recipient mice were pretreated with the immunosuppressant, cyclosporin A (CsA). Elicitation of peritoneal exudates by thioglycollate was inhibited by CS, M6P and fucoidan with sustained leucopenia being induced by CS. In contrast, CS and fucoidan, but not M6P, inhibited antigen-elicited peritoneal exudates. These results suggest that CS, M6P and the SPS fucoidan exhibit subtle differences in their anti-inflammatory activity but probably inhibit inflammation at the level of leucocyte extravasation.
Collapse
Affiliation(s)
- M R Bartlett
- Division of Cell Biology, John Curtin School of Medical Research, Australian National University, Canberra
| | | | | | | |
Collapse
|
24
|
Christensen MK, Meldal M, Bock K, Cordes H, Mouritsen S, Elsner H. Synthesis of glycosylated peptide templates containing 6′-O-phosphorylated mannose disaccharides and their binding to the cation-independent mannose 6-phosphate receptor. ACTA ACUST UNITED AC 1994. [DOI: 10.1039/p19940001299] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Willenborg DO, Simmons RD, Tamatani T, Miyasaka M. ICAM-1-dependent pathway is not critically involved in the inflammatory process of autoimmune encephalomyelitis or in cytokine-induced inflammation of the central nervous system. J Neuroimmunol 1993; 45:147-54. [PMID: 7687251 DOI: 10.1016/0165-5728(93)90175-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To determine whether the rat homolog of intercellular adhesion molecule 1 (ICAM-1) plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) we examined the effect of anti-ICAM-1 mAb, 1A29, on both active and passive EAE. We also examined its effect on a model of cytokine-induced inflammation in the central nervous system. Treatment of recipients of EAE effector cells with anti-ICAM-1 had no inhibitory activity, and in fact at high doses, treatment enhanced disease as evidenced by an earlier onset of symptoms. Treatment of active EAE with anti-ICAM-1 beginning on the day of sensitization did protect a proportion of animals from development of disease as well as reduce the severity of clinical signs in those which developed symptoms. Lymphocytes from both the draining lymph nodes and spleens of myelin basic protein (MBP)-immunized rats treated with anti-ICAM-1 failed to proliferate in response to MBP in vitro, suggesting that the antibody had prevented the animals from becoming sensitized to the antigen. Microinjection of tumor necrosis factor (TNF)-alpha into the spinal cords of rats led to the expression of ICAM-1 on vascular endothelium, and to the accumulation of leukocytes at sites of injection. The peak expression of ICAM-1 by endothelium and the peak accumulation of leukocytes following TNF alpha injection were not positively correlated. Furthermore, treatment of TNF alpha injected rats with anti-ICAM-1 did not inhibit the accumulation of leukocytes at the site of cytokine injection.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D O Willenborg
- Neurosciences Research Unit, Woden Valley Hospital, Canberra, Australia
| | | | | | | |
Collapse
|