1
|
Fu S, Sun W, Liu L, Xiao J, Xiong J, Hu Y, Zhou Q, Yin X. Müller Cells Harboring Exosomal lncRNA OGRU Modulate Microglia Polarization in Diabetic Retinopathy by Serving as miRNA Sponges. Diabetes 2024; 73:1919-1934. [PMID: 39178104 PMCID: PMC11493765 DOI: 10.2337/db23-1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/19/2024] [Indexed: 08/25/2024]
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes worldwide and is associated with visual loss and blindness. However, effective treatments for both early- and late-stage DR remain lacking. A streptozotocin-induced diabetic mouse model and high glucose (HG)-treated Müller cell model were established. M1/M2 microglia polarization was assessed by immunofluorescence staining and flow cytometry. Expression of long noncoding RNA (lncRNA) OGRU, cytokines, and other key molecules was detected by quantitative RT-PCR or Western blot. ELISA was used to monitor cytokine secretion. Müller cell-derived exosomes were isolated and characterized by nanopartical tracking analysis, Western blot, and transmission electron microscopy, and exosome uptake assay was used to monitor the intercellular transport of exosomes. Associations among lncRNA-miRNA-mRNA networks were validated by RNA pulldown and RNA immunoprecipitation and dual luciferase assays. Increased M1 polarization but decreased M2 polarization of retinal microglia was observed in DR mice. HG-treated Müller cell-derived exosomes transported OGRU into microglia and promoted microglia polarization toward the M1 phenotype. Mechanistically, OGRU served as a competing endogenous RNA for miR-320-3p, miR-221-3p, and miR-574-5p to regulate aldose reductase (AR), PFKFB3, and glucose transporter 1 (GLUT1) expression in microglia, respectively. Loss of miR-320-3p/miR-221-3p/miR-574-5p or reinforced AR/PFKFB3/GLUT1 abrogated OGRU silencing-mediated microglia polarization in vitro. In vivo studies further showed that OGRU/miR-320-3p/AR, OGRU/miR-221-3p/PFKFB3, and OGRU/miR-574-5p/GLUT1 axes regulated microglia polarization in DR mice. Collectively, Müller cell-derived exosomal OGRU regulated microglia polarization in DR by modulating OGRU/miR-320-3p/AR, OGRU/miR-221-3p/PFKFB3, and OGRU/miR-574-5p/GLUT1 axes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- ShuHua Fu
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - WenJing Sun
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lu Liu
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - JiPing Xiao
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xiong
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - YaoYun Hu
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - QianQian Zhou
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - XiaoLong Yin
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Gomez-Lopez N, Arenas-Hernandez M, Romero R, Miller D, Garcia-Flores V, Leng Y, Xu Y, Galaz J, Hassan SS, Hsu CD, Tse H, Sanchez-Torres C, Done B, Tarca AL. Regulatory T Cells Play a Role in a Subset of Idiopathic Preterm Labor/Birth and Adverse Neonatal Outcomes. Cell Rep 2020; 32:107874. [PMID: 32640239 PMCID: PMC7396155 DOI: 10.1016/j.celrep.2020.107874] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/13/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022] Open
Abstract
Regulatory T cells (Tregs) have been exhaustively investigated during early pregnancy; however, their role later in gestation is poorly understood. Herein, we report that functional Tregs are reduced at the maternal-fetal interface in a subset of women with idiopathic preterm labor/birth, which is accompanied by a concomitant increase in Tc17 cells. In mice, depletion of functional Tregs during late gestation induces preterm birth and adverse neonatal outcomes, which are rescued by the adoptive transfer of such cells. Treg depletion does not alter obstetrical parameters in the mother, yet it increases susceptibility to endotoxin-induced preterm birth. The mechanisms whereby depletion of Tregs induces adverse perinatal outcomes involve tissue-specific immune responses and mild systemic maternal inflammation, together with dysregulation of developmental and cellular processes in the placenta, in the absence of intra-amniotic inflammation. These findings provide mechanistic evidence supporting a role for Tregs in the pathophysiology of idiopathic preterm labor/birth and adverse neonatal outcomes.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City 07360, Mexico
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Detroit Medical Center, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Harley Tse
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Carmen Sanchez-Torres
- Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City 07360, Mexico
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Levenson D, Romero R, Garcia-Flores V, Miller D, Xu Y, Sahi A, Hassan SS, Gomez-Lopez N. The effects of advanced maternal age on T-cell subsets at the maternal-fetal interface prior to term labor and in the offspring: a mouse study. Clin Exp Immunol 2020; 201:58-75. [PMID: 32279324 DOI: 10.1111/cei.13437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Women who conceive at 35 years of age or older, commonly known as advanced maternal age, have a higher risk of facing parturition complications and their children have an increased risk of developing diseases later in life. However, the immunological mechanisms underlying these pathological processes have yet to be established. To fill this gap in knowledge, using a murine model and immunophenotyping, we determined the effect of advanced maternal age on the main cellular branch of adaptive immunity, T cells, at the maternal-fetal interface and in the offspring. We report that advanced maternal age impaired the process of labor at term, inducing dystocia and delaying the timing of delivery. Advanced maternal age diminished the number of specific proinflammatory T-cell subsets [T helper type 1 (Th1): CD4+ IFN-γ+ , CD8+ IFN-γ+ and Th9: CD4+ IL-9+ ], as well as CD4+ regulatory T cells (CD4+ CD25+ FoxP3+ T cells), at the maternal-fetal interface prior to term labor. Advanced maternal age also altered fetal growth and survival of the offspring in early life. In addition, infants born to advanced-age mothers had alterations in the T-cell repertoire but not in CD71+ erythroid cells (CD3- CD71+ TER119+ cells). This study provides insight into the immune alterations observed at the maternal-fetal interface of advanced-age mothers and their offspring.
Collapse
Affiliation(s)
- D Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - V Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Y Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - A Sahi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - S S Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Office of Women's Health, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - N Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
4
|
Exhausted and Senescent T Cells at the Maternal-Fetal Interface in Preterm and Term Labor. J Immunol Res 2019; 2019:3128010. [PMID: 31263712 PMCID: PMC6556261 DOI: 10.1155/2019/3128010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Successful pregnancy requires a tightly-regulated equilibrium of immune cell interactions at the maternal-fetal interface (i.e., the decidual tissues), which plays a central role in the inflammatory process of labor. Most of the innate immune cells in this compartment have been well characterized; however, adaptive immune cells are still under investigation. Herein, we performed immunophenotyping of the decidua basalis and decidua parietalis to determine whether exhausted and senescent T cells are present at the maternal-fetal interface and whether the presence of pathological (i.e., preterm) or physiological (i.e., term) labor and/or placental inflammation alter such adaptive immune cells. In addition, decidual exhausted T cells were sorted to test their functional status. We found that (1) exhausted and senescent T cells were present at the maternal-fetal interface and predominantly expressed an effector memory phenotype, (2) exhausted CD4+ T cells increased in the decidua parietalis as gestational age progressed, (3) exhausted CD4+ and CD8+ T cells decreased in the decidua basalis of women who underwent labor at term compared to those without labor, (4) exhausted CD4+ T cells declined with the presence of placental inflammation in the decidua basalis of women with preterm labor, (5) exhausted CD8+ T cells decreased with the presence of placental inflammation in the decidua basalis of women who underwent labor at term, (6) both senescent CD4+ and CD8+ T cells declined with the presence of placental inflammation in the decidua basalis of women who underwent preterm labor, and (7) decidual exhausted T cells produced IFNγ and TNFα upon in vitro stimulation. Collectively, these findings indicate that exhausted and senescent T cells are present at the human maternal-fetal interface and undergo alterations in a subset of women either with labor at term or preterm labor and placental inflammation. Importantly, decidual T cell function can be restored upon stimulation.
Collapse
|
5
|
Chang RQ, Li DJ, Li MQ. The role of indoleamine-2,3-dioxygenase in normal and pathological pregnancies. Am J Reprod Immunol 2017; 79:e12786. [PMID: 29154462 DOI: 10.1111/aji.12786] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/30/2017] [Indexed: 12/30/2022] Open
Abstract
The survival of allogeneic fetus during pregnancy contradicts the laws of immune responses. Behind this paradoxical phenomenon, the mechanism is quite complex. Indoleamine-2,3-dioxygenase (IDO) is the first and rate-limiting enzyme of tryptophan catabolism. Emerging evidence shows that IDO is expressed at the maternal-fetal interface, including trophoblast cells, decidual stroma cells, decidual immune cells (eg, natural killer cells, T cells, and macrophages), and vascular endothelial cells of decidua and chorion. Moreover, the expression and activity of IDO are different among non-pregnant, normal pregnant, and pathological pregnant conditions. IDO plays important roles in normal pregnancy through immune suppression and regulation of fetal invasion and circulation. However, the abnormal expression and dysfunction of IDO are associated with some pathological pregnancies (including recurrent spontaneous abortion, preeclampsia, preterm labor, and fetal growth restriction).
Collapse
Affiliation(s)
- Rui-Qi Chang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
6
|
Gomez-Lopez N, Romero R, Arenas-Hernandez M, Schwenkel G, St Louis D, Hassan SS, Mial TN. In vivo activation of invariant natural killer T cells induces systemic and local alterations in T-cell subsets prior to preterm birth. Clin Exp Immunol 2017; 189:211-225. [PMID: 28369855 DOI: 10.1111/cei.12968] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Preterm birth, the leading cause of neonatal morbidity and mortality worldwide, is frequently preceded by spontaneous preterm labour, a syndrome of multiple aetiologies. Pathological inflammation is causally linked to spontaneous preterm labour. Indeed, direct activation of invariant natural killer T (iNKT) cells via α-galactosylceramide induces preterm labour/birth largely by initiating systemic and local (i.e. decidua and myometrium) innate immune responses. Herein, we investigated whether iNKT-cell activation altered local and systemic T-cell subsets. Administration of α-galactosylceramide induced an expansion of activated CD1d-restricted iNKT cells in the decidua and a reduction in the number of: (1) total T cells (conventional CD4+ and CD8+ T cells) through the down-regulation of the CD3ɛ molecule in the peripheral circulation, spleen, uterine-draining lymph nodes (ULNs), decidua and/or myometrium; (2) CD4+ regulatory T cells in the spleen, ULNs and decidua; (3) T helper type 17 (Th17) cells in the ULNs but an increase in the number of decidual Th17 cells; (4) CD8+ regulatory T cells in the spleen and ULNs; and (5) CD4+ and CD8+ forkhead box protein 3 negative (Foxp3- ) responder T cells in the spleen and ULNs. As treatment with rosiglitazone prevents iNKT-cell activation-induced preterm labour/birth, we also explored whether the administration of this peroxisome proliferator-activated receptor gamma (PPARγ) agonist would restore the number of T cells. Treating α-galactosylceramide-injected mice with rosiglitazone partially restored the number of T cells in the spleen but not in the decidua. In summary, iNKT-cell activation altered the systemic and local T-cell subsets prior to preterm labour/birth; however, treatment with rosiglitazone partially reversed such effects.
Collapse
Affiliation(s)
- N Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA.,Department of Immunology & Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, USA
| | - M Arenas-Hernandez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA.,Department of Molecular Biomedicine, CINVESTAV, Mexico City, Mexico
| | - G Schwenkel
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - D St Louis
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - S S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - T N Mial
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| |
Collapse
|
7
|
Furcron AE, Romero R, Plazyo O, Unkel R, Xu Y, Hassan SS, Chaemsaithong P, Mahajan A, Gomez-Lopez N. Vaginal progesterone, but not 17α-hydroxyprogesterone caproate, has antiinflammatory effects at the murine maternal-fetal interface. Am J Obstet Gynecol 2015; 213:846.e1-846.e19. [PMID: 26264823 DOI: 10.1016/j.ajog.2015.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Progestogen (vaginal progesterone or 17-alpha-hydroxyprogesterone caproate [17OHP-C]) administration to patients at risk for preterm delivery is widely used for the prevention of preterm birth (PTB). The mechanisms by which these agents prevent PTB are poorly understood. Progestogens have immunomodulatory functions; therefore, we investigated the local effects of vaginal progesterone and 17OHP-C on adaptive and innate immune cells implicated in the process of parturition. STUDY DESIGN Pregnant C57BL/6 mice received vaginal progesterone (1 mg per 200 μL, n = 10) or Replens (control, 200 μL, n = 10) from 13 to 17 days postcoitum (dpc) or were subcutaneously injected with 17OHP-C (2 mg per 100 μL, n = 10) or castor oil (control, 100 μL, n = 10) on 13, 15, and 17 dpc. Decidual and myometrial leukocytes were isolated prior to term delivery (18.5 dpc) for immunophenotyping by flow cytometry. Cervical tissue samples were collected to determine matrix metalloproteinase (MMP)-9 activity by in situ zymography and visualization of collagen content by Masson's trichrome staining. Plasma concentrations of progesterone, estradiol, and cytokines (interferon [IFN]γ, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, keratinocyte-activated chemokine/growth-related oncogene, and tumor necrosis factor-α) were quantified by enzyme-linked immunosorbent assays. Pregnant mice pretreated with vaginal progesterone or Replens were injected with 10 μg of an endotoxin on 16.5 dpc (n = 10 each) and monitored via infrared camera until delivery to determine the effect of vaginal progesterone on the rate of PTB. RESULTS The following results were found: (1) vaginal progesterone, but not 17OHP-C, increased the proportion of decidual CD4+ regulatory T cells; (2) vaginal progesterone, but not 17OHP-C, decreased the proportion of decidual CD8+CD25+Foxp3+ T cells and macrophages; (3) vaginal progesterone did not result in M1→M2 macrophage polarization but reduced the proportion of myometrial IFNγ+ neutrophils and cervical active MMP-9-positive neutrophils and monocytes; (4) 17OHP-C did not reduce the proportion of myometrial IFNγ+ neutrophils; however, it increased the abundance of cervical active MMP-9-positive neutrophils and monocytes; (5) vaginal progesterone immune effects were associated with reduced systemic concentrations of IL-1β but not with alterations in progesterone or estradiol concentrations; and (6) vaginal progesterone pretreatment protected against endotoxin-induced PTB (effect size 50%, P = 0.011). CONCLUSION Vaginal progesterone, but not 17OHP-C, has local antiinflammatory effects at the maternal-fetal interface and the cervix and protects against endotoxin-induced PTB.
Collapse
|
8
|
Arenas-Hernandez M, Sanchez-Rodriguez EN, Mial TN, Robertson SA, Gomez-Lopez N. Isolation of Leukocytes from the Murine Tissues at the Maternal-Fetal Interface. J Vis Exp 2015:e52866. [PMID: 26067389 PMCID: PMC4542974 DOI: 10.3791/52866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Immune tolerance in pregnancy requires that the immune system of the mother undergoes distinctive changes in order to accept and nurture the developing fetus. This tolerance is initiated during coitus, established during fecundation and implantation, and maintained throughout pregnancy. Active cellular and molecular mediators of maternal-fetal tolerance are enriched at the site of contact between fetal and maternal tissues, known as the maternal-fetal interface, which includes the placenta and the uterine and decidual tissues. This interface is comprised of stromal cells and infiltrating leukocytes, and their abundance and phenotypic characteristics change over the course of pregnancy. Infiltrating leukocytes at the maternal-fetal interface include neutrophils, macrophages, dendritic cells, mast cells, T cells, B cells, NK cells, and NKT cells that together create the local micro-environment that sustains pregnancy. An imbalance among these cells or any inappropriate alteration in their phenotypes is considered a mechanism of disease in pregnancy. Therefore, the study of leukocytes that infiltrate the maternal-fetal interface is essential in order to elucidate the immune mechanisms that lead to pregnancy-related complications. Described herein is a protocol that uses a combination of gentle mechanical dissociation followed by a robust enzymatic disaggregation with a proteolytic and collagenolytic enzymatic cocktail to isolate the infiltrating leukocytes from the murine tissues at the maternal-fetal interface. This protocol allows for the isolation of high numbers of viable leukocytes (>70%) with sufficiently conserved antigenic and functional properties. Isolated leukocytes can then be analyzed by several techniques, including immunophenotyping, cell sorting, imaging, immunoblotting, mRNA expression, cell culture, and in vitro functional assays such as mixed leukocyte reactions, proliferation, or cytotoxicity assays.
Collapse
Affiliation(s)
| | | | - Tara N Mial
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine
| | - Sarah A Robertson
- School of Paediatrics and Reproductive Health, Research Centre for Reproductive Health, the Robinson Research Institute, The University of Adelaide
| | - Nardhy Gomez-Lopez
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine; Department of Immunology & Microbiology, Wayne State University School of Medicine; Perinatology Research Branch, NICHD/NIH/DHHS;
| |
Collapse
|
9
|
Shiozaki A, Yoneda S, Yoneda N, Yonezawa R, Matsubayashi T, Seo G, Saito S. Intestinal microbiota is different in women with preterm birth: results from terminal restriction fragment length polymorphism analysis. PLoS One 2014; 9:e111374. [PMID: 25372390 PMCID: PMC4221021 DOI: 10.1371/journal.pone.0111374] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023] Open
Abstract
Preterm birth is a leading cause of perinatal morbidity and mortality. Studies using a cultivation method or molecular identification have shown that bacterial vaginosis is one of the risk factors for preterm birth. However, an association between preterm birth and intestinal microbiota has not been reported using molecular techniques, although the vaginal microbiota changes during pregnancy. Our aim here was to clarify the difference in intestinal and vaginal microbiota between women with preterm birth and women without preterm labor. 16S ribosomal ribonucleic acid genes were amplified from fecal and vaginal DNA by polymerase chain reaction. Using terminal restriction fragment length polymorphism (T-RFLP), we compared the levels of operational taxonomic units of both intestinal and vaginal flora among three groups: pregnant women who delivered term babies without preterm labor (non-PTL group) (n = 20), those who had preterm labor but delivered term babies (PTL group) (n = 11), and those who had preterm birth (PTB group) (n = 10). Significantly low levels of Clostridium subcluster XVIII, Clostridium cluster IV, Clostridium subcluster XIVa, and Bacteroides, and a significantly high level of Lactobacillales were observed in the intestinal microbiota in the PTB group compared with those in the non-PTL group. The levels of Clostridium subcluster XVIII and Clostridium subcluster XIVa in the PTB group were significantly lower than those in the PTL group, and these levels in the PTL group were significantly lower than those in non-PTL group. However, there were no significant differences in vaginal microbiota among the three groups. Intestinal microbiota in the PTB group was found to differ from that in the non-PTL group using the T-RFLP method.
Collapse
Affiliation(s)
- Arihiro Shiozaki
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Satoshi Yoneda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Noriko Yoneda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Rika Yonezawa
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | | | | | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
- * E-mail:
| |
Collapse
|
10
|
Gomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol 2014; 11:571-81. [PMID: 24954221 PMCID: PMC4220837 DOI: 10.1038/cmi.2014.46] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/14/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022] Open
Abstract
Labor resembles an inflammatory response that includes secretion of
cytokines/chemokines by resident and infiltrating immune cells into reproductive
tissues and the maternal/fetal interface. Untimely activation of these inflammatory
pathways leads to preterm labor, which can result in preterm birth. Preterm birth is
a major determinant of neonatal mortality and morbidity; therefore, the elucidation
of the process of labor at a cellular and molecular level is essential for
understanding the pathophysiology of preterm labor. Here, we summarize the role of
innate and adaptive immune cells in the physiological or pathological activation of
labor. We review published literature regarding the role of innate and adaptive
immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in
late pregnancy and labor at term and preterm. Accumulating evidence suggests that
innate immune cells (neutrophils, macrophages and mast cells) mediate the process of
labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix
metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in
the maintenance of fetomaternal tolerance during pregnancy, and an alteration in
their function or abundance may lead to labor at term or preterm. Also, immune cells
that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and
dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor.
In conclusion, a balance between innate and adaptive immune cells is required in
order to sustain pregnancy; an alteration of this balance will lead to labor at term
or preterm.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- 1] Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA [2] Perinatology Research Branch NICHD/NIH, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Derek StLouis
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| | - Marcus A Lehr
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| | - Elly N Sanchez-Rodriguez
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
11
|
Rowe JH, Ertelt JM, Xin L, Way SS. Regulatory T cells and the immune pathogenesis of prenatal infection. Reproduction 2013; 146:R191-203. [PMID: 23929902 DOI: 10.1530/rep-13-0262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pregnancy in placental mammals offers exceptional comprehensive benefits of in utero protection, nutrition, and metabolic waste elimination for the developing fetus. However, these benefits also require durable strategies to mitigate maternal rejection of fetal tissues expressing foreign paternal antigens. Since the initial postulate of expanded maternal immune tolerance by Sir Peter Medawar 60 years ago, an amazingly elaborate assortment of molecular and cellular modifications acting both locally at the maternal-placental interface and systemically have been shown to silence potentially detrimental maternal immune responses. In turn, simultaneously maintaining host defense against the infinite array of potential pathogens during pregnancy is equally important. Fortunately, resistance against most infections is preserved seamlessly throughout gestation. On the other hand, recent studies on pathogens with unique predisposition for prenatal infections have uncovered distinctive holes in host defense associated with the reproductive process. Using these infections to probe the response during pregnancy, the immune suppressive regulatory subset of maternal CD4 T cells has been increasingly shown to dictate the inter-workings between prenatal infection susceptibility and pathogenesis of ensuing pregnancy complications. Herein, the recent literature suggesting a necessity for maternal regulatory T cells (Tregs) in pregnancy-induced immunological shifts that sustain fetal tolerance is reviewed. Additional discussion is focused on how expansion of maternal Treg suppression may become exploited by pathogens that cause prenatal infections and the perilous potential of infection-induced immune activation that may mitigate fetal tolerance and inadvertently inject hostility into the protective in utero environment.
Collapse
Affiliation(s)
- Jared H Rowe
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
12
|
Gomez-Lopez N, Vega-Sanchez R, Castillo-Castrejon M, Romero R, Cubeiro-Arreola K, Vadillo-Ortega F. Evidence for a role for the adaptive immune response in human term parturition. Am J Reprod Immunol 2013; 69:212-30. [PMID: 23347265 PMCID: PMC3600361 DOI: 10.1111/aji.12074] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/17/2012] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Spontaneous labor at term involves leukocyte recruitment and infiltration into the choriodecidua; yet, characterization of these leukocytes and their immunological mediators is incomplete. The purpose of this study was to characterize the immunophenotype of choriodecidual leukocytes as well as the expression of inflammatory mediators in human spontaneous parturition at term. METHOD OF STUDY Choriodecidual leukocytes were analyzed by FACS, immunohistochemistry, and RT-PCR in three different groups: (i) preterm gestation delivered for medical indications without labor; (ii) term pregnancy without labor; and (iii) term pregnancy after spontaneous labor. RESULTS Two T-cell subsets of memory-like T cells (CD3(+) CD4(+) CD45RO(+) and CD3(+) CD4(-) CD8(-) CD45RO(+) cells) were identified in the choriodecidua of women who had spontaneous labor. Evidence for an extensive immune signaling network composed of chemokines (CXCL8 and CXCL10), chemokine receptors (CXCR1-3), cytokines (IL-1β and TNF-α), cell adhesion molecules, and MMP-9 was identified in these cells during spontaneous labor at term. CONCLUSIONS The influx of memory-like T cells in the choriodecidua and the evidence that they are active by producing chemokines and cytokines, and expressing chemokine receptors, cell adhesion molecules, and a matrix-degrading enzyme provides support for the participation of the adaptive immune system in the mechanisms of spontaneous parturition at term.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Research Direction and Department of Nutrition Research, Instituto Nacional de Perinatologia Isidro Espinosa de los Reyes, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|