1
|
Arosa L, Camba-Gómez M, Lorenzo-Martín LF, Clavaín L, López M, Conde-Aranda J. RNA Expression of MMP12 Is Strongly Associated with Inflammatory Bowel Disease and Is Regulated by Metabolic Pathways in RAW 264.7 Macrophages. Int J Mol Sci 2024; 25:3167. [PMID: 38542140 PMCID: PMC10970096 DOI: 10.3390/ijms25063167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage metalloelastase or matrix metalloproteinase-12 (MMP12) is a macrophage-specific proteolytic enzyme involved in the physiopathology of many inflammatory diseases, including inflammatory bowel disease. Although previously published data suggested that the modulation of MMP12 in macrophages could be a determinant for the development of intestinal inflammation, scarce information is available on the mechanisms underlying the regulation of MMP12 expression in those phagocytes. Therefore, in this study, we aimed to delineate the association of MMP12 with inflammatory bowel disease and the molecular events leading to the transcriptional control of this metalloproteinase. For that, we used publicly available transcriptional data. Also, we worked with the RAW 264.7 macrophage cell line for functional experiments. Our results showed a strong association of MMP12 expression with the severity of inflammatory bowel disease and the response to relevant biological therapies. In vitro assays revealed that the inhibition of mechanistic target of rapamycin complex 1 (mTORC1) and the stimulation of the AMP-activated protein kinase (AMPK) signaling pathway potentiated the expression of Mmp12. Additionally, AMPK and mTOR required a functional downstream glycolytic pathway to fully engage with Mmp12 expression. Finally, the pharmacological inhibition of MMP12 abolished the expression of the proinflammatory cytokine Interleukin-6 (Il6) in macrophages. Overall, our findings provide a better understanding of the mechanistic regulation of MMP12 in macrophages and its relationship with inflammation.
Collapse
Affiliation(s)
- Laura Arosa
- Molecular and Cellular Gastroenterology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (L.A.); (M.C.-G.)
| | - Miguel Camba-Gómez
- Molecular and Cellular Gastroenterology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (L.A.); (M.C.-G.)
| | | | - Laura Clavaín
- EGO Genomics, Scientific Park of the University of Salamanca, Adaja Street 4, Building M2, 37185 Villamayor, Spain;
| | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (L.A.); (M.C.-G.)
| |
Collapse
|
2
|
Dillemans L, Yu K, De Zutter A, Noppen S, Gouwy M, Berghmans N, Verhallen L, De Bondt M, Vanbrabant L, Brusselmans S, Martens E, Schols D, Verschueren P, Rosenkilde MM, Marques PE, Struyf S, Proost P. Natural carboxyterminal truncation of human CXCL10 attenuates glycosaminoglycan binding, CXCR3A signaling and lymphocyte chemotaxis, while retaining angiostatic activity. Cell Commun Signal 2024; 22:94. [PMID: 38308278 PMCID: PMC10835923 DOI: 10.1186/s12964-023-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Interferon-γ-inducible protein of 10 kDa (IP-10/CXCL10) is a dual-function CXC chemokine that coordinates chemotaxis of activated T cells and natural killer (NK) cells via interaction with its G protein-coupled receptor (GPCR), CXC chemokine receptor 3 (CXCR3). As a consequence of natural posttranslational modifications, human CXCL10 exhibits a high degree of structural and functional heterogeneity. However, the biological effect of natural posttranslational processing of CXCL10 at the carboxy (C)-terminus has remained partially elusive. We studied CXCL10(1-73), lacking the four endmost C-terminal amino acids, which was previously identified in supernatant of cultured human fibroblasts and keratinocytes. METHODS Relative levels of CXCL10(1-73) and intact CXCL10(1-77) were determined in synovial fluids of patients with rheumatoid arthritis (RA) through tandem mass spectrometry. The production of CXCL10(1-73) was optimized through Fmoc-based solid phase peptide synthesis (SPPS) and a strategy to efficiently generate human CXCL10 proteoforms was introduced. CXCL10(1-73) was compared to intact CXCL10(1-77) using surface plasmon resonance for glycosaminoglycan (GAG) binding affinity, assays for cell migration, second messenger signaling downstream of CXCR3, and flow cytometry of CHO cells and primary human T lymphocytes and endothelial cells. Leukocyte recruitment in vivo upon intraperitoneal injection of CXCL10(1-73) was also evaluated. RESULTS Natural CXCL10(1-73) was more abundantly present compared to intact CXCL10(1-77) in synovial fluids of patients with RA. CXCL10(1-73) had diminished affinity for GAG including heparin, heparan sulfate and chondroitin sulfate A. Moreover, CXCL10(1-73) exhibited an attenuated capacity to induce CXCR3A-mediated signaling, as evidenced in calcium mobilization assays and through quantification of phosphorylated extracellular signal-regulated kinase-1/2 (ERK1/2) and protein kinase B/Akt. Furthermore, CXCL10(1-73) incited significantly less primary human T lymphocyte chemotaxis in vitro and peritoneal ingress of CXCR3+ T lymphocytes in mice. In contrast, loss of the four endmost C-terminal residues did not affect the inhibitory properties of CXCL10 on migration, proliferation, wound closure, phosphorylation of ERK1/2, and sprouting of human microvascular endothelial cells. CONCLUSION Our study shows that the C-terminal residues Lys74-Pro77 of CXCL10 are important for GAG binding, signaling through CXCR3A, T lymphocyte chemotaxis, but dispensable for angiostasis.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Karen Yu
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Alexandra De Zutter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1042, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lisa Verhallen
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Stef Brusselmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1042, Leuven, Belgium
| | - Patrick Verschueren
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Wang S, Foster SR, Sanchez J, Corcilius L, Larance M, Canals M, Stone MJ, Payne RJ. Glycosylation Regulates N-Terminal Proteolysis and Activity of the Chemokine CCL14. ACS Chem Biol 2021; 16:973-981. [PMID: 33988967 DOI: 10.1021/acschembio.1c00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines are secreted proteins that regulate leukocyte migration during inflammatory responses by signaling through chemokine receptors. Full length CC chemokine ligand 14, CCL14(1-74), is a weak agonist for the chemokine receptor CCR1, but its activity is substantially enhanced upon proteolytic cleavage to CCL14(9-74). CCL14 is O-glycosylated at Ser7, adjacent to the site of proteolytic activation. To determine whether glycosylation regulates the activity of CCL14, we used native chemical ligation to prepare four homogeneously glycosylated variants of CCL14(1-74). Each protein was assembled from three synthetic peptide fragments in "one-pot" using two sequential ligation reactions. We show that while glycosylation of CCL14(1-74) did not affect CCR1 binding affinity or potency of activation, sialylated variants of CCL14(1-74) exhibited reduced activity after treatment with plasmin compared to nonsialylated forms. These data indicate that glycosylation may influence the biological activity of CCL14 by regulating its conversion from the full-length to the truncated, activated form.
Collapse
Affiliation(s)
- Siyao Wang
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Simon R. Foster
- Department of Biochemistry & Molecular Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Infection & Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Julie Sanchez
- Department of Biochemistry & Molecular Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Infection & Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Larance
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, U.K
| | - Martin J. Stone
- Department of Biochemistry & Molecular Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Kang HJ, Kim KT, Park Y, Yoo KH, Kim JW, Lee JY, Kim SW, Shin IS, Kim JH, Kim JM. Genetic markers for depressive disorders with earlier age at onset. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110176. [PMID: 33189858 DOI: 10.1016/j.pnpbp.2020.110176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/25/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022]
Abstract
Age at onset has been considered a potential indicator of underlying genetic risk in depression research. However, the variants associated with earlier age at onset of depressive disorder have not been elucidated. To evaluate the genetic architecture of depression onset, whole-exome sequencing of samples from 1000 patients with depressive disorder was performed. Cox proportional hazard models with false discovery rate-adjusted P-values were used to estimate the hazard ratios; carriers and non-carriers of individual coding variants were compared in terms of age at onset of depression with adjustment for sociodemographic and clinical characteristics. The clinical relevance of the candidate variants was also examined. Whole-exome sequencing revealed four variants in the CCL14, FYB, GPRASP1, and CTNND2 genes associated with an increased risk of depressive disorder with earlier age at onset. Although no individual variant was associated with any clinical characteristic except AAO, together they were associated with younger AAO, younger age at visit for treatment, and recurrent and atypical depression. Our data suggest novel candidate genes for depressive disorder with earlier age at onset. These genes could serve as markers allowing early identification of patients at risk of depression, and thus earlier intervention.
Collapse
Affiliation(s)
- Hee-Ju Kang
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ki-Tae Kim
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yoomi Park
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Hun Yoo
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju-Wan Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju-Yeon Lee
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sung-Wan Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Il-Seon Shin
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju Han Kim
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jae-Min Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
6
|
Azhar N, Namas RA, Almahmoud K, Zaaqoq A, Malak OA, Barclay D, Yin J, El-Dehaibi F, Abboud A, Simmons RL, Zamora R, Billiar TR, Vodovotz Y. A putative "chemokine switch" that regulates systemic acute inflammation in humans. Sci Rep 2021; 11:9703. [PMID: 33958628 PMCID: PMC8102583 DOI: 10.1038/s41598-021-88936-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic inflammation is complex and likely drives clinical outcomes in critical illness such as that which ensues following severe injury. We obtained time course data on multiple inflammatory mediators in the blood of blunt trauma patients. Using dynamic network analyses, we inferred a novel control architecture for systemic inflammation: a three-way switch comprising the chemokines MCP-1/CCL2, MIG/CXCL9, and IP-10/CXCL10. To test this hypothesis, we created a logical model comprising this putative architecture. This model predicted key qualitative features of systemic inflammation in patient sub-groups, as well as the different patterns of hospital discharge of moderately vs. severely injured patients. Thus, a rational transition from data to data-driven models to mechanistic models suggests a novel, chemokine-based mechanism for control of acute inflammation in humans and points to the potential utility of this workflow in defining novel features in other complex diseases.
Collapse
Affiliation(s)
- Nabil Azhar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Khalid Almahmoud
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Akram Zaaqoq
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Othman A Malak
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA. .,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA. .,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Camba-Gómez M, Gualillo O, Conde-Aranda J. New Perspectives in the Study of Intestinal Inflammation: Focus on the Resolution of Inflammation. Int J Mol Sci 2021; 22:ijms22052605. [PMID: 33807591 PMCID: PMC7962019 DOI: 10.3390/ijms22052605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is an essential physiological process that is directed to the protection of the organism against invading pathogens or tissue trauma. Most of the existing knowledge related to inflammation is focused on the factors and mechanisms that drive the induction phase of this process. However, since the recognition that the resolution of the inflammation is an active and tightly regulated process, increasing evidence has shown the relevance of this process for the development of chronic inflammatory diseases, such as inflammatory bowel disease. For that reason, with this review, we aimed to summarize the most recent and interesting information related to the resolution process in the context of intestinal inflammation. We discussed the advances in the understanding of the pro-resolution at intestine level, as well as the new mediators with pro-resolutive actions that could be interesting from a therapeutic point of view.
Collapse
Affiliation(s)
- Miguel Camba-Gómez
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saúde) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-981-955-091
| |
Collapse
|
8
|
Silva PL, Nakajima E, Costa RMD, Lee Ho P, Martins EA, Carvalho E, da Silva JB. Chemokine expression profiles in liver and kidney of mice with different susceptibilities to leptospirosis. Microb Pathog 2020; 149:104580. [PMID: 33080359 DOI: 10.1016/j.micpath.2020.104580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
Leptospirosis is a global disease that affects humans and animals, impacting public health and the economy. The symptoms caused by Leptospira infection can vary from mild to severe, affecting liver, lungs, and kidneys. The host-pathogen interaction in leptospirosis is still poorly understood, but there is evidence for the role of the host immune response in the pathogenesis. Chemokines are a family of structurally-related low-molecular-mass proteins (8-14 kDa) that signal the recruitment of leukocytes. In this study the profile of 22 chemokines were evaluated in liver and kidney of three mice strains with different phenotypes of susceptibility to leptospirosis. We extended our previously reported observations showing that expression of chemokines with homeostatic function, activation and chemotaxis of leukocytes are essential to modulate and to induce resistance to leptospirosis. Our findings support that an early induction of CXC chemokines in resistant BALB/c mice can be associated with the control of the infection. The correlation of chemokine expression between liver and kidney observed in BALB/c suggests that a balance of chemokine induction in the organs may contribute to resistance to leptospirosis.
Collapse
Affiliation(s)
- Paloma Ld Silva
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Erika Nakajima
- Laboratório de biológicos recombinantes, Instituto Butantan, São Paulo, Brazil
| | - Renata Ma da Costa
- Global Antibiotics Research and Development Partnership (GARDP), Drugs for Neglected Diseases initiative (DNDi), Chemin Louis-Dunant 15, 1202 Geneva, Switzerland
| | - Paulo Lee Ho
- Divisão BioIndustrial, Instituto Butantan, São Paulo, Brazil
| | | | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Josefa B da Silva
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
9
|
Fraunberger EA, DeJesus P, Zanier ER, Shutt TE, Esser MJ. Acute and Persistent Alterations of Cerebellar Inflammatory Networks and Glial Activation in a Rat Model of Pediatric Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:1315-1330. [DOI: 10.1089/neu.2019.6714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Erik A. Fraunberger
- Hotchkiss Brain Institute, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Pauline DeJesus
- Hotchkiss Brain Institute, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Elisa R. Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Timothy E. Shutt
- Hotchkiss Brain Institute, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Medical Genetics, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Michael J. Esser
- Hotchkiss Brain Institute, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Vacchini A, Mortier A, Proost P, Locati M, Metzemaekers M, Borroni EM. Differential Effects of Posttranslational Modifications of CXCL8/Interleukin-8 on CXCR1 and CXCR2 Internalization and Signaling Properties. Int J Mol Sci 2018; 19:E3768. [PMID: 30486423 PMCID: PMC6321254 DOI: 10.3390/ijms19123768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
CXCL8 or interleukin (IL)-8 directs neutrophil migration and activation through interaction with CXCR1 and CXCR2 that belong to the family of G protein-coupled receptors (GPCRs). Naturally occurring posttranslational modifications of the NH₂-terminal region of CXCL8 affect its biological activities, but the underlying molecular mechanisms are only partially understood. Here, we studied the implications of site-specific citrullination and truncation for the signaling potency of CXCL8. Native CXCL8(1-77), citrullinated [Cit5]CXCL8(1-77) and the major natural isoform CXCL8(6-77) were chemically synthesized and tested in internalization assays using human neutrophils. Citrullinated and truncated isoforms showed a moderately enhanced capacity to induce internalization of CXCR1 and CXCR2. Moreover, CXCL8-mediated activation of Gαi-dependent signaling through CXCR1 and CXCR2 was increased upon modification to [Cit5]CXCL8(1-77) or CXCL8(6-77). All CXCL8 variants promoted recruitment of β-arrestins 1 and 2 to CXCR1 and CXCR2. Compared to CXCL8(1-77), CXCL8(6-77) showed an enhanced potency to recruit β-arrestin 2 to both receptors, while for [Cit5]CXCL8(1-77) only the capacity to induce β-arrestin 2 recruitment to CXCR2 was increased. Both modifications had no biasing effect, i.e., did not alter the preference of CXCL8 to activate either Gαi-protein or β-arrestin-dependent signaling through its receptors. Our results support the concept that specific chemokine activities are fine-tuned by posttranslational modifications.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Massimo Locati
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Elena Monica Borroni
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| |
Collapse
|
11
|
How post-translational modifications influence the biological activity of chemokines. Cytokine 2018; 109:29-51. [DOI: 10.1016/j.cyto.2018.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
|
12
|
Metzemaekers M, Vanheule V, Janssens R, Struyf S, Proost P. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Front Immunol 2018; 8:1970. [PMID: 29379506 PMCID: PMC5775283 DOI: 10.3389/fimmu.2017.01970] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
The inflammatory chemokines CXCL9, CXCL10, and CXCL11 are predominantly induced by interferon (IFN)-γ and share an exclusive chemokine receptor named CXC chemokine receptor 3 (CXCR3). With a prototype function of directing temporal and spatial migration of activated T cells and natural killer cells, and inhibitory effects on angiogenesis, these CXCR3 ligands have been implicated in infection, acute inflammation, autoinflammation and autoimmunity, as well as in cancer. Intense former research efforts led to recent and ongoing clinical trials using CXCR3 and CXCR3 ligand targeting molecules. Scientific evidence has claimed mutual redundancy, ligand dominance, collaboration or even antagonism, depending on the (patho)physiological context. Most research on their in vivo activity, however, illustrates that CXCL9, CXCL10, and CXCL11 each contribute to the activation and trafficking of CXCR3 expressing cells in a non-redundant manner. When looking into detail, one can unravel a multistep machinery behind final CXCR3 ligand functions. Not only can specific cell types secrete individual CXCR3 interacting chemokines in response to certain stimuli, but also the receptor and glycosaminoglycan interactions, major associated intracellular pathways and susceptibility to processing by particular enzymes, among others, seem ligand-specific. Here, we overview major aspects of the molecular properties and regulatory mechanisms of IFN-induced CXCR3 ligands, and propose that their in vivo non-redundancy is a reflection of the unprecedented degree of versatility that seems inherent to the IFN-related CXCR3 chemokine system.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Guan X, Chaffey PK, Chen H, Feng W, Wei X, Yang LM, Ruan Y, Wang X, Li Y, Barosh KB, Tran AH, Zhu J, Liang W, Zheng YT, Wang X, Tan Z. O-GalNAcylation of RANTES Improves Its Properties as a Human Immunodeficiency Virus Type 1 Entry Inhibitor. Biochemistry 2017; 57:136-148. [PMID: 29202246 DOI: 10.1021/acs.biochem.7b00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many human proteins have the potential to be developed as therapeutic agents. However, side effects caused by direct administration of natural proteins have significantly slowed expansion of protein therapeutics into the clinic. Post-translational modifications (PTMs) can improve protein properties, but because of significant knowledge gaps, we are considerably limited in our ability to apply PTMs to generate better protein therapeutics. Here, we seek to fill the gaps by studying the PTMs of a small representative chemotactic cytokine, RANTES. RANTES can inhibit HIV-1 infection by competing with it for binding to receptor CCR5 and stimulating CCR5 endocytosis. Unfortunately, RANTES can induce strong signaling, leading to severe inflammatory side effects. We apply a chemical biology approach to explore the potential of post-translationally modified RANTES as safe inhibitors of HIV-1 infection. We synthesized and systematically tested a library of RANTES isoforms for their ability to inhibit inflammatory signaling and prevent HIV-1 infection of primary human cells. Through this research, we revealed that most of the glycosylated variants have decreased inflammation-associated properties and identified one particular glyco variant, a truncated RANTES containing a Galβ1-3GalNAc disaccharide α-linked to Ser4, which stands out as having the best overall properties: relatively high HIV-1 inhibition potency but also weak inflammatory properties. Moreover, our results provided a structural basis for the observed changes in the properties of RANTES. Taken together, this work highlights the potential importance of glycosylation as an alternative strategy for developing CCR5 inhibitors to treat HIV-1 infection and, more generally, for reducing or eliminating unwanted properties of therapeutic proteins.
Collapse
Affiliation(s)
- Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Huan Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Wei Feng
- Department of Chemistry & Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Xiuli Wei
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Yuan Ruan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Kimberly B Barosh
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Amy H Tran
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Jaimie Zhu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Xu Wang
- Department of Chemistry & Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| |
Collapse
|
14
|
Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Pharmaceuticals (Basel) 2017; 10:ph10030070. [PMID: 28792472 PMCID: PMC5620614 DOI: 10.3390/ph10030070] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Chemokines have two types of interactions that function cooperatively to control cell migration. Chemokine receptors on migrating cells integrate signals initiated upon chemokine binding to promote cell movement. Interactions with glycosaminoglycans (GAGs) localize chemokines on and near cell surfaces and the extracellular matrix to provide direction to the cell movement. The matrix of interacting chemokine–receptor partners has been known for some time, precise signaling and trafficking properties of many chemokine–receptor pairs have been characterized, and recent structural information has revealed atomic level detail on chemokine–receptor recognition and activation. However, precise knowledge of the interactions of chemokines with GAGs has lagged far behind such that a single paradigm of GAG presentation on surfaces is generally applied to all chemokines. This review summarizes accumulating evidence which suggests that there is a great deal of diversity and specificity in these interactions, that GAG interactions help fine-tune the function of chemokines, and that GAGs have other roles in chemokine biology beyond localization and surface presentation. This suggests that chemokine–GAG interactions add complexity to the already complex functions of the receptors and ligands.
Collapse
|
15
|
Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling. Int J Mol Sci 2017; 18:ijms18071513. [PMID: 28703769 PMCID: PMC5536003 DOI: 10.3390/ijms18071513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
CXC chemokine ligand (CXCL)9, CXCL10 and CXCL11 direct chemotaxis of mainly T cells and NK cells through activation of their common CXC chemokine receptor (CXCR)3. They are inactivated upon NH2-terminal cleavage by dipeptidyl peptidase IV/CD26. In the present study, we found that different glycosaminoglycans (GAGs) protect the CXCR3 ligands against proteolytic processing by CD26 without directly affecting the enzymatic activity of CD26. In addition, GAGs were shown to interfere with chemokine-induced CXCR3 signaling. The observation that heparan sulfate did not, and heparin only moderately, altered CXCL10-induced T cell chemotaxis in vitro may be explained by a combination of protection against proteolytic inactivation and altered receptor interaction as observed in calcium assays. No effect of CD26 inhibition was found on CXCL10-induced chemotaxis in vitro. However, treatment of mice with the CD26 inhibitor sitagliptin resulted in an enhanced CXCL10-induced lymphocyte influx into the joint. This study reveals a dual role for GAGs in modulating the biological activity of CXCR3 ligands. GAGs protect the chemokines from proteolytic cleavage but also directly interfere with chemokine–CXCR3 signaling. These data support the hypothesis that both GAGs and CD26 affect the in vivo chemokine function.
Collapse
|
16
|
Enam SF, Krieger JR, Saxena T, Watts BE, Olingy CE, Botchwey EA, Bellamkonda RV. Enrichment of endogenous fractalkine and anti-inflammatory cells via aptamer-functionalized hydrogels. Biomaterials 2017; 142:52-61. [PMID: 28727998 DOI: 10.1016/j.biomaterials.2017.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/27/2017] [Accepted: 07/09/2017] [Indexed: 12/27/2022]
Abstract
Early recruitment of non-classical monocytes and their macrophage derivatives is associated with augmented tissue repair and improved integration of biomaterial constructs. A promising therapeutic approach to recruit these subpopulations is by elevating local concentrations of chemoattractants such as fractalkine (FKN, CX3CL1). However, delivering recombinant or purified proteins is not ideal due to their short half-lives, suboptimal efficacy, immunogenic potential, batch variabilities, and cost. Here we report an approach to enrich endogenous FKN, obviating the need for delivery of exogenous proteins. In this study, modified FKN-binding-aptamers are integrated with poly(ethylene glycol) diacrylate to form aptamer-functionalized hydrogels ("aptagels") that localize, dramatically enrich and passively release FKN in vitro for at least one week. Implantation in a mouse model of excisional skin injury demonstrates that aptagels enrich endogenous FKN and stimulate significant local increases in Ly6CloCX3CR1hi non-classical monocytes and CD206+ M2-like macrophages. The results demonstrate that orchestrators of inflammation can be manipulated without delivery of foreign proteins or cells and FKN-aptamer functionalized biomaterials may be a promising approach to recruit anti-inflammatory subpopulations to sites of injury. Aptagels are readily synthesized, highly customizable and could combine different aptamers to treat complex diseases in which regulation or enrichment of multiple proteins may be therapeutic.
Collapse
Affiliation(s)
- Syed Faaiz Enam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jack R Krieger
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brian E Watts
- Duke Human Vaccine Institute, Duke University, Durham, NC 27708, USA
| | - Claire E Olingy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Edward A Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
17
|
CCL2 nitration is a negative regulator of chemokine-mediated inflammation. Sci Rep 2017; 7:44384. [PMID: 28290520 PMCID: PMC5349559 DOI: 10.1038/srep44384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022] Open
Abstract
Chemokines promote leukocyte recruitment during inflammation. The oxidative burst is an important effector mechanism, this leads to the generation of reactive nitrogen species (RNS), including peroxynitrite (ONOO). The current study was performed to determine the potential for nitration to alter the chemical and biological properties of the prototypical CC chemokine, CCL2. Immunofluorescence was performed to assess the presence of RNS in kidney biopsies. Co-localisation was observed between RNS-modified tyrosine residues and the chemokine CCL2 in diseased kidneys. Nitration reduced the potential of CCL2 to stimulate monocyte migration in diffusion gradient chemotaxis assays (p < 0.05). This was consistent with a trend towards reduced affinity of the nitrated chemokine for its cognate receptor CCR2b. The nitrated chemokine was unable to induce transendothelial monocyte migration in vitro and failed to promote leukocyte recruitment when added to murine air pouches (p < 0.05). This could potentially be attributed to reduced glycosaminoglycan binding ability, as surface plasmon resonance spectroscopy showed that nitration reduced heparan sulphate binding by CCL2. Importantly, intravenous administration of nitrated CCL2 also inhibited the normal recruitment of leukocytes to murine air pouches filled with unmodified CCL2. Together these data suggest that nitration of CCL2 during inflammation provides a mechanism to limit and resolve acute inflammation.
Collapse
|
18
|
Stone MJ, Hayward JA, Huang C, E Huma Z, Sanchez J. Mechanisms of Regulation of the Chemokine-Receptor Network. Int J Mol Sci 2017; 18:E342. [PMID: 28178200 PMCID: PMC5343877 DOI: 10.3390/ijms18020342] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 12/18/2022] Open
Abstract
The interactions of chemokines with their G protein-coupled receptors promote the migration of leukocytes during normal immune function and as a key aspect of the inflammatory response to tissue injury or infection. This review summarizes the major cellular and biochemical mechanisms by which the interactions of chemokines with chemokine receptors are regulated, including: selective and competitive binding interactions; genetic polymorphisms; mRNA splice variation; variation of expression, degradation and localization; down-regulation by atypical (decoy) receptors; interactions with cell-surface glycosaminoglycans; post-translational modifications; oligomerization; alternative signaling responses; and binding to natural or pharmacological inhibitors.
Collapse
Affiliation(s)
- Martin J Stone
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Jenni A Hayward
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Cheng Huang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Zil E Huma
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Julie Sanchez
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
19
|
Metzemaekers M, Van Damme J, Mortier A, Proost P. Regulation of Chemokine Activity - A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Front Immunol 2016; 7:483. [PMID: 27891127 PMCID: PMC5104965 DOI: 10.3389/fimmu.2016.00483] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Chemokines are small, chemotactic proteins that play a crucial role in leukocyte migration and are, therefore, essential for proper functioning of the immune system. Chemokines exert their chemotactic effect by activation of chemokine receptors, which are G protein-coupled receptors (GPCRs), and interaction with glycosaminoglycans (GAGs). Furthermore, the exact chemokine function is modulated at the level of posttranslational modifications. Among the different types of posttranslational modifications that were found to occur in vitro and in vivo, i.e., proteolysis, citrullination, glycosylation, and nitration, NH2-terminal proteolysis of chemokines has been described most intensively. Since the NH2-terminal chemokine domain mediates receptor interaction, NH2-terminal modification by limited proteolysis or amino acid side chain modification can drastically affect their biological activity. An enzyme that has been shown to provoke NH2-terminal proteolysis of various chemokines is dipeptidyl peptidase IV or CD26. This multifunctional protein is a serine protease that preferably cleaves dipeptides from the NH2-terminal region of peptides and proteins with a proline or alanine residue in the penultimate position. Various chemokines possess such a proline or alanine residue, and CD26-truncated forms of these chemokines have been identified in cell culture supernatant as well as in body fluids. The effects of CD26-mediated proteolysis in the context of chemokines turned out to be highly complex. Depending on the chemokine ligand, loss of these two NH2-terminal amino acids can result in either an increased or a decreased biological activity, enhanced receptor specificity, inactivation of the chemokine ligand, or generation of receptor antagonists. Since chemokines direct leukocyte migration in homeostatic as well as pathophysiologic conditions, CD26-mediated proteolytic processing of these chemotactic proteins may have significant consequences for appropriate functioning of the immune system. After introducing the chemokine family together with the GPCRs and GAGs, as main interaction partners of chemokines, and discussing the different forms of posttranslational modifications, this review will focus on the intriguing relationship of chemokines with the serine protease CD26.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| |
Collapse
|
20
|
Decalf J, Tarbell KV, Casrouge A, Price JD, Linder G, Mottez E, Sultanik P, Mallet V, Pol S, Duffy D, Albert ML. Inhibition of DPP4 activity in humans establishes its in vivo role in CXCL10 post-translational modification: prospective placebo-controlled clinical studies. EMBO Mol Med 2016; 8:679-83. [PMID: 27137491 PMCID: PMC4888857 DOI: 10.15252/emmm.201506145] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Biochemical experiments, animal models, and observational studies in humans all support a role of dipeptidyl peptidase 4 (DPP4) in the N‐terminal truncation of CXCL10, which results in the generation of an antagonist form of the chemokine that limits T‐cell and NK cell migration. Motivated by the ability to regulate lymphocyte trafficking in vivo, we conducted two prospective clinical trials to test the effects of DPP4 inhibition on CXCL10 processing in healthy donors and in chronic hepatitis C patients, a disease in which DPP4 levels are found to be elevated. Participants were treated daily with 100 mg sitagliptin, a clinically approved DPP4 inhibitor. Plasma samples were analyzed using an ultrasensitive single‐molecule assay (Simoa) to distinguish the full‐length CXCL101–77 from the NH2‐truncated CXCL103–77, as compared to the total CXCL10 levels. Sitagliptin treatment resulted in a significant decrease in CXCL103–77 concentration, a reciprocal increase in CXCL101–77, with only minimal effects on total levels of the chemokine. These data provide the first direct evidence that in vivo DPP4 inhibition in humans can preserve the bioactive form of CXCL10, offering new therapeutic opportunities for DPP4 inhibitors.
Collapse
Affiliation(s)
- Jérémie Decalf
- The Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France INSERM U818, Paris, France
| | - Kristin V Tarbell
- Diabetes Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Armanda Casrouge
- The Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France INSERM U818, Paris, France
| | - Jeffrey D Price
- Diabetes Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Grace Linder
- Diabetes Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Estelle Mottez
- Center for Human Immunology, Institut Pasteur, Paris, France
| | - Philippe Sultanik
- Département d'Hépatologie, AP-HP, Hôpital Cochin, Université Paris Descartes, INSERM UMS20, Institut Pasteur, Paris, France
| | - Vincent Mallet
- Département d'Hépatologie, AP-HP, Hôpital Cochin, Université Paris Descartes, INSERM UMS20, Institut Pasteur, Paris, France
| | - Stanislas Pol
- Département d'Hépatologie, AP-HP, Hôpital Cochin, Université Paris Descartes, INSERM UMS20, Institut Pasteur, Paris, France
| | - Darragh Duffy
- The Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France INSERM U818, Paris, France Center for Human Immunology, Institut Pasteur, Paris, France
| | - Matthew L Albert
- The Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France INSERM U818, Paris, France Center for Human Immunology, Institut Pasteur, Paris, France Department of Cancer Immunotherapy, Genentech, South San Francisco, CA, USA
| |
Collapse
|
21
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016. [PMID: 27199985 DOI: 10.3389/fimmu.2016.00.00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as "resolution pharmacology."
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
22
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016; 7:160. [PMID: 27199985 PMCID: PMC4845539 DOI: 10.3389/fimmu.2016.00160] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as “resolution pharmacology.”
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
23
|
Anderson CA, Solari R, Pease JE. Biased agonism at chemokine receptors: obstacles or opportunities for drug discovery? J Leukoc Biol 2015; 99:901-9. [PMID: 26701135 DOI: 10.1189/jlb.2mr0815-392r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 01/14/2023] Open
Abstract
Chemokine receptors are typically promiscuous, binding more than one ligand, with the ligands themselves often expressed in different spatial localizations by multiple cell types. This is normally a tightly regulated process; however, in a variety of inflammatory disorders, dysregulation results in the excessive or inappropriate expression of chemokines that drives disease progression. Biased agonism, the phenomenon whereby different ligands of the same receptor are able to preferentially activate one signaling pathway over another, adds another level of complexity to an already complex system. In this minireview, we discuss the concept of biased agonism within the chemokine family and report that targeting single signaling axes downstream of chemokine receptors is not only achievable, but may well present novel opportunities to target chemokine receptors, allowing the fine tuning of receptor responses in the context of allergic inflammation and beyond.
Collapse
Affiliation(s)
- Caroline A Anderson
- Receptor Biology Group, Inflammation, Resolution and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom; and
| | - Roberto Solari
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, Norfolk Place, London, United Kingdom
| | - James E Pease
- Receptor Biology Group, Inflammation, Resolution and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom; and
| |
Collapse
|
24
|
Amarandi RM, Hjortø GM, Rosenkilde MM, Karlshøj S. Probing Biased Signaling in Chemokine Receptors. Methods Enzymol 2015; 570:155-86. [PMID: 26921946 DOI: 10.1016/bs.mie.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptors occurs via two major routes, G protein- and β-arrestin-dependent, which can be preferentially modulated depending on the ligands or receptors involved, as well as the cell types or tissues in which the signaling event occurs. The preferential activation of a certain signaling pathway to the detriment of others has been termed signaling bias and can accordingly be grouped into ligand bias, receptor bias, and tissue bias. Bias has so far been broadly overlooked in the process of drug development. The low number of currently approved drugs targeting the chemokine system, as well as the broad range of failed clinical trials, reflects the need for a better understanding of the chemokine system. Thus, understanding the character, direction, and consequence of biased signaling in the chemokine system may aid the development of new therapeutics. This review describes experiments to assess G protein-dependent and -independent signaling in order to quantify chemokine system bias.
Collapse
Affiliation(s)
- Roxana-Maria Amarandi
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark; Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
| | - Gertrud Malene Hjortø
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Vanheule V, Janssens R, Boff D, Kitic N, Berghmans N, Ronsse I, Kungl AJ, Amaral FA, Teixeira MM, Van Damme J, Proost P, Mortier A. The Positively Charged COOH-terminal Glycosaminoglycan-binding CXCL9(74-103) Peptide Inhibits CXCL8-induced Neutrophil Extravasation and Monosodium Urate Crystal-induced Gout in Mice. J Biol Chem 2015; 290:21292-304. [PMID: 26183778 DOI: 10.1074/jbc.m115.649855] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 12/11/2022] Open
Abstract
The ELR(-)CXC chemokine CXCL9 is characterized by a long, highly positively charged COOH-terminal region, absent in most other chemokines. Several natural leukocyte- and fibroblast-derived COOH-terminally truncated CXCL9 forms missing up to 30 amino acids were identified. To investigate the role of the COOH-terminal region of CXCL9, several COOH-terminal peptides were chemically synthesized. These peptides display high affinity for glycosaminoglycans (GAGs) and compete with functional intact chemokines for GAG binding, the longest peptide (CXCL9(74-103)) being the most potent. The COOH-terminal peptide CXCL9(74-103) does not signal through or act as an antagonist for CXCR3, the G protein-coupled CXCL9 receptor, and does not influence neutrophil chemotactic activity of CXCL8 in vitro. Based on the GAG binding data, an anti-inflammatory role for CXCL9(74-103) was further evidenced in vivo. Simultaneous intravenous injection of CXCL9(74-103) with CXCL8 injection in the joint diminished CXCL8-induced neutrophil extravasation. Analogously, monosodium urate crystal-induced neutrophil migration to the tibiofemural articulation, a murine model of gout, is highly reduced by intravenous injection of CXCL9(74-103). These data show that chemokine-derived peptides with high affinity for GAGs may be used as anti-inflammatory peptides; by competing with active chemokines for binding and immobilization on GAGs, these peptides may lower chemokine presentation on the endothelium and disrupt the generation of a chemokine gradient, thereby preventing a chemokine from properly performing its chemotactic function. The CXCL9 peptide may serve as a lead molecule for further development of inhibitors of inflammation based on interference with chemokine-GAG interactions.
Collapse
Affiliation(s)
- Vincent Vanheule
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Rik Janssens
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Daiane Boff
- the Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil, and
| | - Nikola Kitic
- the Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzes Universität, 8010 Graz, Austria
| | - Nele Berghmans
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Isabelle Ronsse
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Andreas J Kungl
- the Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzes Universität, 8010 Graz, Austria
| | - Flavio Almeida Amaral
- the Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil, and
| | - Mauro Martins Teixeira
- the Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil, and
| | - Jo Van Damme
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Paul Proost
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium,
| | - Anneleen Mortier
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
26
|
Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat Immunol 2015; 16:850-8. [PMID: 26075911 DOI: 10.1038/ni.3201] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/17/2015] [Indexed: 12/12/2022]
Abstract
The success of antitumor immune responses depends on the infiltration of solid tumors by effector T cells, a process guided by chemokines. Here we show that in vivo post-translational processing of chemokines by dipeptidylpeptidase 4 (DPP4, also known as CD26) limits lymphocyte migration to sites of inflammation and tumors. Inhibition of DPP4 enzymatic activity enhanced tumor rejection by preserving biologically active CXCL10 and increasing trafficking into the tumor by lymphocytes expressing the counter-receptor CXCR3. Furthermore, DPP4 inhibition improved adjuvant-based immunotherapy, adoptive T cell transfer and checkpoint blockade. These findings provide direct in vivo evidence for control of lymphocyte trafficking via CXCL10 cleavage and support the use of DPP4 inhibitors for stabilizing biologically active forms of chemokines as a strategy to enhance tumor immunotherapy.
Collapse
|
27
|
|
28
|
Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 2015; 93:372-83. [PMID: 25708536 DOI: 10.1038/icb.2015.15] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
Abstract
The control of cell migration by chemokines involves interactions with two types of receptors: seven transmembrane chemokine-type G protein-coupled receptors and cell surface or extracellular matrix-associated glycosaminoglycans. Coordinated interaction of chemokines with both types of receptors is required for directional migration of cells in numerous physiological and pathological processes. Accumulated structural information, culminating most recently in the structure of a chemokine receptor in complex with a chemokine, has led to a view where chemokine oligomers bind to glycosaminoglycans through epitopes formed when chemokine subunits come together, while chemokine monomers bind to receptors in a pseudo two-step mechanism of receptor activation. Exploitation of this structural knowledge has and will continue to provide important information for therapeutic strategies, as described in this review.
Collapse
Affiliation(s)
- Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Citrullination and proteolytic processing of chemokines by Porphyromonas gingivalis. Infect Immun 2014; 82:2511-9. [PMID: 24686061 DOI: 10.1128/iai.01624-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The outgrowth of Porphyromonas gingivalis within the inflammatory subgingival plaque is associated with periodontitis characterized by periodontal tissue destruction, loss of alveolar bone, periodontal pocket formation, and eventually, tooth loss. Potential virulence factors of P. gingivalis are peptidylarginine deiminase (PPAD), an enzyme modifying free or peptide-bound arginine to citrulline, and the bacterial proteases referred to as gingipains (Rgp and Kgp). Chemokines attract leukocytes during inflammation. However, posttranslational modification (PTM) of chemokines by proteases or human peptidylarginine deiminases may alter their biological activities. Since chemokine processing may be important in microbial defense mechanisms, we investigated whether PTM of chemokines by P. gingivalis enzymes occurs. Upon incubation of interleukin-8 (IL-8; CXCL8) with PPAD, only minor enzymatic citrullination was detected. In contrast, Rgp rapidly cleaved CXCL8 in vitro. Subsequently, different P. gingivalis strains were incubated with the chemokine CXCL8 or CXCL10 and their PTMs were investigated. No significant CXCL8 citrullination was detected for the tested strains. Interestingly, although considerable differences in the efficiency of CXCL8 degradation were observed with full cultures of various strains, similar rates of chemokine proteolysis were exerted by cell-free culture supernatants. Sequencing of CXCL8 incubated with supernatant or bacteria showed that CXCL8 is processed into its more potent forms consisting of amino acids 6 to 77 and amino acids 9 to 77 (the 6-77 and 9-77 forms, respectively). In contrast, CXCL10 was entirely and rapidly degraded by P. gingivalis, with no transient chemokine forms being observed. In conclusion, this study demonstrates PTM of CXCL8 and CXCL10 by gingipains of P. gingivalis and that strain differences may particularly affect the activity of these bacterial membrane-associated proteases.
Collapse
|
30
|
De Sanctis F, Sandri S, Ferrarini G, Pagliarello I, Sartoris S, Ugel S, Marigo I, Molon B, Bronte V. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. Front Immunol 2014; 5:69. [PMID: 24605112 PMCID: PMC3932549 DOI: 10.3389/fimmu.2014.00069] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/08/2014] [Indexed: 12/18/2022] Open
Abstract
Under many inflammatory contexts, such as tumor progression, systemic and peripheral immune response is tailored by reactive nitrogen species (RNS)-dependent post-translational modifications, suggesting a biological function for these chemical alterations. RNS modify both soluble factors and receptors essential to induce and maintain a tumor-specific immune response, creating a “chemical barrier” that impairs effector T cell infiltration and functionality in tumor microenvironment and supports the escape phase of cancer. RNS generation during tumor growth mainly depends on nitric oxide production by both tumor cells and tumor-infiltrating myeloid cells that constitutively activate essential metabolic pathways of l-arginine catabolism. This review provides an overview of the potential immunological and biological role of RNS-induced modifications and addresses new approaches targeting RNS either in search of novel biomarkers or to improve anti-cancer treatment.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Sara Sandri
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Giovanna Ferrarini
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Irene Pagliarello
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Silvia Sartoris
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Stefano Ugel
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Ilaria Marigo
- Istituto Oncologico Veneto, Istituto Di Ricovero e Cura a Carattere Scientifico , Padua , Italy
| | - Barbara Molon
- Venetian Institute of Molecular Medicine , Padua , Italy
| | - Vincenzo Bronte
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| |
Collapse
|