1
|
Morita S, Lei PJ, Shigeta K, Ando T, Kobayashi T, Kikuchi H, Matsui A, Huang P, Pittet MJ, Duda DG. Combination CXCR4 and PD-1 Blockade Enhances Intratumoral Dendritic Cell Activation and Immune Responses Against Hepatocellular Carcinoma. Cancer Immunol Res 2025; 13:162-170. [PMID: 39514263 PMCID: PMC11788650 DOI: 10.1158/2326-6066.cir-24-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Immune checkpoint inhibitors have revolutionized the treatment of unresectable hepatocellular carcinoma (HCC), but their impressive efficacy is seen in just a fraction of patients. One key mechanism of immunotherapy resistance is the paucity of dendritic cells (DC) in liver malignancies. In this study, we tested combination blockade of PD-1 and CXCR4, a receptor for CXCL12, a pleiotropic factor that mediates immunosuppression in tumors. Using orthotopic grafted and autochthonous HCC models with underlying liver damage, we evaluated treatment feasibility and efficacy. In addition, we examined the effects of treatment using immunofluorescence, flow cytometric analysis of DCs in vivo and in vitro, and RNA sequencing. The combination anti-CXCR4 and anti-PD-1 therapy was safe and significantly inhibited tumor growth and prolonged survival in all murine preclinical models of HCC tested. The combination treatment successfully reprogrammed antigen-presenting cells, revealing the potential role of conventional type 1 DCs (cDC1) in the HCC microenvironment. Moreover, DC reprogramming enhanced anticancer immunity by facilitating CD8+ T-cell accumulation and activation in the HCC tissue. The effectiveness of anti-CXCR4/PD-1 therapy was compromised entirely in Batf3 knockout mice deficient in cDC1s. Thus, combined CXCR4/PD-1 blockade can reprogram intratumoral cDC1s and holds the potential to potentiate antitumor immune response against HCC.
Collapse
Affiliation(s)
- Satoru Morita
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Pin-Ji Lei
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kohei Shigeta
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomofumi Ando
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Kobayashi
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hiroto Kikuchi
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Aya Matsui
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Kanazawa University Institute of Medical, Pharmaceutical and Health Sciences Faculty of Medicine, Kanazawa, Japan
| | - Peigen Huang
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mikael J. Pittet
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Dan G. Duda
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Bhutta ZA, Choi KC. Canine mammary tumors as a promising adjunct preclinical model for human breast cancer research: similarities, opportunities, and challenges. Arch Pharm Res 2025; 48:43-61. [PMID: 39752109 DOI: 10.1007/s12272-024-01524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Despite significant progress in the field of human breast cancer research and treatment, there is a consistent increase in the incidence rate of 0.5 percent annually, posing challenges in the development of effective novel therapeutic strategies. The failure rate of drugs in clinical trials stands at approximately 95%, primarily attributed to the limitations and lack of reliability of existing preclinical models, such as mice, which do not mimic human tumor biology. This article examines the potential utility of canine mammary tumors as an adjunct preclinical model for investigating human breast cancer. Given the numerous similarities between canine and human breast cancer, canines present a promising alternative model. The discussion delves into the intricate molecular and clinical aspects of human breast cancer and canine mammary tumors, shedding light on the tumors' molecular profiles, identifying specific molecular markers, and the application of radiological imaging modalities. Furthermore, the manuscript addresses the current constraints of preclinical cancer studies, the benefits of using canines as models, and the obstacles linked to the canine mammary tumors model. By concentrating on these elements, this review aims to highlight the viability of canine models in enhancing our understanding and management of human breast cancer.
Collapse
Affiliation(s)
- Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
3
|
Khan MN, Mao B, Hu J, Shi M, Wang S, Rehman AU, Li X. Tumor-associated macrophages and CD8+ T cells: dual players in the pathogenesis of HBV-related HCC. Front Immunol 2024; 15:1472430. [PMID: 39450177 PMCID: PMC11499146 DOI: 10.3389/fimmu.2024.1472430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
HBV infection is a key risk factor for the development and progression of hepatocellular carcinoma (HCC), a highly invasive tumor, and is characterized by its persistent immunosuppressive microenvironment. This review provides an in-depth analysis of HBV-related HCC and explores the interactions between neutrophils, natural killer cells, and dendritic cells, examining their roles in regulating tumor-associated macrophages and CD8+ T cells and shaping the tumor microenvironment. Two critical players in the immunosuppressive milieu of HBV-related HCC are CD8+ T cells and tumor-associated macrophages (TAMs). The study explores how TAMs, initially recruited to combat infection, transform, adopting a tumor-promoting phenotype, turning against the body, promoting tumor cell proliferation, suppressing anti-tumor immunity, and assisting in the spread of cancer. Meanwhile, CD8+ T cells, crucial for controlling HBV infection, become dysfunctional and exhausted in response to persistent chronic viral inflammation. The review then dissects how TAMs manipulate this immune response, further depleting CD8+ T cell functions through mechanisms like arginine deprivation and creating hypoxic environments that lead to exhaustion. Finally, it explores the challenges and promising therapeutic avenues that target TAMs and CD8+ T cells, either separately or in combination with antiviral therapy and personalized medicine approaches, offering hope for improved outcomes in HBV-related HCC.
Collapse
Affiliation(s)
- Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| | - Binli Mao
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunyao Wang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Adeel Ur Rehman
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| |
Collapse
|
4
|
Hissong E, Bhinder B, Kim J, Ohara K, Ravichandran H, Assaad MA, Elsoukkary S, Shusterman M, Khan U, Eng KW, Bareja R, Manohar J, Sigouros M, Rendeiro AF, Jessurun J, Ocean AJ, Sboner A, Elemento O, Mosquera JM, Shah MA. Integrative Transcriptomic and Single-Cell Protein Characterization of Colorectal Carcinoma Delineates Distinct Tumor Immune Microenvironments Associated with Overall Survival. RESEARCH SQUARE 2024:rs.3.rs-4751101. [PMID: 39108491 PMCID: PMC11302706 DOI: 10.21203/rs.3.rs-4751101/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Colorectal carcinoma (CRC) is a heterogeneous group of tumors with varying therapeutic response and prognosis, and evidence suggests the tumor immune microenvironment (TIME) plays a pivotal role. Using advanced molecular and spatial biology technologies, we aimed to evaluate the TIME in patients with CRC to determine whether specific alterations in the immune composition correlated with prognosis. We identified primary and metastatic tumor samples from 31 consented patients, which were profiled with whole-exome sequencing and bulk RNA-seq. Immune cell deconvolution followed by gene set enrichment analysis and unsupervised clustering was performed. A subset of tumors underwent in situ analysis of the TIME spatial composition at single-cell resolution through Imaging Mass Mass Cytometry. Gene set enrichment analysis revealed two distinct groups of advanced CRC, one with an immune activated phenotype and the other with a suppressed immune microenvironment. The activated TIME phenotype contained increased Th1 cells, activated dendritic cells, tertiary lymphoid structures, and higher counts of CD8+ T cells whereas the inactive or suppressed TIME contained increased macrophages and a higher M2/M1 ratio. Our findings were further supported by RNA-seq data analysis from the TCGA CRC database, in which unsupervised clustering also identified two separate groups. The immunosuppressed CRC TIME had a lower overall survival probability (HR 1.66, p=0.007). This study supports the pertinent role of the CRC immune microenvironment in tumor progression and patient prognosis. We characterized the immune cell composition to better understand the complexity and vital role that immune activity states of the TIME play in determining patient outcome.
Collapse
Affiliation(s)
- Erika Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 525 E 68th St, New York, NY 10065; Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA
| | - Bhavneet Bhinder
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA
| | - Junbum Kim
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA
| | - Kentaro Ohara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 525 E 68th St, New York, NY 10065; Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA
| | - Hiranmayi Ravichandran
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA
| | - Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 525 E 68th St, New York, NY 10065; Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA
| | - Sarah Elsoukkary
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 525 E 68th St, New York, NY 10065, USA
| | - Michael Shusterman
- Department of Medicine, Hematology and Medical Oncology, Weill Cornell Medicine, 525 E 68th St New York, NY, USA
| | - Uqba Khan
- Department of Medicine, Hematology and Medical Oncology, Weill Cornell Medicine, 525 E 68th St New York, NY, USA
| | - Kenneth Wha Eng
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA
| | - Andre F Rendeiro
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Wien, Austria
| | - Jose Jessurun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 525 E 68th St, New York, NY 10065, USA
| | - Allyson J Ocean
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA; Department of Medicine, Hematology and Medical Oncology, Weill Cornell Medicine, 525 E 68th St New York, NY, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 525 E 68th St, New York, NY 10065; Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, 525 E 68th St. New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, 525 E 68th St. New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, 525 E 68th St. New York, NY, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 525 E 68th St, New York, NY 10065; Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA
| | - Manish A Shah
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, 413 E 69th St, New York, NY 10021, USA; Department of Medicine, Hematology and Medical Oncology, Weill Cornell Medicine, 525 E 68th St New York, NY, USA
| |
Collapse
|
5
|
Tevetoğlu F, Çomunoğlu N, Yener HM. The impact of the tumor immune microenvironment and tumor-infiltrating lymphocyte subgroups on laryngeal cancer prognosis. Sci Prog 2024; 107:368504241266087. [PMID: 39044316 PMCID: PMC11271122 DOI: 10.1177/00368504241266087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The absence of improvement in survival rates across various cancers, including laryngeal cancer, has led to an increasing interest in understanding the immune response to cancer. In head and neck cancers, immune modulatory mechanisms such as immune microenvironment and immune infiltration are important in cancer pathogenesis. This study aims to explore the distribution of tumor-infiltrating lymphocyte (TIL) subgroups in the immune microenvironment and evaluate their impact on tumor histopathological characteristics and prognosis. The study included 50 patients who underwent laryngectomy for laryngeal squamous cell carcinoma, in Istanbul University - Cerrahpaşa, Faculty of Medicine Department of Otorhinolaryngology, between January 2016 and January 2018. Pathology specimens were evaluated using immunohistochemistry to assess the expressions of the CD3, CD20, CD8, CD4, CD25, and FoxP3 markers, identifying subgroups of TILs. The investigation aimed to uncover how these subgroups influence tumor histopathological features and survival outcomes. The high infiltration of CD3, CD20, and CD4 had a positive impact on disease-specific survival, disease-free survival, and recurrence-free survival. In addition, overall survival was positively affected by high CD3 and CD4 infiltrations. However, no significant relationship was observed between the expressions of CD8, FoxP3, and CD25 and any of the survival parameters. The infiltration of CD3, CD20, and CD4 positive cells indicative of a robust antitumoral immune response-emerged as favorable prognostic factors in laryngeal cancer. These findings suggest that enhancing the infiltration of CD3, CD20, and CD4 lymphocytes could be a therapeutic strategy worth exploring in clinical trials.
Collapse
Affiliation(s)
- Fırat Tevetoğlu
- Otorhinolaryngology Department, Marmara University Pendik Training and Research Hospital, Istanbul, Türkiye
- Otorhinolaryngology Department, Istanbul University – Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Türkiye
| | - Nil Çomunoğlu
- Pathology Department, Istanbul University – Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Türkiye
| | - Haydar Murat Yener
- Otorhinolaryngology Department, Istanbul University – Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Türkiye
| |
Collapse
|
6
|
Febrero B, Ruiz-Manzanera JJ, Ros-Madrid I, Hernández AM, Orenes-Piñero E, Rodríguez JM. Tumor microenvironment in thyroid cancer: Immune cells, patterns, and novel treatments. Head Neck 2024; 46:1486-1499. [PMID: 38380767 DOI: 10.1002/hed.27695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
The tumor immune microenvironment of thyroid cancer is the heterogeneous histological space in which tumor cells coexist with host cells. Published data from this review were identified by search and selection database of Pubmed, Elsevier, and Science Direct. Searching was made in two steps using different keywords. In thyroid pathology, the inflammatory response is very important, and might have a key role finding new diagnostic and therapeutic methods, particularly in thyroid cancer. Different immune cells may be more or less present in different types of thyroid cancer and may even have different functions, hence the importance of knowing their presence in different thyroid tumor pathologies. Cancer-related inflammation could be a useful target for new diagnostic and therapeutic strategies by analyzing peritumoral and intratumoral immune cells in different types of thyroid tumors. Moreover, novel strategies for thyroid cancer treatments, such as monoclonal antibodies targeting checkpoint inhibitors, are emerging as promising alternatives.
Collapse
Affiliation(s)
- Beatriz Febrero
- Department of Endocrine Surgery, General Surgery Service, Virgen de la Arrixaca University Hospital, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Juan José Ruiz-Manzanera
- Department of Endocrine Surgery, General Surgery Service, Virgen de la Arrixaca University Hospital, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inmaculada Ros-Madrid
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Antonio Miguel Hernández
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| | - José Manuel Rodríguez
- Department of Endocrine Surgery, General Surgery Service, Virgen de la Arrixaca University Hospital, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
7
|
Turner N, Hamidi S, Ouni R, Rico R, Henderson YC, Puche M, Alekseev S, Colunga-Minutti JG, Zafereo ME, Lai SY, Kim ST, Cabanillas ME, Nurieva R. Emerging therapeutic options for follicular-derived thyroid cancer in the era of immunotherapy. Front Immunol 2024; 15:1369780. [PMID: 38868771 PMCID: PMC11167082 DOI: 10.3389/fimmu.2024.1369780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Although most follicular-derived thyroid cancers are well differentiated and have an overall excellent prognosis following treatment with surgery and radioiodine, management of advanced thyroid cancers, including iodine refractory disease and poorly differentiated/undifferentiated subtypes, is more challenging. Over the past decade, better understanding of the genetic drivers and immune milieu of advanced thyroid cancers has led to significant progress in the management of these patients. Numerous targeted kinase inhibitors are now approved by the U.S Food and Drug administration (FDA) for the treatment of advanced, radioiodine refractory differentiated thyroid cancers (DTC) as well as anaplastic thyroid cancer (ATC). Immunotherapy has also been thoroughly studied and has shown promise in selected cases. In this review, we summarize the progress in the understanding of the genetic landscape and the cellular and molecular basis of radioiodine refractory-DTC and ATC, as well as discuss the current treatment options and future therapeutic avenues.
Collapse
Affiliation(s)
- Naimah Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rim Ouni
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rene Rico
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ying C. Henderson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Puche
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Biology, College of Science and Engineering, Houston Christian University, Houston, TX, United States
| | - Sayan Alekseev
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program of Biology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Jocelynn G. Colunga-Minutti
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program of Immunology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| | - Mark E. Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephen Y. Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sang T. Kim
- Department of Rheumatology, Allergy and Immunology, Yale University, New Haven, CT, United States
| | - Maria E. Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program of Immunology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| |
Collapse
|
8
|
Pan X, Ni S, Hu K. Nanomedicines for reversing immunosuppressive microenvironment of hepatocellular carcinoma. Biomaterials 2024; 306:122481. [PMID: 38286109 DOI: 10.1016/j.biomaterials.2024.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Although immunotherapeutic strategies such as immune checkpoint inhibitors (ICIs) have gained promising advances, their limited efficacy and significant toxicity remain great challenges for hepatocellular carcinoma (HCC) immunotherapy. The tumor immunosuppressive microenvironment (TIME) with insufficient T-cell infiltration and low immunogenicity accounts for most HCC patients' poor response to ICIs. Worse still, the current immunotherapeutics without precise delivery may elicit enormous autoimmune side effects and systemic toxicity in the clinic. With a better understanding of the TIME in HCC, nanomedicines have emerged as an efficient strategy to achieve remodeling of the TIME and superadditive antitumor effects via targeted delivery of immunotherapeutics or multimodal synergistic therapy. Based on the typical characteristics of the TIME in HCC, this review summarizes the recent advancements in nanomedicine-based strategies for TIME-reversing HCC treatment. Additionally, perspectives on the awaiting challenges and opportunities of nanomedicines in modulating the TIME of HCC are presented. Acquisition of knowledge of nanomedicine-mediated TIME reversal will provide researchers with a better opportunity for clinical translation of HCC immunotherapy.
Collapse
Affiliation(s)
- Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuting Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Kumar S, Acharya S, Karthikeyan M, Biswas P, Kumari S. Limitations and potential of immunotherapy in ovarian cancer. Front Immunol 2024; 14:1292166. [PMID: 38264664 PMCID: PMC10803592 DOI: 10.3389/fimmu.2023.1292166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological cancer and alone has an emergence rate of approximately 308,069 cases worldwide (2020) with dire survival rates. To put it into perspective, the mortality rate of OC is three times higher than that of breast cancer and it is predicted to only increase significantly by 2040. The primary reasons for such a high rate are that the physical symptoms of OC are detectable only during the advanced phase of the disease when resistance to chemotherapies is high and around 80% of the patients that do indeed respond to chemotherapy initially, show a poor prognosis subsequently. This highlights a pressing need to develop new and effective therapies to tackle advanced OC to improve prognosis and patient survival. A major advance in this direction is the emergence of combination immunotherapeutic methods to boost CD8+ T cell function to tackle OC. In this perspective, we discuss our view of the current state of some of the combination immunotherapies in the treatment of advanced OC, their limitations, and potential approaches toward a safer and more effective response.
Collapse
Affiliation(s)
| | | | | | | | - Sudha Kumari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
11
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies. Mol Aspects Med 2023; 92:101191. [PMID: 37236017 DOI: 10.1016/j.mam.2023.101191] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Fibrosis, or tissue scarring, develops as a pathological deviation from the physiological wound healing response and can occur in various organs such as the heart, lung, liver, kidney, skin, and bone marrow. Organ fibrosis significantly contributes to global morbidity and mortality. A broad spectrum of etiologies can cause fibrosis, including acute and chronic ischemia, hypertension, chronic viral infection (e.g., viral hepatitis), environmental exposure (e.g., pneumoconiosis, alcohol, nutrition, smoking) and genetic diseases (e.g., cystic fibrosis, alpha-1-antitrypsin deficiency). Common mechanisms across organs and disease etiologies involve a sustained injury to parenchymal cells that triggers a wound healing response, which becomes deregulated in the disease process. A transformation of resting fibroblasts into myofibroblasts with excessive extracellular matrix production constitutes the hallmark of disease, however, multiple other cell types such as immune cells, predominantly monocytes/macrophages, endothelial cells, and parenchymal cells form a complex network of profibrotic cellular crosstalk. Across organs, leading mediators include growth factors like transforming growth factor-β and platelet-derived growth factor, cytokines like interleukin-10, interleukin-13, interleukin-17, and danger-associated molecular patterns. More recently, insights into fibrosis regression and resolution of chronic conditions have deepened our understanding of beneficial, protective effects of immune cells, soluble mediators and intracellular signaling. Further in-depth insights into the mechanisms of fibrogenesis can provide the rationale for therapeutic interventions and the development of targeted antifibrotic agents. This review gives insight into shared responses and cellular mechanisms across organs and etiologies, aiming to paint a comprehensive picture of fibrotic diseases in both experimental settings and in human pathology.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Bourque J, Hawiger D. Activation, Amplification, and Ablation as Dynamic Mechanisms of Dendritic Cell Maturation. BIOLOGY 2023; 12:biology12050716. [PMID: 37237529 DOI: 10.3390/biology12050716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
T cell responses to cognate antigens crucially depend on the specific functionality of dendritic cells (DCs) activated in a process referred to as maturation. Maturation was initially described as alterations of the functional status of DCs in direct response to multiple extrinsic innate signals derived from foreign organisms. More recent studies, conducted mainly in mice, revealed an intricate network of intrinsic signals dependent on cytokines and various immunomodulatory pathways facilitating communication between individual DCs and other cells for the orchestration of specific maturation outcomes. These signals selectively amplify the initial activation of DCs mediated by innate factors and dynamically shape DC functionalities by ablating DCs with specific functions. Here, we discuss the effects of the initial activation of DCs that crucially includes the production of cytokine intermediaries to collectively achieve amplification of the maturation process and further precise sculpting of the functional landscapes among DCs. By emphasizing the interconnectedness of the intracellular and intercellular mechanisms, we reveal activation, amplification, and ablation as the mechanistically integrated components of the DC maturation process.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
14
|
Zahari S, Syafruddin SE, Mohtar MA. Impact of the Cancer Cell Secretome in Driving Breast Cancer Progression. Cancers (Basel) 2023; 15:2653. [PMID: 37174117 PMCID: PMC10177134 DOI: 10.3390/cancers15092653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is a complex and heterogeneous disease resulting from the accumulation of genetic and epigenetic alterations in breast epithelial cells. Despite remarkable progress in diagnosis and treatment, breast cancer continues to be the most prevalent cancer affecting women worldwide. Recent research has uncovered a compelling link between breast cancer onset and the extracellular environment enveloping tumor cells. The complex network of proteins secreted by cancer cells and other cellular components within the tumor microenvironment has emerged as a critical player in driving the disease's metastatic properties. Specifically, the proteins released by the tumor cells termed the secretome, can significantly influence the progression and metastasis of breast cancer. The breast cancer cell secretome promotes tumorigenesis through its ability to modulate growth-associated signaling pathways, reshaping the tumor microenvironment, supporting pre-metastatic niche formation, and facilitating immunosurveillance evasion. Additionally, the secretome has been shown to play a crucial role in drug resistance development, making it an attractive target for cancer therapy. Understanding the intricate role of the cancer cell secretome in breast cancer progression will provide new insights into the underlying mechanisms of this disease and aid in the development of more innovative therapeutic interventions. Hence, this review provides a nuanced analysis of the impact of the cancer cell secretome on breast cancer progression, elucidates the complex reciprocal interaction with the components of the tumor microenvironment and highlights emerging therapeutic opportunities for targeting the constituents of the secretome.
Collapse
Affiliation(s)
| | | | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.Z.); (S.E.S.)
| |
Collapse
|
15
|
Shui Y, Hu X, Hirano H, Tsukamoto H, Guo WZ, Hasumi K, Ijima F, Fujino M, Li XK. Combined phospholipids adjuvant augments anti-tumor immune responses through activated tumor-associated dendritic cells. Neoplasia 2023; 39:100893. [PMID: 36893559 PMCID: PMC10018555 DOI: 10.1016/j.neo.2023.100893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
Dendritic cells (DCs) can initiate both naïve and memory T cell activation, as the most potent antigen-presenting cells. For efficient anti-tumor immunity, it is essential to enhance the anti-tumoral activity of tumor-associated DCs (TADCs) or to potently restrain TADCs so that they remain immuno-stimulating cells. Combined phospholipids (cPLs) adjuvant may act through the activation of DCs. This study demonstrated the potential mechanism of tumor growth inhibition of cPLs adjuvant, and confirmed that cPLs adjuvant could induce the maturation and activation (upregulation of MHC-II, CD80, CD40, IL-1β, IL-12, IL-6 expression) of BMDCs in vitro. Then we isolated tumor infiltrating lymphocytes (TILs) from solid tumor and analyzed the phenotype and cytokines of TILs. The examination of the TILs revealed that cPLs adjuvant upregulated the expression of co-stimulatory molecules (MHC-II, CD86), phosphatidylserine (PS) receptor (TIM-4) on TADCs and enhanced the cytotoxic effect (CD107a), as well as pro-inflammatory cytokine production (IFN-γ, TNF-α, IL-2) by the tumor-resident T cells. Taken together, cPLs adjuvant may be an immune-potentiating adjuvant for cancer immunotherapy. This reagent may lead to the development of new approaches in DC-targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Yifang Shui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hirano
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | | | | | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
16
|
Liu P, Kong L, Liu Y, Li G, Xie J, Lu X. A key driver to promote HCC: Cellular crosstalk in tumor microenvironment. Front Oncol 2023; 13:1135122. [PMID: 37007125 PMCID: PMC10050394 DOI: 10.3389/fonc.2023.1135122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Liver cancer is the third greatest cause of cancer-related mortality, which of the major pathological type is hepatocellular carcinoma (HCC) accounting for more than 90%. HCC is characterized by high mortality and is predisposed to metastasis and relapse, leading to a low five-year survival rate and poor clinical prognosis. Numerous crosstalk among tumor parenchymal cells, anti-tumor cells, stroma cells, and immunosuppressive cells contributes to the immunosuppressive tumor microenvironment (TME), in which the function and frequency of anti-tumor cells are reduced with that of associated pro-tumor cells increasing, accordingly resulting in tumor malignant progression. Indeed, sorting out and understanding the signaling pathways and molecular mechanisms of cellular crosstalk in TME is crucial to discover more key targets and specific biomarkers, so that develop more efficient methods for early diagnosis and individualized treatment of liver cancer. This piece of writing offers insight into the recent advances in HCC-TME and reviews various mechanisms that promote HCC malignant progression from the perspective of mutual crosstalk among different types of cells in TME, aiming to assist in identifying the possible research directions and methods in the future for discovering new targets that could prevent HCC malignant progression.
Collapse
Affiliation(s)
- Pengyue Liu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Lingyu Kong
- Department of Traditional Chinese Medicine, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Ying Liu
- Department of Clinical Skills Training Center, Tangshan Gongren Hospital, Tangshan, China
| | - Gang Li
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Jianjia Xie
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Xin Lu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| |
Collapse
|
17
|
Matos I, Barvalia M, Chehal MK, Robertson AG, Kulic I, Silva JAFD, Ranganathan A, Short A, Huang YH, Long E, Priatel JJ, Dhanji S, Nelson BH, Krebs DL, Harder KW. Tumor-derived GCSF Alters Tumor and Systemic Immune System Cell Subset Composition and Signaling. CANCER RESEARCH COMMUNICATIONS 2023; 3:404-419. [PMID: 36911097 PMCID: PMC9997410 DOI: 10.1158/2767-9764.crc-22-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
While immunotherapies such as immune checkpoint blockade and adoptive T-cell therapy improve survival for a subset of human malignancies, many patients fail to respond. Phagocytes including dendritic cells (DC), monocytes, and macrophages (MF) orchestrate innate and adaptive immune responses against tumors. However, tumor-derived factors may limit immunotherapy effectiveness by altering phagocyte signal transduction, development, and activity. Using Cytometry by Time-of-Flight, we found that tumor-derived GCSF altered myeloid cell distribution both locally and systemically. We distinguished a large number of GCSF-induced immune cell subset and signal transduction pathway perturbations in tumor-bearing mice, including a prominent increase in immature neutrophil/myeloid-derived suppressor cell (Neut/MDSC) subsets and tumor-resident PD-L1+ Neut/MDSCs. GCSF expression was also linked to distinct tumor-associated MF populations, decreased conventional DCs, and splenomegaly characterized by increased splenic progenitors with diminished DC differentiation potential. GCSF-dependent dysregulation of DC development was recapitulated in bone marrow cultures in vitro, using medium derived from GCSF-expressing tumor cell cultures. Importantly, tumor-derived GCSF impaired T-cell adoptive cell therapy effectiveness and was associated with increased tumor volume and diminished survival of mice with mammary cancer. Treatment with neutralizing anti-GCSF antibodies reduced colonic and circulatory Neut/MDSCs, normalized colonic immune cell composition and diminished tumor burden in a spontaneous model of mouse colon cancer. Analysis of human colorectal cancer patient gene expression data revealed a significant correlation between survival and low GCSF and Neut/MDSC gene expression. Our data suggest that normalizing GCSF bioactivity may improve immunotherapy in cancers associated with GCSF overexpression. Significance Tumor-derived GCSF leads to systemic immune population changes. GCSF blockade restores immune populations, improves immunotherapy, and reduces tumor size, paralleling human colorectal cancer data. GCSF inhibition may synergize with current immunotherapies to treat GCSF-secreting tumors.
Collapse
Affiliation(s)
- Israel Matos
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Maunish Barvalia
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Manreet K Chehal
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency. Vancouver, British Columbia, Canada
| | - Iva Kulic
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Jessica A F D Silva
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Abhinandan Ranganathan
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Amy Short
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Yu-Hsuan Huang
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Erin Long
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - John J Priatel
- ME Therapeutics Inc. Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Salim Dhanji
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Danielle L Krebs
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada.,ME Therapeutics Inc. Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Parlar YE, Ayar SN, Cagdas D, Balaban YH. Liver immunity, autoimmunity, and inborn errors of immunity. World J Hepatol 2023; 15:52-67. [PMID: 36744162 PMCID: PMC9896502 DOI: 10.4254/wjh.v15.i1.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023] Open
Abstract
The liver is the front line organ of the immune system. The liver contains the largest collection of phagocytic cells in the body that detect both pathogens that enter through the gut and endogenously produced antigens. This is possible by the highly developed differentiation capacity of the liver immune system between self-antigens or non-self-antigens, such as food antigens or pathogens. As an immune active organ, the liver functions as a gatekeeping barrier from the outside world, and it can create a rapid and strong immune response, under unfavorable conditions. However, the liver's assumed immune status is anti-inflammatory or immuno-tolerant. Dynamic interactions between the numerous populations of immune cells in the liver are key for maintaining the delicate balance between immune screening and immune tolerance. The anatomical structure of the liver can facilitate the preparation of lymphocytes, modulate the immune response against hepatotropic pathogens, and contribute to some of its unique immunological properties, particularly its capacity to induce antigen-specific tolerance. Since liver sinusoidal endothelial cell is fenestrated and lacks a basement membrane, circulating lymphocytes can closely contact with antigens, displayed by endothelial cells, Kupffer cells, and dendritic cells while passing through the sinusoids. Loss of immune tolerance, leading to an autoaggressive immune response in the liver, if not controlled, can lead to the induction of autoimmune or autoinflammatory diseases. This review mentions the unique features of liver immunity, and dysregulated immune responses in patients with autoimmune liver diseases who have a close association with inborn errors of immunity have also been the emphases.
Collapse
Affiliation(s)
- Yavuz Emre Parlar
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Sefika Nur Ayar
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara 06100, Turkey
| | - Yasemin H Balaban
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| |
Collapse
|
19
|
Yu X, Zhu L, Wang T, Chen J. Immune microenvironment of cholangiocarcinoma: Biological concepts and treatment strategies. Front Immunol 2023; 14:1037945. [PMID: 37138880 PMCID: PMC10150070 DOI: 10.3389/fimmu.2023.1037945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Cholangiocarcinoma is characterized by a poor prognosis with limited treatment and management options. Chemotherapy using gemcitabine with cisplatin is the only available first-line therapy for patients with advanced cholangiocarcinoma, although it offers only palliation and yields a median survival of < 1 year. Recently there has been a resurgence of immunotherapy studies focusing on the ability of immunotherapy to inhibit cancer growth by impacting the tumor microenvironment. Based on the TOPAZ-1 trial, the US Food and Drug Administration has approved the combination of durvalumab and gemcitabine with cisplatin as the first-line treatment of cholangiocarcinoma. However, immunotherapy, like immune checkpoint blockade, is less effective in cholangiocarcinoma than in other types of cancer. Although several factors such as the exuberant desmoplastic reaction are responsible for cholangiocarcinoma treatment resistance, existing literature on cholangiocarcinoma cites the inflammatory and immunosuppressive environment as the most common factor. However, mechanisms activating the immunosuppressive tumor microenvironment contributing to cholangiocarcinoma drug resistance are complicated. Therefore, gaining insight into the interplay between immune cells and cholangiocarcinoma cells, as well as the natural development and evolution of the immune tumor microenvironment, would provide targets for therapeutic intervention and improve therapeutic efficacy by developing multimodal and multiagent immunotherapeutic approaches of cholangiocarcinoma to overcome the immunosuppressive tumor microenvironment. In this review, we discuss the role of the inflammatory microenvironment-cholangiocarcinoma crosstalk and reinforce the importance of inflammatory cells in the tumor microenvironment, thereby highlighting the explanatory and therapeutic shortcomings of immunotherapy monotherapy and proposing potentially promising combinational immunotherapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Jiang Chen,
| |
Collapse
|
20
|
Chen C, Li Y, Miao P, Xu Y, Xie Y, Chen Z, Qian S. Tumor immune cell infiltration score based model predicts prognosis in multiple myeloma. Sci Rep 2022; 12:17082. [PMID: 36224246 PMCID: PMC9556830 DOI: 10.1038/s41598-022-21763-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment plays an important role in various processes, including tumorigenesis, cancer progression, and metastasis. Immune signatures have been identified and verified for use in diagnosis and prognosis prediction. We used single-sample Gene Set Enrichment Analysis to evaluate tumor immune cell infiltration score (TIICs) and verify their prognostic significance in both training and validation cohorts and using this information to build a prognostic model. A total of 1281 samples were obtained for further evaluation of the immune enrichment scores of 28 immune cells, showing that Th17 cell contributed most significantly to survival. Using the median TIICs as a cutoff to divide the samples into two groups, we found that the high-TIICs group was associated with favorable outcomes in both the training and validation sets. We then constructed a prognostic model to predict the 6, 8, and 10-year survival outcomes. Further analysis showed that immune score and tumor purity were higher in the high-TIICs group, while the matrix score was lower in this group. Forty-two differentially expressed genes were identified between the two groups. This new prognostic model based on immune cell infiltration indicates the potential for TIICs in predicting prognosis and as targets for treatment.
Collapse
Affiliation(s)
- Can Chen
- grid.13402.340000 0004 1759 700XDepartment of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Yiwei Li
- grid.13402.340000 0004 1759 700XDepartment of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Peiwen Miao
- grid.268505.c0000 0000 8744 8924Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Ying Xu
- grid.13402.340000 0004 1759 700XDepartment of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Yaping Xie
- grid.13402.340000 0004 1759 700XDepartment of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Zhenzhen Chen
- grid.13402.340000 0004 1759 700XDepartment of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Shenxian Qian
- grid.13402.340000 0004 1759 700XDepartment of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| |
Collapse
|
21
|
Ding J, Xie Y, Sun X, Shao F, Pan J, Chen J, Zhu Z, Qi C. Inhibition of TFEB promotes tumor-educated dendritic cells activation to enhance antitumor immune responses. Mol Immunol 2022; 147:30-39. [DOI: 10.1016/j.molimm.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
|
22
|
Translational landscape of glioblastoma immunotherapy for physicians: guiding clinical practice with basic scientific evidence. J Hematol Oncol 2022; 15:80. [PMID: 35690784 PMCID: PMC9188021 DOI: 10.1186/s13045-022-01298-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in cancer therapeutics, glioblastoma (GBM) remains one of the most difficult cancers to treat in both the primary and recurrent settings. GBM presents a unique therapeutic challenge given the immune-privileged environment of the brain and the aggressive nature of the disease. Furthermore, it can change phenotypes throughout the course of disease—switching between mesenchymal, neural, and classic gene signatures, each with specific markers and mechanisms of resistance. Recent advancements in the field of immunotherapy—which utilizes strategies to reenergize or alter the immune system to target cancer—have shown striking results in patients with many types of malignancy. Immune checkpoint inhibitors, adoptive cellular therapy, cellular and peptide vaccines, and other technologies provide clinicians with a vast array of tools to design highly individualized treatment and potential for combination strategies. There are currently over 80 active clinical trials evaluating immunotherapies for GBM, often in combination with standard secondary treatment options including re-resection and anti-angiogenic agents, such as bevacizumab. This review will provide a clinically focused overview of the immune environment present in GBM, which is frequently immunosuppressive and characterized by M2 macrophages, T cell exhaustion, enhanced transforming growth factor-β signaling, and others. We will also outline existing immunotherapeutic strategies, with a special focus on immune checkpoint inhibitors, chimeric antigen receptor therapy, and dendritic cell vaccines. Finally, we will summarize key discoveries in the field and discuss currently active clinical trials, including combination strategies, burgeoning technology like nucleic acid and nanoparticle therapy, and novel anticancer vaccines. This review aims to provide the most updated summary of the field of immunotherapy for GBM and offer both historical perspective and future directions to help inform clinical practice.
Collapse
|
23
|
Iberg CA, Bourque J, Fallahee I, Son S, Hawiger D. TNF-α sculpts a maturation process in vivo by pruning tolerogenic dendritic cells. Cell Rep 2022; 39:110657. [PMID: 35417681 PMCID: PMC9113652 DOI: 10.1016/j.celrep.2022.110657] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
It remains unclear how the pro-immunogenic maturation of conventional dendritic cells (cDCs) abrogates their tolerogenic functions. Here, we report that the loss of tolerogenic functions depends on the rapid death of BTLAhi cDC1s, which, in the steady state, are present in systemic peripheral lymphoid organs and promote tolerance that limits subsequent immune responses. A canonical inducer of maturation, lipopolysaccharide (LPS), initiates a burst of tumor necrosis factor alpha (TNF-α) production and the resultant acute death of BTLAhi cDC1s mediated by tumor necrosis factor receptor 1. The ablation of these individual tolerogenic cDCs is amplified by TNF-α produced by neighboring cells. This loss of tolerogenic cDCs is transient, accentuating the restoration of homeostatic conditions through biological turnover of cDCs in vivo. Therefore, our results reveal that the abrogation of tolerogenic functions during an acute immunogenic maturation depends on an ablation of the tolerogenic cDC population, resulting in a dynamic remodeling of the cDC functional landscape.
Collapse
Affiliation(s)
- Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ian Fallahee
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sungho Son
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
24
|
Liu H, Yang M, Dong Z. HSPB11 is a Prognostic Biomarker Associated with Immune Infiltrates in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:4017-4027. [PMID: 35444459 PMCID: PMC9014112 DOI: 10.2147/ijgm.s363679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Hui Liu
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Mei Yang
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Zhiwei Dong
- Department of General Surgery, Air Force Medical Center, PLA, Beijing, People’s Republic of China
- Correspondence: Zhiwei Dong, Department of General Surgery, Air Force Medical Center, PLA, Beijing, People’s Republic of China, Tel +8617611408626, Fax +86 411-84671291-3106, Email
| |
Collapse
|
25
|
Bourque J, Hawiger D. Variegated Outcomes of T Cell Activation by Dendritic Cells in the Steady State. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:539-547. [PMID: 35042789 DOI: 10.4049/jimmunol.2100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDC) control adaptive immunity by sensing damage- and pathogen-associated molecular patterns and then inducing defined differentiation programs in T cells. Nevertheless, in the absence of specific proimmunogenic innate signals, generally referred to as the steady state, cDC also activate T cells to induce specific functional fates. Consistent with the maintenance of homeostasis, such specific outcomes of T cell activation in the steady state include T cell clonal anergy, deletion, and conversion of peripheral regulatory T cells (pTregs). However, the robust induction of protolerogenic mechanisms must be reconciled with the initiation of autoimmune responses and cancer immunosurveillance that are also observed under homeostatic conditions. Here we review the diversity of fates and functions of T cells involved in the opposing immunogenic and tolerogenic processes induced in the steady state by the relevant mechanisms of systemic cDC present in murine peripheral lymphoid organs.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
26
|
Bourque J, Hawiger D. Applications of Antibody-Based Antigen Delivery Targeted to Dendritic Cells In Vivo. Antibodies (Basel) 2022; 11:antib11010008. [PMID: 35225867 PMCID: PMC8884005 DOI: 10.3390/antib11010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Recombinant immunoglobulins, derived from monoclonal antibodies recognizing the defined surface epitopes expressed on dendritic cells, have been employed for the past two decades to deliver antigens to dendritic cells in vivo, serving as critical tools for the investigation of the corresponding T cell responses. These approaches originated with the development of the recombinant chimeric antibody against a multilectin receptor, DEC-205, which is present on subsets of murine and human conventional dendritic cells. Following the widespread application of antigen targeting through DEC-205, similar approaches then utilized other epitopes as entry points for antigens delivered by specific antibodies to multiple types of dendritic cells. Overall, these antigen-delivery methodologies helped to reveal the mechanisms underlying tolerogenic and immunogenic T cell responses orchestrated by dendritic cells. Here, we discuss the relevant experimental strategies as well as their future perspectives, including their translational relevance.
Collapse
Affiliation(s)
| | - Daniel Hawiger
- Correspondence: ; Tel.: +1-314-977-8875; Fax: +1-314-977-8717
| |
Collapse
|
27
|
Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021; 13:6231. [PMID: 34944851 PMCID: PMC8699358 DOI: 10.3390/cancers13246231] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
A lack of explicit early clinical signs and effective screening measures mean that ovarian cancer (OC) often presents as advanced, incurable disease. While conventional treatment combines maximal cytoreductive surgery and platinum-based chemotherapy, patients frequently develop chemoresistance and disease recurrence. The clinical application of immune checkpoint blockade (ICB) aims to restore anti-cancer T-cell function in the tumour microenvironment (TME). Disappointingly, even though tumour infiltrating lymphocytes are associated with superior survival in OC, ICB has offered limited therapeutic benefits. Herein, we discuss specific TME features that prevent ICB from reaching its full potential, focussing in particular on the challenges created by immune, genomic and metabolic alterations. We explore both recent and current therapeutic strategies aiming to overcome these hurdles, including the synergistic effect of combination treatments with immune-based strategies and review the status quo of current clinical trials aiming to maximise the success of immunotherapy in OC.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Michele Cummings
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| | - Amudha Thangavelu
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Georgios Theophilou
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Diederick de Jong
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| |
Collapse
|
28
|
Brassard J, Gill ME, Bernatchez E, Desjardins V, Roy J, Joubert P, Marsolais D, Blanchet MR. Countering the advert effects of lung cancer on the anticancer potential of dendritic cell populations reinstates sensitivity to anti-PD-1 therapy. PLoS One 2021; 16:e0260636. [PMID: 34847189 PMCID: PMC8631683 DOI: 10.1371/journal.pone.0260636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. While the recent use of immune checkpoint inhibitors significantly improves patient outcomes, responsiveness remains restricted to a small proportion of patients. Conventional dendritic cells (DCs) play a major role in anticancer immunity. In mice, two subpopulations of DCs are found in the lung: DC2s (CD11b+Sirpα+) and DC1s (CD103+XCR1+), the latest specializing in the promotion of anticancer immune responses. However, the impact of lung cancer on DC populations and the consequent influence on the anticancer immune response remain poorly understood. To address this, DC populations were studied in murine models of Lewis Lung Carcinoma (LLC) and melanoma-induced lung metastasis (B16F10). We report that direct exposure to live or dead cancer cells impacts the capacity of DCs to differentiate into CD103+ DC1s, leading to profound alterations in CD103+ DC1 proportions in the lung. In addition, we observed the accumulation of CD103loCD11b+ DCs, which express DC2 markers IRF4 and Sirpα, high levels of T-cell inhibitory molecules PD-L1/2 and the regulatory molecule CD200. Finally, DC1s were injected in combination with an immune checkpoint inhibitor (anti-PD-1) in the B16F10 model of resistance to the anti-PD-1 immune checkpoint therapy; the co-injection restored sensitivity to immunotherapy. Thus, we demonstrate that lung tumor development leads to the accumulation of CD103loCD11b+ DCs with a regulatory potential combined with a reduced proportion of highly-specialized antitumor CD103+ DC1s, which could promote cancer growth. Additionally, promoting an anticancer DC signature could be an interesting therapeutic avenue to increase the efficacy of existing immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Julyanne Brassard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Meredith Elizabeth Gill
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Emilie Bernatchez
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Véronique Desjardins
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Joanny Roy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - David Marsolais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Marie-Renée Blanchet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
29
|
Shui Y, Hu X, Hirano H, Kusano K, Tsukamoto H, Li M, Hasumi K, Guo WZ, Li XK. β-glucan from Aureobasidium pullulans augments the anti-tumor immune responses through activated tumor-associated dendritic cells. Int Immunopharmacol 2021; 101:108265. [PMID: 34715491 DOI: 10.1016/j.intimp.2021.108265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
Dendritic cells (DCs) are recognized as the most potent antigen-presenting cells, capable of priming both naïve and memory T cells. Thus, tumor-resident DCs (tumor-associated DCs: TADCs) play a crucial role in the immune response against tumors. However, TADCs are also well known as a "double-edged sword" because an immunosuppressive environment, such as a tumor microenvironment, maintains the immature and tolerogenic properties of TADCs, resulting in the deterioration of the tumor. Therefore, it is essential to maintain and enhance the anti-tumoral activity of TADCs to aid tumor elimination. This study demonstrated the potential for tumor growth inhibition of Aureobasidium pullulan-derived β-glucan (AP-BG). Administration of AP-BG dramatically limited the development of different types of tumor cell lines transplanted into mice. Examination of the tumor-infiltrating leukocytes revealed that AP-BG caused high expression of co-stimulatory molecules on TADCs and enhanced the production of cytolytic granules as well as pro-inflammatory cytokines by the tumor-resident T cells. Furthermore, the syngeneic mixed lymphoid reaction assay and popliteal lymph node assay showed the significant ability of AP-BG to improve DCs' antigen-specific priming of T cells in vitro and in vivo. Taken together, β-glucan might be an immune-potentiating adjuvant for cancer treatment. This highly widely-used reagent will initiate a new way to activate DC-targeted cancer immune therapy.
Collapse
Affiliation(s)
- Yifang Shui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hirano
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Hasumi International Research Foundation, Tokyo, Japan
| | | | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Mengquan Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
30
|
Walter A, Rocconi RP, Monk BJ, Herzog TJ, Manning L, Bognar E, Wallraven G, Aaron P, Horvath S, Tang M, Stanbery L, Coleman RL, Nemunaitis J. Gemogenovatucel-T (Vigil) maintenance immunotherapy: 3-year survival benefit in homologous recombination proficient (HRP) ovarian cancer. Gynecol Oncol 2021; 163:459-464. [PMID: 34702567 DOI: 10.1016/j.ygyno.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Previously, Vigil demonstrated clinical benefit to prolong relapse free and overall survival in the BRCA wild-type (BRCA-wt), homologous recombination proficient (HRP) patient population. Here we provide long term follow up of 3 years in the HRP patient population enrolled in the Phase 2b VITAL study. METHODS HRP patients treated with Vigil (n = 25) or placebo (n = 20) who were enrolled in the Phase 2b, double-blind, placebo-controlled (VITAL study, NCT02346747) were followed for safety, OS and RFS. OS and RFS from time of randomization (immediately prior to maintenance therapy) and from debulking tissue procurement time points were analyzed by Kaplan-Meier (KM) and restricted mean survival time (RMST) analysis. RESULTS OS for Vigil treated patients at 3 years has not yet reached median OS time point (95% CI 41.6 months to not achieved) compared to 26.9 (95% CI 17.4 months to not achieved) in placebo treated patients (HR 0.417 p = 0.020). Three year RFS also showed benefit to Vigil (stratified HR 0.405, p = 0.011) and no long term toxicity to Vigil was observed. Three year OS for Vigil of 70% vs. 40% for placebo from time of randomization was observed (p = 0.019). RMST analysis was also significant for OS (45.7 vs. 32.8 months, p = 0.008) and RFS (p = 0.025). CONCLUSION In conclusion, results suggest durable activity of Vigil on RFS and OS and support further evaluation of Vigil in HRP ovarian cancer.
Collapse
Affiliation(s)
- Adam Walter
- ProMedica, Toledo, OH, United States of America
| | - Rodney P Rocconi
- University of South Alabama - Mitchell Cancer Institute, Mobile, AL, United States of America
| | | | - Thomas J Herzog
- University of Cincinnati Cancer Institute, Cincinnati, OH, United States of America
| | - Luisa Manning
- Gradalis, Inc., Carrollton, TX, United States of America
| | - Ernest Bognar
- Gradalis, Inc., Carrollton, TX, United States of America
| | | | - Phylicia Aaron
- Gradalis, Inc., Carrollton, TX, United States of America
| | - Staci Horvath
- Gradalis, Inc., Carrollton, TX, United States of America
| | - Min Tang
- StatBeyond Consulting, LLC., Irvine, CA, United States of America
| | - Laura Stanbery
- Gradalis, Inc., Carrollton, TX, United States of America
| | - Robert L Coleman
- US Oncology Research, The Woodlands, TX, United States of America
| | | |
Collapse
|
31
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
32
|
Subtil B, Cambi A, Tauriello DVF, de Vries IJM. The Therapeutic Potential of Tackling Tumor-Induced Dendritic Cell Dysfunction in Colorectal Cancer. Front Immunol 2021; 12:724883. [PMID: 34691029 PMCID: PMC8527179 DOI: 10.3389/fimmu.2021.724883] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and the second leading cause of cancer-related deaths worldwide. Locally advanced and metastatic disease exhibit resistance to therapy and are prone to recurrence. Despite significant advances in standard of care and targeted (immuno)therapies, the treatment effects in metastatic CRC patients have been modest. Untreatable cancer metastasis accounts for poor prognosis and most CRC deaths. The generation of a strong immunosuppressive tumor microenvironment (TME) by CRC constitutes a major hurdle for tumor clearance by the immune system. Dendritic cells (DCs), often impaired in the TME, play a critical role in the initiation and amplification of anti-tumor immune responses. Evidence suggests that tumor-mediated DC dysfunction is decisive for tumor growth and metastasis initiation, as well as for the success of immunotherapies. Unravelling and understanding the complex crosstalk between CRC and DCs holds promise for identifying key mechanisms involved in tumor progression and spread that can be exploited for therapy. The main goal of this review is to provide an overview of the current knowledge on the impact of CRC-driven immunosuppression on DCs phenotype and functionality, and its significance for disease progression, patient prognosis, and treatment response. Moreover, present knowledge gaps will be highlighted as promising opportunities to further understand and therapeutically target DC dysfunction in CRC. Given the complexity and heterogeneity of CRC, future research will benefit from the use of patient-derived material and the development of in vitro organoid-based co-culture systems to model and study DCs within the CRC TME.
Collapse
Affiliation(s)
- Beatriz Subtil
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daniele V. F. Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
33
|
Gjorgoska M, Rižner TL. Estrogens and the Schrödinger's Cat in the Ovarian Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13195011. [PMID: 34638494 PMCID: PMC8508344 DOI: 10.3390/cancers13195011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Ovarian cancer is a complex pathology for which we require effective screening and therapeutical strategies. Apart from the cancer cell portion, there exist plastic immune and non-immune cell populations, jointly constituting the context-adaptive tumor microenvironment, which is pivotal in tumorigenesis. Estrogens might be synthesized in the ovarian tumor tissue and actively contribute to the shaping of an immunosuppressive microenvironment. Current immune therapies have limited effectiveness as a multitude of factors influence the outcome. A thorough understanding of the ovarian cancer biology is crucial in the efforts to reestablish homeostasis. Abstract Ovarian cancer is a heterogeneous disease affecting the aging ovary, in concert with a complex network of cells and signals, together representing the ovarian tumor microenvironment. As in the “Schrödinger’s cat” thought experiment, the context-dependent constituents of the—by the time of diagnosis—well-established tumor microenvironment may display a tumor-protective and -destructive role. Systemic and locally synthesized estrogens contribute to the formation of a pro-tumoral microenvironment that enables the sustained tumor growth, invasion and metastasis. Here we focus on the estrogen biosynthetic and metabolic pathways in ovarian cancer and elaborate their actions on phenotypically plastic, estrogen-responsive, aging immune cells of the tumor microenvironment, altogether highlighting the multicomponent-connectedness and complexity of cancer, and contributing to a broader understanding of the ovarian cancer biology.
Collapse
|
34
|
Li JJ, Tsang JY, Tse GM. Tumor Microenvironment in Breast Cancer-Updates on Therapeutic Implications and Pathologic Assessment. Cancers (Basel) 2021; 13:cancers13164233. [PMID: 34439387 PMCID: PMC8394502 DOI: 10.3390/cancers13164233] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment (TME) in breast cancer comprises local factors, cancer cells, immune cells and stromal cells of the local and distant tissues. The interaction between cancer cells and their microenvironment plays important roles in tumor proliferation, propagation and response to therapies. There is increasing research in exploring and manipulating the non-cancerous components of the TME for breast cancer treatment. As the TME is now increasingly recognized as a treatment target, its pathologic assessment has become a critical component of breast cancer management. The latest WHO classification of tumors of the breast listed stromal response pattern/fibrotic focus as a prognostic factor and includes recommendations on the assessment of tumor infiltrating lymphocytes and PD-1/PD-L1 expression, with therapeutic implications. This review dissects the TME of breast cancer, describes pathologic assessment relevant for prognostication and treatment decision, and details therapeutic options that interacts with and/or exploits the TME in breast cancer.
Collapse
Affiliation(s)
| | | | - Gary M. Tse
- Correspondence: ; Tel.: 852-3505-2359; Fax: 852-2637-4858
| |
Collapse
|
35
|
The TGF-β Pathway: A Pharmacological Target in Hepatocellular Carcinoma? Cancers (Basel) 2021; 13:cancers13133248. [PMID: 34209646 PMCID: PMC8268320 DOI: 10.3390/cancers13133248] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Transforming Growth Factor-beta (TGF-β) superfamily members are essential for tissue homeostasis and consequently, dysregulation of their signaling pathways contributes to the development of human diseases. In the liver, TGF-β signaling participates in all the stages of disease progression from initial liver injury to hepatocellular carcinoma (HCC). During liver carcinogenesis, TGF-β plays a dual role on the malignant cell, behaving as a suppressor factor at early stages, but contributing to later tumor progression once cells escape from its cytostatic effects. Moreover, TGF-β can modulate the response of the cells forming the tumor microenvironment that may also contribute to HCC progression, and drive immune evasion of cancer cells. Thus, targeting the TGF-β pathway may constitute an effective therapeutic option for HCC treatment. However, it is crucial to identify biomarkers that allow to predict the response of the tumors and appropriately select the patients that could benefit from TGF-β inhibitory therapies. Here we review the functions of TGF-β on HCC malignant and tumor microenvironment cells, and the current strategies targeting TGF-β signaling for cancer therapy. We also summarize the clinical impact of TGF-β inhibitors in HCC patients and provide a perspective on its future use alone or in combinatorial strategies for HCC treatment.
Collapse
|
36
|
Kim D, Chung H, Lee JE, Kim J, Hwang J, Chung Y. Immunologic Aspects of Dyslipidemia: a Critical Regulator of Adaptive Immunity and Immune Disorders. J Lipid Atheroscler 2021; 10:184-201. [PMID: 34095011 PMCID: PMC8159760 DOI: 10.12997/jla.2021.10.2.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/09/2022] Open
Abstract
Dyslipidemia is a major cause of cardiovascular diseases which represent a leading cause of death in humans. Diverse immune cells are known to be involved in the pathogenesis of cardiovascular diseases such as atherosclerosis. Conversely, dyslipidemia is known to be tightly associated with immune disorders in humans, as evidenced by a higher incidence of atherosclerosis in patients with autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosus. Given that the dyslipidemia-related autoimmune diseases are caused by autoreactive T cells and B cells, dyslipidemia seems to directly or indirectly regulate the adaptive immunity. Indeed, accumulating evidence has unveiled that proatherogenic factors can impact the differentiation and function of CD4+ T cells, CD8+ T cells, and B cells. This review discusses an updated overview on the regulation of adaptive immunity by dyslipidemia and proposes a potential therapeutic strategy for immune disorders by targeting lipid metabolism.
Collapse
Affiliation(s)
- Daehong Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hayeon Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jeong-Eun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jiyeon Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Junseok Hwang
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
37
|
Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In Situ Vaccination as a Strategy to Modulate the Immune Microenvironment of Hepatocellular Carcinoma. Front Immunol 2021; 12:650486. [PMID: 34025657 PMCID: PMC8137829 DOI: 10.3389/fimmu.2021.650486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is a highly prevalent malignancy that develops in patients with chronic liver diseases and dysregulated systemic and hepatic immunity. The tumor microenvironment (TME) contains tumor-associated macrophages (TAM), cancer-associated fibroblasts (CAF), regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) and is central to mediating immune evasion and resistance to therapy. The interplay between these cells types often leads to insufficient antigen presentation, preventing effective anti-tumor immune responses. In situ vaccines harness the tumor as the source of antigens and implement sequential immunomodulation to generate systemic and lasting antitumor immunity. Thus, in situ vaccines hold the promise to induce a switch from an immunosuppressive environment where HCC cells evade antigen presentation and suppress T cell responses towards an immunostimulatory environment enriched for activated cytotoxic cells. Pivotal steps of in situ vaccination include the induction of immunogenic cell death of tumor cells, a recruitment of antigen-presenting cells with a focus on dendritic cells, their loading and maturation and a subsequent cross-priming of CD8+ T cells to ensure cytotoxic activity against tumor cells. Several in situ vaccine approaches have been suggested, with vaccine regimens including oncolytic viruses, Flt3L, GM-CSF and TLR agonists. Moreover, combinations with checkpoint inhibitors have been suggested in HCC and other tumor entities. This review will give an overview of various in situ vaccine strategies for HCC, highlighting the potentials and pitfalls of in situ vaccines to treat liver cancer.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
38
|
Bödder J, Zahan T, van Slooten R, Schreibelt G, de Vries IJM, Flórez-Grau G. Harnessing the cDC1-NK Cross-Talk in the Tumor Microenvironment to Battle Cancer. Front Immunol 2021; 11:631713. [PMID: 33679726 PMCID: PMC7933030 DOI: 10.3389/fimmu.2020.631713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Immunotherapeutic approaches have revolutionized the treatment of several diseases such as cancer. The main goal of immunotherapy for cancer is to modulate the anti-tumor immune responses by favoring the recognition and destruction of tumor cells. Recently, a better understanding of the suppressive effect of the tumor microenvironment (TME) on immune cells, indicates that restoring the suppressive effect of the TME is crucial for an efficient immunotherapy. Natural killer (NK) cells and dendritic cells (DCs) are cell types that are currently administered to cancer patients. NK cells are used because of their ability to kill tumor cells directly via cytotoxic granzymes. DCs are employed to enhance anti-tumor T cell responses based on their ability to present antigens and induce tumor-antigen specific CD8+ T cell responses. In preclinical models, a particular DC subset, conventional type 1 DCs (cDC1s) is shown to be specialized in cross-presenting extracellular antigens to CD8+ T cells. This feature makes them a promising DC subset for cancer treatment. Within the TME, cDC1s show a bidirectional cross-talk with NK cells, resulting in a higher cDC1 recruitment, differentiation, and maturation as well as activation and stimulation of NK cells. Consequently, the presence of cDC1s and NK cells within the TME might be of utmost importance for the success of immunotherapy. In this review, we discuss the function of cDC1s and NK cells, their bidirectional cross-talk and potential strategies that could improve cancer immunotherapy.
Collapse
Affiliation(s)
- Johanna Bödder
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tasmin Zahan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rianne van Slooten
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
39
|
Zhang X, He T, Li Y, Chen L, Liu H, Wu Y, Guo H. Dendritic Cell Vaccines in Ovarian Cancer. Front Immunol 2021; 11:613773. [PMID: 33584699 PMCID: PMC7874064 DOI: 10.3389/fimmu.2020.613773] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal malignant gynecologic tumors, characterized by an uncertain presentation and poor outcomes. With or without neoadjuvant chemotherapy, surgery followed by platinum-based chemotherapy and maintenance therapy are the basis for the treatment of ovarian cancer patients, but the outcome is still highly restricted by their advanced stage when diagnosed and high recurrence rate after chemotherapy. To enhance the anti-tumor effect and postpone recurrence, anti-VEGF agents and PARP inhibitors are suggested as maintenance therapy, but the population that can benefit from these treatments is small. Based on the interactions of immune cells in the tumor microenvironment, immunotherapies are being explored for ovarian cancer treatment. Disappointingly, the immune checkpoint inhibitors show relatively low responses in ovarian cancer. As shown in several studies that have uncovered a relationship between DC infiltration and outcome in ovarian cancer patients, dendritic cell (DC)-based treatments might have a potential effect on ovarian cancer. In this review, we summarize the functions of dendritic cells (DCs) in the tumor microenvironment, as well as the responses and drawbacks of existing clinical studies to draw a comprehensive picture of DC vaccine treatment in ovarian cancer and to discuss the promising future of immune biomarkers.
Collapse
Affiliation(s)
- Xi Zhang
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Tianhui He
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Yuan Li
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Liu
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Yu Wu
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Hongyan Guo
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| |
Collapse
|
40
|
Qin H, Chen Y. Lipid Metabolism and Tumor Antigen Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:169-189. [PMID: 33740250 DOI: 10.1007/978-981-33-6785-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumors always evade immune surveillance and block T cell activation in a poorly immunogenic and immunosuppressive environment. Cancer cells and immune cells exhibit metabolic reprogramming in the tumor microenvironment (TME), which intimately links immune cell function and edits tumor immunology. In addition to glucose metabolism, amino acid and lipid metabolism also provide the materials for biological processes crucial in cancer biology and pathology. Furthermore, lipid metabolism is synergistically or negatively involved in the interactions between tumors and the microenvironment and contributes to the regulation of immune cells. Antigen processing and presentation as the initiation of adaptive immune response play a critical role in antitumor immunity. Therefore, a relationship exists between antigen-presenting cells and lipid metabolism in TME. This chapter introduces the updated understandings of lipid metabolism of tumor antigen-presenting cells and describes new directions in the manipulation of immune responses for cancer treatment.
Collapse
Affiliation(s)
- Hong Qin
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
41
|
Design and Implementation of NK Cell-Based Immunotherapy to Overcome the Solid Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12123871. [PMID: 33371456 PMCID: PMC7767468 DOI: 10.3390/cancers12123871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors capable of broad cytotoxicity via germline-encoded receptors and can have conferred cytotoxic potential via the addition of chimeric antigen receptors. Combined with their reduced risk of graft-versus-host disease (GvHD) and cytokine release syndrome (CRS), NK cells are an attractive therapeutic platform. While significant progress has been made in treating hematological malignancies, challenges remain in using NK cell-based therapy to combat solid tumors due to their immunosuppressive tumor microenvironments (TMEs). The development of novel strategies enabling NK cells to resist the deleterious effects of the TME is critical to their therapeutic success against solid tumors. In this review, we discuss strategies that apply various genetic and non-genetic engineering approaches to enhance receptor-mediated NK cell cytotoxicity, improve NK cell resistance to TME effects, and enhance persistence in the TME. The successful design and application of these strategies will ultimately lead to more efficacious NK cell therapies to treat patients with solid tumors. This review outlines the mechanisms by which TME components suppress the anti-tumor activity of endogenous and adoptively transferred NK cells while also describing various approaches whose implementation in NK cells may lead to a more robust therapeutic platform against solid tumors.
Collapse
|
42
|
Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv Cancer Res 2020; 149:171-255. [PMID: 33579424 DOI: 10.1016/bs.acr.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide. Much recent research has delved into understanding the underlying molecular mechanisms of HCC pathogenesis, which has revealed to be heterogenous and complex. Two major hallmarks of HCC include: (i) a hijacked immunometabolism and (ii) a reprogramming in metabolic processes. We posit that the gut microbiota is a third component in an entanglement triangle contributing to HCC progression. Besides metagenomic studies highlighting the diagnostic potential in the gut microbiota profile, recent research is pinpointing the gut microbiota as an instigator, not just a mere bystander, in HCC. In this chapter, we discuss mechanistic insights on atypical immunometabolism and metabolic reprogramming in HCC, including the examination of tumor-associated macrophages and neutrophils, tumor-infiltrating lymphocytes (e.g., T-cell exhaustion, regulatory T-cells, natural killer T-cells), the Warburg effect, rewiring of the tricarboxylic acid cycle, and glutamine addiction. We further discuss the potential involvement of the gut microbiota in these characteristics of hepatocarcinogenesis. An immediate highlight is that microbiota metabolites (e.g., short chain fatty acids, secondary bile acids) can impair anti-tumor responses, which aggravates HCC. Lastly, we describe the rising 'new era' of immunotherapies (e.g., immune checkpoint inhibitors, adoptive T-cell transfer) and discuss for the potential incorporation of gut microbiota targeted therapeutics (e.g., probiotics, fecal microbiota transplantation) to alleviate HCC. Altogether, this chapter invigorates for continuous research to decipher the role of gut microbiome in HCC from its influence on immunometabolism and metabolic reprogramming.
Collapse
|
43
|
Matsuzaki S, Klar M, Matsuzaki S, Roman LD, Sood AK, Matsuo K. Uterine carcinosarcoma: Contemporary clinical summary, molecular updates, and future research opportunity. Gynecol Oncol 2020; 160:586-601. [PMID: 33183764 DOI: 10.1016/j.ygyno.2020.10.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/31/2020] [Indexed: 12/16/2022]
Abstract
Uterine carcinosarcoma (UCS) is a biphasic aggressive high-grade endometrial cancer in which the sarcoma element has de-differentiated from the carcinoma element. UCS is considered a rare tumor, but its incidence has gradually increased in recent years (annual percent change from 2000 to 2016 1.7%, 95% confidence interval 1.2-2.2) as has the proportion of UCS among endometrial cancer, exceeding 5% in recent years. UCS typically affects the elderly, but in recent decades patients became younger. Notably, a stage-shift has occurred in recent years with increasing nodal metastasis and decreasing distant metastasis. The concept of sarcoma dominance may be new in UCS, and a sarcomatous element >50% of the uterine tumor is associated with decreased survival. Multimodal treatment is the mainstay of UCS. Lymphadenectomy, chemotherapy, and brachytherapy have increased in the past few decades, but survival outcomes remain dismal: the median survival is less than two years, and the 5-year overall survival rate has not changed in decades (31.9% in 1975 to 33.8% in 2012). Carboplatin/paclitaxel adjuvant chemotherapy improves progression-free survival compared with ifosfamide/paclitaxel, particularly in stages III-IV disease (GOG-261 trial). Twenty-six clinical trials previously examined therapeutic effectiveness in recurrent/metastatic UCS. The median response rate and progression-free survival were 37.5% and 5.9 months, respectively, after first-line therapy, but after later therapies, the outcomes were far worse (5.5% and 1.8 months, respectively). One significant discovery was that epithelial-mesenchymal transition (EMT) plays a pivotal role in the pathogenesis of sarcomatous dedifferentiation in UCS and that heterologous sarcoma is associated with a higher EMT signature compared with homologous sarcoma. Furthermore, next-generation sequencing has revealed that UCS tumors are serous-like and that common somatic mutations include those in TP53, PIK3CA, FBXW7, PTEN, and ARID1A. This contemporary review highlights recent clinical and molecular updates in UCS. A possible therapeutic target of EMT in UCS is also discussed.
Collapse
Affiliation(s)
- Shinya Matsuzaki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Maximilian Klar
- Department of Obstetrics and Gynecology, University of Freiburg, Freiburg, Germany
| | - Satoko Matsuzaki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Lynda D Roman
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD-Anderson Cancer Center, Houston, TX, USA
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Lurje I, Hammerich L, Tacke F. Dendritic Cell and T Cell Crosstalk in Liver Fibrogenesis and Hepatocarcinogenesis: Implications for Prevention and Therapy of Liver Cancer. Int J Mol Sci 2020; 21:ijms21197378. [PMID: 33036244 PMCID: PMC7583774 DOI: 10.3390/ijms21197378] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a chronic, highly prevalent disease that may progress to cirrhosis and substantially increases the risk for development of hepatocellular carcinoma (HCC). Fibrotic livers are characterized by an inflammatory microenvironment that is composed of various immunologically active cells, including liver-resident populations (e.g., Kupffer cells, hepatic stellate cells and sinusoidal endothelium) and infiltrating leukocytes (e.g., monocytes, monocyte-derived macrophages, neutrophils and lymphocytes). While inflammatory injury drives both fibrogenesis and carcinogenesis, the tolerogenic microenvironment of the liver conveys immunosuppressive effects that encourage tumor growth. An insufficient crosstalk between dendritic cells (DCs), the professional antigen presenting cells, and T cells, the efficient anti-tumor effector cells, is one of the main mechanisms of HCC tumor tolerance. The meticulous analysis of patient samples and mouse models of fibrosis-HCC provided in-depth insights into molecular mechanisms of immune interactions in liver cancer. The therapeutic modulation of this multifaceted immunological response, e.g., by inhibiting immune checkpoint molecules, in situ vaccination, oncolytic viruses or combinations thereof, is a rapidly evolving field that holds the potential to improve the outcome of patients with HCC. This review aims to highlight the current understanding of DC–T cell interactions in fibrogenesis and hepatocarcinogenesis and to illustrate the potentials and pitfalls of therapeutic clinical translation.
Collapse
|
45
|
Iberg CA, Hawiger D. Natural and Induced Tolerogenic Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:733-744. [PMID: 32015076 DOI: 10.4049/jimmunol.1901121] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are highly susceptible to extrinsic signals that modify the functions of these crucial APCs. Maturation of DCs induced by diverse proinflammatory conditions promotes immune responses, but certain signals also induce tolerogenic functions in DCs. These "induced tolerogenic DCs" help to moderate immune responses such as those to commensals present at specific anatomical locations. However, also under steady-state conditions, some DCs are characterized by inherent tolerogenic properties. The immunomodulatory mechanisms constitutively present in such "natural tolerogenic DCs" help to promote tolerance to peripheral Ags. By extending tolerance initially established in the thymus, these functions of DCs help to regulate autoimmune and other immune responses. In this review we will discuss the mechanisms and functions of natural and induced tolerogenic DCs and offer further insight into how their possible manipulations may ultimately lead to more precise treatments for various immune-mediated conditions and diseases.
Collapse
Affiliation(s)
- Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
46
|
Wang J, Tian S, Sun J, Zhang J, Lin L, Hu C. The presence of tumour-infiltrating lymphocytes (TILs) and the ratios between different subsets serve as prognostic factors in advanced hypopharyngeal squamous cell carcinoma. BMC Cancer 2020; 20:731. [PMID: 32758195 PMCID: PMC7406390 DOI: 10.1186/s12885-020-07234-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cancer cells induce the infiltration of various immune cells that are located or distributed in different sites and play multiple roles, which have recently been proposed to predict clinical outcomes. We therefore studied the prognostic significance of the presence of tumour-infiltrating lymphocytes (TILs) and the ratios between different types of immune cells in hypopharyngeal squamous cell carcinoma (HPSCC). Methods We retrospectively analysed 132 consecutive patients diagnosed with advanced HPSCC in 2013–2017. Tumoural parenchyma was immunohistochemically counted manually for the number of CD8, CD4 and Foxp3 cells. The ratios of CD8/Foxp3 and CD8/CD4 ratios were calculated for each specimen and analyzed with respect to patient clinicopathological variables and prognosis. Results HPSCC patients with high levels of TILs showed evident correlations with well differentiated tumors (P < 0.05). Moreover, Foxp3+ TIL is also associated with overall staging group and T category (P = 0.048 and P = 0.046, respectively). Kaplan-Meier analysis showed that high CD8 and FoxP3 infiltration correlated with favourable overall survival (OS, P = 0.019 and P = 0.001), disease-free survival (DFS, P = 0.045 and P = 0.028) and distant metastasis-free survival (DMFS, P = 0.034 and P = 0.009), respectively, but only Foxp3 displayed prognostic significance for DMFS in multivariate analysis (MVA). In the lymphocyte ratio analysis, CD8/Foxp3 appeared to play a pivotal role, and patients with a high CD8/Foxp3 ratio had a superior 3-year DFS and DMFS compared with those a low CD8/Foxp3 ratio in both univariate analysis (UVA) and MVA (P = 0.015 and P = 0.011). A high CD8/CD4 ratio was associated with better DFS and local relapse-free survival (LRFS) in UVA, and was an independent prognostic factor for improved LRFS in MVA (P = 0.040). Conclusion Although high TILs levels were determined to be prognostically significant in advanced HPSCC, the ratios of these subsets may be more informative. Particularly, a higher ratio of CD8/Foxp3 accurately predicts prognosis for improved DFS and DMFS, and an increased CD8/CD4 ratio is an independent predictor for favourable LRFS.
Collapse
Affiliation(s)
- Jie Wang
- Department of Radiotherapy, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Shu Tian
- Department of Radiotherapy, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Ji Sun
- Department of Pathology, Eye & ENT Hospital, Fudan University, 2600 jiangyue Road, Shanghai, 201112, China
| | - Jiahao Zhang
- Department of Pathology, Eye & ENT Hospital, Fudan University, 2600 jiangyue Road, Shanghai, 201112, China
| | - Lan Lin
- Department of Pathology, Eye & ENT Hospital, Fudan University, 2600 jiangyue Road, Shanghai, 201112, China
| | - Chunyan Hu
- Department of Pathology, Eye & ENT Hospital, Fudan University, 2600 jiangyue Road, Shanghai, 201112, China.
| |
Collapse
|
47
|
Rajpoot S, Bennett J, Franzoso G, Verzella D, Begalli F, Capece D, D'Andrea D. Reprogramming immunosuppressive tumour-associated dendritic cells with GADD45β inhibitors. Clin Med (Lond) 2020; 20:s116. [PMID: 32409418 DOI: 10.7861/clinmed.20-2-s116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Ishii K, Shimizu M, Kogo H, Negishi Y, Tamura H, Morita R, Takahashi H. A combination of check-point blockade and α-galactosylceramide elicits long-lasting suppressive effects on murine hepatoma cell growth in vivo. Immunobiology 2019; 225:151860. [PMID: 31812347 DOI: 10.1016/j.imbio.2019.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022]
Abstract
Immunotherapy for cancer cells induced by interfering with PD-1/PD-L1 engagement via check-point blockades was initiated by tumour-specific PD-1+ CD8+ cytotoxic T lymphocytes (CTLs) within a tumour mass and eliminate the tumour. Here, we used C57BL/6 (B6) mice implanted with the syngeneic hepatoma cell line Hepa1-6-1, and confirmed that the dendritic cells (DCs) within Hepa1-6-1 tumour mass were tolerogenic with downmodulated co-stimulatory molecules by tumour-derived factors. Although Hepa1-6-1 cells did not prime tumour-specific CTLs within the tumour, specific CTLs primed in the regional lymph nodes seemed to be invaded into the tumour mass. The specific CTLs gained PD-1+ expression when associated with PD-L1+ Hepa1-6-1 cells within the tumour mass. Their cytotoxic activity in vivo was revitalised after intraperitoneal (i.p.) administration of the anti-PD-1 monoclonal antibody (mAb), indicating that PD-1/PD-L1 engagement within the tumour was abrogated by check-point blockade. Nonetheless, the tolerogenic DCs within the Hepa1-6-1 tumour mass remained tolerogenic even after three shots of PD-1-blockade administration, and the suppressed Hepa1-6-1 growth was revisited. In this study, we show here an excellent therapeutic effect consisting of three injections of anti-PD1 mAb and the sequential administration of the CD1d molecule-restricted ligand α-galactosylceramide (α-GalCer), an immuno-potent lipid/glycolipid, which converts tolerogenic DCs into immunogenic DCs with upregulated expression of co-stimulatory molecules. The α-GalCer-activated DCs secreted a large amount of IL-12, which can activate tumour-specific CTLs in vivo. The check-point blockade was not sufficiently effective, but the dose needed for tumour eradication was reduced by 90% when tumour-bearing mice were also administered i.p. α-GalCer.
Collapse
Affiliation(s)
- Kazuhito Ishii
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Hideki Kogo
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Hideto Tamura
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
49
|
Tomita Y, Watanabe E, Shimizu M, Negishi Y, Kondo Y, Takahashi H. Induction of tumor-specific CD8 + cytotoxic T lymphocytes from naïve human T cells by using Mycobacterium-derived mycolic acid and lipoarabinomannan-stimulated dendritic cells. Cancer Immunol Immunother 2019; 68:1605-1619. [PMID: 31531696 PMCID: PMC6805962 DOI: 10.1007/s00262-019-02396-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/13/2019] [Indexed: 11/30/2022]
Abstract
The main effectors in tumor control are the class I MHC molecule-restricted CD8+ cytotoxic T lymphocytes (CTLs). Tumor-specific CTL induction can be regulated by dendritic cells (DCs) expressing both tumor-derived epitopes and co-stimulatory molecules. Immunosuppressive tolerogenic DCs, having down-regulated co-stimulatory molecules, are seen within the tumor mass and can suppress tumor-specific CTL induction. The tolerogenic DCs expressing down-regulated XCR1+CD141+ appear to be induced by tumor-derived soluble factors or dexamethasone, while the immunogenic DCs usually express XCR1+CD141+ molecules with a cross-presentation function in humans. Thus, if tolerogenic DCs can be reactivated into immunogenic DCs with sufficient co-stimulatory molecules, tumor-specific CD8+ CTLs can be primed and activated in vivo. In the present study, we converted human tolerogenic CD141+ DCs with enhanced co-stimulatory molecule expression of CD40, CD80, and CD86 through stimulation with non-toxic mycobacterial lipids such as mycolic acid (MA) and lipoarabinomannan (LAM), which synergistically enhanced both co-stimulatory molecule expression and interleukin (IL)-12 secretion by XCR1+CD141+ DCs. Moreover, MA and LAM-stimulated DCs captured tumor antigens and presented tumor epitope(s) in association with class I MHCs and sufficient upregulated co-stimulatory molecules to prime naïve CD3+ T cells to become CD8+ tumor-specific CTLs. Repeat CD141+ DC stimulation with MA and LAM augmented the secretion of IL-12. These findings provide us a new method for altering the tumor environment by converting tolerogenic DCs to immunogenic DCs with MA and LAM from Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Yuji Tomita
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.,Department of Urology, Nippon Medical School, Tokyo, Japan
| | - Eri Watanabe
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yukihiro Kondo
- Department of Urology, Nippon Medical School, Tokyo, Japan
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
50
|
Wirtz TH, Brandt EF, Berres ML. Liver DCs in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:263-299. [PMID: 31810555 DOI: 10.1016/bs.ircmb.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatic dendritic cells represent a unique and multifaceted subset of antigen-presenting leukocytes that orchestrate specified immune responses in the liver. They are constantly exposed to antigens and signals derived not only from the hepatic microenvironment and the systemic circulation but also from the portal vein draining the gut and conveying food antigens as well as microbial compounds. Modulated by these various factors they shape intrahepatic immune responses during acute and chronic liver diseases, hepatocellular carcinoma and allograft tolerance as well as systemic responses to gut-derived components. Hence, hepatic DC are central targets to decipher and fine-tune innate and adaptive hepatic immune responses as well as tolerance. This review focuses on the origin of hepatic DC, the different DC subsets present in the liver and their functionality during different acute and chronic liver diseases in mice and men and will discuss potential DC directed therapeutic interventions in liver disease.
Collapse
Affiliation(s)
| | | | - Marie-Luise Berres
- Medical Department III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|