1
|
Zou M, Lei C, Huang D, Liu L, Han Y. Application of plant-derived products as adjuvants for immune activation and vaccine development. Vaccine 2024; 42:126115. [PMID: 38987109 DOI: 10.1016/j.vaccine.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Vaccines are one of the most important means to prevent and control the epidemic of infectious diseases. Commercial vaccines not only include corresponding antigens, but also need vaccine adjuvants. Immune adjuvants play an increasingly important role in the research, development and manufacture of vaccines. Adjuvants combined with antigens can improve the stability, safety and immune efficiency of vaccines. Some substances that can enhance the immune response have been found in nature(mainly plants) and used as adjuvants in vaccines to improve the immune effect of vaccines. These plant-derived immune adjuvants often have the advantages of low toxicity, high stability, low price, etc., providing more possibilities for vaccine development. We summarized and analyzed the advantages, application research, particulate delivery systems, existing problems and future research focus of botanical adjuvant. It is hoped to provide new ideas for the research and development of immune adjuvants in the future.
Collapse
Affiliation(s)
- Manshu Zou
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Chang Lei
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Dan Huang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Lan Liu
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Yuanshan Han
- The First Hospital, Hunan University of Chinese Medicine, Hunan Province, Changsha 410007, China.
| |
Collapse
|
2
|
Bai Y, Song Y, Li M, Ou J, Hu H, Xu N, Cao M, Wang S, Chen L, Cheng G, Li Z, Liu G, Wang J, Zhang W, Yang C. Dissection of molecular mechanisms of liver injury induced by microcystin-leucine arginine via single-cell RNA-sequencing. J Environ Sci (China) 2024; 145:164-179. [PMID: 38844317 DOI: 10.1016/j.jes.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 07/28/2024]
Abstract
The occurrence of poisoning incidents caused by cyanobacterial blooms has aroused wide public concern. Microcystin-leucine arginine (MC-LR) is a well-established toxin produced by cyanobacterial blooms, which is widely distributed in eutrophic waters. MC-LR is not only hazardous to the water environment but also exerts multiple toxic effects including liver toxicity in both humans and animals. However, the underlying mechanisms of MC-LR-induced liver toxicity are unclear. Herein, we used advanced single-cell RNA sequencing technology to characterize MC-LR-induced liver injury in mice. We established the first single-cell atlas of mouse livers in response to MC-LR. Our results showed that the differentially expressed genes and pathways in diverse cell types of liver tissues of mice treated with MC-LR are highly heterogeneous. Deep analysis showed that MC-LR induced an increase in a subpopulation of hepatocytes that highly express Gstm3, which potentially contributed to hepatocyte apoptosis in response to MC-LR. Moreover, MC-LR increased the proportion and multiple subtypes of Kupffer cells with M1 phenotypes and highly expressed proinflammatory genes. Furthermore, the MC-LR increased several subtypes of CD8+ T cells with highly expressed multiple cytokines and chemokines. Overall, apart from directly inducing hepatocytes apoptosis, MC-LR activated proinflammatory Kupffer cell and CD8+ T cells, and their interaction may constitute a hostile microenvironment that contributes to liver injury. Our findings not only present novel insight into underlying molecular mechanisms but also provide a valuable resource and foundation for additional discovery of MC-LR-induced liver toxicity.
Collapse
Affiliation(s)
- Yunmeng Bai
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China; Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China
| | - Miaoran Li
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinhuan Ou
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Hong Hu
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Nan Xu
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Min Cao
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Siyu Wang
- Faculty of Brain Sciences, University College London, WC1E 6BT, UK
| | - Lin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhijie Li
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jigang Wang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China; Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Zhang
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Chuanbin Yang
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
3
|
Zhang H, Ren Y, Wang F, Tu X, Tong Z, Liu L, Zheng Y, Zhao P, Cheng J, Li J, Fang W, Liu X. The long-term effectiveness and mechanism of oncolytic virotherapy combined with anti-PD-L1 antibody in colorectal cancer patient. Cancer Gene Ther 2024; 31:1412-1426. [PMID: 39068234 PMCID: PMC11405277 DOI: 10.1038/s41417-024-00807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Colorectal cancer (CRC) is known to be resistant to immunotherapy. In our phase-I clinical trial, one patient achieved a 313-day prolonged response during the combined treatment of oncolytic virotherapy and immunotherapy. To gain a deeper understanding of the potential molecular mechanisms, we performed a comprehensive multi-omics analysis on this patient and three non-responders. Our investigation unveiled that, initially, the tumor microenvironment (TME) of this responder presented minimal infiltration of T cells and natural killer cells, along with a relatively higher presence of macrophages compared to non-responders. Remarkably, during treatment, there was a progressive increase in CD4+ T cells, CD8+ T cells, and B cells in the responder's tumor tissue. This was accompanied by a significant upregulation of transcription factors associated with T-cell activation and cytotoxicity, including GATA3, EOMES, and RUNX3. Furthermore, dynamic monitoring of peripheral blood samples from the responder revealed a rapid decrease in circulating tumor DNA (ctDNA), suggesting its potential as an early blood biomarker of treatment efficacy. Collectively, our findings demonstrate the effectiveness of combined oncolytic virotherapy and immunotherapy in certain CRC patients and provide molecular evidence that virotherapy can potentially transform a "cold" TME into a "hot" one, thereby improving sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Hangyu Zhang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Yiqing Ren
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Feiyu Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Xiaoxuan Tu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Zhou Tong
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Lulu Liu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Yi Zheng
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Peng Zhao
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Jinlin Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Jianwen Li
- Geneplus-Shenzhen, Shenzhen, P. R. China.
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China.
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
4
|
Yan C, Du W, Kirkwood KL, Wang Y, Zhou W, Li Z, Tian Y, Lin S, Zheng L, Al-Aroomi MA, Gao J, Jiang S, Sun C, Liu F. CCR7 affects the tumor microenvironment by regulating the activation of naïve CD8 + T cells to promote the proliferation of oral squamous cell carcinoma. Transl Oncol 2024; 44:101924. [PMID: 38430712 PMCID: PMC10920962 DOI: 10.1016/j.tranon.2024.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Head and neck cancer is the sixth most common malignancy worldwide, and oral squamous cell carcinoma (OSCC) is the most common head and neck cancer, being one of the leading causes of cancer morbidity and mortality worldwide. CC Chemokine receptor 7(CCR7) is a multifunctional G protein-coupled trans-membrane chemokine that affects immune cell chemotaxis, migration, and cancer progression through its interaction with its ligands C-C motif chemokine ligand 19(CCL19) and C-C motif chemokine ligand 21(CCL21). Numerous studies have demonstrated the involvement of CCR7 in the malignant progression of a variety of cancers, reflecting the pro-cancer properties of CCR7. The Cancer Genome Atlas data suggests CCR7 has elevated expression in oral cancer. Specifically, CCR7 expression in tumor microenvironment (TME) may regulate the ability of some immune cells to engage in anti-tumor immune responses. Since CD8+ T cells have become a key immunotherapeutic target, the role of CCR7 in antitumor immune response of naïve CD8+ T cells in TME has not been thoroughly investigated. METHODS A CCR7 knockout mouse model was constructed, and the mechanism of ccr7 on the regulation of tumor microenvironment by naïve CD8+ T cells was verified under the guidance of single-cell RNA sequencing combined with in vivo animal experiments and in vitro cell experiments. RESULTS CCR7 is knocked out with impaired tumor growth and altered CD8+ T cell profiles, revealing the importance of this protein in OSCC. CONCLUSIONS Inhibition of CCR7 enhances CD8+ T cell activation, proliferation, and anti-tumor function, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Cong Yan
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Weidong Du
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Keith L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214-8006, USA
| | - Yao Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Wanhang Zhou
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Zhenning Li
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Yuan Tian
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Shanfeng Lin
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Li Zheng
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Maged Ali Al-Aroomi
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Jiaxing Gao
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Sheng Jiang
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Changfu Sun
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China
| | - Fayu Liu
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
5
|
Qiu J, Yin W, Wang R, Luo S, Zhou Z. Fulminant type 1 diabetes: Focusing on triggering factors. Diabetes Metab Res Rev 2024; 40:e3731. [PMID: 37814918 DOI: 10.1002/dmrr.3731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 10/11/2023]
Abstract
Fulminant type 1 diabetes (FT1D) is a novel type of type 1 diabetes that is caused by extremely rapid destruction of the pancreatic β cells. Early diagnosis or prediction of FT1D is critical for the prevention or timely treatment of diabetes ketoacidosis, which can be life-threatening. Understanding its triggers or promoting factors plays an important role in the prevention and treatment of FT1D. In this review, we summarised the various triggering factors of FT1D, including susceptibility genes, immunological factors (cellular and humoural immunity), immune checkpoint inhibitor therapies, drug reactions with eosinophilia and systemic symptoms or drug-induced hypersensitivity syndrome, pregnancy, viral infections, and vaccine inoculation. This review provides the basis for future research into the pathogenetic mechanisms that regulate FT1D development and progression to further improve the prognosis and clinical management of patients with FT1D.
Collapse
Affiliation(s)
- Junlin Qiu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenfeng Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rui Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Yu E, Zhang M, Xu G, Liu X, Yan J. Consensus cluster analysis of apoptosis-related genes in patients with osteoarthritis and their correlation with immune cell infiltration. Front Immunol 2023; 14:1202758. [PMID: 37860011 PMCID: PMC10582959 DOI: 10.3389/fimmu.2023.1202758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
Background Osteoarthritis (OA) progression involves multiple factors, including cartilage erosion as the basic pathological mechanism of degeneration, and is closely related to chondrocyte apoptosis. To analyze the correlation between apoptosis and OA development, we selected apoptosis genes from the differentially expressed genes (DEGs) between OA and normal samples from the Gene Expression Omnibus (GEO) database, used lasso regression analysis to identify characteristic genes, and performed consensus cluster analysis to further explore the pathogenesis of this disease. Methods The Gene expression profile datasets of OA samples, GSE12021 and GSE55235, were downloaded from GEO. The datasets were combined and analyzed for DEGs. Apoptosis-related genes (ARGs) were collected from the GeneCards database and intersected with DEGs for apoptosis-related DEGs (ARDEGs). Least absolute shrinkage and selection operator (LASSO) regression analysis was performed to obtain characteristic genes, and a nomogram was constructed based on these genes. A consensus cluster analysis was performed to divide the patients into clusters. The immune characteristics, functional enrichment, and immune infiltration statuses of the clusters were compared. In addition, a protein-protein interaction network of mRNA drugs, mRNA-transcription factors (TFs), and mRNA-miRNAs was constructed. Results A total of 95 DEGs were identified, of which 47 were upregulated and 48 were downregulated, and 31 hub genes were selected as ARDEGs. LASSO regression analysis revealed nine characteristic genes: growth differentiation factor 15 (GDF15), NAMPT, TLR7, CXCL2, KLF2, REV3L, KLF9, THBD, and MTHFD2. Clusters A and B were identified, and neutrophil activation and neutrophil activation involved in the immune response were highly enriched in Cluster B, whereas protein repair and purine salvage signal pathways were enriched in Cluster A. The number of activated natural killer cells in Cluster B was significantly higher than that in Cluster A. GDF15 and KLF9 interacted with 193 and 32 TFs, respectively, and CXCL2 and REV3L interacted with 48 and 82 miRNAs, respectively. Conclusion ARGs could predict the occurrence of OA and may be related to different degrees of OA progression.
Collapse
Affiliation(s)
| | | | | | | | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Lu W, Bai Y, Zhang S, Zhao X, Jin J, Zhu X, Wang R, Wu Y, Zhang A, Zhang G, Zhuang G, Sun A. An Intracellular Epitope of ASFV CD2v Protein Elicits Humoral and Cellular Immune Responses. Animals (Basel) 2023; 13:1967. [PMID: 37370477 DOI: 10.3390/ani13121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The African swine fever virus (ASFV) causes high mortality in domestic pigs. ASFV encodes an important protein target for subunit vaccine development, CD2v, but its most effective immunological regions are not known. Herein, we generated a monoclonal antibody (mAb) named IF3 by immunizing mice against the intracellular region of the CD2v protein (CD2v-IR). 1F3 specifically recognized CD2v, which is expressed transiently in transfected Sf9 cells and also in inactivated ASFV-infected porcine alveolar macrophage (PAM) cells. The epitope recognized by 1F3 is 264EPSPREP270, which is highly conserved in ASFV genotypes. Immunization of mice with this epitope elicited an increased IgG response, including IgG1 and IgG2a subtypes, and also increased CD8+ T cells and cytokine expression. Overall, these results indicate that this epitope induces both humoral and cellular immune responses that may be used for ASFV-related subunit vaccine design and development.
Collapse
Affiliation(s)
- Wenlong Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yilin Bai
- Laboratory of Indigenous Cattle Germplasm Innovation, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiaxin Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaojing Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Rui Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
8
|
Mass Cytometry Reveals the Imbalanced Immune State in the Peripheral Blood of Patients with Essential Hypertension. Cardiovasc Ther 2023; 2023:9915178. [PMID: 36891527 PMCID: PMC9988372 DOI: 10.1155/2023/9915178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
Mounting evidence has confirmed that essential hypertension (EH) is closely related to low-grade inflammation, but there is still a lack of in-depth understanding of the state of immune cells in the circulating blood of patients with EH. We analyzed whether hypertensive peripheral blood immune cell balance was destroyed. The peripheral blood mononuclear cells (PBMCs) of all subjects were analyzed using time-of-flight cytometry (CyTOF) based on 42 kinds of metal-binding antibodies. CD45+ cells were categorized into 32 kinds of subsets. Compared with the health control (HC) group, the percentage of total dendritic cells, two kinds of myeloid dendritic cell subsets, one intermediate/nonclassical monocyte subset and one CD4+ central memory T cell subset in the EH group, was significantly higher; the percentage of low-density neutrophils, four kinds of classical monocyte subsets, one CD14lowCD16- monocyte subset, one naive CD4+ and one naive CD8+ T cell subsets, one CD4+ effector and one CD4+ central memory T cell subsets, one CD8+ effector memory T cell subset, and one terminally differentiated γδ T cell subset, decreased significantly in EH. What is more, the expression of many important antigens was enhanced in CD45+ immune cells, granulocytes, and B cells in patients with EH. In conclusion, the altered number and antigen expression of immune cells reflect the imbalanced immune state of the peripheral blood in patients with EH.
Collapse
|
9
|
Yan X, Zhang X, Wu HH, Wu SJ, Tang XY, Liu TZ, Li S. Novel T-cell signature based on cell pair algorithm predicts survival and immunotherapy response for patients with bladder urothelial carcinoma. Front Immunol 2022; 13:994594. [PMID: 36466869 PMCID: PMC9712189 DOI: 10.3389/fimmu.2022.994594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Background T-cell-T-cell interactions play important roles in the regulation of T-cells' cytotoxic function, further impacting the anti-tumor efficacy of immunotherapy. There is a lack of comprehensive studies of T-cell types in bladder urothelial carcinoma (BLCA) and T-cell-related signatures for predicting prognosis and monitoring immunotherapy efficacy. Methods More than 3,400 BLCA patients were collected and used in the present study. The ssGSEA algorithm was applied to calculate the infiltration level of 19 T-cell types. A cell pair algorithm was applied to construct a T-cell-related prognostic index (TCRPI). Survival analysis was performed to measure the survival difference across TCRPI-risk groups. Spearman's correlation analysis was used for relevance assessment. The Wilcox test was used to measure the expression level difference. Results Nineteen T-cell types were collected; 171 T-cell pairs (TCPs) were established, of which 26 were picked out by the least absolute shrinkage and selection operator (LASSO) analysis. Based on these TCPs, the TCRPI was constructed and validated to play crucial roles in survival stratification and the dynamic monitoring of immunotherapy effects. We also explored several candidate drugs targeting TCRPI. A composite TCRPI and clinical prognostic index (CTCPI) was then constructed, which achieved a more accurate estimation of BLCA's survival and was therefore a better choice for prognosis prediction in BLCA. Conclusions All in all, we constructed and validated TCRPI based on cell pair algorithms in this study, which might put forward some new insights to increase the survival estimation and clinical response to immune therapy for individual BLCA patients and contribute to the personalized precision immunotherapy strategy of BLCA.
Collapse
Affiliation(s)
- Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua-Hui Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shao-Jie Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Yu Tang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tong-Zu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Zhang Z, Jiang Z, Deng T, Zhang J, Liu B, Liu J, Qiu R, Zhang Q, Li X, Nian X, Hong Y, Li F, Peng F, Zhao W, Xia Z, Huang S, Liang S, Chen J, Li C, Yang X. Preclinical immunogenicity assessment of a cell-based inactivated whole-virion H5N1 influenza vaccine. Open Life Sci 2022; 17:1282-1295. [PMID: 36249527 PMCID: PMC9518664 DOI: 10.1515/biol-2022-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022] Open
Abstract
In influenza vaccine development, Madin–Darby canine kidney (MDCK) cells provide multiple advantages, including large-scale production and egg independence. Several cell-based influenza vaccines have been approved worldwide. We cultured H5N1 virus in a serum-free MDCK cell suspension. The harvested virus was manufactured into vaccines after inactivation and purification. The vaccine effectiveness was assessed in the Wuhan Institute of Biological Products BSL2 facility. The pre- and postvaccination mouse serum titers were determined using the microneutralization and hemagglutination inhibition tests. The immunological responses induced by vaccine were investigated using immunological cell classification, cytokine expression quantification, and immunoglobulin G (IgG) subtype classification. The protective effect of the vaccine in mice was evaluated using challenge test. Antibodies against H5N1 in rats lasted up to 8 months after the first dose. Compared with those of the placebo group, the serum titer of vaccinated mice increased significantly, Th1 and Th2 cells were activated, and CD8+ T cells were activated in two dose groups. Furthermore, the challenge test showed that vaccination reduced the clinical symptoms and virus titer in the lungs of mice after challenge, indicating a superior immunological response. Notably, early after vaccination, considerably increased interferon-inducible protein-10 (IP-10) levels were found, indicating improved vaccine-induced innate immunity. However, IP-10 is an adverse event marker, which is a cause for concern. Overall, in the case of an outbreak, the whole-virion H5N1 vaccine should provide protection.
Collapse
Affiliation(s)
- Zhegang Zhang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Zheng Jiang
- National Institute of Food and Drug Control , Beijing , 100050 , China
| | - Tao Deng
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Jiayou Zhang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Bo Liu
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Jing Liu
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Ran Qiu
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Qingmei Zhang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Xuedan Li
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Xuanxuan Nian
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Yue Hong
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Fang Li
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Feixia Peng
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Wei Zhao
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
| | - Zhiwu Xia
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
| | - Shihe Huang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
| | | | - Jinhua Chen
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Changgui Li
- National Institute of Food and Drug Control , Beijing , 100050 , China
| | - Xiaoming Yang
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
- China National Biotec Group , Beijing , 100029 , China
| |
Collapse
|
11
|
Sekaran SD, Ismail AA, Thergarajan G, Chandramathi S, Rahman SKH, Mani RR, Jusof FF, Lim YAL, Manikam R. Host immune response against DENV and ZIKV infections. Front Cell Infect Microbiol 2022; 12:975222. [PMID: 36159640 PMCID: PMC9492869 DOI: 10.3389/fcimb.2022.975222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Dengue is a major public health concern, affecting almost 400 million people worldwide, with about 70% of the global burden of disease in Asia. Despite revised clinical classifications of dengue infections by the World Health Organization, the wide spectrum of the manifestations of dengue illness continues to pose challenges in diagnosis and patient management for clinicians. When the Zika epidemic spread through the American continent and then later to Africa and Asia in 2015, researchers compared the characteristics of the Zika infection to Dengue, considering both these viruses were transmitted primarily through the same vector, the Aedes aegypti female mosquitoes. An important difference to note, however, was that the Zika epidemic diffused in a shorter time span compared to the persisting feature of Dengue infections, which is endemic in many Asian countries. As the pathogenesis of viral illnesses is affected by host immune responses, various immune modulators have been proposed as biomarkers to predict the risk of the disease progression to a severe form, at a much earlier stage of the illness. However, the findings for most biomarkers are highly discrepant between studies. Meanwhile, the cross-reactivity of CD8+ and CD4+ T cells response to Dengue and Zika viruses provide important clues for further development of potential treatments. This review discusses similarities between Dengue and Zika infections, comparing their disease transmissions and vectors involved, and both the innate and adaptive immune responses in these infections. Consideration of the genetic identity of both the Dengue and Zika flaviviruses as well as the cross-reactivity of relevant T cells along with the actions of CD4+ cytotoxic cells in these infections are also presented. Finally, a summary of the immune biomarkers that have been reported for dengue and Zika viral infections are discussed which may be useful indicators for future anti-viral targets or predictors for disease severity. Together, this information appraises the current understanding of both Zika and Dengue infections, providing insights for future vaccine design approaches against both viruses.
Collapse
Affiliation(s)
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S. K. Hanan Rahman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ravishankar Ram Mani
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Felicita Fedelis Jusof
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Chen Y, Yi X, Sun N, Guo W, Li C. Epigenetics Regulates Antitumor Immunity in Melanoma. Front Immunol 2022; 13:868786. [PMID: 35693795 PMCID: PMC9174518 DOI: 10.3389/fimmu.2022.868786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Melanoma is the most malignant skin cancer, which originates from epidermal melanocytes, with increasing worldwide incidence. The escape of immune surveillance is a hallmark of the tumor, which is manifested by the imbalance between the enhanced immune evasion of tumor cells and the impaired antitumor capacity of infiltrating immune cells. According to this notion, the invigoration of the exhausted immune cells by immune checkpoint blockades has gained encouraging outcomes in eliminating tumor cells and significantly prolonged the survival of patients, particularly in melanoma. Epigenetics is a pivotal non-genomic modulatory paradigm referring to heritable changes in gene expression without altering genome sequence, including DNA methylation, histone modification, non-coding RNAs, and m6A RNA methylation. Accumulating evidence has demonstrated how the dysregulation of epigenetics regulates multiple biological behaviors of tumor cells and contributes to carcinogenesis and tumor progression in melanoma. Nevertheless, the linkage between epigenetics and antitumor immunity, as well as its implication in melanoma immunotherapy, remains elusive. In this review, we first introduce the epidemiology, clinical characteristics, and therapeutic innovations of melanoma. Then, the tumor microenvironment and the functions of different types of infiltrating immune cells are discussed, with an emphasis on their involvement in antitumor immunity in melanoma. Subsequently, we systemically summarize the linkage between epigenetics and antitumor immunity in melanoma, from the perspective of distinct paradigms of epigenetics. Ultimately, the progression of the clinical trials regarding epigenetics-based melanoma immunotherapy is introduced.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ningyue Sun
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Yu L, Guan Y, Li L, Lu N, Zhang C. The transcription factor Eomes promotes expression of inhibitory receptors on hepatic CD8
+
T cells during HBV persistence. FEBS J 2022; 289:3241-3261. [DOI: 10.1111/febs.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Linyan Yu
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| | - Yun Guan
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
- Jining NO. 1 People’s Hospital China
| | - Lei Li
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| | - Nan Lu
- Institute of Diagnostics School of Medicine Cheeloo College of Medicine Shandong University Jinan China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| |
Collapse
|
14
|
Lv H, Fei Y, Li W, Wang Y, Wang J, He J, Liu X, Li L, Qiu L, Qian Z, Zhou S, Meng B, Zhai Q, Ren X, Zou D, Cai Q, Wang X, Zhang H. A Novel Clinical Immune‐Related Prognostic Model Predicts the Overall Survival of Mantle Cell Lymphoma. Hematol Oncol 2022; 40:343-355. [PMID: 35368100 DOI: 10.1002/hon.2994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Huijuan Lv
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
- Department of Medical Oncology The Fourth People’s Hospital of Jinan Jinan Shandong250031 China
| | - Yue Fei
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Wei Li
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Yi Wang
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases Haihe Laboratory of Cell Ecosystem Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Jinni Wang
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou PR China
| | - Jin He
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Xianming Liu
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Lanfang Li
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Lihua Qiu
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Zhengzi Qian
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Shiyong Zhou
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Bin Meng
- Department of Pathology Tianjin Medical University Cancer Institute and Hospital Tianjin300060 China
| | - Qiongli Zhai
- Department of Pathology Tianjin Medical University Cancer Institute and Hospital Tianjin300060 China
| | - Xiubao Ren
- Department of Immunology/Biotherapy Tianjin Medical University Cancer Institute and Hospital Tianjin300060 China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases Haihe Laboratory of Cell Ecosystem Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Qingqing Cai
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou PR China
| | - Xianhuo Wang
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Huilai Zhang
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| |
Collapse
|
15
|
Hu H, Liu R, Zhao C, Lu Y, Xiong Y, Chen L, Jin J, Ma Y, Su J, Yu Z, Cheng F, Ye F, Liu L, Zhao Q, Shuai J. CITEMOXMBD: A flexible single-cell multimodal omics analysis framework to reveal the heterogeneity of immune cells. RNA Biol 2022; 19:290-304. [PMID: 35130112 PMCID: PMC8824218 DOI: 10.1080/15476286.2022.2027151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Simultaneous measurement of multiple modalities in single-cell analysis, represented by CITE-seq, is a promising approach to link transcriptional changes to cellular phenotype and function, requiring new computational methods to define cellular subtypes and states based on multiple data types. Here, we design a flexible single-cell multimodal analysis framework, called CITEMO, to integrate the transcriptome and antibody-derived tags (ADT) data to capture cell heterogeneity from the multi omics perspective. CITEMO uses Principal Component Analysis (PCA) to obtain a low-dimensional representation of the transcriptome and ADT, respectively, and then employs PCA again to integrate these low-dimensional multimodal data for downstream analysis. To investigate the effectiveness of the CITEMO framework, we apply CITEMO to analyse the cell subtypes of Cord Blood Mononuclear Cells (CBMC) samples. Results show that the CITEMO framework can comprehensively analyse single-cell multimodal samples and accurately identify cell subtypes. Besides, we find some specific immune cells that co-express multiple ADT markers. To better describe the co-expression phenomenon, we introduce the co-expression entropy to measure the heterogeneous distribution of the ADT combinations. To further validate the robustness of the CITEMO framework, we analyse Human Bone Marrow Cell (HBMC) samples and identify different states of the same cell type. CITEMO has an excellent performance in identifying cell subtypes and states for multimodal omics data. We suggest that the flexible design idea of CITEMO can be an inspiration for other single-cell multimodal tasks. The complete source code and dataset of the CITEMO framework can be obtained from https://github.com/studentiz/CITEMO.
Collapse
Affiliation(s)
- Huan Hu
- Department of Physics, And Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chunlin Zhao
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuer Lu
- Department of Physics, And Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Yichun Xiong
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Lingling Chen
- Department of Physics, And Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Jun Jin
- Department of Physics, And Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jianzhong Su
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng Cheng
- Department of Physics, And Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liyu Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Jianwei Shuai
- Department of Physics, And Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Puleo J, Polyak K. A Darwinian perspective on tumor immune evasion. Biochim Biophys Acta Rev Cancer 2022; 1877:188671. [PMID: 34933050 PMCID: PMC8818030 DOI: 10.1016/j.bbcan.2021.188671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
Evading immune-mediated destruction is a critical step of tumor evolution and the immune system is one of the strongest selective pressures during tumorigenesis. Analyzing tumor immune evasion from a Darwinian perspective may provide critical insight into the mechanisms of primary immune escape and acquired resistance to immunotherapy. Here, we review the steps required to mount an anti-tumor immune response, describe how each of these steps is disrupted during tumorigenesis, list therapeutic strategies to restore anti-tumor immunity, and discuss each mechanism of immune and therapeutic evasion from a Darwinian perspective.
Collapse
Affiliation(s)
- Julieann Puleo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Liu H, Zhou L, Wang H, Wang X, Qu G, Cai J, Zhang H. Malnutrition is associated with hyperinflammation and immunosuppression in COVID-19 patients: A prospective observational study. Nutr Clin Pract 2021; 36:863-871. [PMID: 33978988 PMCID: PMC8242896 DOI: 10.1002/ncp.10679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is spreading globally and has caused many deaths. This study investigated, for the first time, COVID-19 patients' nutrition status and its effects on their inflammatory and immune responses. METHODS Forty-seven COVID-19 patients were recruited for this prospective study. According to the subjective global assessment at admission, patients were divided into the normal nutrition (NN), risk of malnutrition (RMN), or MN group. Serum cytokines and whole blood T-cell subpopulations were measured to assess the inflammatory and immune responses in COVID-19 patients. Analysis of covariance and χ2 tests were used. RESULTS On admission, the incidences of MN and the RMN in COVID-19 patients were 17.0% and 38.3%, respectively. The MN group had a higher proportion with severe/critical COVID-19 and a longer hospitalization duration than the NN group. Serum interleukin (IL) 6 concentrations were elevated in 97.9% of the patients and were the highest in malnourished patients. The IL-4 and IL-10 levels were elevated in 46.8% and 48.9% of the patients, respectively. The proportion of CD8+ T cells was significantly lower in the MN group than in the NN group. CONCLUSION A high proportion of COVID-19 patients are malnourished or at risk of malnuourishment, especially those with severe disease. MN is associated with hyperinflammation and immunosuppression in COVID-19 patients, and it may contribute to disease progression.
Collapse
Affiliation(s)
- Heng Liu
- Department of GastroenterologyFirst Affiliated Hospital of Anhui Medical UniversityHefeiPRChina
| | - Liang Zhou
- Emergency DepartmentFirst Affiliated Hospital of Anhui Medical UniversityHefeiPRChina
| | - Hugen Wang
- Department of GastroenterologyFirst Affiliated Hospital of Anhui Medical UniversityHefeiPRChina
| | - Xiaobo Wang
- Emergency DepartmentFirst Affiliated Hospital of Anhui Medical UniversityHefeiPRChina
| | - Guangbo Qu
- Department of Epidemiology and HealthSchool of Public HealthAnhui Medical UniversityHefeiPRChina
| | - Jing Cai
- Department of RheumatologyFirst Affiliated Hospital of Anhui Medical UniversityHefeiPRChina
| | - Hong Zhang
- Emergency DepartmentFirst Affiliated Hospital of Anhui Medical UniversityHefeiPRChina
| |
Collapse
|
18
|
Cevaal PM, Ali A, Czuba-Wojnilowicz E, Symons J, Lewin SR, Cortez-Jugo C, Caruso F. In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS NANO 2021; 15:3736-3753. [PMID: 33600163 DOI: 10.1021/acsnano.0c09514] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T cells play an important role in immunity and repair and are implicated in diseases, including blood cancers, viral infections, and inflammation, making them attractive targets for the treatment and prevention of diseases. Over recent years, the advent of nanomedicine has shown an increase in studies that use nanoparticles as carriers to deliver therapeutic cargo to T cells for ex vivo and in vivo applications. Nanoparticle-based delivery has several advantages, including the ability to load and protect a variety of drugs, control drug release, improve drug pharmacokinetics and biodistribution, and site- or cell-specific targeting. However, the delivery of nanoparticles to T cells remains a major technological challenge, which is primarily due to the nonphagocytic nature of T cells. In this review, we discuss the physiological barriers to effective T cell targeting and describe the different approaches used to deliver cargo-loaded nanoparticles to T cells for the treatment of disease such as T cell lymphoma and human immunodeficiency virus (HIV). In particular, engineering strategies that aim to improve nanoparticle internalization by T cells, including ligand-based targeting, will be highlighted. These nanoparticle engineering approaches are expected to inspire the development of effective nanomaterials that can target or manipulate the function of T cells for the treatment of T cell-related diseases.
Collapse
Affiliation(s)
| | | | - Ewa Czuba-Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Sharon R Lewin
- Victorian Infectious Diseases, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3004, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
19
|
Jin Z, Li X, Zhang X, Paul D, Xu T, Wu A. Engineering the fate and function of human T-cells via 3D bioprinting. Biofabrication 2020; 13. [PMID: 33348331 DOI: 10.1088/1758-5090/abd56b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022]
Abstract
T-cell immunotherapy holds promise for the treatment of cancer, infection, and autoimmune diseases. Nevertheless, T-cell therapy is limited by low cell expansion efficiency ex vivo and functional deficits. Here we describe two 3D bioprinting systems made by different biomaterials that mimic the in vivo formation of natural lymph vessels and lymph nodes which modulate T-cell with distinct fates and functions. We observe that coaxial alginate fibers promote T-cell expansion, less exhausted and enable CD4+ T-cell differentiation into central memory-like phenotype (Tcm), CD8+ T-cells differentiation into effector memory subsets (Tem), while alginate-gelatin scaffolds bring T-cells into a relatively resting state. Both of the two bioprinting methods are strikingly different from a standard suspension system. The former bioprinting method yields a new system for T-cell therapy and the latter method can be useful for making an immune-chip to elucidate links between immune response and disease.
Collapse
Affiliation(s)
- Zhizhong Jin
- The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China., Shenyang, Liaoning, 110001, CHINA
| | - Xinda Li
- Department of Mechanical Engineering, Tsinghua University, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China., Beijing, 100084, CHINA
| | - Xinzhi Zhang
- Tsinghua University, East China Institute of Digital Medical Engineering, Shangrao, 334000, China., Medprin Regenerative Medical Technologies Co., Ltd, Shenzhen, 518102, China., Beijing, 334000, CHINA
| | - Desousa Paul
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK., University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK., Edinburgh, EH16 4SB, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Tao Xu
- Institute of Materials Processing Equipment and Automation, Department of Mechanical Engneering,, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China., Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, China., Beijing, 100084, CHINA
| | - Anhua Wu
- Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China., Shenyang, 110001, CHINA
| |
Collapse
|
20
|
Ma Z, Gao X, Shuai Y, Xing X, Ji J. The m6A epitranscriptome opens a new charter in immune system logic. Epigenetics 2020; 16:819-837. [PMID: 33070685 DOI: 10.1080/15592294.2020.1827722] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent RNA internal modification, is present in most eukaryotic species and prokaryotes. Studies have highlighted an intricate network architecture by which m6A epitranscriptome impacts on immune response and function. However, it was only until recently that the mechanisms underlying the involvement of m6A modification in immune system were uncovered. Here, we systematically review the m6A involvement in the regulation of innate and adaptive immune cells. Further, the interplay between m6A modification and anti-inflammatory, anti-viral and anti-tumour immunity is also comprehensively summarized. Finally, we focus on the future prospects of m6A modification in immune modulation. A better understanding of the crosstalk between m6A modification and immune system is of great significance to reveal new pathogenic pathways and to develop promising therapeutic targets of diseases.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
21
|
Shi C, Han W, Zhang M, Zang R, Du K, Li L, Xu X, Li C, Wang S, Qiu P, Guan H, Yang J, Xiao S, Wang X. Sulfated polymannuroguluronate TGC161 ameliorates leukopenia by inhibiting CD4 + T cell apoptosis. Carbohydr Polym 2020; 247:116728. [PMID: 32829850 PMCID: PMC7336955 DOI: 10.1016/j.carbpol.2020.116728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Structure of TGC161 was characterized by NMR, FT-IR, and HPGPC. TGC161 ameliorates the leukopenia induced by chemotherapy. TGC161 promotes CD4+ T cell differentiation and maturation in the thymus. TGC161 inhibits CD4+ T cell apoptosis in vitro.
Polysaccharides have aroused considerable interest due to their diverse biological activities and low toxicity. In this study, we evaluated the effect of marine polysaccharide sulfated polymannuroguluronate (TGC161) on the leukopenia induced by chemotherapy. It is found that TGC161 ameliorates the leukopenia. Besides, TGC161 would promote CD4+ T cell differentiation and maturation in the thymus, but does not have a significant effect on precursor cells in bone marrow. Furthermore, TGC161 inhibits CD4+ T cell apoptosis in vitro. Collectively, our findings offer a natural and harmless polysaccharide to ameliorate leukopenia.
Collapse
Affiliation(s)
- Chuanqin Shi
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Wenwei Han
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Meifang Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Ruochen Zang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Kaixin Du
- Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Shixin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Peiju Qiu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Shuai Xiao
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, the First Affiliated Hospital, University of South China, Hengyang, 421001, China.
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
22
|
Matson CA, Singh NJ. Manipulating the TCR signaling network for cellular immunotherapy: Challenges & opportunities. Mol Immunol 2020; 123:64-73. [PMID: 32422416 DOI: 10.1016/j.molimm.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
T cells can help confer protective immunity by eliminating infections and tumors or drive immunopathology by damaging host cells. Both outcomes require a series of steps from the activation of naïve T cells to their clonal expansion, differentiation and migration to tissue sites. In addition to specific recognition of the antigen via the T cell receptor (TCR), multiple accessory signals from costimulatory molecules, cytokines and metabolites also influence each step along the progression of the T cell response. Current efforts to modify effector T cell function in many clinical contexts focus on the latter - which encompass antigen-independent and broad, contextual regulators. Not surprisingly, such approaches are often accompanied by adverse events, as they also affect T cells not relevant to the specific treatment. In contrast, fine tuning T cell responses by precisely targeting antigen-specific TCR signals has the potential to radically alter therapeutic strategies in a focused manner. Development of such approaches, however, requires a better understanding of functioning of the TCR and the biochemical signaling network coupled to it. In this article, we review some of the recent advances which highlight important roles of TCR signals throughout the activation and differentiation of T cells during an immune response. We discuss how, an appreciation of specific signaling modalities and variant ligands that influence the function of the TCR has the potential to influence design principles for the next generation of pharmacologic and cellular therapies, especially in the context of tumor immunotherapies involving adoptive cell transfers.
Collapse
Affiliation(s)
- Courtney A Matson
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States.
| |
Collapse
|
23
|
Lämmermann T, Kastenmüller W. Concepts of GPCR-controlled navigation in the immune system. Immunol Rev 2020; 289:205-231. [PMID: 30977203 PMCID: PMC6487968 DOI: 10.1111/imr.12752] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
G‐protein–coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR‐controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non‐hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR‐controlled leukocyte navigation by intravital microscopy of immune cells in mice.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
24
|
Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 2020; 9:1703449. [PMID: 32002302 PMCID: PMC6959434 DOI: 10.1080/2162402x.2019.1703449] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The term ‘immunogenic cell death’ (ICD) denotes an immunologically unique type of regulated cell death that enables, rather than suppresses, T cell-driven immune responses that are specific for antigens derived from the dying cells. The ability of ICD to elicit adaptive immunity heavily relies on the immunogenicity of dying cells, implying that such cells must encode and present antigens not covered by central tolerance (antigenicity), and deliver immunostimulatory molecules such as damage-associated molecular patterns and cytokines (adjuvanticity). Moreover, the host immune system must be equipped to detect the antigenicity and adjuvanticity of dying cells. As cancer (but not normal) cells express several antigens not covered by central tolerance, they can be driven into ICD by some therapeutic agents, including (but not limited to) chemotherapeutics of the anthracycline family, oxaliplatin and bortezomib, as well as radiation therapy. In this Trial Watch, we describe current trends in the preclinical and clinical development of ICD-eliciting chemotherapy as partner for immunotherapy, with a focus on trials assessing efficacy in the context of immunomonitoring.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Sabine Tejpar
- Department of Oncology, KU Leuven, Leuven, Belgium.,UZ Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Haematology, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Abstract
The immune system is inordinately complex with many interacting components determining overall outcomes. Mathematical and computational modelling provides a useful way in which the various contributions of different immunological components can be probed in an integrated manner. Here, we provide an introductory overview and review of mechanistic simulation models. We start out by briefly defining these types of models and contrasting them to other model types that are relevant to the field of immunology. We follow with a few specific examples and then review the different ways one can use such models to answer immunological questions. While our examples focus on immune responses to infection, the overall ideas and descriptions of model uses can be applied to any area of immunology.
Collapse
|
26
|
Qin Y, Lee Y, Seo J, Kim T, Shin JH, Park SH. NIH3T3 Directs Memory-Fated CTL Programming and Represses High Expression of PD-1 on Antitumor CTLs. Front Immunol 2019; 10:761. [PMID: 31031760 PMCID: PMC6470252 DOI: 10.3389/fimmu.2019.00761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/21/2019] [Indexed: 11/15/2022] Open
Abstract
Memory CD8+ T cells have long been considered a promising population for adoptive cell therapy (ACT) due to their long-term persistence and robust re-stimulatory response. NIH3T3 is an immortalized mouse embryonic fibroblast cell line. We report that NIH3T3-conditioned medium (CM) can augment effector functions of CTLs following antigen priming and confer phenotypic and transcriptional properties of central memory cells. After NIH3T3-CM-educated CTLs were infused into naïve mice, they predominantly developed to central memory cells. A large number of NIH3T3-CM-educated CTLs with high functionality persisted and infiltrated to tumor mass. In addition, NIH3T3-CM inhibited CTLs expression of PD-1 in vitro and repressed their high expression of PD-1 in tumor microenvironment after adoptive transfer. Consequently, established tumor models showed that infusion of NIH3T3-CM-educated CTLs dramatically improved CTL mediated-antitumor immunity. Furthermore, NIH3T3-CM also promoted human CD8+ T cells differentiation into memory cells. These results suggest that NIH3T3-CM-programmed CTLs are good candidates for adoptive transfer in tumor therapy.
Collapse
Affiliation(s)
- Yingyu Qin
- Department of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Yuna Lee
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Jaeho Seo
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Taehyun Kim
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Jung Hoon Shin
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Se-Ho Park
- Department of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
27
|
Pandit A, De Boer RJ. Stochastic Inheritance of Division and Death Times Determines the Size and Phenotype of CD8 + T Cell Families. Front Immunol 2019; 10:436. [PMID: 30923522 PMCID: PMC6426761 DOI: 10.3389/fimmu.2019.00436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
After antigen stimulation cognate naïve CD8+ T cells undergo rapid proliferation and ultimately their progeny differentiates into short-lived effectors and longer-lived memory T cells. Although the expansion of individual cells is very heterogeneous, the kinetics are reproducible at the level of the total population of cognate cells. After the expansion phase, the population contracts, and if antigen is cleared, a population of memory T cells remains behind. Different markers like CD62L, CD27, and KLRG1 have been used to define several T cell subsets (or cell fates) developing from individual naïve CD8+ T cells during the expansion phase. Growing evidence from high-throughput experiments, like single cell RNA sequencing, epigenetic profiling, and lineage tracing, highlights the need to model this differentiation process at the level of single cells. We model CD8+ T cell proliferation and differentiation as a competitive process between the division and death probabilities of individual cells (like in the Cyton model). We use an extended form of the Cyton model in which daughter cells inherit the division and death times from their mother cell in a stochastic manner (using lognormal distributions). We show that this stochastic model reproduces the dynamics of CD8+ T cells both at the population and at the single cell level. Modeling the expression of the CD62L, CD27, and KLRG1 markers of each individual cell, we find agreement with the changing phenotypic distributions of these markers in single cell RNA sequencing data. Retrospectively re-defining conventional T-cell subsets by “gating” on these markers, we find agreement with published population data, without having to assume that these subsets have different properties, i.e., correspond to different fates.
Collapse
Affiliation(s)
- Aridaman Pandit
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Rob J De Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
28
|
Lythe G, Molina-París C. Some deterministic and stochastic mathematical models of naïve T-cell homeostasis. Immunol Rev 2018; 285:206-217. [DOI: 10.1111/imr.12696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Grant Lythe
- School of Mathematics; University of Leeds; Leeds UK
| | | |
Collapse
|
29
|
Dhume K, McKinstry KK. Early programming and late-acting checkpoints governing the development of CD4 T-cell memory. Immunology 2018; 155:53-62. [PMID: 29701246 DOI: 10.1111/imm.12942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/25/2022] Open
Abstract
CD4 T cells contribute to protection against pathogens through numerous mechanisms. Incorporating the goal of memory CD4 T-cell generation into vaccine strategies therefore offers a powerful approach to improve their efficacy, especially in situations where humoral responses alone cannot confer long-term immunity. These threats include viruses such as influenza that mutate coat proteins to avoid neutralizing antibodies, but that are targeted by T cells that recognize more conserved protein epitopes shared by different strains. A major barrier in the design of such vaccines is that the mechanisms controlling the efficiency with which memory cells form remain incompletely understood. Here, we discuss recent insights into fate decisions controlling memory generation. We focus on the importance of three general cues: interleukin-2, antigen and co-stimulatory interactions. It is increasingly clear that these signals have a powerful influence on the capacity of CD4 T cells to form memory during two distinct phases of the immune response. First, through 'programming' that occurs during initial priming, and second, through 'checkpoints' that operate later during the effector stage. These findings indicate that novel vaccine strategies must seek to optimize cognate interactions, during which interleukin-2-, antigen- and co-stimulation-dependent signals are tightly linked, well beyond initial antigen encounter to induce robust memory CD4 T cells.
Collapse
Affiliation(s)
- Kunal Dhume
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Karl Kai McKinstry
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
30
|
Rahimi RA, Luster AD. Chemokines: Critical Regulators of Memory T Cell Development, Maintenance, and Function. Adv Immunol 2018; 138:71-98. [PMID: 29731007 DOI: 10.1016/bs.ai.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Memory T cells are central to orchestrating antigen-specific recall responses in vivo. Compared to naïve T cells, memory T cells respond more quickly to cognate peptide:MHC with a shorter lag time for entering the cell cycle and exerting effector functions. However, it is now well established that this enhanced responsiveness is not the only mechanism whereby memory T cells are better equipped than naïve T cells to rapidly and robustly induce inflammation. In contrast to naïve T cells, memory T cells are composed of distinct subsets with unique trafficking patterns and localizations. Tissue-resident memory T cells persist in previously inflamed tissue and function as first responders to cognate antigen reexposure. In addition, a heterogeneous group of circulating memory T cells augment inflammation by either rapidly migrating to inflamed tissue or responding to cognate antigen within secondary lymphoid organs and producing additional effector T cells. Defining the mechanisms regulating T cell positioning and trafficking and how this influences the development, maintenance, and function of memory T cell subsets is essential to improving vaccine design as well as treatment of immune-mediated diseases. In this chapter, we will review our current knowledge of how chemokines, critical regulators of cell positioning and migration, govern memory T cell biology in vivo. In addition, we discuss areas of uncertainty and future directions for further delineating how T cell localization influences memory T cell biology.
Collapse
Affiliation(s)
- Rod A Rahimi
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Divison of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
31
|
Rosenberg J, Huang J. CD8 + T Cells and NK Cells: Parallel and Complementary Soldiers of Immunotherapy. Curr Opin Chem Eng 2018; 19:9-20. [PMID: 29623254 PMCID: PMC5880541 DOI: 10.1016/j.coche.2017.11.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD8+ T cells and NK cells are both cytotoxic effector cells of the immune system, but the recognition, specificity, sensitivity, and memory mechanisms are drastically different. While many of these topics have been extensively studied in CD8+ T cells, very little is known about NK cells. Current cancer immunotherapies mainly focus on CD8+ T cells, but have many issues of toxicity and efficacy. Given the heterogeneous nature of cancer, personalized cancer immunotherapy that integrates the power of both CD8+ T cells in adaptive immunity and NK cells in innate immunity might be the future direction, along with precision targeting and effective delivery of tumor-specific, memory CD8+ T cells and NK cells.
Collapse
Affiliation(s)
- Jillian Rosenberg
- Committee on Cancer Biology, The University of Chicago, IL 60637, USA
| | - Jun Huang
- Committee on Cancer Biology, The University of Chicago, IL 60637, USA
- Institute for Molecular Engineering, The University of Chicago, IL 60637, USA
| |
Collapse
|
32
|
Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 2017; 6:e1386829. [PMID: 29209573 DOI: 10.1080/2162402x.2017.1386829] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Sanket More
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Nicole Rufo
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Mece
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
33
|
郑 华, 林 泽, 张 延, 周 琛, 刘 璇, 吴 砂. [Oxidized low-density lipoprotein modulates differentiation of murine memory CD8 + T cell subpopulations]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1098-1103. [PMID: 28801292 PMCID: PMC6765741 DOI: 10.3969/j.issn.1673-4254.2017.08.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate effect of oxidized low-density lipoprotein (ox-LDL) on memory CD8+ T cell subpopulation differentiation in mice with autoimmune diabetes. METHODS Cultured splenic CD8+ T cells from pre-diabetic NOD mice isolated with magnetic beads were treated with 30 µg/mL ox-LDL and 10 U/mL interleukin-2 (IL-2) for 24 h and the control cells were treated with IL-2 only. Flow cytometry was used to determine the percentage of splenic CD8+IFN-γ+ T cells, expressions of CD8, CD44 and CD62L on the T cells, and the activation of T cell factor-1 (TCF-1) and STAT-3. The CD127+ memory T cells were purified and transplanted into the pre-diabetic NOD mice via the tail vein, and the blood glucose was recorded weekly and survival time of the mice was monitored. RESULTS Treatment with ox-LDL significantly reduced islet β cell-specific cytotoxic CD8+T cells as compared with the control group [(0.7∓0.03)% vs (2.7∓0.14)%, P<0.01]. The percentage of effector memory CD8+T cells (Tem) in the total memory CD8+T cells was reduced [(10.3∓0.71)% vs (30.3∓1.36)%, P<0.01] and that of stem cell-like memory T cells was significantly increased [(72.3∓3.8)% vs (55.1∓2.61)%, P<0.05] following ox-LDL treatment, which also resulted in significantly decreased activation of TCF-1 [(14.5∓0.82)% vs (34.2∓1.23)%, P<0.01] and pSTAT-3 [(3.3∓0.12)% vs (22.1∓1.1)%, P<0.01]. Transplantation of ox-LDL-treated memory T cells in pre-diabetic NOD mice obviously inhibited the increase of blood glucose and prolonged the survival time of the mice (P<0.05). CONCLUSION Ox-LDL decreases the activation of transcriptional factors TCF-1 and phosphorylation of STAT-3, inhibits the formation of effector memory CD8+ T cells with long-term cytotoxicity, but promote the generation of stem cell-like memory CD8+ T cells, which result in suppression of islet β cell-specific effector cytotoxic CD8+ T cell differentiation to lessen autoimmune injury to the islet β cells.
Collapse
Affiliation(s)
- 华 郑
- 南方医科大学, 南方医院(第一临床学院)心内科, 广东 广州 510515Department of Cardiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 泽杭 林
- 南方医科大学, 基础医学院免疫学教研室, 广东 广州 510515Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 延梅 张
- 南方医科大学, 基础医学院免疫学教研室, 广东 广州 510515Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 琛斐 周
- 南方医科大学, 南方医院(第一临床学院)妇产,广东 广州 510515Department of Obstetrics and Gynecology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 璇 刘
- 南方医科大学, 南方医院(第一临床学院)儿科,广东 广州 510515Department of Pediatrics, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 砂 吴
- 南方医科大学, 基础医学院免疫学教研室, 广东 广州 510515Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
34
|
Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy. Proc Natl Acad Sci U S A 2017; 114:E6277-E6286. [PMID: 28716945 DOI: 10.1073/pnas.1703355114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer is a highly heterogeneous disease, exhibiting spatial and temporal variations that pose challenges for designing robust therapies. Here, we propose the VEPART (Virtual Expansion of Populations for Analyzing Robustness of Therapies) technique as a platform that integrates experimental data, mathematical modeling, and statistical analyses for identifying robust optimal treatment protocols. VEPART begins with time course experimental data for a sample population, and a mathematical model fit to aggregate data from that sample population. Using nonparametric statistics, the sample population is amplified and used to create a large number of virtual populations. At the final step of VEPART, robustness is assessed by identifying and analyzing the optimal therapy (perhaps restricted to a set of clinically realizable protocols) across each virtual population. As proof of concept, we have applied the VEPART method to study the robustness of treatment response in a mouse model of melanoma subject to treatment with immunostimulatory oncolytic viruses and dendritic cell vaccines. Our analysis (i) showed that every scheduling variant of the experimentally used treatment protocol is fragile (nonrobust) and (ii) discovered an alternative region of dosing space (lower oncolytic virus dose, higher dendritic cell dose) for which a robust optimal protocol exists.
Collapse
|
35
|
Verma K, Ogonek J, Varanasi PR, Luther S, Bünting I, Thomay K, Behrens YL, Mischak-Weissinger E, Hambach L. Human CD8+ CD57- TEMRA cells: Too young to be called "old". PLoS One 2017; 12:e0177405. [PMID: 28481945 PMCID: PMC5421808 DOI: 10.1371/journal.pone.0177405] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/26/2017] [Indexed: 11/25/2022] Open
Abstract
End-stage differentiation of antigen-specific T-cells may precede loss of immune responses against e.g. viral infections after allogeneic stem cell transplantation (SCT). Antigen-specific CD8+ T-cells detected by HLA/peptide multimers largely comprise CD45RA-/CCR7- effector memory (TEM) and CD45RA+/CCR7- TEMRA subsets. A majority of terminally differentiated T-cells is considered to be part of the heterogeneous TEMRA subset. The senescence marker CD57 has been functionally described in memory T-cells mainly composed of central memory (TCM) and TEM cells. However, its role specifically in TEMRA cells remained undefined. Here, we investigated the relevance of CD57 to separate human CD8+ TEMRA cells into functionally distinct subsets. CD57- CD8+ TEMRA cells isolated from healthy donors had considerably longer telomeres and showed significantly more BrdU uptake and IFN-γ release upon stimulation compared to the CD57+ counterpart. Cytomegalovirus (CMV) specific T-cells isolated from patients after allogeneic SCT were purified into CD57+ and CD57- TEMRA subsets. CMV specific CD57- TEMRA cells had longer telomeres and a considerably higher CMV peptide sensitivity in BrdU uptake and IFN-γ release assays compared to CD57+ TEMRA cells. In contrast, CD57+ and CD57- TEMRA cells showed comparable peptide specific cytotoxicity. Finally, CD57- CD8+ TEMRA cells partially changed phenotypically into TEM cells and gained CD57 expression, while CD57+ CD8+ TEMRA cells hardly changed phenotypically and showed considerable cell death after in vitro stimulation. To the best of our knowledge, these data show for the first time that CD57 separates CD8+ TEMRA cells into a terminally differentiated CD57+ population and a so far functionally undescribed “young” CD57- TEMRA subset with high proliferative capacity and differentiation plasticity.
Collapse
Affiliation(s)
- Kriti Verma
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Integrated Research and Treatment Center for Transplantation (IFB-Tx), Hannover, Germany
| | - Justyna Ogonek
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Pavankumar Reddy Varanasi
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Susanne Luther
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ivonne Bünting
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Katrin Thomay
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Eva Mischak-Weissinger
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lothar Hambach
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
36
|
Proserpio V, Lönnberg T. Cutting‐edge single‐cell genomics and modelling in immunology. Immunol Cell Biol 2016; 94:224. [DOI: 10.1038/icb.2015.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Valentina Proserpio
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus Hinxton Cambridge UK
| | - Tapio Lönnberg
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus Hinxton Cambridge UK
| |
Collapse
|