1
|
Gabriel ALR, Mosele FC, Fioretto MN, Oliveira BS, Felisbino SL. High-fat diet impact on prostate gland from adiponectin knockout mice: Morphometric, metabolic and inflammatory cytokines analyses. Life Sci 2024; 356:123035. [PMID: 39222835 DOI: 10.1016/j.lfs.2024.123035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
AIMS Obesity is a global public health issue, and some studies have linked it to an increased risk of prostatic diseases. This study aimed to evaluate the effects of a high-fat diet on metabolic parameters and prostate morphology in wild-type (WT) and adiponectin knockout (KO) mice. MAIN METHODS Male WT and KO mice were fed a control diet (CD) or high-fat diet (HFD) for 6 months. Serum metabolic parameters, inflammatory cytokines in epididymal fat tissue, dorsal prostatic lobe morphometry and histopathology were analyzed. KEY FINDINGS CD WT and CD KO mice did not exhibit altered metabolic or prostatic parameters. However, HFD WT mice showed altered glucose and insulin tolerance even without excessive weight gain. On the other hand, HFD KO mice developed obesity, with an increase in low-density lipoprotein (11.8 ± 5.1 vs. 31.4 ± 3.6 mg/dL), high-density lipoprotein (73.4 ± 7.4 vs. 103.4 ± 2.5 mg/dL), and total cholesterol levels (126.2 ± 16.1 vs. 294.6 ± 23.2 mg/dL), a decrease in insulin levels (28.7 ± 12.2 vs. 4.6 ± 2.3 μIU/mL), and glucose and insulin resistance. We also observed that HFD KO animals display an increase in inflammatory cytokines, such as IL6, IL1β, and IL1RA. The dorsal prostate from HFD KO animals also presented significant increases in the mast cells (1.9 ± 0,7 vs. 5,3 ± 1.5 cells/field) and Ki67 index (2.91 ± 0.6 vs. 4.7 ± 0.4 %). SIGNIFICANCE The above findings highlight the complex interactions between adiponectin, metabolism, malnutrition, and prostate health. Metabolic deregulation combined with adipose inflammation potentially induces a proliferative and inflammatory microenvironment in the prostate gland under conditions of low adiponectin production, potentially impairing prostate morphophysiology in the context of obesity and aging.
Collapse
Affiliation(s)
- Ana Luiza R Gabriel
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil
| | - Francielle C Mosele
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil
| | | | - Beatriz S Oliveira
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil
| | | |
Collapse
|
2
|
Swertfeger D, Kim A, Sexmith H, Moreno-Fernandez ME, Davidson WS, Helmrath M, Jenkins T, Okura T, Geh E, Xanthakos SA, Szabo S, Nakamura T, Divanovic S, Shah AS. Presurgery health influences outcomes following vertical sleeve gastrectomy in adolescents. Obesity (Silver Spring) 2024; 32:1187-1197. [PMID: 38664233 PMCID: PMC11132933 DOI: 10.1002/oby.24018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Weight loss following vertical sleeve gastrectomy (VSG) in youth can range from 10% to 50%. We examined whether there are differences in demographic or metabolic parameters before VSG in youth who achieve above-average weight loss (AAWL) versus below-average weight loss (BAWL) at 1 year post VSG and if youth with BAWL still achieve metabolic health improvements at 1 year post VSG. METHODS Demographic, anthropometric, and clinical lab data were collected before VSG and at 1, 3, 6, and 12 months after VSG. RESULTS Forty-three youth with a mean age of 16.9 (SD 1.7) years before VSG were studied; 70% were female, 19% non-Hispanic Black, 58% non-Hispanic White, and 23% mixed/other race. Mean baseline BMI was 51.1 (SD 10.5) kg/m2. Average weight loss was 25.8%. The AAWL group lost 18.6 kg/m2 (35.3%) versus the BAWL group, who lost 8.8 kg/m2 (17.5%). BMI, age, race, sex, and socioeconomic status at baseline were similar between AAWL and BAWL groups; however, the BAWL group had a higher frequency of pre-VSG dysglycemia, steatotic liver disease, and dyslipidemia. At 1 year post VSG, fewer youth in the BAWL group achieved ideal health parameters, and they had less resolution of comorbidities. CONCLUSIONS The presence of comorbidities before VSG is associated with less weight loss and reduced resolution of metabolic conditions at 1 year post VSG.
Collapse
Affiliation(s)
- Debi Swertfeger
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ahlee Kim
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hannah Sexmith
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria E. Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - W. Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Michael Helmrath
- Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Todd Jenkins
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tsuyoshi Okura
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Esmond Geh
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Stavra A. Xanthakos
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sara Szabo
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Amy Sanghavi Shah
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Min SH, Song DK, Lee CH, Roh E, Kim MS. Hypothalamic AMP-Activated Protein Kinase as a Whole-Body Energy Sensor and Regulator. Endocrinol Metab (Seoul) 2024; 39:1-11. [PMID: 38356211 PMCID: PMC10901667 DOI: 10.3803/enm.2024.1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
5´-Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a cellular energy sensor, is an essential enzyme that helps cells maintain stable energy levels during metabolic stress. The hypothalamus is pivotal in regulating energy balance within the body. Certain neurons in the hypothalamus are sensitive to fluctuations in food availability and energy stores, triggering adaptive responses to preserve systemic energy equilibrium. AMPK, expressed in these hypothalamic neurons, is instrumental in these regulatory processes. Hypothalamic AMPK activity is modulated by key metabolic hormones. Anorexigenic hormones, including leptin, insulin, and glucagon-like peptide 1, suppress hypothalamic AMPK activity, whereas the hunger hormone ghrelin activates it. These hormonal influences on hypothalamic AMPK activity are central to their roles in controlling food consumption and energy expenditure. Additionally, hypothalamic AMPK activity responds to variations in glucose concentrations. It becomes active during hypoglycemia but is deactivated when glucose is introduced directly into the hypothalamus. These shifts in AMPK activity within hypothalamic neurons are critical for maintaining glucose balance. Considering the vital function of hypothalamic AMPK in the regulation of overall energy and glucose balance, developing chemical agents that target the hypothalamus to modulate AMPK activity presents a promising therapeutic approach for metabolic conditions such as obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Do Kyeong Song
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Chan Hee Lee
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Korea
| | - Eun Roh
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Norberto S, Assalin HB, Guadagnini D, Tobar N, Boer PA, Kang MC, Saad MJA, Kim YB, Prada PO. CLK2 in GABAergic neurons is critical in regulating energy balance and anxiety-like behavior in a gender-specific fashion. Front Endocrinol (Lausanne) 2023; 14:1172835. [PMID: 37635967 PMCID: PMC10449579 DOI: 10.3389/fendo.2023.1172835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Cdc2-like kinase (CLK2) is a member of CLK kinases expressed in hypothalamic neurons and is activated in response to refeeding, leptin, or insulin. Diet-induced obesity and leptin receptor-deficient db/db mice lack CLK2 signal in the hypothalamic neurons. The neurotransmiter gamma-aminobutyric acid (GABA) is among the most prevalent in the central nervous system (CNS), particularly in the hypothalamus. Given the abundance of GABA-expressing neurons and their potential influence on regulating energy and behavioral homeostasis, we aimed to explore whether the deletion of CLK2 in GABAergic neurons alters energy homeostasis and behavioral and cognitive functions in both genders of mice lacking CLK2 in Vgat-expressing neurons (Vgat-Cre; Clk2loxP/loxP) on chow diet. Methods We generated mice lacking Clk2 in Vgat-expressing neurons (Vgat-Cre; Clk2loxP/loxP) by mating Clk2loxP/loxP mice with Vgat-IRES-Cre transgenic mice and employed behavior, and physiological tests, and molecular approaches to investigate energy metabolism and behavior phenotype of both genders. Results and discussion We showed that deletion of CLK2 in GABAergic neurons increased adiposity and food intake in females. The mechanisms behind these effects were likely due, at least in part, to hypothalamic insulin resistance and upregulation of hypothalamic Npy and Agrp expression. Besides normal insulin and pyruvate sensitivity, Vgat-Cre; Clk2loxP/loxP females were glucose intolerant. Male Vgat-Cre; Clk2loxP/loxP mice showed an increased energy expenditure (EE). Risen EE may account for avoiding weight and fat mass gain in male Vgat-Cre; Clk2loxP/loxP mice. Vgat-Cre; Clk2loxP/loxP mice had no alteration in cognition or memory functions in both genders. Interestingly, deleting CLK2 in GABAergic neurons changed anxiety-like behavior only in females, not males. These findings suggest that CLK2 in GABAergic neurons is critical in regulating energy balance and anxiety-like behavior in a gender-specific fashion and could be a molecular therapeutic target for combating obesity associated with psychological disorders in females.
Collapse
Affiliation(s)
- Sónia Norberto
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Heloisa Balan Assalin
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Natália Tobar
- Department of Radiology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia Aline Boer
- Department of Internal Medicine, Fetal Programming Laboratory, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Research Group of Food Processing, Korea Food Research Instute, Jeollabuk-do, Wanju, Republic of Korea
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
- Max-Planck Institute for Metabolism Research, Köln, Germany
| |
Collapse
|
5
|
Kalra P, Khan H, Singh TG, Grewal AK. Mechanistic insights on impact of Adenosine monophosphate-activated protein kinase (AMPK) mediated signalling pathways on cerebral ischemic injury. Neurosci Res 2023; 190:17-28. [PMID: 36403790 DOI: 10.1016/j.neures.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/23/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Cerebral ischemia is the primary cause of morbidity and mortality worldwide due to the perturbations in the blood supply to the brain. The brain triggers a cascade of complex metabolic and cellular defects in response to ischemic stress. However, due to the disease heterogeneity and complexity, ischemic injury's metabolic and cellular pathologies remain elusive, and the link between various pathological mechanisms is difficult to determine. Efforts to develop effective treatments for these disorders have yielded limited efficacy, with no proper cure available to date. Recent clinical and experimental research indicates that several neuronal diseases commonly coexist with metabolic dysfunction, which may aggravate neurological symptoms. As a result, it stands to a reason that metabolic hormones could be a potential therapeutic target for major NDDs. Moreover, fasting signals also influence the circadian clock, as AMPK phosphorylates and promotes the degradation of the photo-sensing receptor (cryptochrome). Here, the interplay of AMPK signaling between metabolic regulation and neuronal death and its role for pathogenesis and therapeutics has been studied. We have also highlighted a significant signaling pathway, i.e., the adenosine monophosphate-activated protein kinase (AMPK) involved in the relationship between the metabolism and ischemia, which could be used as a target for future studies therapeutics, and review some of the clinical progress in this area.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
6
|
Miranda CS, Silva-Veiga FM, Fernandes-da-Silva A, Guimarães Pereira VR, Martins BC, Daleprane JB, Martins FF, Souza-Mello V. Peroxisome proliferator-activated receptors-alpha and gamma synergism modulate the gut-adipose tissue axis and mitigate obesity. Mol Cell Endocrinol 2023; 562:111839. [PMID: 36581062 DOI: 10.1016/j.mce.2022.111839] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
AIM To evaluate the effects of single PPARα or PPARγ activation, and their synergism (combined PPARα/γ activation) upon the gut-adipose tissue axis, focusing on the endotoxemia and upstream interscapular brown adipose tissue (iBAT) function in high-saturated fat-fed mice. METHODS Male C57BL/6 mice received a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for 12 weeks. Then, the HF group was divided to receive the treatments for four weeks: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS The HF group exhibited overweight, oral glucose intolerance, gut dysbiosis, altered gut permeability, and endotoxemia, culminating in iBAT whitening. The downregulation of LPS-Tlr4 signaling underpinned reduced inflammation and improved lipid metabolism in iBAT in the HFα/γ group, the unique to show normalized body mass and increased energy expenditure. CONCLUSION PPARα/γ synergism treated obesity by ameliorating the gut-adipose tissue axis, where restored gut microbiota and permeability controlled endotoxemia and rescued iBAT whitening through favored thermogenesis.
Collapse
Affiliation(s)
- Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vitória Regina Guimarães Pereira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bruna Cadete Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Xu W, Li J, Ji C, Fang D, Yao L, Xu N, Yi W. Activation of POMC neurons to adiponectin participating in EA-mediated improvement of high-fat diet IR mice. Front Neurosci 2023; 17:1145079. [PMID: 37034166 PMCID: PMC10077892 DOI: 10.3389/fnins.2023.1145079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Background Insulin resistance (IR) is one of the common pathological manifestations of metabolic-related diseases, and the prevalence of relevant diseases is high. Acupuncture is beneficial to IR patients, but the central mechanism underlying this treatment remains unclear. This study provides mechanistic insights into how electroacupuncture (EA) improves IR through the response of Pro-opiomelanocortin (POMC) neurons to adiponectin (Adipo). Methods Glucose tolerance tests (GTT), Insulin tolerance tests (ITT) and fasting blood glucose (FBG) were detected by glucometer. Serum insulin, Adipo and skeletal muscle adiponectin receptor 1 (AdipoR1) protein levels were examined by ELISA. Homeostasis model assessment estimated insulin resistance (HOMA-IR) was calculated using the following formula: HOMA-IR = fasting insulin (FINS) (mU/L) × FBG (mmol/L)/22.5. The expression levels of AdipoR1 and Adipo mRNA in skeletal muscle were detected by real-time PCR quantification. The co-marking of c-Fos/AdipoR1 and POMC neurons were investigated using immunofluorescence. Spontaneous excitatory postsynaptic currents (sEPSCs) of POMC neurons and the response of POMC neurons to Adipo were detected via electrophysiology. Results EA significantly ameliorated HFD-induced impairment of GTT, ITT, FBG, and HOMA-IR which was correlated with recovery of the expression level of AdipoR1 and Adipo in skeletal muscle. The improved response of POMC neurons to Adipo in the hypothalamus may be a key factor in correcting abnormal glucose tolerance and improving IR. Conclusion This study demonstrates that EA can ameliorate HFD-induced impaired glucose tolerance through improved response of POMC neurons to Adipo in the hypothalamus, providing insight into the central mechanism of improving IR through EA.
Collapse
Affiliation(s)
- Wanling Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junfeng Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang Ji
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Danwei Fang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lulu Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wei Yi,
| |
Collapse
|
8
|
Zordão OP, Campolim CM, Yariwake VY, Castro G, Ferreira CKDO, Santos A, Norberto S, Veras MM, Saad MJA, Saldiva PHN, Kim YB, Prada PO. Maternal exposure to air pollution alters energy balance transiently according to gender and changes gut microbiota. Front Endocrinol (Lausanne) 2023; 14:1069243. [PMID: 37082122 PMCID: PMC10112381 DOI: 10.3389/fendo.2023.1069243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction The timing of maternal exposure to air pollution is crucial to define metabolic changes in the offspring. Here we aimed to determine the most critical period of maternal exposure to particulate matter (PM2.5) that impairs offspring's energy metabolism and gut microbiota composition. Methods Unexposed female and male C57BL/6J mice were mated. PM2.5 or filtered air (FA) exposure occurred only in gestation (PM2.5/FA) or lactation (FA/PM2.5). We studied the offspring of both genders. Results PM2.5 exposure during gestation increased body weight (BW) at birth and from weaning to young in male adulthood. Leptin levels, food intake, Agrp, and Npy levels in the hypothalamus were also increased in young male offspring. Ikbke, Tnf increased in male PM2.5/FA. Males from FA/PM2.5 group were protected from these phenotypes showing higher O2 consumption and Ucp1 in the brown adipose tissue. In female offspring, we did not see changes in BW at weaning. However, adult females from PM2.5/FA displayed higher BW and leptin levels, despite increased energy expenditure and thermogenesis. This group showed a slight increase in food intake. In female offspring from FA/PM2.5, BW, and leptin levels were elevated. This group displayed higher energy expenditure and a mild increase in food intake. To determine if maternal exposure to PM2.5 could affect the offspring's gut microbiota, we analyzed alpha diversity by Shannon and Simpson indexes and beta diversity by the Linear Discriminant Analysis (LDA) in offspring at 30 weeks. Unlike males, exposure during gestation led to higher adiposity and leptin maintenance in female offspring at this age. Gestation exposure was associated with decreased alpha diversity in the gut microbiota in both genders. Discussion Our data support that exposure to air pollution during gestation is more harmful to metabolism than exposure during lactation. Male offspring had an unfavorable metabolic phenotype at a young age. However, at an older age, only females kept more adiposity. Ultimately, our data highlight the importance of controlling air pollution, especially during gestation.
Collapse
Affiliation(s)
- Olivia Pizetta Zordão
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Clara Machado Campolim
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Victor Yuji Yariwake
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Gisele Castro
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Andrey Santos
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sónia Norberto
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, SP, Brazil
- *Correspondence: Patricia Oliveira Prada, ;
| |
Collapse
|
9
|
de Oliveira Micheletti T, Cassia dos Santos A, Rocha GZ, Silva VRR, Quaresma PGF, Assalin HB, Junqueira FS, Ropelle ER, Oliveira AG, Saad MJA, Prada PDO. Acute exercise reduces feeding by activating IL-6/Tubby axis in the mouse hypothalamus. Front Physiol 2022; 13:956116. [DOI: 10.3389/fphys.2022.956116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Acute exercise contributes to decreased feeding through leptin and interleukin/Janus kinase 2/signal transducers and activators of transcription 3 (IL-6/JAK2/STAT3) signaling. Considering the pleiotropic use of substrates by JAK2 and that JAK2 can phosphorylate the Tubby protein (TUB) in CHO-IR cells, we speculated that acute exercise can activate the IL-6/JAK2/TUB pathway to decrease food intake.Aims: We investigated whether acute exercise induced tyrosine phosphorylation and the association of TUB and JAK2 in the hypothalamus and if IL-6 is involved in this response, whether acute exercise increases the IL-6/TUB axis to regulate feeding, and if leptin has an additive effect over this mechanism.Methods: We applied a combination of genetic, pharmacological, and molecular approaches.Key findings: The in vivo experiments showed that acute exercise increased the tyrosine phosphorylation and association of JAK2/TUB in the hypothalamus, which reduced feeding. This response was dependent on IL-6. Leptin had no additive effect on this mechanism.Significance: The results of this study suggest a novel hypothalamic pathway by which IL-6 released by exercise regulates feeding and reinforces the beneficial effects of exercise.
Collapse
|
10
|
Luo L, Liu M. Adiponectin: friend or foe in obesity and inflammation. MEDICAL REVIEW (2021) 2022; 2:349-362. [PMID: 37724325 PMCID: PMC10388816 DOI: 10.1515/mr-2022-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 09/20/2023]
Abstract
Adiponectin is an adipokine predominantly produced by fat cells, circulates and exerts insulin-sensitizing, cardioprotective and anti-inflammatory effects. Dysregulation of adiponectin and/or adiponectin signaling is implicated in a number of metabolic diseases such as obesity, insulin resistance, diabetes, and cardiovascular diseases. However, while the insulin-sensitizing and cardioprotective effects of adiponectin have been widely appreciated in the field, the obesogenic and anti-inflammatory effects of adiponectin are still of much debate. Understanding the physiological function of adiponectin is critical for adiponectin-based therapeutics for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
11
|
Zhang JJ, Li YQ, Shi M, Deng CC, Wang YS, Tang Y, Wang XZ. 17β-estradiol rescues the damage of thiazolidinedione on chicken Sertoli cell proliferation via adiponectin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113308. [PMID: 35176672 DOI: 10.1016/j.ecoenv.2022.113308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Thiazolidinedione (TZD) is an oral anti-diabetic drug that exhibits some side effects on the male reproductive system by interfering with the steroidogenesis and androgenic activity and also shows anti-proliferative effect on several cell types. This study investigated the effect of TZD on immature chicken Sertoli cell (SC) proliferation and the potential mechanism by which 17β-estradiol regulated this process. Chicken SC viability was investigated under different treatment concentration and time of TZD. 17β-estradiol (0.001 μM, 24 h) was added to analyze its effects on TZD-mediated cell viability, cell metabolic activity, cell growth, cell cycle progression, reactive oxygen species (ROS) level, antioxidant enzyme activity, mitochondria activity, oxygen consumption rate, adenosine triphosphate (ATP) level, and mitochondrial respiratory chain enzyme activity, adiponectin expression and several cell proliferation-related genes mRNA and protein levels. We performed the microRNA (miRNA) array to find TZD-induced differentially expressed miRNAs and validated whether miR-1577 can target on adiponectin via the dual luciferase reporter assay, as well as verified the effect of adiponectin addition with different concentrations on the SC viability. Further, SCs were transfected with miR-1577 agomir (a double-stranded synthetic miRNA mimic) in the presence or absence of TZD and antagomir (a single-stranded synthetic miRNA inhibitor) in the presence or absence of 17β-estradiol to analyze whether miR-1577 was involved in TZD-mediated SC proliferation and whether 17β-estradiol regulated this process. Results showed that TZD significantly inhibited SC viability, cell metabolic activity, cell growth, and cell cycle progression, while increased adiponectin level and ROS generation. TZD-treated SCs presented decreases of antioxidant enzyme activity, mitochondria activity, basal and maximal respiration, ATP production and level, mitochondrial respiratory chain enzyme activity, and mRNA and protein expressions of several cell proliferation-related genes, as well as the significant alteration of miRNA expressions (a total number of 55 miRNAs were up-regulated whereas 53 miRNAs down-regulated). Whereas, 17β-estradiol played a positive role in chicken SC proliferation and rescued the damage of TZD on SC proliferation by up-regulating miR-1577 expression whose target gene was validated to be the adiponectin. In addition, exogenous adiponectin (more than 1 μg/ml) treatment exhibited a significant inhibition on the SC viability. Transfection of miR-1577 agomir promoted the SC proliferation via down-expressed adiponectin, and increased the mitochondrial function and cell proliferation-related gene expression, while TZD weakened the positive effect of miR-1577 agomir on SCs. On the other hand, transfection of miR-1577 antagomir inhibited SC proliferation by producing the opposite effects on above parameters, while 17β-estradiol attenuated the negative effect of miR-1577 antagomir on SCs. These findings suggest down-expressed miR-1577 is involved in the regulation of TZD-inhibited SC proliferation through increasing adiponectin level, and this damage of TZD on the immature chicken SC proliferation can be ameliorated by appropriate dose of exogenous 17β-estradiol treatment. This study provides an insight into the cytoprotective effect of 17β-estradiol on TZD-damaged SC proliferation and may suggest a potential strategy for reducing the risk of SC dysfunction caused by the abuse of TZD.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Ya Qi Li
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Mei Shi
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Cheng Chen Deng
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Yu Sha Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Yao Tang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Xian Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
12
|
Luo L, Wang L, Luo Y, Romero E, Yang X, Liu M. Glucocorticoid/Adiponectin Axis Mediates Full Activation of Cold-Induced Beige Fat Thermogenesis. Biomolecules 2021; 11:1573. [PMID: 34827571 PMCID: PMC8615797 DOI: 10.3390/biom11111573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs), a class of corticosteroids produced by the adrenal cortex in response to stress, exert obesity-promoting effects. Although adaptive thermogenesis has been considered an effective approach to counteract obesity, whether GCs play a role in regulating cold stress-induced thermogenesis remains incompletely understood. Here, we show that the circulating levels of stress hormone corticosterone (GC in rodents) were significantly elevated, whereas the levels of adiponectin, an adipokine that was linked to cold-induced adaptive thermogenesis, were decreased 48 h post cold exposure. The administration of a glucocorticoid hydrocortisone downregulated adiponectin protein and mRNA levels in both WAT and white adipocytes, and upregulated thermogenic gene expression in inguinal fat. In contrast, mifepristone, a glucocorticoid receptor antagonist, enhanced adiponectin expression and suppressed energy expenditure in vivo. Mechanistically, hydrocortisone suppressed adiponectin expression by antagonizing PPARγ in differentiated 3T3-L1 adipocytes. Ultimately, adiponectin deficiency restored mifepristone-decreased oxygen consumption and suppressed the expression of thermogenic genes in inguinal fat. Taken together, our study reveals that the GCs/adiponectin axis is a key regulator of beige fat thermogenesis in response to acute cold stress.
Collapse
Affiliation(s)
- Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (L.L.); (L.W.); (Y.L.); (E.R.); (X.Y.)
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (L.L.); (L.W.); (Y.L.); (E.R.); (X.Y.)
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (L.L.); (L.W.); (Y.L.); (E.R.); (X.Y.)
- Department of Endocrinology and Metabolism, Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Estevan Romero
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (L.L.); (L.W.); (Y.L.); (E.R.); (X.Y.)
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (L.L.); (L.W.); (Y.L.); (E.R.); (X.Y.)
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (L.L.); (L.W.); (Y.L.); (E.R.); (X.Y.)
- Autophagy, Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
13
|
Wang L, Luo Y, Luo L, Wu D, Ding X, Zheng H, Wu H, Liu B, Yang X, Silva F, Wang C, Zhang X, Zheng X, Chen J, Brigman J, Mandell M, Zhou Z, Liu F, Yang XO, Liu M. Adiponectin restrains ILC2 activation by AMPK-mediated feedback inhibition of IL-33 signaling. J Exp Med 2021; 218:e20191054. [PMID: 33104171 PMCID: PMC7590510 DOI: 10.1084/jem.20191054] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/20/2019] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
ILC2s are present in adipose tissue and play a critical role in regulating adipose thermogenesis. However, the mechanisms underlying the activation of adipose-resident ILC2s remain poorly defined. Here, we show that IL-33, a potent ILC2 activator, stimulates phosphorylation of AMPK at Thr172 via TAK1 in primary ILC2s, which provides a feedback mechanism to inhibit IL-33-induced NF-κB activation and IL-13 production. Treating ILC2s with adiponectin or an adiponectin receptor agonist (AdipoRon) activated AMPK and decreased IL-33-NF-κB signaling. AdipoRon also suppressed cold-induced thermogenic gene expression and energy expenditure in vivo. In contrast, adiponectin deficiency increased the ILC2 fraction and activation, leading to up-regulated thermogenic gene expression in adipose tissue of cold-exposed mice. ILC2 deficiency or blocking ILC2 function by neutralization of the IL-33 receptor with anti-ST2 diminished the suppressive effect of adiponectin on cold-induced adipose thermogenesis and energy expenditure. Taken together, our study reveals that adiponectin is a negative regulator of ILC2 function in adipose tissue via AMPK-mediated negative regulation of IL-33 signaling.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Dandan Wu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xiaofeng Ding
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Handong Zheng
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Haisha Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bilian Liu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Floyd Silva
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xianyun Zheng
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jonathan Brigman
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Mandell
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Zhiguang Zhou
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX
| | - Xuexian O. Yang
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
14
|
Krishnamurthy A, Gupta Y, Bhargava R, Sharan P, Tandon N, Jyotsna VP. Evaluation of eating disorders and their association with glycemic control and metabolic parameters in adult patients with type 2 diabetes mellitus. Diabetes Metab Syndr 2020; 14:1555-1561. [PMID: 32846368 DOI: 10.1016/j.dsx.2020.07.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND There is little data on the prevalence and effects of eating disorders in patients with T2DM. AIMS To evaluate the presence of eating disorders (ED) and their association with glycemic control and metabolic parameters in adult patients with type 2 diabetes mellitus (T2DM). METHODS A cross-sectional study was conducted in the endocrinology outpatient unit of our tertiary care centre between January 2017 to December 2018. Eating Attitudes Test (EAT-26) and Binge Eating Scale (BES) questionnaires were used to screen for ED in adults with T2DM (group 1) and controls without T2DM (group 2). Cut off scores ≥18 on BES was considered as a positive screen for Binge eating disorder in participants with and without T2DM. A score of ≥30 on EAT-26 was defined as abnormal for participants with T2DM and ≥20 for those without T2DM. Formal psychiatric assessment was done to diagnose ED in those who screened positive on the basis of scores on BES or EAT-26 or both. Demographic, anthropometric and relevant medical details like duration of treatment, glycemic control, complications were recorded. RESULTS A total of 512 individuals (256 in each group) participated in this study. Out of these, 10.9% of individuals with T2DM and 14.1% of those without T2DM screened positive for ED, with no significant difference in the two groups. After a detailed psychiatric assessment, two patients (0.8%) in each group were confirmed to have ED. Participants with T2DM who were on thiazolidinediones had higher odds (2.2) of screening positive for an ED.(p = 0.03). CONCLUSIONS Our study reveals that eating disorders are not very common in our clinical population of T2DM, and the prevalence is comparable to BMI matched individuals without T2DM. The prevalence rates of eating disorders are lower (in both controls and patients with T2DM) than those reported from developed western countries.
Collapse
Affiliation(s)
- Aishwarya Krishnamurthy
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Yashdeep Gupta
- Department of Department of Endocrinology and Metabolism, AIIMS, New Delhi, India
| | | | - Pratap Sharan
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, AIIMS, New Delhi, India
| | - Viveka P Jyotsna
- Department of Endocrinology and Metabolism, AIIMS, New Delhi, India.
| |
Collapse
|
15
|
Short-term exposure to air pollution (PM 2.5) induces hypothalamic inflammation, and long-term leads to leptin resistance and obesity via Tlr4/Ikbke in mice. Sci Rep 2020; 10:10160. [PMID: 32576879 PMCID: PMC7311527 DOI: 10.1038/s41598-020-67040-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
A previous study demonstrated that a high-fat diet (HFD), administered for one-three-days, induces hypothalamic inflammation before obesity’s established, and the long term affects leptin signaling/action due to inflammation. We investigate whether exposure to particulate matter of a diameter of ≤2.5 μm (PM2.5) in mice fed with a chow diet leads to similar metabolic effects caused by high-fat feeding. Compared to the filtered air group (FA), one-day-exposure-PM2.5 did not affect adiposity. However, five-days-exposure-PM2.5 increased hypothalamic microglia density, toll-like-receptor-4 (Tlr4), and the inhibitor-NF-kappa-B-kinase-epsilon (Ikbke) expression. Concurrently, fat mass, food intake (FI), and ucp1 expression in brown adipose tissue were also increased. Besides, decreased hypothalamic STAT3-phosphorylation and Pomc expression were found after twelve-weeks-exposure-PM2.5. These were accompanied by increased FI and lower energy expenditure (EE), leading to obesity, along with increased leptin and insulin levels and HOMA. Mechanistically, the deletion of Tlr4 or knockdown of the Ikbke gene in the hypothalamus was sufficient to reverse the metabolic outcomes of twelve-weeks-exposure-PM2.5. These data demonstrated that short-term exposure-PM2.5 increases hypothalamic inflammation, similar to a HFD. Long-term exposure-PM2.5 is even worse, leading to leptin resistance, hyperphagia, and decreased EE. These effects are most likely due to chronic hypothalamic inflammation, which is regulated by Tlr4 and Ikbke signaling.
Collapse
|
16
|
Jerome RN, Joly MM, Kennedy N, Shirey-Rice JK, Roden DM, Bernard GR, Holroyd KJ, Denny JC, Pulley JM. Leveraging Human Genetics to Identify Safety Signals Prior to Drug Marketing Approval and Clinical Use. Drug Saf 2020; 43:567-582. [PMID: 32112228 PMCID: PMC7398579 DOI: 10.1007/s40264-020-00915-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION When a new drug or biologic product enters the market, its full spectrum of side effects is not yet fully understood, as use in the real world often uncovers nuances not suggested within the relatively narrow confines of preapproval preclinical and trial work. OBJECTIVE We describe a new, phenome-wide association study (PheWAS)- and evidence-based approach for detection of potential adverse drug effects. METHODS We leveraged our established platform, which integrates human genetic data with associated phenotypes in electronic health records from 29,722 patients of European ancestry, to identify gene-phenotype associations that may represent known safety issues. We examined PheWAS data and the published literature for 16 genes, each of which encodes a protein targeted by at least one drug or biologic product. RESULTS Initial data demonstrated that our novel approach (safety ascertainment using PheWAS [SA-PheWAS]) can replicate published safety information across multiple drug classes, with validated findings for 13 of 16 gene-drug class pairs. CONCLUSIONS By connecting and integrating in vivo and in silico data, SA-PheWAS offers an opportunity to supplement current methods for predicting or confirming safety signals associated with therapeutic agents.
Collapse
Affiliation(s)
- Rebecca N Jerome
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Meghan Morrison Joly
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nan Kennedy
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jana K Shirey-Rice
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Gordon R Bernard
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kenneth J Holroyd
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Technology Transfer and Commercialization, Vanderbilt University, Nashville, TN, USA
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Jill M Pulley
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Abou-Samra M, Selvais CM, Dubuisson N, Brichard SM. Adiponectin and Its Mimics on Skeletal Muscle: Insulin Sensitizers, Fat Burners, Exercise Mimickers, Muscling Pills … or Everything Together? Int J Mol Sci 2020; 21:ijms21072620. [PMID: 32283840 PMCID: PMC7178193 DOI: 10.3390/ijms21072620] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Adiponectin (ApN) is a hormone abundantly secreted by adipocytes and it is known to be tightly linked to the metabolic syndrome. It promotes insulin-sensitizing, fat-burning, and anti-atherosclerotic actions, thereby effectively counteracting several metabolic disorders, including type 2 diabetes, obesity, and cardiovascular diseases. ApN is also known today to possess powerful anti-inflammatory/oxidative and pro-myogenic effects on skeletal muscles exposed to acute or chronic inflammation and injury, mainly through AdipoR1 (ApN specific muscle receptor) and AMP-activated protein kinase (AMPK) pathway, but also via T-cadherin. In this review, we will report all the beneficial and protective properties that ApN can exert, specifically on the skeletal muscle as a target tissue. We will highlight its effects and mechanisms of action, first in healthy skeletal muscle including exercised muscle, and second in diseased muscle from a variety of pathological conditions. In the end, we will go over some of AdipoRs agonists that can be easily produced and administered, and which can greatly mimic ApN. These interesting and newly identified molecules could pave the way towards future therapeutic approaches to potentially prevent or combat not only skeletal muscle disorders but also a plethora of other diseases with sterile inflammation or metabolic dysfunction.
Collapse
|
18
|
Wang B, Cheng KKY. Hypothalamic AMPK as a Mediator of Hormonal Regulation of Energy Balance. Int J Mol Sci 2018; 19:ijms19113552. [PMID: 30423881 PMCID: PMC6274700 DOI: 10.3390/ijms19113552] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
As a cellular energy sensor and regulator, adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a pivotal role in the regulation of energy homeostasis in both the central nervous system (CNS) and peripheral organs. Activation of hypothalamic AMPK maintains energy balance by inducing appetite to increase food intake and diminishing adaptive thermogenesis in adipose tissues to reduce energy expenditure in response to food deprivation. Numerous metabolic hormones, such as leptin, adiponectin, ghrelin and insulin, exert their energy regulatory effects through hypothalamic AMPK via integration with the neural circuits. Although activation of AMPK in peripheral tissues is able to promote fatty acid oxidation and insulin sensitivity, its chronic activation in the hypothalamus causes obesity by inducing hyperphagia in both humans and rodents. In this review, we discuss the role of hypothalamic AMPK in mediating hormonal regulation of feeding and adaptive thermogenesis, and summarize the diverse underlying mechanisms by which central AMPK maintains energy homeostasis.
Collapse
Affiliation(s)
- Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
19
|
Choi BH, Jin Z, Yi CO, Oh J, Jeong EA, Lee JY, Park KA, Kim KE, Lee JE, Kim HJ, Hahm JR, Roh GS. Effects of lobeglitazone on insulin resistance and hepatic steatosis in high-fat diet-fed mice. PLoS One 2018; 13:e0200336. [PMID: 29979770 PMCID: PMC6034891 DOI: 10.1371/journal.pone.0200336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
Lobeglitazone (Lobe) is a novel thiazolidinedione antidiabetic drug that reduces insulin resistance by activating peroxisome proliferator-activated receptor-gamma (PPARγ). However, the exact mechanisms of antidiabetic effects of Lobe have not been established in an animal model. The aim of this study was to evaluate the hypoglycemic effects of Lobe and investigate possible factors involved in Lobe-enhanced hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were fed an HFD for 15 weeks. Lobe was administrated orally during the last 9 weeks. Lobe treatment significantly reduced insulin resistance and increased expression of hepatic glucose transporter 4 (GLUT4) and PPARs in HFD-fed mice. However, increased body weight and hepatic steatosis were not reduced by Lobe in these mice. Metabolomics fingerprinting showed that several lipogenesis-related hepatic and serum metabolites in HFD-fed mice had positive or negative correlations with Lobe administration. In particular, increased leptin levels during HFD were further increased by Lobe. HFD-induced signaling transducer and activator of transcription 3 (STAT3) phosphorylation in the hypothalamus was increased by Lobe. In addition, immunohistochemical analysis showed more proopiomelanocortin (POMC)-positive neurons in the hypothalamus of HFD-fed mice (with or without Lobe) compared with normal diet-fed mice. Despite improving leptin signaling in the hypothalamus and enhancing insulin sensitivity in HFD-fed mice, Lobe increased body weight and steatosis. Further research is necessary regarding other factors affecting Lobe-enhanced hepatic steatosis and hyperphagia.
Collapse
Affiliation(s)
- Bong-Hoi Choi
- Department of Nuclear Medicine, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Zhen Jin
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Chin-ok Yi
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Juhong Oh
- EZmass Co., Ltd., Jinju, Gyeongnam, Republic of Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Kyung-ah Park
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Hyun-Jin Kim
- EZmass Co., Ltd., Jinju, Gyeongnam, Republic of Korea
- Department of Food Science and Technology, Division of Applied Life Sciences (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jong Ryeal Hahm
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| |
Collapse
|
20
|
miR-320 mediates diabetes amelioration after duodenal-jejunal bypass via targeting adipoR1. Surg Obes Relat Dis 2018; 14:960-971. [PMID: 29960867 DOI: 10.1016/j.soard.2018.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/28/2018] [Accepted: 03/06/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Duodenal-jejunal bypass (DJB) surgery can improve type 2 diabetes (T2D) dramatically. Accumulating evidence implicates deficiency of hepatic adiponectin signaling as a contributor to gluconeogenesis disorders, and some microRNAs (miRNAs) regulate adiponectin receptors (AdipoR1, AdipoR2). We investigated the effects of DJB on hepatic gluconeogenesis, lipid metabolism, and inflammation as well as the effects of miRNA-320 (AdipoR1-targeting miRNA) on DJB-induced T2D amelioration. OBJECTIVES To investigate the essential role of miRNAs in regulation of adiponectin signaling by targeting AdipoR1 in DJB and the underlying mechanisms. SETTING University Hospital, China. METHODS We studied hepatic adiponectin signaling changes and hepatic miRNAs involved in a rat model of DJB. We investigated the effects of miR-320 on AdipoR1 signaling in buffalo rat liver cell lines. Liver tissues and glucose tolerance tests were analyzed in DJB rats injected with lentivirus encoding a miR-320 mimic. RESULTS Transfection with a miR-320 mimic reduced AdipoR1 protein levels and inhibited downstream adiponectin signaling; transfection with a miR-320 inhibitor elicited the opposite effects. A luciferase assay confirmed that miR-320 binds to the 3'-untranslated regions of AdipoR1. Global upregulation of miR-320 expression in DJB rats showed impaired gluconeogenesis, lipid metabolism, and relatively higher expression of inflammation markers. CONCLUSION miR-320 regulates the adipoR1-mediated amelioration of T2D in DJB and should be explored as a potential target for T2D treatment.
Collapse
|
21
|
Insulin resistance, an unmasked culprit in depressive disorders: Promises for interventions. Neuropharmacology 2017; 136:327-334. [PMID: 29180223 DOI: 10.1016/j.neuropharm.2017.11.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
Abstract
Depressive disorders constitute a set of debilitating diseases with psychological, societal, economic and humanitarian consequences for millions of people worldwide. Scientists are beginning to understand the reciprocal communication between the brain and the rest of the body in the etiology of these diseases. In particular, scientists have noted a connection between depressive disorders, which are primarily seen as brain-based, and, insulin resistance (IR), a modifiable metabolic inflammatory state that is typically seen as peripheral. We highlight evidence showing how treating IR, with drugs or behavioral interventions, may ameliorate or possibly prevent, depressive disorders and their long-term consequences at various stages of the life course. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
|
22
|
|
23
|
What is "Hyper" in the ALS Hypermetabolism? Mediators Inflamm 2017; 2017:7821672. [PMID: 29081604 PMCID: PMC5610793 DOI: 10.1155/2017/7821672] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
The progressive and fatal loss of upper (brain) and lower (spinal cord) motor neurons and muscle denervation concisely condenses the clinical picture of amyotrophic lateral sclerosis (ALS). Despite the multiple mechanisms believed to underlie the selective loss of motor neurons, ALS aetiology remains elusive and obscure. Likewise, there is also a cluster of alterations in ALS patients in which muscle wasting, body weight loss, eating dysfunction, and abnormal energy dissipation coexist. Defective energy metabolism characterizes the ALS progression, and such paradox of energy balance stands as a challenge for the understanding of ALS pathogenesis. The hypermetabolism in ALS will be examined from tissue-specific energy imbalance (e.g., skeletal muscle) to major energetic pathways (e.g., AMP-activated protein kinase) and whole-body energy alterations including glucose and lipid metabolism, nutrition, and potential involvement of interorgan communication. From the point of view here expressed, the hypermetabolism in ALS should be evaluated as a magnifying glass through which looking at the ALS pathogenesis is from a different perspective in which defective metabolism can disclose novel mechanistic interpretations and lines of intervention.
Collapse
|
24
|
Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO, Santos A, Saad STO, Saad MJA. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 2017; 50:16-25. [PMID: 28968517 DOI: 10.1016/j.jnutbio.2017.08.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Renata A Bagarolli
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Natália Tobar
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Alexandre G Oliveira
- Department of Physical Education, São Paulo State University (UNESP), Bioscience Institute, Rio Claro, SP, Brazil
| | - Tiago G Araújo
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Bruno M Carvalho
- Department of Biology Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Guilherme Z Rocha
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Juliana F Vecina
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Kelly Calisto
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Patrícia O Prada
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Sara T O Saad
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Mario J A Saad
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil.
| |
Collapse
|
25
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Quaresma PGF, Weissmann L, Zanotto TM, Santos AC, de Matos AHB, Furigo IC, Simabuco FM, Donato J, Bittencourt JC, Lopes-Cendes I, Prada PO. Cdc2-like kinase 2 in the hypothalamus is necessary to maintain energy homeostasis. Int J Obes (Lond) 2016; 41:268-278. [PMID: 27733761 DOI: 10.1038/ijo.2016.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 08/21/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate whether the Cdc2-like kinase 2 (CLK2) is expressed in hypothalamic neurons and if it is, whether the hypothalamic CLK2 has a role in the regulation of energy balance. SUBJECTS Swiss mice on chow or high-fat diet (HFD) and db/db mice on chow diet were used to address the role of CLK2 in the hypothalamus. RESULTS Hypothalamic CLK2Thr343 phosphorylation, which induces CLK2 activity, is regulated in vivo by refeeding, insulin and leptin, in a PI3K (phosphoinositide 3-kinase)-dependent manner. The reduction of CLK2 expression in the hypothalamus, by chronic pharmacological inhibition with TG003 or by chronic knockdown with small interfering RNA was sufficient to abolish the anorexigenic effect of insulin and leptin, to increase body weight, fat mass, food intake and to decrease energy expenditure in mice on chow. In contrast, CLK2Thr343 phosphorylation in the hypothalamus in response to insulin, leptin or refeeding was impaired in mice on HFD or in db/db mice. Chronic CLK2 inhibition in the hypothalamus was associated with a slight increase in the fasting blood glucose levels, reduction in PEPCK (phosphoenolpyruvate carboxykinase) expression in the liver and enhanced glucose production from pyruvate, suggesting a regulation of hepatic glucose production. Further, overexpressing CLK2 in the mediobasal hypothalami of mice on HFD or in db/db mice by adenovirus partially reversed the obese phenotype. CONCLUSIONS Thus, our results suggest that protein CLK2 integrates some important hypothalamic pathways, and may be a promising molecule for new therapeutic approaches for obesity and diabetes.
Collapse
Affiliation(s)
- P G F Quaresma
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - L Weissmann
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - T M Zanotto
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - A C Santos
- Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - A H B de Matos
- Department of Medical Genetics, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - I C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - F M Simabuco
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - J Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - J C Bittencourt
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - I Lopes-Cendes
- Department of Medical Genetics, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - P O Prada
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
27
|
Morales-Alamo D, Calbet JAL. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species. Free Radic Biol Med 2016; 98:68-77. [PMID: 26804254 DOI: 10.1016/j.freeradbiomed.2016.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
Abstract
Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the intrinsic properties of different skeletal muscles, the specific RONS induction and the subsequent signaling responses.
Collapse
Affiliation(s)
- David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain.
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain
| |
Collapse
|
28
|
Hypothalamic AMPK as a Regulator of Energy Homeostasis. Neural Plast 2016; 2016:2754078. [PMID: 27547453 PMCID: PMC4980534 DOI: 10.1155/2016/2754078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022] Open
Abstract
Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration.
Collapse
|