1
|
Roberts JM, Milo S, Metcalf DG. Harnessing the Power of Our Immune System: The Antimicrobial and Antibiofilm Properties of Nitric Oxide. Microorganisms 2024; 12:2543. [PMID: 39770746 PMCID: PMC11677572 DOI: 10.3390/microorganisms12122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide (NO) is a free radical of the human innate immune response to invading pathogens. NO, produced by nitric oxide synthases (NOSs), is used by the immune system to kill microorganisms encapsulated within phagosomes via protein and DNA disruption. Owing to its ability to disperse biofilm-bound microorganisms, penetrate the biofilm matrix, and act as a signal molecule, NO may also be effective as an antibiofilm agent. NO can be considered an underappreciated antimicrobial that could be levied against infected, at-risk, and hard-to-heal wounds due to the inherent lack of bacterial resistance, and tolerance by human tissues. NO produced within a wound dressing may be an effective method of disrupting biofilms and killing microorganisms in hard-to-heal wounds such as diabetic foot ulcers, venous leg ulcers, and pressure injuries. We have conducted a narrative review of the evidence underlying the key antimicrobial and antibiofilm mechanisms of action of NO for it to serve as an exogenously-produced antimicrobial agent in dressings used in the treatment of hard-to-heal wounds.
Collapse
Affiliation(s)
| | | | - Daniel Gary Metcalf
- Advanced Wound Care Research & Development, Convatec, Deeside Industrial Park, Deeside CH5 2NU, UK; (J.M.R.); (S.M.)
| |
Collapse
|
2
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
3
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
4
|
Aris P, Mohamadzadeh M, Zarei M, Xia X. Computational Design of Novel Griseofulvin Derivatives Demonstrating Potential Antibacterial Activity: Insights from Molecular Docking and Molecular Dynamics Simulation. Int J Mol Sci 2024; 25:1039. [PMID: 38256112 PMCID: PMC10816260 DOI: 10.3390/ijms25021039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
In response to the urgent demand for innovative antibiotics, theoretical investigations have been employed to design novel analogs. Because griseofulvin is a potential antibacterial agent, we have designed novel derivatives of griseofulvin to enhance its antibacterial efficacy and to evaluate their interactions with bacterial targets using in silico analysis. The results of this study reveal that the newly designed derivatives displayed the most robust binding affinities towards PBP2, tyrosine phosphatase, and FtsZ proteins. Additionally, molecular dynamics (MD) simulations underscored the notable stability of these derivatives when engaged with the FtsZ protein, as evidenced by root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and solvent-accessible surface area (SASA). Importantly, this observation aligns with expectations, considering that griseofulvin primarily targets microtubules in eukaryotic cells, and FtsZ functions as the prokaryotic counterpart to microtubules. These findings collectively suggest the promising potential of griseofulvin and its designed derivatives as effective antibacterial agents, particularly concerning their interaction with the FtsZ protein. This research contributes to the ongoing exploration of novel antibiotics and may serve as a foundation for future drug development efforts.
Collapse
Affiliation(s)
- Parisa Aris
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Ottawa, ON K1N 6N5, Canada
| | - Masoud Mohamadzadeh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 71961, Iran; (M.M.); (M.Z.)
| | - Maaroof Zarei
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 71961, Iran; (M.M.); (M.Z.)
- Nanoscience, Nanotechnology and Advanced Materials Research Center, University of Hormozgan, Bandar Abbas 71961, Iran
| | - Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Ottawa, ON K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Wu S, Coureuil M, Nassif X, Tautz L. Enzyme mechanistic studies of NMA1982, a protein tyrosine phosphatase and potential virulence factor in Neisseria meningitidis. Sci Rep 2023; 13:22015. [PMID: 38086986 PMCID: PMC10716126 DOI: 10.1038/s41598-023-49561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023] Open
Abstract
Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine PTP. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.
Collapse
Affiliation(s)
- Shuangding Wu
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Mathieu Coureuil
- Université Paris CitéUFR de Médecine, 15 Rue de l'École de Médecine, 75006, Paris, France
- Institut Necker Enfants-MaladesInserm U1151, CNRS UMR 8253, 160 Rue de Vaugirard, 75015, Paris, France
| | - Xavier Nassif
- Université Paris CitéUFR de Médecine, 15 Rue de l'École de Médecine, 75006, Paris, France
- Institut Necker Enfants-MaladesInserm U1151, CNRS UMR 8253, 160 Rue de Vaugirard, 75015, Paris, France
| | - Lutz Tautz
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
6
|
Fürst A, Shahzadi I, Akkuş-Dağdeviren ZB, Schöpf AM, Gust R, Bernkop-Schnürch A. Zeta potential shifting nanoemulsions comprising single and gemini tyrosine-based surfactants. Eur J Pharm Sci 2023; 189:106538. [PMID: 37495057 DOI: 10.1016/j.ejps.2023.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
AIM This study aims to design and evaluate zeta potential shifting nanoemulsions comprising single and gemini type tyrosine-based surfactants for specific cleavage by tyrosine phosphatase. METHODS Tyrosine-based surfactants, either single 4-(2-amino-3-(dodecylamino)-3-oxopropyl)phenyl dihydrogen phosphate (AF1) or gemini 4-(2-amino-3-((1-(dodecylamino)-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)amino)-3-oxopropyl)phenyl dihydrogen phosphate (AF2) type were synthesized via amide bond formation of tyrosine with dodecylamine followed by phosphorylation. These surfactants were incorporated into nanoemulsions. Nanoemulsions were monitored by incubation with isolated tyrosine phosphatase as well as secreted tyrosine phosphatase of Escherichia coli in terms of phosphate release and zeta potential change. RESULTS Via isolated tyrosine phosphatase, and mediated by E. coli, phosphate groups of either single or gemini tyrosine-based surfactants could be cleaved by secreted tyrosine phosphatase. Nanoemulsions comprising a single tyrosine-based surfactant resulted in a charge shift from - 13.46 mV to - 4.41 mV employing isolated tyrosine phosphatase whilst nanoemulsions consisting of a gemini tyrosine-based surfactant showed a shift in zeta potential from - 15.92 mV to - 5.86 mV, respectively. CONCLUSION Nanoemulsions containing tyrosine-based surfactants represent promising zeta potential shifting nanocarrier systems targeting tyrosine phosphatase secreting bacteria.
Collapse
Affiliation(s)
- Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Anna Maria Schöpf
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Ronald Gust
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
7
|
Sulyman AO, Fulcher J, Crossley S, Fatokun AA, Olorunniji FJ. Shikonin and Juglone Inhibit Mycobacterium tuberculosis Low-Molecular-Weight Protein Tyrosine Phosphatase a (Mt-PTPa). BIOTECH 2023; 12:59. [PMID: 37754203 PMCID: PMC10526854 DOI: 10.3390/biotech12030059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Low-molecular-weight protein tyrosine phosphatases (LMW-PTPs) are involved in promoting the intracellular survival of Mycobacterium tuberculosis (Mtb), the causative organism of tuberculosis. These PTPs directly alter host signalling pathways to evade the hostile environment of macrophages and avoid host clearance. Among these, protein tyrosine phosphatase A (Mt-PTPa) is implicated in phagosome acidification failure, thereby inhibiting phagosome maturation to promote Mycobacterium tuberculosis (Mtb) survival. In this study, we explored Mt-PTPa as a potential drug target for treating Mtb. We started by screening a library of 502 pure natural compounds against the activities of Mt-PTPa in vitro, with a threshold of 50% inhibition of activity via a <500 µM concentration of the candidate drugs. The initial screen identified epigallocatechin, myricetin, rosmarinic acid, and shikonin as hits. Among these, the naphthoquinone, shikonin (5, 8-dihydroxy-2-[(1R)-1-hydroxy-4-methyl-3-pentenyl]-1,4-naphthoquinone), showed the strongest inhibition (IC50 33 µM). Further tests showed that juglone (5-hydroxy-1,4-naphthalenedione), another naphthoquinone, displayed similar potent inhibition of Mt-PTPa to shikonin. Kinetic analysis of the inhibition patterns suggests a non-competitive inhibition mechanism for both compounds, with inhibitor constants (Ki) of 8.5 µM and 12.5 µM for shikonin and juglone, respectively. Our findings are consistent with earlier studies suggesting that Mt-PTPa is susceptible to specific allosteric modulation via a non-competitive or mixed inhibition mechanism.
Collapse
Affiliation(s)
- Abdulhakeem O. Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Jessie Fulcher
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Samuel Crossley
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Amos A. Fatokun
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
8
|
Wu S, Coureuil M, Nassif X, Tautz L. Enzyme Mechanistic Studies of NMA1982, a Protein Tyrosine Phosphatase and Potential Virulence Factor in Neisseria meningitidis. RESEARCH SQUARE 2023:rs.3.rs-3098138. [PMID: 37693380 PMCID: PMC10491346 DOI: 10.21203/rs.3.rs-3098138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine PTP. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.
Collapse
Affiliation(s)
| | | | | | - Lutz Tautz
- Sanford Burnham Prebys Medical Discovery Institute
| |
Collapse
|
9
|
Huijboom L, Tempelaars M, Fan M, Zhu Y, Boeren S, van der Linden E, Abee T. l-tyrosine modulates biofilm formation of Bacillus cereus ATCC 14579. Res Microbiol 2023; 174:104072. [PMID: 37080258 DOI: 10.1016/j.resmic.2023.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Bacillus cereus is a food-borne pathogen capable of producing biofilms. Following analysis of biofilm formation by B. cereus ATCC 14579 transposon mutants in defined medium (DM), a deletion mutant of bc2939 (Δbc2939) was constructed that showed decreased crystal violet biofilm staining and biofilm cell counts. In addition, Δbc2939 also produced smaller colony biofilms with lower cell counts and loss of wrinkly morphology. The bc2939 gene encodes for Prephenate dehydrogenase, which converts Prephenate to 4-Hydroxy-phenylpyruvate (4-HPPA) in the l-tyrosine branch of the Shikimate pathway. While growth of the mutant and WT in DM was similar, addition of l-tyrosine was required to restore WT-like (colony) biofilm formation. Comparative proteomics showed reduced expression of Tyrosine-protein kinase/phosphatase regulators and extracellular polysaccharide cluster 1 (EPS1) proteins, aerobic electron transfer chain cytochrome aa3/d quinol oxidases, and iso-chorismate synthase involved in menaquinone synthesis in DM grown mutant biofilm cells, while multiple oxidative stress-related catalases and superoxide dismutases were upregulated. Performance in shaking cultures showed a 100-fold lower concentration of menaquinone-7 and reduction in cell counts of DM grown Δbc2939 indicating increased oxygen sensitivity. Combining all results, points to an important role of Tyrosine-modulated EPS1 production and menaquinone-dependent aerobic respiration in B. cereus ATCC 14579 (colony) biofilm formation.
Collapse
Affiliation(s)
- Linda Huijboom
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Marcel Tempelaars
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Mingzhen Fan
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Yourong Zhu
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, Wageningen, 6708, WE, the Netherlands.
| | - Erik van der Linden
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
10
|
Wu S, Coureuil M, Nassif X, Tautz L. NMA1982 is a Novel Phosphatase and Potential Virulence Factor in Neisseria meningitidis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541968. [PMID: 37292688 PMCID: PMC10245925 DOI: 10.1101/2023.05.23.541968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine phosphatase. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.
Collapse
Affiliation(s)
- Shuangding Wu
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Mathieu Coureuil
- Université Paris Cité, UFR de Médecine, 15 Rue de l’École de Médecine, 75006 Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, 160 Rue de Vaugirard, 75015 Paris, France
| | - Xavier Nassif
- Université Paris Cité, UFR de Médecine, 15 Rue de l’École de Médecine, 75006 Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, 160 Rue de Vaugirard, 75015 Paris, France
| | - Lutz Tautz
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Lim S. A Review of the Bacterial Phosphoproteomes of Beneficial Microbes. Microorganisms 2023; 11:microorganisms11040931. [PMID: 37110354 PMCID: PMC10145908 DOI: 10.3390/microorganisms11040931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The number and variety of protein post-translational modifications (PTMs) found and characterized in bacteria over the past ten years have increased dramatically. Compared to eukaryotic proteins, most post-translational protein changes in bacteria affect relatively few proteins because the majority of modified proteins exhibit substoichiometric modification levels, which makes structural and functional analyses challenging. In addition, the number of modified enzymes in bacterial species differs widely, and degrees of proteome modification depend on environmental conditions. Nevertheless, evidence suggests that protein PTMs play essential roles in various cellular processes, including nitrogen metabolism, protein synthesis and turnover, the cell cycle, dormancy, spore germination, sporulation, persistence, and virulence. Additional investigations on protein post-translational changes will undoubtedly close knowledge gaps in bacterial physiology and create new means of treating infectious diseases. Here, we describe the role of the post-translation phosphorylation of major bacterial proteins and review the progress of research on phosphorylated proteins depending on bacterial species.
Collapse
Affiliation(s)
- Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| |
Collapse
|
12
|
Singh R, Thakur L, Kumar A, Singh S, Kumar S, Kumar M, Kumar Y, Kumar N. Comparison of freeze-thaw and sonication cycle-based methods for extracting AMR-associated metabolites from Staphylococcus aureus. Front Microbiol 2023; 14:1152162. [PMID: 37180233 PMCID: PMC10174324 DOI: 10.3389/fmicb.2023.1152162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Emerging antimicrobial resistance (AMR) among Gram-positive pathogens, specifically in Staphylococcus aureus (S. aureus), is becoming a leading public health concern demanding effective therapeutics. Metabolite modulation can improve the efficacy of existing antibiotics and facilitate the development of effective therapeutics. However, it remained unexplored for drug-resistant S. aureus (gentamicin and methicillin-resistant), primarily due to the dearth of optimal metabolite extraction protocols including a protocol for AMR-associated metabolites. Therefore, in this investigation, we have compared the performance of the two most widely used methods, i.e., freeze-thaw cycle (FTC) and sonication cycle (SC), alone and in combination (FTC + SC), and identified the optimal method for this purpose. A total of 116, 119, and 99 metabolites were identified using the FTC, SC, and FTC + SC methods, respectively, leading to the identification of 163 metabolites cumulatively. Out of 163, 69 metabolites were found to be associated with AMR in published literature consisting of the highest number of metabolites identified by FTC (57) followed by SC (54) and FTC + SC (40). Thus, the performances of FTC and SC methods were comparable with no additional benefits of combining both. Moreover, each method showed biasness toward specific metabolite(s) or class of metabolites, suggesting that the choice of metabolite extraction method shall be decided based on the metabolites of interest in the investigation.
Collapse
Affiliation(s)
- Rita Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Ashok Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Shailesh Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Manoj Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- *Correspondence: Yashwant Kumar,
| | - Niraj Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Niraj Kumar,
| |
Collapse
|
13
|
Bacterial Protein Tyrosine Phosphatases as Possible Targets for Antimicrobial Therapies in Response to Antibiotic Resistance. Antioxidants (Basel) 2022; 11:antiox11122397. [PMID: 36552605 PMCID: PMC9774629 DOI: 10.3390/antiox11122397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The review is focused on the bacterial protein tyrosine phosphatases (PTPs) utilized by bacteria as virulence factors necessary for pathogenicity. The inhibition of bacterial PTPs could contribute to the arrest of the bacterial infection process. This mechanism could be utilized in the design of antimicrobial therapy as adjuvants to antibiotics. The review summaries knowledge on pathogenic bacterial protein tyrosine phosphatases (PTPs) involved in infection process, such as: PTPA and PTPB from Staphylococcus aureus and Mycobacterium tuberculosis; SptP from Salmonella typhimurium; YopH from Yersinia sp. and TbpA from Pseudomonas aeruginosa. The review focuses also on the potential inhibitory compounds of bacterial virulence factors and inhibitory mechanisms such as the reversible oxidation of tyrosine phosphatases.
Collapse
|
14
|
Characterization of the Secreted Acid Phosphatase SapS Reveals a Novel Virulence Factor of Staphylococcus aureus That Contributes to Survival and Virulence in Mice. Int J Mol Sci 2022; 23:ijms232214031. [PMID: 36430506 PMCID: PMC9692844 DOI: 10.3390/ijms232214031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus possesses a large arsenal of immune-modulating factors, enabling it to bypass the immune system's response. Here, we demonstrate that the acid phosphatase SapS is secreted during macrophage infection and promotes its intracellular survival in this type of immune cell. In animal models, the SA564 sapS mutant demonstrated a significantly lower bacterial burden in liver and renal tissues of mice at four days post infection in comparison to the wild type, along with lower pathogenicity in a zebrafish infection model. The SA564 sapS mutant elicits a lower inflammatory response in mice than the wild-type strain, while S. aureus cells harbouring a functional sapS induce a chemokine response that favours the recruitment of neutrophils to the infection site. Our in vitro and quantitative transcript analysis show that SapS has an effect on S. aureus capacity to adapt to oxidative stress during growth. SapS is also involved in S. aureus biofilm formation. Thus, this study shows for the first time that SapS plays a significant role during infection, most likely through inhibiting a variety of the host's defence mechanisms.
Collapse
|
15
|
Menegatti ACO. Targeting protein tyrosine phosphatases for the development of antivirulence agents: Yersinia spp. and Mycobacterium tuberculosis as prototypes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140782. [PMID: 35470106 DOI: 10.1016/j.bbapap.2022.140782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Protein phosphorylation mediated by protein kinases and phosphatases has a central regulatory function in many cellular processes in eukaryotes and prokaryotes. As a result, several diseases caused by imbalance in phosphorylation levels are known, especially due to protein tyrosine phosphatases (PTPs) activity, an important family of signaling enzymes. Furthermore, over the last decades several studies have shown the main role of PTPs in pathogenic bacteria: they are associated with growth, cell division, cell wall biosynthesis, biofilm formation, metabolic processes, as well as virulence factor. In this way, PTPs have ascended as targets for antibacterial drug design, particularly in view of the antibiotic resistance in pathogenic bacteria, which demands novel therapeutics strategies. Targeting secreted PTPs is an antivirulence strategy to combat the emergence of antimicrobial resistance (AMR). This review focuses on the recent advances in understanding the role of PTPs and the approaches to target them, with an emphasis in Yersinia spp. and Mycobacterium tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Angela Camila Orbem Menegatti
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Paraíba, Brazil.
| |
Collapse
|
16
|
Lamont RJ, Miller DP. Tyrosine Kinases and Phosphatases: Enablers of the Porphyromonas gingivalis Lifestyle. FRONTIERS IN ORAL HEALTH 2022; 3:835586. [PMID: 35224543 PMCID: PMC8863745 DOI: 10.3389/froh.2022.835586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Tyrosine phosphorylation modifies the functionality of bacterial proteins and forms the basis of a versatile and tunable signal transduction system. The integrated action of tyrosine kinases and phosphatases controls bacterial processes important for metabolism and virulence. Porphyromonas gingivalis, a keystone pathogen in periodontal disease, possesses an extensive phosphotyrosine signaling network. The phosphorylation reaction is catalyzed by a bacterial tyrosine (BY) kinase, Ptk1, and a Ubiquitous bacterial Kinase UbK1. Dephosphorylation is mediated by a low-molecular-weight phosphatase, Ltp1 and a polymerase and histidinol phosphatase, Php1. Phosphotyrosine signaling controls exopolysaccharide production, gingipain activity, oxidative stress responses and synergistic community development with Streptococcus gordonii. Additionally, Ltp1 is secreted extracellularly and can be delivered inside gingival epithelial cells where it can override host cell signaling and readjust cellular physiology. The landscape of coordinated tyrosine kinase and phosphatase activity thus underlies the adaptive responses of P. gingivalis to both the polymicrobial environment of bacterial communities and the intracellular environment of gingival epithelial cells.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
- *Correspondence: Richard J. Lamont
| | - Daniel P. Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University Richmond, Richmond, VA, United States
| |
Collapse
|
17
|
Ren L, Shen D, Liu C, Ding Y. Protein Tyrosine and Serine/Threonine Phosphorylation in Oral Bacterial Dysbiosis and Bacteria-Host Interaction. Front Cell Infect Microbiol 2022; 11:814659. [PMID: 35087767 PMCID: PMC8787120 DOI: 10.3389/fcimb.2021.814659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
The human oral cavity harbors approximately 1,000 microbial species, and dysbiosis of the microflora and imbalanced microbiota-host interactions drive many oral diseases, such as dental caries and periodontal disease. Oral microbiota homeostasis is critical for systemic health. Over the last two decades, bacterial protein phosphorylation systems have been extensively studied, providing mounting evidence of the pivotal role of tyrosine and serine/threonine phosphorylation in oral bacterial dysbiosis and bacteria-host interactions. Ongoing investigations aim to discover novel kinases and phosphatases and to understand the mechanism by which these phosphorylation events regulate the pathogenicity of oral bacteria. Here, we summarize the structures of bacterial tyrosine and serine/threonine kinases and phosphatases and discuss the roles of tyrosine and serine/threonine phosphorylation systems in Porphyromonas gingivalis and Streptococcus mutans, emphasizing their involvement in bacterial metabolism and virulence, community development, and bacteria-host interactions.
Collapse
Affiliation(s)
- Liang Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Daonan Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Kant S, Pancholi V. Novel Tyrosine Kinase-Mediated Phosphorylation With Dual Specificity Plays a Key Role in the Modulation of Streptococcus pyogenes Physiology and Virulence. Front Microbiol 2021; 12:689246. [PMID: 34950110 PMCID: PMC8689070 DOI: 10.3389/fmicb.2021.689246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) genomes do not contain a gene encoding a typical bacterial-type tyrosine kinase (BY-kinase) but contain an orphan gene-encoding protein Tyr-phosphatase (SP-PTP). Hence, the importance of Tyr-phosphorylation is underappreciated and not recognized for its role in GAS pathophysiology and pathogenesis. The fact that SP-PTP dephosphorylates Abl-tyrosine kinase-phosphorylated myelin basic protein (MBP), and SP-STK (S. pyogenes Ser/Thr kinase) also autophosphorylates its Tyr101-residue prompted us to identify a putative tyrosine kinase and Tyr-phosphorylation in GAS. Upon a genome-wide search of kinases possessing a classical Walker motif, we identified a non-canonical tyrosine kinase M5005_Spy_1476, a ∼17 kDa protein (153 aa) (SP-TyK). The purified recombinant SP-TyK autophosphorylated in the presence of ATP. In vitro and in vivo phosphoproteomic analyses revealed two key phosphorylated tyrosine residues located within the catalytic domain of SP-TyK. An isogenic mutant lacking SP-TyK derived from the M1T1 strain showed a retarded growth pattern. It displayed defective cell division and long chains with multiple parallel septa, often resulting in aggregates. Transcriptomic analysis of the mutant revealed 287 differentially expressed genes responsible for GAS pathophysiology and pathogenesis. SP-TyK also phosphorylated GAS CovR, WalR, SP-STP, and SDH/GAPDH proteins with dual specificity targeting their Tyr/Ser/Thr residues as revealed by biochemical and mass-spectrometric-based phosphoproteomic analyses. SP-TyK-phosphorylated CovR bound to PcovR efficiently. The mutant displayed sustained release of IL-6 compared to TNF-α during co-culturing with A549 lung cell lines, attenuation in mice sepsis model, and significantly reduced ability to adhere to and invade A549 lung cells and form biofilms on abiotic surfaces. SP-TyK, thus, plays a critical role in fine-tuning the regulation of key cellular functions essential for GAS pathophysiology and pathogenesis through post-translational modifications and hence, may serve as a promising target for future therapeutic developments.
Collapse
|
19
|
Nowakowska Z, Madej M, Grad S, Wang T, Hackett M, Miller DP, Lamont RJ, Potempa J. Phosphorylation of major Porphyromonas gingivalis virulence factors is crucial for their processing and secretion. Mol Oral Microbiol 2021; 36:316-326. [PMID: 34569151 PMCID: PMC10148667 DOI: 10.1111/omi.12354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
The main etiological agent of periodontitis is the anaerobic bacterium Porphyromonas gingivalis. Virulence of this pathogen is controlled by various mechanisms and executed by major virulence factors including the gingipain proteases, peptidylarginine deiminase (PPAD), and RagB, an outer membrane macromolecular transport component. Although the structures and functions of these proteins are well characterized, little is known about their posttranslational maturation. Here, we determined the phosphoproteome of P. gingivalis in which phosphorylated tyrosine residues constitute over 80% of all phosphoresidues. Multiple phosphotyrosines were found in gingipains, PPAD, and RagB. Although mutation of phosphorylated residues in PPAD and RagB had no effect on secretion or activity, site-directed mutagenesis showed that phosphorylation in hemagglutinin/adhesin domains of RgpA and Kgp, and in the catalytic domain of RgpB, had a strong influence on secretion, processing, and enzymatic activity. Moreover, preventing phosphorylation of one gingipain influenced the others, suggesting multiple phosphorylation-dependent pathways of gingipain maturation in P. gingivalis. Various candidate kinases including Ptk1 BY kinase and ubiquitous bacterial kinase 1 (UbK1) may be involved, but their contribution to gingipain processing and activation remains to be confirmed.
Collapse
Affiliation(s)
- Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Grad
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tiansong Wang
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Murray Hackett
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Daniel P. Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
20
|
Perpich JD, Yakoumatos L, Johns P, Stocke KS, Fitzsimonds ZR, Wilkey DW, Merchant ML, Miller DP, Lamont RJ. Identification and characterization of a UbK family kinase in Porphyromonas gingivalis that phosphorylates the RprY response regulator. Mol Oral Microbiol 2021; 36:258-266. [PMID: 34241965 DOI: 10.1111/omi.12347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
Phosphorylation of proteins is a key component of bacterial signaling systems that can control important functions such as community development and virulence. We report here the identification of a Ubiquitous bacterial Kinase (UbK) family member, designated UbK1, in the anaerobic periodontal pathogen, Porphyromonas gingivalis. UbK1 contains conserved SPT/S, Hanks-type HxDxYR, EW, and Walker A motifs, and a mutation analysis established the Walker A domain and the Hanks-type domain as required for both autophosphorylation and transphosphorylation. UbK1 autophosphorylates on the proximal serine in the SPT/S domain as well as the tyrosine residue within the HxDxYR domain and the tyrosine residue immediately proximal, indicating both serine/threonine and tyrosine specificity. The orphan two-component system response regulator (RR) RprY was phosphorylated on Y41 in the receiver domain by UbK1. The ubk1 gene is essential in P. gingivalis; however, overexpression of UbK1 showed that UbK1-mediated phosphorylation of RprY functions predominantly to augment its properties as a transcriptional enhancer. These results establish that P. gingivalis possesses an active UbK kinase in addition to a previously described Bacterial Tyrosine family kinase. The RR RprY is identified as the first transcriptional regulator controlled by a UbK enzyme.
Collapse
Affiliation(s)
- John D Perpich
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA.,Department of Pharmaceutical Sciences, Sullivan University College of Pharmacy and Health Sciences, Louisville, Kentucky, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Parker Johns
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Kendall S Stocke
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Daniel W Wilkey
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Michael L Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
21
|
A bacterial tyrosine phosphatase modulates cell proliferation through targeting RGCC. PLoS Pathog 2021; 17:e1009598. [PMID: 34015051 PMCID: PMC8172045 DOI: 10.1371/journal.ppat.1009598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 04/30/2021] [Indexed: 01/22/2023] Open
Abstract
Tyrosine phosphatases are often weaponized by bacteria colonizing mucosal barriers to manipulate host cell signal transduction pathways. Porphyromonas gingivalis is a periodontal pathogen and emerging oncopathogen which interferes with gingival epithelial cell proliferation and migration, and induces a partial epithelial mesenchymal transition. P. gingivalis produces two tyrosine phosphatases, and we show here that the low molecular weight tyrosine phosphatase, Ltp1, is secreted within gingival epithelial cells and translocates to the nucleus. An ltp1 mutant of P. gingivalis showed a diminished ability to induce epithelial cell migration and proliferation. Ltp1 was also required for the transcriptional upregulation of Regulator of Growth and Cell Cycle (RGCC), one of the most differentially expressed genes in epithelial cells resulting from P. gingivalis infection. A phosphoarray and siRNA showed that P. gingivalis controlled RGCC expression through Akt, which was activated by phosphorylation on S473. Akt activation is opposed by PTEN, and P. gingivalis decreased the amount of PTEN in epithelial cells. Ectopically expressed Ltp1 bound to PTEN, and reduced phosphorylation of PTEN at Y336 which controls proteasomal degradation. Ltp-1 induced loss of PTEN stability was prevented by chemical inhibition of the proteasome. Knockdown of RGCC suppressed upregulation of Zeb2 and mesenchymal markers by P. gingivalis. RGCC inhibition was also accompanied by a reduction in production of the proinflammatory cytokine IL-6 in response to P. gingivalis. Elevated IL-6 levels can contribute to periodontal destruction, and the ltp1 mutant of P. gingivalis incited less bone loss compared to the parental strain in a murine model of periodontal disease. These results show that P. gingivalis can deliver Ltp1 within gingival epithelial cells, and establish PTEN as the target for Ltp1 phosphatase activity. Disruption of the Akt1/RGCC signaling axis by Ltp1 facilitates P. gingivalis-induced increases in epithelial cell migration, proliferation, EMT and inflammatory cytokine production. Bacteria colonizing the oral cavity can induce inflammatory destruction of the periodontal tissues, and are increasingly associated with oral squamous cell carcinoma. P. gingivalis, a major periodontal pathogen, can subvert epithelial pathways that control important physiological processes relating to innate immunity and cell fate; however, little is known about the effector molecules. Here we show that P. gingivalis can deliver a tyrosine phosphatase, Ltp1, within epithelial cells, and Ltp1 phosphatase activity destabilizes PTEN, a negative regulator of Akt1 signaling. The production of RGCC is thus increased and this leads to increased epithelial cell migration, proliferation, a partial mesenchymal phenotype and inflammatory cytokine production. Ltp1 phosphatase activity thus provides a mechanistic basis for a number of P. gingivalis properties that contribute to disease. Indeed, an Ltp1-deficient mutant was less pathogenic in a murine model of periodontitis. These results contribute to deciphering the pathophysiological events that underlie oral bacterial diseases that initiate at mucosal barriers.
Collapse
|
22
|
The Phosphoarginine Phosphatase PtpB from Staphylococcus aureus Is Involved in Bacterial Stress Adaptation during Infection. Cells 2021; 10:cells10030645. [PMID: 33799337 PMCID: PMC8001253 DOI: 10.3390/cells10030645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus continues to be a public health threat, especially in hospital settings. Studies aimed at deciphering the molecular and cellular mechanisms that underlie pathogenesis, host adaptation, and virulence are required to develop effective treatment strategies. Numerous host-pathogen interactions were found to be dependent on phosphatases-mediated regulation. This study focused on the analysis of the role of the low-molecular weight phosphatase PtpB, in particular, during infection. Deletion of ptpB in S. aureus strain SA564 significantly reduced the capacity of the mutant to withstand intracellular killing by THP-1 macrophages. When injected into normoglycemic C57BL/6 mice, the SA564 ΔptpB mutant displayed markedly reduced bacterial loads in liver and kidney tissues in a murine S. aureus abscess model when compared to the wild type. We also observed that PtpB phosphatase-activity was sensitive to oxidative stress. Our quantitative transcript analyses revealed that PtpB affects the transcription of various genes involved in oxidative stress adaptation and infectivity. Thus, this study disclosed first insights into the physiological role of PtpB during host interaction allowing us to link phosphatase-dependent regulation to oxidative bacterial stress adaptation during infection.
Collapse
|
23
|
Zeng F, Pang H, Chen Y, Zheng H, Li W, Ramanathan S, Hoare R, Monaghan SJ, Lin X, Jian J. First Succinylome Profiling of Vibrio alginolyticus Reveals Key Role of Lysine Succinylation in Cellular Metabolism and Virulence. Front Cell Infect Microbiol 2021; 10:626574. [PMID: 33614530 PMCID: PMC7892601 DOI: 10.3389/fcimb.2020.626574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that a key strategy of many pathogens is to use post-translational modification (PTMs) to modulate host factors critical for infection. Lysine succinylation (Ksuc) is a major PTM widespread in prokaryotic and eukaryotic cells, and is associated with the regulation of numerous important cellular processes. Vibrio alginolyticus is a common pathogen that causes serious disease problems in aquaculture. Here we used the affinity enrichment method with LC-MS/MS to report the first identification of 2082 lysine succinylation sites on 671 proteins in V. alginolyticus, and compared this with the lysine acetylation of V. alginolyticus in our previous work. The Ksuc modification of SodB and PEPCK proteins were further validated by Co-immunoprecipitation combined with Western blotting. Bioinformatics analysis showed that the identified lysine succinylated proteins are involved in various biological processes and central metabolism pathways. Moreover, a total of 1,005 (25.4%) succinyl sites on 502 (37.3%) proteins were also found to be acetylated, which indicated that an extensive crosstalk between acetylation and succinylation in V. alginolyticus occurs, especially in three central metabolic pathways: glycolysis/gluconeogenesis, TCA cycle, and pyruvate metabolism. Furthermore, we found at least 50 (7.45%) succinylated virulence factors, including LuxS, Tdh, SodB, PEPCK, ClpP, and the Sec system to play an important role in bacterial virulence. Taken together, this systematic analysis provides a basis for further study on the pathophysiological role of lysine succinylation in V. alginolyticus and provides targets for the development of attenuated vaccines.
Collapse
Affiliation(s)
- Fuyuan Zeng
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhan jiang), Zhanjiang, China
| | - Huanying Pang
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhan jiang), Zhanjiang, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhan jiang), Zhanjiang, China
| | - Hongwei Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhan jiang), Zhanjiang, China
| | - Wanxin Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Srinivasan Ramanathan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Sean J. Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jichang Jian
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhan jiang), Zhanjiang, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Wang X, Ma Q. Wzb of Vibrio vulnificus represents a new group of low-molecular-weight protein tyrosine phosphatases with a unique insertion in the W-loop. J Biol Chem 2021; 296:100280. [PMID: 33450227 PMCID: PMC7948962 DOI: 10.1016/j.jbc.2021.100280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Protein tyrosine phosphorylation regulates the production of capsular polysaccharide, an essential virulence factor of the deadly pathogen Vibrio vulnificus. The process requires the protein tyrosine kinase Wzc and its cognate phosphatase Wzb, both of which are largely uncharacterized. Herein, we report the structures of Wzb of V. vulnificus (VvWzb) in free and ligand-bound forms. VvWzb belongs to the low-molecular-weight protein tyrosine phosphatase (LMWPTP) family. Interestingly, it contains an extra four-residue insertion in the W-loop, distinct from all known LMWPTPs. The W-loop of VvWzb protrudes from the protein body in the free structure, but undergoes significant conformational changes to fold toward the active site upon ligand binding. Deleting the four-residue insertion from the W-loop severely impaired the enzymatic activity of VvWzb, indicating its importance for optimal catalysis. However, mutating individual residues or even substituting the whole insertion with four alanine residues only modestly decreased the enzymatic activity, suggesting that the contribution of the insertion to catalysis is not determined by the sequence specificity. Furthermore, inserting the four residues into Escherichia coli Wzb at the corresponding position enhanced its activity as well, indicating that the four-residue insertion in the W-loop can act as a general activity enhancing element for other LMWPTPs. The novel W-loop type and phylogenetic analysis suggested that VvWzb and its homologs should be classified into a new group of LMWPTPs. Our study sheds new insight into the catalytic mechanism and structural diversity of the LMWPTP family and promotes the understanding of the protein tyrosine phosphorylation system in prokaryotes.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qingjun Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
25
|
Schwechheimer C, Hebert K, Tripathi S, Singh PK, Floyd KA, Brown ER, Porcella ME, Osorio J, Kiblen JTM, Pagliai FA, Drescher K, Rubin SM, Yildiz FH. A tyrosine phosphoregulatory system controls exopolysaccharide biosynthesis and biofilm formation in Vibrio cholerae. PLoS Pathog 2020; 16:e1008745. [PMID: 32841296 PMCID: PMC7485978 DOI: 10.1371/journal.ppat.1008745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/11/2020] [Accepted: 06/25/2020] [Indexed: 11/19/2022] Open
Abstract
Production of an extracellular matrix is essential for biofilm formation, as this matrix both secures and protects the cells it encases. Mechanisms underlying production and assembly of matrices are poorly understood. Vibrio cholerae, relies heavily on biofilm formation for survival, infectivity, and transmission. Biofilm formation requires Vibrio polysaccharide (VPS), which is produced by vps gene-products, yet the function of these products remains unknown. Here, we demonstrate that the vps gene-products vpsO and vpsU encode respectively for a tyrosine kinase and a cognate tyrosine phosphatase. Collectively, VpsO and VpsU act as a tyrosine phosphoregulatory system to modulate VPS production. We present structures of VpsU and the kinase domain of VpsO, and we report observed autocatalytic tyrosine phosphorylation of the VpsO C-terminal tail. The position and amount of tyrosine phosphorylation in the VpsO C-terminal tail represses VPS production and biofilm formation through a mechanism involving the modulation of VpsO oligomerization. We found that tyrosine phosphorylation enhances stability of VpsO. Regulation of VpsO phosphorylation by the phosphatase VpsU is vital for maintaining native VPS levels. This study provides new insights into the mechanism and regulation of VPS production and establishes general principles of biofilm matrix production and its inhibition. The biofilm life style protects microbes from a plethora of harm, to increase their survival and pathogenicity. Exopolysaccharides are the essential glue of the microbial biofilm matrix, and loss of this glue negates biofilm formation and renders cells more sensitive to antimicrobial agents. Here, we show that a tyrosine phosphoregulatory system controls the biosynthesis and abundance of Vibrio exopolysaccharide (VPS), an essential biofilm component of the pathogen Vibrio cholerae. The phosphorylation state of the tyrosine autokinase VpsO, mediated by the tyrosine phosphatase VpsU, directly modulates VPS production and also affects the kinase’s own degradation, to regulate VPS production. This study provides new insights into the mechanisms of V. cholerae biofilm formation and consequently ways to combat pathogens more broadly, due to conservation of tyrosine phosphoregulatory systems among exopolysaccharide producing bacteria.
Collapse
Affiliation(s)
- Carmen Schwechheimer
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Kassidy Hebert
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Praveen K. Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kyle A. Floyd
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Elise R. Brown
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Monique E. Porcella
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Jacqueline Osorio
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Joseph T. M. Kiblen
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Fernando A. Pagliai
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Seth M. Rubin
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (SMR), (FHY)
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (SMR), (FHY)
| |
Collapse
|
26
|
Balan P, Brandt BW, Chong YS, Crielaard W, Wong ML, Lopez V, He HG, Seneviratne CJ. Subgingival Microbiota during Healthy Pregnancy and Pregnancy Gingivitis. JDR Clin Trans Res 2020; 6:343-351. [PMID: 32777190 DOI: 10.1177/2380084420948779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Previous studies have largely explored the microbial composition and pathogenesis of pregnancy gingivitis. However, the patterns of microbial colonization during pregnancy in the absence of pregnancy gingivitis have rarely been studied. Characterization of the oral microbiome in pregnant women with healthy gingiva is an important initial step in understanding the role of the microbiome in progression to pregnancy gingivitis. OBJECTIVES In this study, we compared the oral microbiome of pregnant women without gingivitis (healthy pregnancy) with pregnant women having gingivitis and nonpregnant healthy women to understand how pregnancy modifies the oral microbiome and induces progression to pregnancy gingivitis. METHODS Subgingival plaque samples were collected from Chinese pregnant women with gingivitis (n = 10), healthy pregnant women (n = 10), and nonpregnant healthy women (n = 10). The Illumina MiSeq platform was used to perform 16S rRNA gene sequencing targeting the V4 region. RESULTS The alpha and beta diversity was significantly different between pregnant and nonpregnant women, but minimal differences were observed between pregnant women with and without gingivitis. Interestingly, the oral bacterial community showed higher abundance of pathogenic taxa during healthy pregnancy as compared with nonpregnant women despite similar gingival and plaque index scores. However, when compared with overt pregnancy gingivitis, pathogenic taxa were less abundant during healthy pregnancy. PICRUSt analysis (phylogenetic investigation of communities by reconstruction of unobserved states) also suggested no difference in the functional capabilities of the microbiome during pregnancy, irrespective of gingival disease status. However, metabolic pathways related to amino acid metabolism were significantly increased in healthy pregnant women as compared with nonpregnant women. CONCLUSION The presence of pathogenic taxa in healthy pregnancy and pregnancy gingivitis suggests that bacteria may be necessary for initiating disease development but progression to gingivitis may be influenced by the host environmental factors. More efforts are required to plan interventions aimed at sustaining health before the appearance of overt gingivitis. KNOWLEDGE TRANSFER STATEMENT The results of this study draw attention to the importance of oral health maintenance during pregnancy, as women without any prenatal oral conditions are predisposed to the risk of developing pregnancy gingivitis. Hence, it is important to incorporate comprehensive assessment of oral health in the prenatal health care schedules. Pregnant woman should be screened for oral risks, counseled on proper oral hygiene and expected oral changes, and referred for dental treatment, when necessary.
Collapse
Affiliation(s)
- P Balan
- Singapore Oral Microbiomics Inititative, National Dental Research Institute Singapore, SingHealth, Singapore.,Oral Health ACP, Duke NUS Medical School, Singapore
| | - B W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry, Amsterdam, the Netherlands
| | - Y S Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | - W Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry, Amsterdam, the Netherlands
| | - M L Wong
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - V Lopez
- School of Nursing, Hubei University of Medicine, Shiyan City, China
| | - H G He
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - C J Seneviratne
- Singapore Oral Microbiomics Inititative, National Dental Research Institute Singapore, SingHealth, Singapore.,Oral Health ACP, Duke NUS Medical School, Singapore
| |
Collapse
|
27
|
Peters DL, McCutcheon JG, Dennis JJ. Characterization of Novel Broad-Host-Range Bacteriophage DLP3 Specific to Stenotrophomonas maltophilia as a Potential Therapeutic Agent. Front Microbiol 2020; 11:1358. [PMID: 32670234 PMCID: PMC7326821 DOI: 10.3389/fmicb.2020.01358] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023] Open
Abstract
A novel Siphoviridae phage specific to the bacterial species Stenotrophomonas maltophilia was isolated from a pristine soil sample and characterized as a second member of the newly established Delepquintavirus genus. Phage DLP3 possesses one of the broadest host ranges of any S. maltophilia phage yet characterized, infecting 22 of 29 S. maltophilia strains. DLP3 has a genome size of 96,852 bp and a G+C content of 58.4%, which is significantly lower than S. maltophilia host strain D1571 (G+C content of 66.9%). The DLP3 genome encodes 153 coding domain sequences covering 95% of the genome, including five tRNA genes with different specificities. The DLP3 lysogen exhibits a growth rate increase during the exponential phase of growth as compared to the wild type strain. DLP3 also encodes a functional erythromycin resistance protein, causing lysogenic conversion of the host D1571 strain. Although a temperate phage, DLP3 demonstrates excellent therapeutic potential because it exhibits a broad host range, infects host cells through the S. maltophilia type IV pilus, and exhibits lytic activity in vivo. Undesirable traits, such as its temperate lifecycle, can be eliminated using genetic techniques to produce a modified phage useful in the treatment of S. maltophilia bacterial infections.
Collapse
Affiliation(s)
- Danielle L Peters
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jaclyn G McCutcheon
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jonathan J Dennis
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Kalkan S, Altuğ G. The composition of cultivable bacteria, bacterial pollution, and environmental variables of the coastal areas: an example from the Southeastern Black Sea, Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:356. [PMID: 32394090 DOI: 10.1007/s10661-020-08310-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The composition and metabolic properties of cultivable heterotrophic aerobic bacteria, the levels of indicator bacteria, and physicochemical parameters were investigated in the seawater samples collected from 20 stations in coastal areas of the eastern part of the Black Sea, Turkey, between May 2017 and February 2018. The levels of indicator bacteria were detected above the national limit values during the study period. Thirty-five different bacterium species were identified. Enterobacteriaceae was recorded as the most dominant family (34.2%), and Gammaproteobacteria was recorded as the most dominant class (74.2%). Bacteriological threats on human and ecosystem health were determined in coastal areas of the Southeastern Black Sea. The determination of the high levels of indicator bacteria, the high ratio of fecal coliform/fecal streptococci (FC/FS ratio), and pathogenic bacteria regarding human and ecosystem health showed that these coastal areas under the influences of terrestrial and human-sourced bacteriological pollution. This study has contributed to the increase of knowledge of understanding the protection and rehabilitation ways of the Black Sea coastal regions against land-based pollution sources considering the interdependent structure of all Black Sea countries. Coastal areas are accepted as the most fragile part of the marine environments and our findings showed the potential bacteriological risks in coastal areas of the Southeastern Black Sea as an important example. Serious precautions should be taken for the protection in this area and such coastal ecosystems to prevent hazardous problems.
Collapse
Affiliation(s)
- Samet Kalkan
- Faculty of Fisheries, Recep Tayyip Erdogan University, Ataturk Street Fener District, 53100, Merkez, Rize, Turkey.
| | - Gülşen Altuğ
- Faculty of Aquatic Sciences, Istanbul University, Ordu Street No 200, 34470, Laleli, Istanbul, Turkey
| |
Collapse
|
29
|
Hentschker C, Maaß S, Junker S, Hecker M, Hammerschmidt S, Otto A, Becher D. Comprehensive Spectral Library from the Pathogenic Bacterium Streptococcus pneumoniae with Focus on Phosphoproteins. J Proteome Res 2020; 19:1435-1446. [DOI: 10.1021/acs.jproteome.9b00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christian Hentschker
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sabryna Junker
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Michael Hecker
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Andreas Otto
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| |
Collapse
|
30
|
Lipa P, Janczarek M. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses. PeerJ 2020; 8:e8466. [PMID: 32095335 PMCID: PMC7020829 DOI: 10.7717/peerj.8466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022] Open
Abstract
Symbiotic bacteria, commonly called rhizobia, lead a saprophytic lifestyle in the soil and form nitrogen-fixing nodules on legume roots. During their lifecycle, rhizobia have to adapt to different conditions prevailing in the soils and within host plants. To survive under these conditions, rhizobia fine-tune the regulatory machinery to respond rapidly and adequately to environmental changes. Symbiotic bacteria play an essential role in the soil environment from both ecological and economical point of view, since these bacteria provide Fabaceae plants (legumes) with large amounts of accessible nitrogen as a result of symbiotic interactions (i.e., rhizobia present within the nodule reduce atmospheric dinitrogen (N2) to ammonia, which can be utilized by plants). Because of its restricted availability in the soil, nitrogen is one of the most limiting factors for plant growth. In spite of its high content in the atmosphere, plants are not able to assimilate it directly in the N2 form. During symbiosis, rhizobia infect host root and trigger the development of specific plant organ, the nodule. The aim of root nodule formation is to ensure a microaerobic environment, which is essential for proper activity of nitrogenase, i.e., a key enzyme facilitating N2 fixation. To adapt to various lifestyles and environmental stresses, rhizobia have developed several regulatory mechanisms, e.g., reversible phosphorylation. This key mechanism regulates many processes in both prokaryotic and eukaryotic cells. In microorganisms, signal transduction includes two-component systems (TCSs), which involve membrane sensor histidine kinases (HKs) and cognate DNA-binding response regulators (RRs). Furthermore, regulatory mechanisms based on phosphoenolopyruvate-dependent phosphotranspherase systems (PTSs), as well as alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) play an important role in regulation of many cellular processes in both free-living bacteria and during symbiosis with the host plant (e.g., growth and cell division, envelope biogenesis, biofilm formation, response to stress conditions, and regulation of metabolism). In this review, we summarize the current knowledge of phosphorylation systems in symbiotic nitrogen-fixing bacteria, and their role in the physiology of rhizobial cells and adaptation to various environmental conditions.
Collapse
Affiliation(s)
- Paulina Lipa
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| |
Collapse
|
31
|
Abstract
Over the past decade the number and variety of protein post-translational modifications that have been detected and characterized in bacteria have rapidly increased. Most post-translational protein modifications occur in a relatively low number of bacterial proteins in comparison with eukaryotic proteins, and most of the modified proteins carry low, substoichiometric levels of modification; therefore, their structural and functional analysis is particularly challenging. The number of modifying enzymes differs greatly among bacterial species, and the extent of the modified proteome strongly depends on environmental conditions. Nevertheless, evidence is rapidly accumulating that protein post-translational modifications have vital roles in various cellular processes such as protein synthesis and turnover, nitrogen metabolism, the cell cycle, dormancy, sporulation, spore germination, persistence and virulence. Further research of protein post-translational modifications will fill current gaps in the understanding of bacterial physiology and open new avenues for treatment of infectious diseases.
Collapse
|
32
|
Ribeiro da Cunha B, Fonseca LP, Calado CRC. Antibiotic Discovery: Where Have We Come from, Where Do We Go? Antibiotics (Basel) 2019; 8:antibiotics8020045. [PMID: 31022923 PMCID: PMC6627412 DOI: 10.3390/antibiotics8020045] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
Given the increase in antibiotic-resistant bacteria, alongside the alarmingly low rate of newly approved antibiotics for clinical usage, we are on the verge of not having effective treatments for many common infectious diseases. Historically, antibiotic discovery has been crucial in outpacing resistance and success is closely related to systematic procedures—platforms—that have catalyzed the antibiotic golden age, namely the Waksman platform, followed by the platforms of semi-synthesis and fully synthetic antibiotics. Said platforms resulted in the major antibiotic classes: aminoglycosides, amphenicols, ansamycins, beta-lactams, lipopeptides, diaminopyrimidines, fosfomycins, imidazoles, macrolides, oxazolidinones, streptogramins, polymyxins, sulphonamides, glycopeptides, quinolones and tetracyclines. During the genomics era came the target-based platform, mostly considered a failure due to limitations in translating drugs to the clinic. Therefore, cell-based platforms were re-instituted, and are still of the utmost importance in the fight against infectious diseases. Although the antibiotic pipeline is still lackluster, especially of new classes and novel mechanisms of action, in the post-genomic era, there is an increasingly large set of information available on microbial metabolism. The translation of such knowledge into novel platforms will hopefully result in the discovery of new and better therapeutics, which can sway the war on infectious diseases back in our favor.
Collapse
Affiliation(s)
- Bernardo Ribeiro da Cunha
- Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL); Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Luís P Fonseca
- Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL); Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Cecília R C Calado
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa (IPL); R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal.
| |
Collapse
|
33
|
Dedkova LM, Hecht SM. Expanding the Scope of Protein Synthesis Using Modified Ribosomes. J Am Chem Soc 2019; 141:6430-6447. [PMID: 30901982 DOI: 10.1021/jacs.9b02109] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ribosome produces all of the proteins and many of the peptides present in cells. As a macromolecular complex composed of both RNAs and proteins, it employs a constituent RNA to catalyze the formation of peptide bonds rapidly and with high fidelity. Thus, the ribosome can be argued to represent the key link between the RNA World, in which RNAs were the primary catalysts, and present biological systems in which protein catalysts predominate. In spite of the well-known phylogenetic conservation of rRNAs through evolutionary history, rRNAs can be altered readily when placed under suitable pressure, e.g. in the presence of antibiotics which bind to functionally critical regions of rRNAs. While the structures of rRNAs have been altered intentionally for decades to enable the study of their role(s) in the mechanism of peptide bond formation, it is remarkable that the purposeful alteration of rRNA structure to enable the elaboration of proteins and peptides containing noncanonical amino acids has occurred only recently. In this Perspective, we summarize the history of rRNA modifications, and demonstrate how the intentional modification of 23S rRNA in regions critical for peptide bond formation now enables the direct ribosomal incorporation of d-amino acids, β-amino acids, dipeptides and dipeptidomimetic analogues of the normal proteinogenic l-α-amino acids. While proteins containing metabolically important functional groups such as carbohydrates and phosphate groups are normally elaborated by the post-translational modification of nascent polypeptides, the use of modified ribosomes to produce such polymers directly is also discussed. Finally, we describe the elaboration of such modified proteins both in vitro and in bacterial cells, and suggest how such novel biomaterials may be exploited in future studies.
Collapse
Affiliation(s)
- Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
34
|
Marcelino I, Colomé-Calls N, Holzmuller P, Lisacek F, Reynaud Y, Canals F, Vachiéry N. Sweet and Sour Ehrlichia: Glycoproteomics and Phosphoproteomics Reveal New Players in Ehrlichia ruminantium Physiology and Pathogenesis. Front Microbiol 2019; 10:450. [PMID: 30930869 PMCID: PMC6429767 DOI: 10.3389/fmicb.2019.00450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/20/2019] [Indexed: 01/31/2023] Open
Abstract
Unraveling which proteins and post-translational modifications (PTMs) affect bacterial pathogenesis and physiology in diverse environments is a tough challenge. Herein, we used mass spectrometry-based assays to study protein phosphorylation and glycosylation in Ehrlichia ruminantium Gardel virulent (ERGvir) and attenuated (ERGatt) variants and, how they can modulate Ehrlichia biological processes. The characterization of the S/T/Y phosphoproteome revealed that both strains share the same set of phosphoproteins (n = 58), 36% being overexpressed in ERGvir. The percentage of tyrosine phosphorylation is high (23%) and 66% of the identified peptides are multi-phosphorylated. Glycoproteomics revealed a high percentage of glycoproteins (67% in ERGvir) with a subset of glycoproteins being specific to ERGvir (n = 64/371) and ERGatt (n = 36/343). These glycoproteins are involved in key biological processes such as protein, amino-acid and purine biosynthesis, translation, virulence, DNA repair, and replication. Label-free quantitative analysis revealed over-expression in 31 proteins in ERGvir and 8 in ERGatt. While further PNGase digestion confidently localized 2 and 5 N-glycoproteins in ERGvir and ERGatt, respectively, western blotting suggests that many glycoproteins are O-GlcNAcylated. Twenty-three proteins were detected in both the phospho- and glycoproteome, for the two variants. This work represents the first comprehensive assessment of PTMs on Ehrlichia biology, rising interesting questions regarding ER–host interactions. Phosphoproteome characterization demonstrates an increased versatility of ER phosphoproteins to participate in different mechanisms. The high number of glycoproteins and the lack of glycosyltransferases-coding genes highlight ER dependence on the host and/or vector cellular machinery for its own protein glycosylation. Moreover, these glycoproteins could be crucial to interact and respond to changes in ER environment. PTMs crosstalk between of O-GlcNAcylation and phosphorylation could be used as a major cellular signaling mechanism in ER. As little is known about the Ehrlichia proteins/proteome and its signaling biology, the results presented herein provide a useful resource for further hypothesis-driven exploration of Ehrlichia protein regulation by phosphorylation and glycosylation events. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD012589.
Collapse
Affiliation(s)
- Isabel Marcelino
- CIRAD, UMR ASTRE, Petit-Bourg, France.,ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France.,Unitè TReD-Path (Transmission Rèservoirs et Diversitè des Pathogènes), Institut Pasteur de Guadeloupe, Les Abymes, France
| | - Núria Colomé-Calls
- Proteomics Laboratory, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Philippe Holzmuller
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France.,CIRAD, UMR ASTRE, Montpellier, France
| | - Frédérique Lisacek
- Proteome Informatics, Swiss Institute of Bioinformatics, Geneva, Switzerland.,Computer Science Department and Section of Biology, University of Geneva, Geneva, Switzerland
| | - Yann Reynaud
- Unitè TReD-Path (Transmission Rèservoirs et Diversitè des Pathogènes), Institut Pasteur de Guadeloupe, Les Abymes, France
| | - Francesc Canals
- Proteomics Laboratory, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Nathalie Vachiéry
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France.,CIRAD, UMR ASTRE, Montpellier, France
| |
Collapse
|
35
|
Shahbaaz M, Nkaule A, Christoffels A. Designing novel possible kinase inhibitor derivatives as therapeutics against Mycobacterium tuberculosis: An in silico study. Sci Rep 2019; 9:4405. [PMID: 30867456 PMCID: PMC6416319 DOI: 10.1038/s41598-019-40621-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/18/2019] [Indexed: 11/30/2022] Open
Abstract
Rv2984 is one of the polyphosphate kinases present in Mycobacterium tuberculosis involved in the catalytic synthesis of inorganic polyphosphate, which plays an essential role in bacterial virulence and drug resistance. Consequently, the structure of Rv2984 was investigated and an 18 membered compound library was designed by altering the scaffolds of computationally identified inhibitors. The virtual screening of these altered inhibitors was performed against Rv2984 and the top three scoring inhibitors were selected, exhibiting the free energy of binding between 8.2–9 kcal mol−1 and inhibition constants in the range of 255–866 nM. These selected molecules showed relatively higher binding affinities against Rv2984 compared to the first line drugs Isoniazid and Rifampicin. Furthermore, the docked complexes were further analyzed in explicit water conditions using 100 ns Molecular Dynamics simulations. Through the assessment of obtained trajectories, the interactions between the protein and selected inhibitors including first line drugs were evaluated using MM/PBSA technique. The results validated the higher efficiency of the designed molecules compared to 1st line drugs with total interaction energies observed between −100 kJ mol−1 and −1000 kJ mol−1. This study will facilitate the process of drug designing against M. tuberculosis and can be used in the development of potential therapeutics against drug-resistant strains of bacteria.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Anati Nkaule
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Alan Christoffels
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa.
| |
Collapse
|
36
|
Le HTT, Cho Y, Lee S, Kim Y, Kim K, Park SG, Park BC, Cho S. PTP Inhibitor XIX Inhibits DUSP22 by Conformational Change. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hien Thi Thu Le
- College of PharmacyChung‐Ang University Seoul 06974 Republic of Korea
| | - Young‐Chang Cho
- College of PharmacyChonnam National University Gwangju 61186 Republic of Korea
| | - Sewoong Lee
- College of PharmacyChung‐Ang University Seoul 06974 Republic of Korea
| | - Yang‐Gyun Kim
- Department of ChemistrySungkyunkwan University Suwon 16419 Republic of Korea
| | - Kwonseop Kim
- College of PharmacyChonnam National University Gwangju 61186 Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Sayeon Cho
- College of PharmacyChung‐Ang University Seoul 06974 Republic of Korea
| |
Collapse
|
37
|
Miller DP, Lamont RJ. Signaling Systems in Oral Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:27-43. [PMID: 31732932 DOI: 10.1007/978-3-030-28524-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The supra- and subgingival plaque biofilm communities of plaque are composed of hundreds of different microbes. These communities are spatially and temporally structured, largely due to cell-cell communications that coordinate synergistic interactions, and intracellular signaling systems to sense changes in the surrounding environment. Homeostasis is maintained through metabolic communication, mutualistic cross-feeding, and cross-respiration. These nutritional symbioses can reciprocally influence the local microenvironments by altering the pH and by detoxifying oxidative compounds. Signal transduction mechanisms include two-component systems, tyrosine phosphorelays, quorum sensing systems, and cyclic nucleotide secondary messengers. Signaling converges on transcriptional programs and can result in synergistic or antagonistic interbacterial interactions that sculpt community development. The sum of all these interactions can be a well-organized polymicrobial community that remains in homeostasis with the host, or a dysbiotic community that provokes pathogenic responses in the host.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| |
Collapse
|
38
|
Tiwari V. Post-translational modification of ESKAPE pathogens as a potential target in drug discovery. Drug Discov Today 2018; 24:814-822. [PMID: 30572117 DOI: 10.1016/j.drudis.2018.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/23/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
ESKAPE pathogens are gaining clinical importance owing to their high pervasiveness and increasing resistance to various antimicrobials. These bacteria have several post-translational modifications (PTMs) that destabilize or divert host cell pathways. Prevalent PTMs of ESKAPE pathogens include addition of chemical groups (acetylation, phosphorylation, methylation and hydroxylation) or complex molecules (AMPylation, ADP-ribosylation, glycosylation and isoprenylation), covalently linked small proteins [ubiquitylation, ubiquitin-like proteins (UBL) conjugation and small ubiquitin-like modifier (SUMO)] or modification of amino acid side-chains (eliminylation and deamidation). Therefore, the understanding of different bacterial PTMs and host proteins manipulated by these PTMs provides better insight into host-pathogen interaction and will also help to develop new antibacterial agents against ESKAPE pathogens.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India.
| |
Collapse
|
39
|
Paria P, Chakraborty HJ, Behera BK, Das Mohapatra PK, Das BK. Computational characterization and molecular dynamics simulation of the thermostable direct hemolysin-related hemolysin (TRH) amplified from Vibrio parahaemolyticus. Microb Pathog 2018; 127:172-182. [PMID: 30503957 DOI: 10.1016/j.micpath.2018.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023]
Abstract
Vibrio parahaemolyticus is a major seafood-borne pathogen that causes life-threatening gastroenteric diseases in humans through the consumption of contaminated seafoods. V. parahaemolyticus produces different kinds of toxins, including thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH), and some effector proteins belonging to the Type 3 Secretion System, out of which TDH and TRH are considered to be the major factors for virulence. Although TRH is one of the major virulent proteins, there is a dearth of understanding about the structural and functional properties of this protein. This study therefore aimed to amplify the full length trh gene from V. parahaemolyticus and perform sequence-based analyses, followed by structural and functional analyses of the TRH protein using different bioinformatics tools. The TRH protein shares significant conservedness with the TDH protein. A multiple sequence alignment of TRH proteins from Vibrio and non-Vibrio species revealed that the TRH protein is highly conserved throughout evolution. The three dimensional (3D) structure of the TRH protein was constructed by comparative modelling and the quality of the predicted model was verified. Molecular dynamics simulations were performed to understand the dynamics, residual fluctuations, and the compactness of the protein. The structure of TRH was found to contain 19 pockets, of which one (pocket ID: 2) was predicted to be important from the view of drug design. Eleven residues (E138, Y140, C151, F158, C161, K162, S163, and Q164), which are reported to actively participate in the formation of the tetrameric structure, were present in this pocket. This study extends our understanding of the structural and functional dynamics of the TRH protein and as well as provides new insights for the treatment and prevention of V. parahaemolyticus infections.
Collapse
Affiliation(s)
- Prasenjit Paria
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India; Department of Microbiology, Vidyasagar University, Midnapure, 721102, West Bengal, India
| | - Hirak Jyoti Chakraborty
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | | | - Basanta Kumar Das
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| |
Collapse
|
40
|
Bertoldo JB, Terenzi H, Hüttelmaier S, Bernardes GJL. Posttranslational Chemical Mutagenesis: To Reveal the Role of Noncatalytic Cysteine Residues in Pathogenic Bacterial Phosphatases. Biochemistry 2018; 57:6144-6152. [DOI: 10.1021/acs.biochem.8b00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jean B. Bertoldo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Institut für Molekulare Medizin, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Stra 3a, 06108 Halle, Germany
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC, Brazil
| | - Stefan Hüttelmaier
- Institut für Molekulare Medizin, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Stra 3a, 06108 Halle, Germany
| | - Gonçalo J. L. Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
41
|
Gannoun-Zaki L, Pätzold L, Huc-Brandt S, Baronian G, Elhawy MI, Gaupp R, Martin M, Blanc-Potard AB, Letourneur F, Bischoff M, Molle V. PtpA, a secreted tyrosine phosphatase from Staphylococcus aureus, contributes to virulence and interacts with coronin-1A during infection. J Biol Chem 2018; 293:15569-15580. [PMID: 30131335 DOI: 10.1074/jbc.ra118.003555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/16/2018] [Indexed: 11/06/2022] Open
Abstract
Secretion of bacterial signaling proteins and adaptation to the host, especially during infection, are processes that are often linked in pathogenic bacteria. The human pathogen Staphylococcus aureus is equipped with a large arsenal of immune-modulating factors, allowing it to either subvert the host immune response or to create permissive niches for its survival. Recently, we showed that one of the low-molecular-weight protein tyrosine phosphatases produced by S. aureus, PtpA, is secreted during growth. Here, we report that deletion of ptpA in S. aureus affects intramacrophage survival and infectivity. We also observed that PtpA is secreted during macrophage infection. Immunoprecipitation assays identified several host proteins as putative intracellular binding partners for PtpA, including coronin-1A, a cytoskeleton-associated protein that is implicated in a variety of cellular processes. Of note, we demonstrated that coronin-1A is phosphorylated on tyrosine residues upon S. aureus infection and that its phosphorylation profile is linked to PtpA expression. Our results confirm that PtpA has a critical role during infection as a bacterial effector protein that counteracts host defenses.
Collapse
Affiliation(s)
- Laila Gannoun-Zaki
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Linda Pätzold
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Sylvaine Huc-Brandt
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Grégory Baronian
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Mohamed Ibrahem Elhawy
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Rosmarie Gaupp
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Marianne Martin
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Anne-Béatrice Blanc-Potard
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - François Letourneur
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Markus Bischoff
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Virginie Molle
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| |
Collapse
|
42
|
Cui P, Li RF, Zhang DP, Tang JL, Lu GT. HpaP, a novel regulatory protein with ATPase and phosphatase activity, contributes to full virulence in Xanthomonas campestris pv. campestris. Environ Microbiol 2018; 20:1389-1404. [PMID: 29345052 DOI: 10.1111/1462-2920.14046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022]
Abstract
The ability of the bacterial phytopathogen Xanthomonas campestris pv. campestris (Xcc) to cause disease is dependent on the type III secretion system (T3SS). Proteins of the Xcc T3SS are encoded by hrp (hypersensitive response and pathogenicity) genes and whose expression is mainly controlled by the regulators HrpG and HrpX. Here, we describe the identification and characterization of a previously unknown regulatory protein (named HpaP), which plays important role in hrp gene expression and virulence in Xcc. Clean deletion of hpaP demonstrated reduced virulence and HR (hypersensitive response) induction of Xcc and alterations in cell motility and stress tolerance. Global transcriptome analyses revealed that most hrp genes were down regulated in the hpaP mutant, suggesting HpaP positively regulates hrp genes. GUS activity assays implied that HpaP regulates the expression of hrp genes via controlling the expression of hrpX. Biochemical analyses revealed that HpaP protein had both ATPase and phosphatase activity. While further site-directed mutagenesis of conserved residues in the PTP loop (a protein tyrosine phosphatase signature) of HpaP resulted in the loss of both phosphatase activity and regulatory activity in virulence and HR. Taken together, the findings identify a new regulatory protein that controls hrp gene expression and virulence in Xcc.
Collapse
Affiliation(s)
- Ping Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Rui-Fang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, 174 Daxue Road, Nanning, Guangxi 530007, China
| | - Da-Pei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Guang-Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
43
|
Pei H, Han S, Yang S, Lei Z, Zheng J, Jia Z. Phosphorylation of bacterial L9 and its functional implication in response to starvation stress. FEBS Lett 2017; 591:3421-3430. [PMID: 28898405 DOI: 10.1002/1873-3468.12840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 11/10/2022]
Abstract
The bacterial L9 (bL9) protein expressed and purified from Escherichia coli is stably phosphorylated. We mapped seven Ser/Thr phosphorylation sites, all of which but one are located at the carboxyl-terminal domain (CTD). When a histidine tag is fused to the C-terminus, bL9 is no longer phosphorylated. Phosphorylation of bL9 causes complete disordering of its CTD and helps cell survival under nutrient-limiting conditions. Previous structural studies of the ribosome have shown that bL9 exhibits two distinct conformations, one of which competes with binding of RelA to the 30s rRNA and prevents RelA activation. Taken together, we suggest that the flexibility of the bL9 CTD enabled by phosphorylation would remove the steric hindrance, serving as a previously unknown mechanism to regulate RelA function and help cell survival under starvation stress.
Collapse
Affiliation(s)
- Hairun Pei
- College of Chemistry, Beijing Normal University, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, China
| | - Shengnan Han
- College of Chemistry, Beijing Normal University, China
| | - Shaoyuan Yang
- College of Chemistry, Beijing Normal University, China
| | - Zhen Lei
- College of Chemistry, Beijing Normal University, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
44
|
Dubrana MP, Guéguéniat J, Bertin C, Duret S, Arricau-Bouvery N, Claverol S, Lartigue C, Blanchard A, Renaudin J, Béven L. Proteolytic Post-Translational Processing of Adhesins in a Pathogenic Bacterium. J Mol Biol 2017; 429:1889-1902. [PMID: 28501585 DOI: 10.1016/j.jmb.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 11/29/2022]
Abstract
Mollicutes, including mycoplasmas and spiroplasmas, have been considered as good representatives of the « minimal cell » concept: these wall-less bacteria are small in size and possess a minimal genome and restricted metabolic capacities. However, the recent discovery of the presence of post-translational modifications unknown so far, such as the targeted processing of membrane proteins of mycoplasma pathogens for human and swine, revealed a part of the hidden complexity of these microorganisms. In this study, we show that in the phytopathogen, insect-vectored Spiroplasma citri GII-3 adhesion-related protein (ScARP) adhesins are post-translationally processed through an ATP-dependent targeted cleavage. The cleavage efficiency could be enhanced in vitro when decreasing the extracellular pH or upon the addition of polyclonal antibodies directed against ScARP repeated units, suggesting that modification of the surface charge and/or ScARP conformational changes could initiate the cleavage. The two major sites for primary cleavage are localized within predicted disordered regions and do not fit any previously reported cleavage motif; in addition, the inhibition profile and the metal ion requirements indicate that this post-translational modification involves at least one non-conventional protease. Such a proteolytic process may play a role in S. citri colonization of cells of the host insect. Furthermore, our work indicates that post-translational cleavage of adhesins represents a common feature to mollicutes colonizing distinct hosts and that processing of surface antigens could represent a way to make the most out of a minimal genome.
Collapse
Affiliation(s)
| | - Julia Guéguéniat
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Clothilde Bertin
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Sybille Duret
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | | | | | - Carole Lartigue
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Alain Blanchard
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Joël Renaudin
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Laure Béven
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France.
| |
Collapse
|
45
|
Claywell JE, Matschke LM, Fisher DJ. The Impact of Protein Phosphorylation on Chlamydial Physiology. Front Cell Infect Microbiol 2016; 6:197. [PMID: 28066729 PMCID: PMC5177608 DOI: 10.3389/fcimb.2016.00197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/13/2016] [Indexed: 11/18/2022] Open
Abstract
Chlamydia are Gram negative bacterial pathogens responsible for disease in humans and economically important domesticated animals. As obligate intracellular bacteria, they must gain entry into a host cell where they propagate within a parasitophorous organelle that serves as an interactive interface between the bacterium and the host. Nutrient acquisition, growth, and evasion of host defense mechanisms occur from this location. In addition to these cellular and bacterial dynamics, Chlamydia differentiate between two morphologically distinct forms, the elementary body and reticulate body, that are optimized for either extracellular or intracellular survival, respectively. The mechanisms regulating and mediating these diverse physiological events remain largely unknown. Reversible phosphorylation, including classical two-component signaling systems, partner switching mechanisms, and the more recently appreciated bacterial Ser/Thr/Tyr kinases and phosphatases, has gained increasing attention for its role in regulating important physiological processes in bacteria including metabolism, development, and virulence. Phosphorylation modulates these events via rapid and reversible modification of protein substrates leading to changes in enzyme activity, protein oligomerization, cell signaling, and protein localization. The characterization of several conserved chlamydial protein kinases and phosphatases along with phosphoproteome analysis suggest that Chlamydia are capable of global and growth stage-specific protein phosphorylation. This mini review will highlight the current knowledge of protein phosphorylation in Chlamydia and its potential role in chlamydial physiology and, consequently, virulence. Comparisons with other minimal genome intracellular bacterial pathogens also will be addressed with the aim of illustrating the importance of this understudied regulatory mechanism on pathogenesis and the principle questions that remain unanswered.
Collapse
Affiliation(s)
- Ja E Claywell
- Department of Microbiology, Southern Illinois University Carbondale, IL, USA
| | - Lea M Matschke
- Department of Microbiology, Southern Illinois University Carbondale, IL, USA
| | - Derek J Fisher
- Department of Microbiology, Southern Illinois University Carbondale, IL, USA
| |
Collapse
|
46
|
Vasylenko T, Liou YF, Chiou PC, Chu HW, Lai YS, Chou YL, Huang HL, Ho SY. SCMBYK: prediction and characterization of bacterial tyrosine-kinases based on propensity scores of dipeptides. BMC Bioinformatics 2016; 17:514. [PMID: 28155663 PMCID: PMC5260027 DOI: 10.1186/s12859-016-1371-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Bacterial tyrosine-kinases (BY-kinases), which play an important role in numerous cellular processes, are characterized as a separate class of enzymes and share no structural similarity with their eukaryotic counterparts. However, in silico methods for predicting BY-kinases have not been developed yet. Since these enzymes are involved in key regulatory processes, and are promising targets for anti-bacterial drug design, it is desirable to develop a simple and easily interpretable predictor to gain new insights into bacterial tyrosine phosphorylation. This study proposes a novel SCMBYK method for predicting and characterizing BY-kinases. Results A dataset consisting of 797 BY-kinases and 783 non-BY-kinases was established to design the SCMBYK predictor, which achieved training and test accuracies of 97.55 and 96.73%, respectively. Furthermore, the leave-one-phylum-out method was used to predict specific bacterial phyla hosts of target sequences, gaining 97.39% average test accuracy. After analyzing SCMBYK-derived propensity scores, four characteristics of BY-kinases were determined: 1) BY-kinases tend to be composed of α-helices; 2) the amino-acid content of extracellular regions of BY-kinases is expected to be dominated by residues such as Val, Ile, Phe and Tyr; 3) BY-kinases structurally resemble nuclear proteins; 4) different domains play different roles in triggering BY-kinase activity. Conclusions The SCMBYK predictor is an effective method for identification of possible BY-kinases. Furthermore, it can be used as a part of a novel drug repurposing method, which recognizes putative BY-kinases and matches them to approved drugs. Among other results, our analysis revealed that azathioprine could suppress the virulence of M. tuberculosis, and thus be considered as a potential antibiotic for tuberculosis treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1371-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamara Vasylenko
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yi-Fan Liou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Po-Chin Chiou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsiao-Wei Chu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yung-Sung Lai
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Ling Chou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hui-Ling Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,College of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan.
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,College of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
47
|
Rashkov P, Barrett IP, Beardmore RE, Bendtsen C, Gudelj I. Kinase Inhibition Leads to Hormesis in a Dual Phosphorylation-Dephosphorylation Cycle. PLoS Comput Biol 2016; 12:e1005216. [PMID: 27898662 PMCID: PMC5127489 DOI: 10.1371/journal.pcbi.1005216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/21/2016] [Indexed: 01/07/2023] Open
Abstract
Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-dose stimulation and high-dose inhibition. While this can have profound consequences for human health, with low drug concentrations actually stimulating pathogen or tumour growth, the mechanistic understanding behind such responses is still lacking. We propose a novel, simple but general mechanism that could give rise to hormesis in systems where an inhibitor acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes including control of cell proliferation and programmed cell death. Our analytically-derived conditions for observing hormesis provide clues as to why this mechanism has not been previously identified. Current mathematical models regularly make simplifying assumptions that lack empirical support but inadvertently preclude the observation of hormesis. In addition, due to the inherent population heterogeneities, the presence of hormesis is likely to be masked in empirical population-level studies. Therefore, examining hormetic responses at single-cell level coupled with improved mathematical models could substantially enhance detection and mechanistic understanding of hormesis. Hormesis is a highly controversial and poorly understood phenomenon. It describes the idea that an inhibitor molecule, like an anti-cancer or anti-microbial drug, can inadvertently stimulate cell growth instead of suppressing it. This can have a profound effect on human health leading to failures in clinical treatments. Therefore, getting at the mechanistic basis of hormesis is critical for drug development and clinical practice, however molecular mechanisms underpinning hormesis remain poorly understood. In this paper we use a mathematical model to propose a simple and yet general mechanism that could explain why we find hormesis so widely in living systems. In particular, we discover that hormesis is present within a fundamental structure that forms a basic building block of many intracellular signalling pathways found in diverse processes including control of cell reproduction and programmed cell death. The benefits of our study are two-fold. Having simple molecular understanding of the causes of hormetic responses can greatly improve the design of new drug compounds that avoid such responses. Moreover, due to the fundamental nature of the newly proposed mechanism, our findings have a potential broad applicability to both anti-cancer and anti-microbial drugs.
Collapse
Affiliation(s)
- Peter Rashkov
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ian P. Barrett
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Cambridge, United Kingdom
| | | | - Claus Bendtsen
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Cambridge, United Kingdom
- * E-mail: (CB); (IG)
| | - Ivana Gudelj
- School of Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail: (CB); (IG)
| |
Collapse
|
48
|
Izumigawa M, Hasegawa Y, Ikai R, Horie T, Inomata M, Into T, Kitai N, Yoshimura F, Murakami Y. Separation of novel phosphoproteins of Porphyromonas gingivalis using phosphate-affinity chromatography. Microbiol Immunol 2016; 60:702-707. [PMID: 27663267 DOI: 10.1111/1348-0421.12441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022]
Abstract
Phosphorylation of serine, threonine and tyrosine is a central mechanism for regulating the structure and function of proteins in both eukaryotes and prokaryotes. However, the action of phosphorylated proteins present in Porphyromonas gingivalis, a major periodontopathogen, is not fully understood. Here, six novel phosphoproteins that possess metabolic activities were identified, namely PGN_0004, PGN_0375, PGN_0500, PGN_0724, PGN_0733 and PGN_0880, having been separated by phosphate-affinity chromatography. The identified proteins were detectable by immunoblotting specific to phosphorylated Ser (P-Ser), P-Thr, and/or P-Tyr. These results imply that novel phosphorylated proteins might play an important role for regulation of metabolism in P. gingivalis.
Collapse
Affiliation(s)
- Masashi Izumigawa
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan.
| | - Ryota Ikai
- Department of Community Oral Health, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Toshi Horie
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Megumi Inomata
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Noriyuki Kitai
- Department of Orthodontic, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan
| | - Yukitaka Murakami
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| |
Collapse
|
49
|
Vasu D, Kumar PS, Prasad UV, Swarupa V, Yeswanth S, Srikanth L, Sunitha MM, Choudhary A, Sarma PVGK. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation. IRANIAN BIOMEDICAL JOURNAL 2016; 21:94-105. [PMID: 27695030 PMCID: PMC5274716 DOI: 10.18869/acadpub.ibj.21.2.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureusglkA and biofilm formation. Methods: Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK, and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Results: Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. Conclusion: The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and the progress of infection.
Collapse
Affiliation(s)
- Dudipeta Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Pasupuleti Santhosh Kumar
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Uppu Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Vimjam Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Sthanikam Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Lokanathan Srikanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Manne Mudhu Sunitha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Abhijith Choudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | | |
Collapse
|
50
|
Liu C, Miller DP, Wang Y, Merchant M, Lamont RJ. Structure-function aspects of the Porphyromonas gingivalis tyrosine kinase Ptk1. Mol Oral Microbiol 2016; 32:314-323. [PMID: 27498608 DOI: 10.1111/omi.12173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 02/05/2023]
Abstract
The development of synergistically pathogenic communities of Porphyromonas gingivalis and Streptococcus gordonii is controlled by a tyrosine-phosphorylation-dependent signaling pathway in P. gingivalis. The Ptk1 bacterial tyrosine (BY) kinase of P. gingivalis is required for maximal community development and for the production of extracellular polysaccharide. We show that the consensus BY kinase Walker A and B domains, the RK cluster, and the YC domain of Ptk1 are necessary for autophosphorylation and for substrate phosphorylation. Mass spectrometry showed that six tyrosine residues in a 16-amino-acid C-terminal region were phosphorylated in recombinant (r) Ptk1. Complementation of a ptk1 mutant with the wild-type ptk1 allele in trans restored community development between P. gingivalis and S. gordonii, and extracellular polysaccharide production by P. gingivalis. In contrast, complementation of Δptk1 with ptk1 containing a mutation in the Walker A domain failed to restore community development or extracellular polysaccharide production. rPtk1 was capable of phosphorylating the tyrosine phosphatase Ltp1 and the transcriptional regulator CdhR, both of which are involved in the development of P. gingivalis communities with S. gordonii.
Collapse
Affiliation(s)
- C Liu
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.,State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - D P Miller
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Y Wang
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Merchant
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|