1
|
Meng S, Borjihan Q, Xiao D, Wang Y, Chen M, Cheng C, Dong A. Biosynthesis of positively charged bacterial cellulose hydrogel with antibacterial and anti-inflammatory function for efficient wound healing. Int J Biol Macromol 2024; 279:135263. [PMID: 39244128 DOI: 10.1016/j.ijbiomac.2024.135263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
In bacterial cellulose (BC)-based living materials, the effective and permanent incorporation of bactericidal agents into BC remains a persistent challenge. In this study, midazole quaternary ammonium salt was grafted onto a dispersion of bacterial cellulose, which was subsequently directly added to the fermentation medium of BC-producing bacteria to obtain BC-based hydrogel materials (BC/BC-[PQVI]Br) with inherent antibacterial properties. The BC/BC-[PQVI]Br hydrogel prepared in this study exhibits favorable tensile properties, with a maximum tensile stress of 970 KPa and water retention for up to 6 h. Moreover, it demonstrates acceptable antibacterial activity against S. aureus (93 %) and E. coli (71 %), respectively. Additionally, the hydrogel displays a high cell survival rate of 98 % after contact with NIH 3T3 cells, indicating its non-cytotoxic nature. Furthermore, the mouse wound experiment confirms the excellent wound healing effect of the hydrogel. This research presents an innovative approach towards developing environmentally friendly active wound dressings with microbial-derived antibacterial functionality.
Collapse
Affiliation(s)
- Suriguga Meng
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Qinggele Borjihan
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of People's Republic of China, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Douxin Xiao
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yutian Wang
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Mei Chen
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Chunzu Cheng
- China Textile Academy, State Key Laboratory of Biobased Fiber Manufacturing Technology, Beijing 100025, China.
| | - Alideertu Dong
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
2
|
Chen H, Xu M, Zhang B, Yu S, Weir MD, Melo MAS, Masri RM, Tang Y, Xu HHK, Yang D. Novel strategy of S. mutans gcrR gene over-expression plus antibacterial dimethylaminohexadecyl methacrylate suppresses biofilm acids and reduces dental caries in rats. Dent Mater 2024; 40:e41-e51. [PMID: 38942710 DOI: 10.1016/j.dental.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/09/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE Streptococcus mutans (S. mutans) is a major contributor to dental caries, with its ability to synthesize extracellular polysaccharides (EPS) and biofilms. The gcrR gene is a regulator of EPS synthesis and biofilm formation. The objectives of this study were to investigate a novel strategy of combining gcrR gene over-expression with dimethylaminohexadecyl methacrylate (DMAHDM), and to determine their in vivo efficacy in reducing caries in rats for the first time. METHODS Two types of S. mutans were tested: Parent S. mutans; and gcrR gene over-expressed S. mutans (gcrR OE S. mutans). Bacterial minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were measured with DMAHDM and chlorhexidine (CHX). Biofilm biomass, polysaccharide, lactic acid production, live/dead staining, colony-forming units (CFUs), and metabolic activity (MTT) were evaluated. A Sprague-Dawley rat model was used with parent S. mutans and gcrR OE S. mutans colonization to determine caries-inhibition in vivo. RESULTS Drug-susceptibility of gcrR OE S. mutans to DMAHDM or CHX was 2-fold higher than that of parent S. mutans. DMAHDM reduced biofilm CFU by 3-4 logs. Importantly, the combined gcrR OE S. mutans+ DMAHDM dual strategy reduced biofilm CFU by 5 logs. In the rat model, the parent S. mutans group had a higher cariogenicity in dentinal (Dm) and extensive dentinal (Dx) regions. The DMAHDM + gcrR OE group reduced the Dm and Dx caries to only 20 % and 0 %, those of parent S. mutans + PBS control group (p < 0.05). The total caries severity of gcrR OE + DMAHDM group was decreased to 51 % that of parent S. mutans control (p < 0.05). SIGNIFICANCE The strategy of combining S. mutans gcrR over-expression with antibacterial monomer reducing biofilm acids by 97 %, and reduced in vivo total caries in rats by 48 %. The gcrR over-expression + DMAHDM strategy is promising for a wide range of dental applications to inhibit caries and protect tooth structures.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Mengmeng Xu
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Bin Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuang Yu
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Michael D Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Mary Anne S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Radi M Masri
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yunhao Tang
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Deqin Yang
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China.
| |
Collapse
|
3
|
Review of Non-Crystalline and Crystalline Quaternary Ammonium Ions: Classification, Structural and Thermal Insight into Tetraalkylammonium Ions. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Cihanoğlu A, Schiffman JD, Alsoy Altinkaya S. Biofouling-Resistant Ultrafiltration Membranes via Codeposition of Dopamine and Cetyltrimethylammonium Bromide with Retained Size Selectivity and Water Flux. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38116-38131. [PMID: 35947443 PMCID: PMC9412966 DOI: 10.1021/acsami.2c05844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Biofouling is a serious problem in ultrafiltration (UF) membrane applications. Modifying the surface of membranes with low molecular weight, commercially available antibacterial chemistries is an excellent strategy to mitigate biofouling. Herein, we report a new strategy to impart antibacterial and anti-biofouling behavior without changing the support membrane's size selectivity and pure water permeance (PWP). To this end, a strong antibacterial agent, cetyltrimethylammonium bromide (CTAB), was codeposited with dopamine onto commercial polyethersulfone (PES) UF membranes in the presence of nitrogen (N2) gas backflow. The PWP and pore size of the support membrane did not change with codeposition, confirming the benefit of N2 backflow in mitigating the solution intrusion phenomenon. X-ray photoelectron spectroscopy (XPS), surface ζ potentials, and contact angle measurements confirmed the successful codeposition of polydopamine (PDA) and CTAB onto the membrane. Among three different CTAB concentrations systematically investigated, the membrane functionalized with CTAB at the critical micelle concentration (CMC) provided the best anti-biofouling activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and retained its surface ζ potential after being stored in 1 M NaCl (pH = 6.8) for 3 months. Our results demonstrate the potential of using a facile, one-step approach to modify commercial UF membranes without compromising their pore size or flux, while simultaneously endowing antibacterial activity.
Collapse
Affiliation(s)
- Aydın Cihanoğlu
- Faculty
of Engineering, Department of Chemical Engineering, İzmir Institute of Technology, 35430 Urla-İzmir, Turkey
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D. Schiffman
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Sacide Alsoy Altinkaya
- Faculty
of Engineering, Department of Chemical Engineering, İzmir Institute of Technology, 35430 Urla-İzmir, Turkey
| |
Collapse
|
5
|
Dual-functional adhesive containing amorphous calcium phosphate nanoparticles and dimethylaminohexadecyl methacrylate promoted enamel remineralization in a biofilm-challenged environment. Dent Mater 2022; 38:1518-1531. [PMID: 35907751 DOI: 10.1016/j.dental.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/13/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The cariogenic biofilm on enamel, restoration, and bonding interface is closely related to dental caries and composite restoration failure. Enamel remineralization at adhesive interface is conducive to protecting bonding interface and inhibiting secondary caries. This study intended to assess the remineralization efficiency of adhesive with dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) on initial caries lesion of biofilm-coated enamel. METHODS Artificial initial carious lesion was created via 72-hour immersion in demineralization solution and cariogenic biofilm was formed after 24-hour culture of Streptococcus mutans (S. mutans). Specimens were then divided into 4 groups: enamel control, enamel treated with NACP, DMAHDM and NACP+DMAHDM respectively. Samples next underwent 7-day cycling, 4 h in BHIS (brain heart infusion broth containing 1 % sucrose) and 20 h in AS (artificial saliva) per day. The pH of BHIS was tested daily. So did the concentration of calcium and phosphate in BHIS and AS. Live/dead staining, colony-forming unit (CFU) count, and lactic acid production of biofilms were measured 7 days later. The enamel remineralization efficiency was evaluated by microhardness testing and transverse microradiography (TMR) quantitatively. RESULTS Enamel of NACP+DMAHDM group demonstrated excellent remineralization effectiveness. And the NACP+DMAHDM adhesive released a great number of Ca2+ and PO43- ions, increased pH to 5.81 via acid neutralization, decreased production of lactic acid, and reduced CFU count of S. mutans (P < 0.05). SIGNIFICANCE The NACP+DMAHDM adhesive would be applicable to preventing secondary caries, strengthening enamel-adhesive interface, and extending the lifespan of composite restoration.
Collapse
|
6
|
|
7
|
Zhao Y, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. EXPLORATION (BEIJING, CHINA) 2021; 1:20210089. [PMID: 37323697 PMCID: PMC10191050 DOI: 10.1002/exp.20210089] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Bioactive materials are a kind of materials with unique bioactivities, which can change the cellular behaviors and elicit biological responses from living tissues. Bioactive materials came into the spotlight in the late 1960s when the researchers found that the materials such as bioglass could react with surrounding bone tissue for bone regeneration. In the following decades, advances in nanotechnology brought the new development opportunities to bioactive nanomaterials. Bioactive nanomaterials are not a simple miniaturization of macroscopic materials. They exhibit unique bioactivities due to their nanoscale size effect, high specific surface area, and precise nanostructure, which can significantly influence the interactions with biological systems. Nowadays, bioactive nanomaterials have represented an important and exciting area of research. Current and future applications ensure that bioactive nanomaterials have a high academic and clinical importance. This review summaries the recent advances in the field of bioactive nanomaterials, and evaluate the influence factors of bioactivities. Then, a range of bioactive nanomaterials and their potential biomedical applications are discussed. Furthermore, the limitations, challenges, and future opportunities of bioactive nanomaterials are also discussed.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Zhanzhan Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Zheng Pan
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| |
Collapse
|
8
|
Xu J, Chen Y, Li X, Lei Y, Shu C, Luo Q, Chen L, Li X. Reconstruction of a Demineralized Dentin Matrix via Rapid Deposition of CaF 2 Nanoparticles In Situ Promotes Dentin Bonding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51775-51789. [PMID: 34693718 DOI: 10.1021/acsami.1c15787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dentin bonding based on a wet-bonding technique is the fundamental technique used daily in clinics for tooth-restoration fixation and clinical treatment of tooth-related diseases. Limited bonding durability led by insufficient adhesive infiltration in the demineralized dentin (DD) matrix is the biggest concern in contemporary adhesive dentistry. This study proposes that the highly hydrated noncollagenous protein (NCP)-formed interfacial microenvironment of the DD matrix is the root cause of this problem. Meanwhile, the endogenous phosphate groups of the NCPs are used as pseudonuclei to rapidly induce the formation of amorphous CaF2 nanoparticles in situ in the interfacial microenvironment. The DD matrix is thus reconstructed into a novel porous structure. It markedly facilitates the infiltration of dentin adhesives in the DD matrix and also endows the DD matrix with anticollapsing capability when water evaporates. Whether using a wet-bonding or air-drying mode, the bonding effectiveness is greatly promoted, with the 12 month bonding strength being about twice that of the corresponding control groups. This suggests that the nanoreinforced DD matrix eliminates the dependence of bonding effectiveness on the moisture status of the DD surface controlled only by experiences of dentists. Consequently, this bonding strategy not only greatly improves bonding durability but also overcomes the technical sensitivity of bonding operations of the total-etched bonding pattern. This exhibits the potential to promote dentin bonding and is of great significance to dentistry.
Collapse
Affiliation(s)
- Jiajia Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Yadong Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Xiaojun Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Yuqing Lei
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Chang Shu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Qiaojie Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Lili Chen
- Union Hospital, Tongji Medical College, Department of Stomatology, Huazhong University Science & Technology, 1277 Jiefang Ave., Wuhan 430022, Peoples R. China
| | - Xiaodong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| |
Collapse
|
9
|
Liu X, Cheng Q, Zhu Y, Yu S, Hou Y, Cui Z, Zhu S. Construction and properties of the antibacterial epitaxial transition layer on a zirconia ceramic surface. RSC Adv 2021; 11:34699-34709. [PMID: 35494754 PMCID: PMC9044776 DOI: 10.1039/d1ra06496g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Secondary caries is one of the main causes of dental zirconia restoration failure in the clinic. Therefore, it is urgent to improve the antibacterial performance of zirconia ceramics to reduce the occurrence of secondary caries. In this study, a quaternary ammonium compound antibacterial polymer was innovatively synthesized by solution polymerization with a quaternary ammonium salt monomer as the antibacterial component. The antibacterial epitaxial transition layer was successfully prepared on the surface of zirconia ceramics by the hydroxyl group on HEMA reacting with the siloxane group in the KH570 hydrolysate, which makes the antibacterial polymer indirectly chemically combine with the silicate epitaxial transition layer. The antibacterial epitaxial transition layer exhibited excellent mechanical properties, satisfactory biocompatibility and significant antibacterial effects, and the maximum antibacterial rate is 99%. The antibacterial epitaxial transition layer plays an important role in preventing secondary caries and improving the success rate of clinical zirconia ceramic restorations. Construction of an antibacterial epitaxial transition layer on a zirconia ceramic surface to improve the antibacterial properties.![]()
Collapse
Affiliation(s)
- Xiuju Liu
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Qiuli Cheng
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130021 P. R. China
| | - Yanlin Zhu
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University Changchun P. R. China
| | - Shiyang Yu
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Yanyan Hou
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Zhanchen Cui
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130021 P. R. China
| | - Song Zhu
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| |
Collapse
|
10
|
Effects of Cold-Light Bleaching on Enamel Surface and Adhesion of Streptococcus mutans. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3766641. [PMID: 34471637 PMCID: PMC8405299 DOI: 10.1155/2021/3766641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/18/2021] [Accepted: 08/14/2021] [Indexed: 02/05/2023]
Abstract
Tooth bleaching is becoming increasingly popular among patients with tooth staining, but the safety of bleaching agents on tooth structure has been questioned. Primarily thriving on the biofilm formation on enamel surface, Streptococcus mutans has been recognized as a major cariogenic bacterial species. The present study is aimed at investigating how cold-light bleaching would change enamel roughness and adhesion of Streptococcus mutans. Human premolars were divided into 72 enamel slices and allocated into 3 groups: (1) control, (2) cold-light bleaching with 35% hydrogen peroxide (Beyond™), and (3) 35% hydrogen peroxide (Beyond™) alone. Biofilms of Streptococcus mutans were cultivated on enamel slices in 5% CO2 (v/v) at 37°C for 1 day or 3 days. Enamel surfaces and biofilms were observed using scanning electron microscope (SEM). Atomic force microscopy (AFM) was applied to quantify the roughness of enamel surface, and the amounts of biofilms were measured by optical density of scattered biofilm and confocal laser scanning microscopy (CLSM). Cold-light bleaching significantly increased (p < 0.05) surface roughness of enamel compared to controls, but significantly inhibited (p < 0.05) adhesion of Streptococcus mutans on enamel in the bacterial cultures of both 1 day and 3 days. In conclusion, cold-light bleaching could roughen enamel surface but inhibit Streptococcus mutans adhesion at the preliminary stage after the bleaching treatment.
Collapse
|
11
|
Farooq I, Ali S, Al-Saleh S, AlHamdan EM, AlRefeai MH, Abduljabbar T, Vohra F. Synergistic Effect of Bioactive Inorganic Fillers in Enhancing Properties of Dentin Adhesives-A Review. Polymers (Basel) 2021; 13:polym13132169. [PMID: 34209016 PMCID: PMC8271823 DOI: 10.3390/polym13132169] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Dentin adhesives (DAs) play a critical role in the clinical success of dental resin composite (DRC) restorations. A strong bond between the adhesive and dentin improves the longevity of the restoration, but it is strongly dependent on the various properties of DAs. The current review was aimed at summarizing the information present in the literature regarding the improvement of the properties of DAs noticed after the addition of bioactive inorganic fillers. From our search, we were able to find evidence of multiple bioactive inorganic fillers (bioactive glass, hydroxyapatite, amorphous calcium phosphate, graphene oxide, calcium chloride, zinc chloride, silica, and niobium pentoxide) in the literature that have been used to improve the different properties of DAs. These improvements can be seen in the form of improved hardness, higher modulus of elasticity, enhanced bond, flexural, and ultimate tensile strength, improved fracture toughness, reduced nanoleakage, remineralization of the adhesive-dentin interface, improved resin tag formation, greater radiopacity, antibacterial effect, and improved DC (observed for some fillers). Most of the studies dealing with the subject area are in vitro. Future in situ and in vivo studies are recommended to positively attest to the results of laboratory findings.
Collapse
Affiliation(s)
- Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Correspondence:
| | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Samar Al-Saleh
- Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (S.A.-S.); (E.M.A.); (T.A.); (F.V.)
| | - Eman M. AlHamdan
- Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (S.A.-S.); (E.M.A.); (T.A.); (F.V.)
| | - Mohammad H. AlRefeai
- Operative Division, Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Tariq Abduljabbar
- Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (S.A.-S.); (E.M.A.); (T.A.); (F.V.)
| | - Fahim Vohra
- Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (S.A.-S.); (E.M.A.); (T.A.); (F.V.)
| |
Collapse
|
12
|
Assad-Loss TF, Vignoli JF, Garcia IM, Portela MB, Schneider LFJ, Collares FM, Cavalcante LMA, Tostes MDA. Physicochemical properties and biological effects of quaternary ammonium methacrylates in an experimental adhesive resin for bonding orthodontic brackets. J Appl Oral Sci 2021; 29:e20201031. [PMID: 33950080 PMCID: PMC8092807 DOI: 10.1590/1678-7757-2020-1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/10/2021] [Indexed: 11/22/2022] Open
Abstract
METHODOLOGY Fixed orthodontic appliances may lead to biofilm accumulation around them that may increase caries risk. This study aimed to evaluate the influence of quaternary ammonium methacrylates (QAMs) on the physicochemical properties, cytotoxicity, and antibacterial activity of adhesive resins for orthodontic purposes. A base resin was prepared with a comonomer blend and photoinitiator/co-initiator system. Two different QAMs were added to the base adhesive: dimethylaminododecyl methacrylate at 5 wt.% (DMADDM) or dimethylaminohexadecyl methacrylate (DMAHDM) at 10 wt.%. The base adhesive, without QAMs, (GC) and the commercial Transbond™ XT Primer 3M (GT) were used as control. The resins were tested immediately and after six months of aging in the water regarding the antibacterial activity and shear bond strength (SBS). The antibacterial activity was tested against Streptococcus mutans via metabolic activity assay (MTT test). The groups were also tested for the degree of conversion (DC) and cytotoxicity against keratinocytes. RESULTS The resins containing QAM showed antibacterial activity compared to the commercial material by immediately reducing the metabolic activity by about 60%. However, the antibacterial activity decreased after aging (p<0.05). None of the groups presented any differences for SBS (p>0.05) and DC (p>0.05). The incorporation of DMADDM and DMAHDM significantly reduced the keratinocyte viability compared to the GT and GC groups (p<0.05). CONCLUSION Both adhesives with QAMs showed a significant reduction in bacterial metabolic activity, but this effect decreased after water aging. Lower cell viability was observed for the group with the longer alkyl chain-QAM, without significant differences for the bonding ability and degree of conversion. The addition of QAMs in adhesives may affect the keratinocytes viability, and the aging effects maybe decrease the bacterial activity of QAM-doped materials.
Collapse
Affiliation(s)
| | | | - Isadora Martini Garcia
- Universidade Federal do Rio Grande do Sul, Laboratório de Materiais Dentários, Porto Alegre, RS, Brasil
| | | | - Luis Felipe J Schneider
- Universidade Federal Fluminense, Programa de pós-graduação em Odontologia, Niterói, RJ, Brasil.,Universidade Veiga de Almeida, Pós-graduação em Odontologia, Rio de Janeiro, RJ, Brasil
| | - Fabrício Mezzomo Collares
- Universidade Federal do Rio Grande, Pós-Graduação em Odontologia da do Sul, Porto Alegre, RS, Brasil
| | - Larissa Maria Assad Cavalcante
- Universidade Federal Fluminense, Programa de pós-graduação em Odontologia, Niterói, RJ, Brasil.,Universidade Veiga de Almeida, Pós-graduação em Odontologia, Rio de Janeiro, RJ, Brasil
| | - Monica de Almeida Tostes
- Universidade Federal do Rio Grande, Pós-Graduação em Odontologia da do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
13
|
Clarin A, Ho D, Soong J, Looi C, Ipe DS, Tadakamadla SK. The Antibacterial and Remineralizing Effects of Biomaterials Combined with DMAHDM Nanocomposite: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1688. [PMID: 33808198 PMCID: PMC8037094 DOI: 10.3390/ma14071688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Researchers have developed novel nanocomposites that incorporate additional biomaterials with dimethylaminohexadecyl methacrylate (DMAHDM) in order to reduce secondary caries. The aim of this review was to summarize the current literature and assess the synergistic antibacterial and remineralizing effects that may contribute to the prevention of secondary caries. An electronic search was undertaken in MEDLINE using PubMed, Embase, Scopus, Web of Science and Cochrane databases. The initial search identified 954 papers. After the removal of duplicates and screening the titles and abstracts, 15 articles were eligible for this review. The amalgamation of 2-methacryloyloxyethyl phosphorylcholine (MPC) and silver nanoparticles (AgNPs) with DMAHDM resulted in increased antibacterial potency. The addition of nanoparticles of amorphous calcium phosphate (NACP) and polyamidoamine dendrimers (PAMAM) resulted in improved remineralization potential. Further clinical studies need to be planned to explore the antibacterial and remineralizing properties of these novel composites for clinical success.
Collapse
Affiliation(s)
- Alison Clarin
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Daphne Ho
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Jana Soong
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Cheryl Looi
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Deepak Samuel Ipe
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
- Menzies Health Institute Queensland, Gold Coast 4217, Australia
| | - Santosh Kumar Tadakamadla
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
- Menzies Health Institute Queensland, Gold Coast 4217, Australia
| |
Collapse
|
14
|
Khan AS, Ur Rehman S, AlMaimouni YK, Ahmad S, Khan M, Ashiq M. Bibliometric Analysis of Literature Published on Antibacterial Dental Adhesive from 1996-2020. Polymers (Basel) 2020; 12:E2848. [PMID: 33260410 PMCID: PMC7761276 DOI: 10.3390/polym12122848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the current state of research on antibacterial dental adhesives. The interest in this field can be drawn from an increasing number of scholarly works in this area. However, there is still a lack of quantitative measurement of this topic. The main aim of this study was to consolidate the research published on the antibacterial adhesive from 1996 to 2020 in Web of Science indexed journals. The bibliometric method, a quantitative study of investigating publishing trends and patterns, was used for this study. The result has shown that a gradual increase in research was found, whereby a substantial increase was observed from 2013. A total of 248 documents were published in 84 journals with total citations of 5107. The highly cited articles were published mainly in Q1 category journals. Most of the published articles were from the USA, China, and other developed countries; however, some developing countries contributed as well. The authorship pattern showed an interdisciplinary and collaborative approach among researchers. The thematic evaluation of keywords along with a three-factor analysis showed that 'antibacterial adhesives' and 'quaternary ammonium' have been used commonly. This bibliometric analysis can provide direction not only to researchers but also to funding organizations and policymakers.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shafiq Ur Rehman
- Deanship of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Yara Khalid AlMaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shakil Ahmad
- Central Library, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54000, Pakistan;
| | - Murtaza Ashiq
- Islamabad Model College for Boys, H-9, Islamabad 44000, Pakistan;
| |
Collapse
|
15
|
Yu Z, Tao S, Xu HHK, Weir MD, Fan M, Liu Y, Zhou X, Liang K, Li J. Rechargeable adhesive with calcium phosphate nanoparticles inhibited long-term dentin demineralization in a biofilm-challenged environment. J Dent 2020; 104:103529. [PMID: 33189801 DOI: 10.1016/j.jdent.2020.103529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES This study aims to investigate the long-term demineralization-inhibition capability of a rechargeable adhesive with nanoparticles of amorphous calcium phosphate (NACP) on dentin in a biofilm-challenged environment. METHODS The NACP adhesive was immersed in a pH 4 solution to exhaust calcium (Ca) and phosphate (P) ions and then recharged with Ca and P ions. Dentin samples were demineralized underStreptococcus mutans biofilms for 24 h and randomly divided into two groups: (1) dentin control, (2) dentin with recharged NACP adhesives. Each day, all the samples were immersed in brain heart infusion broth with 1% sucrose (BHIS) for 4 h, and then in artificial saliva (AS) for 20 h. This cycle was repeated for 10 days. The pH of BHIS, the Ca and P ions content of the BHIS and AS were measured daily. After 10 days, the lactic acid production and colony-forming units of the biofilms were tested. The changes of remineralization/demineralization were also analyzed. RESULTS Dentin in the control group showed further demineralization. The recharged NACP adhesive neutralized acids, increasing the pH to above 5, and released large amounts of Ca and P ions each day. The recharged NACP adhesive decreased the production of lactic acid (P < 0.05), inhibited dentin demineralization and sustained the dentin hardness in the biofilm-challenged environment, showing an excellent long-term demineralization-inhibition capability. CONCLUSIONS The NACP adhesive could continuously inhibit dentin demineralization in a biofilm-challenged environment by recharging with Ca and P ions. SIGNIFICANCE The rechargeable NACP adhesive could provide long-term dentin bond protection.
Collapse
Affiliation(s)
- Zhaohan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Menglin Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yifang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Application of Antimicrobial Polymers in the Development of Dental Resin Composite. Molecules 2020; 25:molecules25204738. [PMID: 33076515 PMCID: PMC7587579 DOI: 10.3390/molecules25204738] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Dental resin composites have been widely used in a variety of direct and indirect dental restorations due to their aesthetic properties compared to amalgams and similar metals. Despite the fact that dental resin composites can contribute similar mechanical properties, they are more likely to have microbial accumulations leading to secondary caries. Therefore, the effective and long-lasting antimicrobial properties of dental resin composites are of great significance to their clinical applications. The approaches of ascribing antimicrobial properties to the resin composites may be divided into two types: The filler-type and the resin-type. In this review, the resin-type approaches were highlighted. Focusing on the antimicrobial polymers used in dental resin composites, their chemical structures, mechanical properties, antimicrobial effectiveness, releasing profile, and biocompatibility were included, and challenges, as well as future perspectives, were also discussed.
Collapse
|
17
|
Lin J, Wang Y, Wei X, Kong S, Liu Z, Liu J, Zhang F, Lin S, Ji B, Zhou Z, Guo Z. Controllable antibacterial and bacterially anti-adhesive surface fabricated by a bio-inspired beetle-like macromolecule. Int J Biol Macromol 2020; 157:553-560. [DOI: 10.1016/j.ijbiomac.2020.04.207] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
|
18
|
Bienek DR, Giuseppetti AA, Okeke UC, Frukhtbeyn SA, Dupree PJ, Khajotia SS, Esteban Florez FL, Hiers RD, Skrtic D. Antimicrobial, biocompatibility, and physicochemical properties of novel adhesive methacrylate dental monomers. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520911660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For the advancement of Class V restoratives, our goal was to evaluate the physicochemical and mechanical properties, antimicrobial functionality, and cytotoxic potential of novel antimicrobial copolymers. 5-Carboxy-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylpentan-1-aminium bromide (AMadh1) and 10-carboxy-N-(2-(methacryloyloxy)ethyl)-N,N-dimethyldecan-1-aminium bromide (AMadh2) were incorporated into light-curable urethane dimethacrylate, polyethylene glycol–extended urethane dimethacrylate, ethyl 2-(hydroxymethyl) acrylate resin (UPE resin). In the AMadhs-UPE resin, the hydrophobic/hydrophilic balance, degree of vinyl conversion, flexural strength, elastic modulus, and shear bond strength were assessed. Antimicrobial properties were measured using Streptococcus mutans (planktonic and biofilm). Cytotoxicity was tested using human gingival fibroblasts and mouse connective tissue fibroblasts (ATCC® CCL-1™) exposed to two-fold serial dilutions (≤10.6 mmol/L AMadh1 or ≤8.8 mmol/L AMadh2). At 10% mass of AMadh, the attained degree of vinyl conversion values (AMadh1 = 90.1% and AMadh2 = 88.5%) were not statistically different from the UPE resin (88.1%). At both AMadh levels, the flexural strength was reduced in a dose-dependent manner. Elastic modulus and contact angle were not significantly affected by AMadh1. Variations in elastic modulus and contact angle were observed with AMadh2; however, this does not disqualify it in future design of Class V restoratives. Compared to UPE resin, AMadh1-UPE and AMadh2-UPE (10% mass) copolymers reduced S. mutans biofilm 4.2- and 1.6-fold, respectively (p ≤ 0.006). In direct contact with human gingival fibroblasts or ATCC CCL-1 cells, at biologically relevant concentrations, the AMadhs did not adversely affect cell viability or their metabolic activity. This effort addresses a significant oral health issue associated with elderly populations. Its successful completion is expected to yield dental restoratives with well-controlled biofunction.
Collapse
Affiliation(s)
- Diane R Bienek
- Innovative & Technology Research, ADA Science & Research Institute, LLC, Frederick, MD, USA
| | - Anthony A Giuseppetti
- Innovative & Technology Research, ADA Science & Research Institute, LLC, Frederick, MD, USA
| | - Ugochukwu C Okeke
- Agricultural Research Service, US Department of Agriculture, Washington, DC, USA
| | - Stanislav A Frukhtbeyn
- Innovative & Technology Research, ADA Science & Research Institute, LLC, Frederick, MD, USA
| | - Peter J Dupree
- School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sharukh S Khajotia
- College of Dentistry, The University of Oklahoma, Oklahoma City, OK, USA
| | | | - Rochelle D Hiers
- College of Dentistry, The University of Oklahoma, Oklahoma City, OK, USA
| | - Drago Skrtic
- Innovative & Technology Research, ADA Science & Research Institute, LLC, Frederick, MD, USA
| |
Collapse
|
19
|
Yao S, Li T, Zhou C, Weir MD, Melo MAS, Tay FR, Lynch CD, Imazato S, Wu J, Xu HH. Novel antibacterial and therapeutic dental polymeric composites with the capability to self-heal cracks and regain mechanical properties. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Chen H, Zhang B, Weir MD, Homayounfar N, Fay GG, Martinho F, Lei L, Bai Y, Hu T, Xu HH. S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J Dent 2020; 93:103278. [DOI: 10.1016/j.jdent.2020.103278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
|
21
|
Fugolin AP, Dobson A, Huynh V, Mbiya W, Navarro O, Franca CM, Logan M, Merritt JL, Ferracane JL, Pfeifer CS. Antibacterial, ester-free monomers: Polymerization kinetics, mechanical properties, biocompatibility and anti-biofilm activity. Acta Biomater 2019; 100:132-141. [PMID: 31574321 PMCID: PMC6894497 DOI: 10.1016/j.actbio.2019.09.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Quaternary ammonium (QA) methacrylate monomers have been extensively investigated and demonstrate excellent antibacterial properties. However, the presence of ester bonds makes them prone to degradation in the oral cavity. In this study, ester-free QA monomers based on meth-acrylamides were synthesized and screened for polymerization kinetics, mechanical properties and antibacterial effects. MATERIALS AND METHODS Tertiary quaternary ammonium acrylamides (AM) and methacrylamides (MAM) with alkyl side chain lengths of 9 and 14 carbons (C9 and C14) were synthesized and incorporated at 10 wt% into experimental composites based on BisGMA:TEGDMA (1:1), camphorquinone/ethyl-4-dimethylaminobenzoate (0.2/0.8 wt%) and 70 wt% barium glass fillers. Analogous methacrylate versions (MA) were used as controls. Degree of conversion (DC) and rate of polymerization (RP) during photoactivation (800 mW/cm2) were followed in real-time with near-IR. Flexural Strength (FS) and Modulus (E) were measured on 2 × 2 × 25 mm bars in 3-point bending after 24 h dry storage and 7-day storage in water at 37 °C. Antimicrobial properties and biofilm adhesion (fouling) were evaluated by bioluminescence (Luciferase Assay) and biofilm removal by water spray microjet impingement test, respectively. Cytotoxicity was assessed by MTT assay on dental pulp stem cells (DPSC). Data were analyzed with one-way ANOVA/Tukey's test (α = 0.05). RESULTS DC was similar for all groups tested (∼70%). Both MAMs and C14-AM presented significantly lower RP. Under dry conditions, FS (110-120 MPa) and E (8-9 GPa) were similar for all groups. After water storage, all materials presented FS/E similar to the control, except for C14-AM (for FS) and C14-MAM (for E), which were lower. All C14 versions were strongly antibacterial, decreasing the titer counts of biofilm by more than two orders of magnitude in comparison to the control. C9 monomers did not present significant antibacterial nor antifouling properties. And biofilms had approximately equivalent adhesion on the C9 composites as on the control. Cytotoxicity did not show significant differences between the MA and AM versions and the control group. CONCLUSIONS C14-QA monomers based on methacrylates and meth-acrylamides present strong antibacterial properties, and in general, similar conversion/mechanical properties compared to the methacrylate control. STATEMENT OF SIGNIFICANCE This work demonstrates the viability of methacrylamides and acrylamides as potential components in dental restorative materials with antimicrobial properties. The use of ester-free polymerizable functionalities has the potential of improving the degradation resistance of these materials long-term. The use of (meth)acrylamides did not interfere with the antimicrobial potential of quaternary ammonium-based materials.
Collapse
Affiliation(s)
- Ana P Fugolin
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Adam Dobson
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Vincent Huynh
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Wilbes Mbiya
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Oscar Navarro
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Cristiane M Franca
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Matthew Logan
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Justin L Merritt
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Jack L Ferracane
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Carmem S Pfeifer
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA.
| |
Collapse
|
22
|
Self-cured resin modified by quaternary ammonium methacrylates and chlorhexidine: Cytotoxicity, antimicrobial, physical, and mechanical properties. Dent Mater 2019; 36:68-75. [PMID: 31735423 DOI: 10.1016/j.dental.2019.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/03/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the addition of dimethylaminohexadecyl methacrylate (DMAHDM) and chlorhexidine diacetate on cytotoxicity, antimicrobial activity, physical, and mechanical properties of a self-cured resin. METHODS 132 disk-shaped and 48 rectangular specimens were divided into four experimental groups as described: Control Group (CG - no addition), dCHX (1%), DMAHDM (5%), and DMAHDM+dCHX (5%+1%). The biofilm viability, flexural strength (FS - ISO 20795-1:2013), surface roughness (SR), and color stability (ΔE) were analyzed after being stored for 4 weeks in distilled water and immersed for 72h in coffee. Cytotoxicity was measured after 24h, 3, and 7 days of elution using an MTT test on L929 cells (ISO 10993-5:2009). SR and ΔE were measured by a contact profilometer and a spectrophotometer using the CIELab parameter. Data were submitted to ANOVA and Bonferroni's/Tukey's tests (p≤0.05). RESULTS Significant antimicrobial activity against Streptococcus mutans and Candida albicans was detected in all groups when compared to the CG (p<0.05). Only the dCHX group, in 24h of elution, demonstrated no cytotoxicity effects. There was a statistical difference for FS on the tested groups (p<0.05). No differences were detected in the initial roughness' measurements among the groups (p>0.05). However, after storage and immersion in coffee, the groups containing DMAHDM presented with rougher surfaces and significantly lower color stability compared to the control (p<0.05). SIGNIFICANCE The addition of dCHX and DMAHDM in self-cured resin presented antimicrobial properties; however, cytotoxicity, physical, and mechanical properties were compromised.
Collapse
|
23
|
The functions of hydrophobic elastic polyurethane combined with an antibacterial triclosan derivative in the dentin restoration interface. J Mech Behav Biomed Mater 2019; 102:103471. [PMID: 31622860 DOI: 10.1016/j.jmbbm.2019.103471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022]
Abstract
Dentin restoration produces weak interfaces because of the effects of bacterial microflora, biofilms, and mechanical, thermal, and shrinkage stresses. This results in secondary caries. Therefore, hydrophobic elastic polyurethane (PU) containing different concentrations of triclosan derivatives was synthesized and applied to solve this problem. The antibacterial PU was characterized according to its tensile strength (TS) and elasticity (ε) via a universal testing machine, and water sorption (Wsp) and solubility testing (Wsl) was performed according to ISO 4049: 2009. Additionally, this study evaluated the antibacterial properties of PU against Streptococcus mutans (ATCC35668) and Escherichia coli (ATCC25922). A marginal leakage test was performed to evaluate the leakage prevention property. As a result, the antibacterial PU showed high TS (>17 MPa), high elasticity (ε > 65%), and low Wsp (>81.06 μg/mm3) and Wsl (>11.22 μg/mm3). The PU exhibited antibacterial effects against both Streptococcus mutans and Escherichia coli. The antibacterial rates were over 90% and >99% for the 3% and 5% groups, respectively. Moreover, the marginal level of leakage was 0. Based on the mechanical properties, Wsp and Wsl values and the antibacterial properties, the 3% group exhibited satisfactory performance and has been deemed a possible solution to reduce the occurrence of secondary caries.
Collapse
|
24
|
Zhou W, Liu S, Zhou X, Hannig M, Rupf S, Feng J, Peng X, Cheng L. Modifying Adhesive Materials to Improve the Longevity of Resinous Restorations. Int J Mol Sci 2019; 20:ijms20030723. [PMID: 30744026 PMCID: PMC6387348 DOI: 10.3390/ijms20030723] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 11/16/2022] Open
Abstract
Dental caries is a common disease on a global scale. Resin composites are the most popular materials to restore caries by bonding to tooth tissues via adhesives. However, multiple factors, such as microleakage and recurrent caries, impair the durability of resinous restorations. Various innovative methods have been applied to develop adhesives with particular functions to tackle these problems, such as incorporating matrix metalloproteinase inhibitors, antibacterial or remineralizing agents into bonding systems, as well as improving the mechanical/chemical properties of adhesives, even combining these methods. This review will sum up the latest achievements in this field.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Shiyu Liu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, Homburg/Saar, Germany.
| | - Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, Homburg/Saar, Germany.
| | - Jin Feng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Geriatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
25
|
Short-Time Antibacterial Effects of Dimethylaminododecyl Methacrylate on Oral Multispecies Biofilm In Vitro. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6393470. [PMID: 30800673 PMCID: PMC6360620 DOI: 10.1155/2019/6393470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/05/2018] [Accepted: 12/24/2018] [Indexed: 02/05/2023]
Abstract
Quaternary ammonium compounds constitute a large group of antibacterial chemicals with a potential for inhibiting dental plaque. The aims of this study were to evaluate short-time antibacterial and regulating effects of dimethylaminododecyl methacrylate (DMADDM) on multispecies biofilm viability, reformation, and bacterial composition in vitro. DMADDM, chlorhexidine (CHX), and sodium fluoride (NaF) were chosen in the present study. Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii were used to form multispecies biofilm. Cytotoxicity assay was used to determine the optimal tested concentration. 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and resazurin test of biofilm were conducted to study the biomass changes and metabolic changes of controlled multispecies biofilm. Scanning electron microscopy (SEM) was used to observe biofilm images. TaqMan real-time polymerase chain reaction was performed to evaluate the proportion change in multispecies biofilm of different groups. Cytotoxicity assay showed that there existed a certain concentration application range for DMADDM, CHX, and NaF. MTT assay and resazurin test results showed that DMADDM and CHX groups decreased multispecies biofilm growth and metabolic activity (p < 0.05), no matter after 1 min or 5 min direct contact killing or after 24 h regrowth. The proportion of S. mutans decreased steadily in DMADDM and CHX groups after 1 min and 5 min direct contact killing and 24 h regrowth, compared to control groups. A novel DMADDM-containing solution was developed, achieving effective short-time antibacterial effects and regulation ability of biofilm formation.
Collapse
|
26
|
Kuang X, Chen V, Xu X. Novel Approaches to the Control of Oral Microbial Biofilms. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6498932. [PMID: 30687755 PMCID: PMC6330817 DOI: 10.1155/2018/6498932] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/13/2018] [Indexed: 02/05/2023]
Abstract
Effective management of biofilm-related oral infectious diseases is a global challenge. Oral biofilm presents increased resistance to antimicrobial agents and elevated virulence compared with planktonic bacteria. Antimicrobial agents, such as chlorhexidine, have proven effective in the disruption/inhibition of oral biofilm. However, the challenge of precisely and continuously eliminating the specific pathogens without disturbing the microbial ecology still exists, which is a major factor in determining the virulence of a multispecies microbial consortium and the consequent development of oral infectious diseases. Therefore, several novel approaches are being developed to inhibit biofilm virulence without necessarily inducing microbial dysbiosis of the oral cavity. Nanoparticles, such as pH-responsive enzyme-mimic nanoparticles, have been developed to specifically target the acidic niches within the oral biofilm where tooth demineralization readily occurs, in effect controlling dental caries. Quaternary ammonium salts (QAS) such as dimethylaminododecyl methacrylate (DMADDM), when incorporated into dental adhesives or resin composite, have also shown excellent and durable antimicrobial activity and thus could effectively inhibit the occurrence of secondary caries. In addition, custom-designed small molecules, natural products and their derivatives, as well as basic amino acids such as arginine, have demonstrated ecological effects by modulating the virulence of the oral biofilm without universally killing the commensal bacteria, indicating a promising approach to the management of oral infectious diseases such as dental caries and periodontal diseases. This article aims to introduce these novel approaches that have shown potential in the control of oral biofilm. These methods may be utilized in the near future to effectively promote the clinical management of oral infectious diseases and thus benefit oral health.
Collapse
Affiliation(s)
- Xinyi Kuang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | | | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
27
|
Li Y, Hu X, Ruan J, Arola DD, Ji C, Weir MD, Oates TW, Chang X, Zhang K, Xu HHK. Bonding durability, antibacterial activity and biofilm pH of novel adhesive containing antibacterial monomer and nanoparticles of amorphous calcium phosphate. J Dent 2018; 81:91-101. [PMID: 30599165 DOI: 10.1016/j.jdent.2018.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVES The dentin bonding often fails over time, leading to secondary caries and restoration failure. The objectives of this study were to develop an adhesive with dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP), and investigate the effects of storage in artificial saliva for six months on the bonding durability, antibacterial activity, ion release and biofilm pH properties for the first time. METHODS DMAHDM was added at 5% (by mass) to Scotchbond Primer and Adhesive (SBMP). NACP was added at 10%, 20%, and 30% to SBMP adhesive. Dentin bonding durability, antibacterial activity against Streptococcus mutans biofilms, and calcium (Ca) and phosphate (P) ion liberation properties were investigated after 1 day and 6months of storage in artificial saliva. RESULTS Dentin bond strength (n = 50) had 25% loss after 6 months of aging for SBMP control. However, SBMP + DMAHDM+10NACP and SBMP + DMAHDM+20NACP showed no loss in bond strength after storage in artificial saliva for 6 months. The DMAHDM + NACP incorporation method dramatically reduced the biofilm metabolic activity and acid production, and decreased the biofilm CFU by four orders of magnitude, compared to SBMP control, even after 6 months of aging (p < 0.05). DMAHDM + NACP had long-lasting Ca and P ion releases, and raised the biofilm pH to 6.8, while the control group had a cariogenic biofilm pH of 4.5. CONCLUSIONS Incorporating DMAHDM + NACP in bonding agent yielded potent and long-lasting antibacterial activity and ions liberation ability, and much higher long-term dentin bond strength after 6-month of aging. The new bonding agent is promising to inhibit caries at the restoration margins and increase the resin-dentin bonding longevity. CLINICAL SIGNIFICANCE The novel bioactive adhesive is promising to protect tooth structures from biofilm acids and secondary caries. NACP and DMAHDM have great potential for applications to a wide range of dental materials to reduce plaque and achieve therapeutic effects.
Collapse
Affiliation(s)
- Yuncong Li
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Xiaoyi Hu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jianping Ruan
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Dwayne D Arola
- Department of MaterialsScience and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Chao Ji
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Xiaofeng Chang
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| | - Ke Zhang
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA; Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD, 21250, USA.
| |
Collapse
|
28
|
Melo MAS, Weir MD, Passos VF, Rolim JPM, Lynch CD, Rodrigues LKA, Xu HHK. Human In Situ Study of the effect of Bis(2-Methacryloyloxyethyl) Dimethylammonium Bromide Immobilized in Dental Composite on Controlling Mature Cariogenic Biofilm. Int J Mol Sci 2018; 19:E3443. [PMID: 30400188 PMCID: PMC6274706 DOI: 10.3390/ijms19113443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 12/21/2022] Open
Abstract
Cariogenic oral biofilms cause recurrent dental caries around composite restorations, resulting in unprosperous oral health and expensive restorative treatment. Quaternary ammonium monomers that can be copolymerized with dental resin systems have been explored for the modulation of dental plaque biofilm growth over dental composite surfaces. Here, for the first time, we investigated the effect of bis(2-methacryloyloxyethyl) dimethylammonium bromide (QADM) on human overlying mature oral biofilms grown intra-orally in human participants for 7⁻14 days. Seventeen volunteers wore palatal devices containing composite specimens containing 10% by mass of QADM or a control composite without QADM. After 7 and 14 days, the adherent biofilms were collected to determine bacterial counts via colony-forming unit (CFU) counts. Biofilm viability, chronological changes, and percentage coverage were also determined through live/dead staining. QADM composites caused a significant inhibition of Streptococcus mutans biofilm formation for up to seven days. No difference in the CFU values were found for the 14-day period. Our findings suggest that: (1) QADM composites were successful in inhibiting 1⁻3-day biofilms in the oral environment in vivo; (2) QADM significantly reduced the portion of the S. mutans group; and (3) stronger antibiofilm activity is required for the control of mature long-term cariogenic biofilms. Contact-killing strategies using dental materials aimed at preventing or at least reducing high numbers of cariogenic bacteria seem to be a promising approach in patients at high risk of the recurrence of dental caries around composites.
Collapse
Affiliation(s)
- Mary Anne S Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Vanara F Passos
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, CE 60430-355, Brazil.
| | | | - Christopher D Lynch
- Restorative Dentistry, University Dental School and Hospital, University College Cork, Wilton T12 K8AF, Ireland.
| | - Lidiany K A Rodrigues
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, CE 60430-355, Brazil.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
29
|
Zhang K, Wang S, Zhou C, Cheng L, Gao X, Xie X, Sun J, Wang H, Weir MD, Reynolds MA, Zhang N, Bai Y, Xu HHK. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res 2018; 6:31. [PMID: 30374416 PMCID: PMC6196224 DOI: 10.1038/s41413-018-0032-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/05/2023] Open
Abstract
Hard tissue repair and regeneration cost hundreds of billions of dollars annually worldwide, and the need has substantially increased as the population has aged. Hard tissues include bone and tooth structures that contain calcium phosphate minerals. Smart biomaterial-based tissue engineering and regenerative medicine methods have the exciting potential to meet this urgent need. Smart biomaterials and constructs refer to biomaterials and constructs that possess instructive/inductive or triggering/stimulating effects on cells and tissues by engineering the material's responsiveness to internal or external stimuli or have intelligently tailored properties and functions that can promote tissue repair and regeneration. The smart material-based approaches include smart scaffolds and stem cell constructs for bone tissue engineering; smart drug delivery systems to enhance bone regeneration; smart dental resins that respond to pH to protect tooth structures; smart pH-sensitive dental materials to selectively inhibit acid-producing bacteria; smart polymers to modulate biofilm species away from a pathogenic composition and shift towards a healthy composition; and smart materials to suppress biofilms and avoid drug resistance. These smart biomaterials can not only deliver and guide stem cells to improve tissue regeneration and deliver drugs and bioactive agents with spatially and temporarily controlled releases but can also modulate/suppress biofilms and combat infections in wound sites. The new generation of smart biomaterials provides exciting potential and is a promising opportunity to substantially enhance hard tissue engineering and regenerative medicine efficacy.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Suping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianling Gao
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD USA
| | - Haohao Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Mark A. Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
30
|
Zhang K, Baras B, Lynch CD, Weir MD, Melo MAS, Li Y, Reynolds MA, Bai Y, Wang L, Wang S, Xu HHK. Developing a New Generation of Therapeutic Dental Polymers to Inhibit Oral Biofilms and Protect Teeth. MATERIALS 2018; 11:ma11091747. [PMID: 30227632 PMCID: PMC6165509 DOI: 10.3390/ma11091747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
Polymeric tooth-colored restorations are increasingly popular in dentistry. However, restoration failures remain a major challenge, and more than 50% of all operative work was devoted to removing and replacing the failed restorations. This is a heavy burden, with the expense for restoring dental cavities in the U.S. exceeding $46 billion annually. In addition, the need is increasing dramatically as the population ages with increasing tooth retention in seniors. Traditional materials for cavity restorations are usually bioinert and replace the decayed tooth volumes. This article reviews cutting-edge research on the synthesis and evaluation of a new generation of bioactive dental polymers that not only restore the decayed tooth structures, but also have therapeutic functions. These materials include polymeric composites and bonding agents for tooth cavity restorations that inhibit saliva-based microcosm biofilms, bioactive resins for tooth root caries treatments, polymers that can suppress periodontal pathogens, and root canal sealers that can kill endodontic biofilms. These novel compositions substantially inhibit biofilm growth, greatly reduce acid production and polysaccharide synthesis of biofilms, and reduce biofilm colony-forming units by three to four orders of magnitude. This new class of bioactive and therapeutic polymeric materials is promising to inhibit tooth decay, suppress recurrent caries, control oral biofilms and acid production, protect the periodontium, and heal endodontic infections.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China.
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Bashayer Baras
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Christopher D Lynch
- Restorative Dentistry, University Dental School and Hospital, Wilton T12 E8YV, Ireland.
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Mary Anne S Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Yuncong Li
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Mark A Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China.
| | - Lin Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130012, China.
| | - Suping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
- Department of Operative Dentistry and Endodontics & Stomatology Center, The First Affiliated Medical School of Zhengzhou University, Zhengzhou 450052, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
31
|
Responsive antimicrobial dental adhesive based on drug-silica co-assembled particles. Acta Biomater 2018; 76:283-294. [PMID: 29940367 DOI: 10.1016/j.actbio.2018.06.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/23/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
Most dental resin composite restorations are replacements for failing restorations. Degradation of the restoration-tooth margins by cariogenic bacteria results in recurrent caries, a leading cause for restoration failure. Incorporating antimicrobial agents in dental adhesives could reduce interfacial bacterial count and reduce recurrent caries rates, inhibit interfacial degradation, and prolong restoration service life, while minimizing systemic exposure. Direct addition of antimicrobial compounds into restorative materials have limited release periods and could affect the integrity of the material. Attempts to incorporate antimicrobial within mesoporous silica nanoparticles showed theoretical promise due to their physical robustness and large available internal volume, yet yielded short-term burst release and limited therapeutic payload. We have developed novel broad-spectrum antimicrobial drug-silica particles co-assembled for long-term release and high payload incorporated into dental adhesives. The release of the drug, octenidine dihydrochloride, is modulated by the oral degradative environment and mathematically modeled to predict effective service life. Steady-state release kills cariogenic bacteria, preventing biofilm formation over the adhesive surface, with no toxicity. This novel material could extend dental restoration service life and may be applied to other long-term medical device-tissue interfaces for responsive drug release upon bacterial infection. STATEMENT OF SIGNIFICANCE This study describes a novel dental adhesive that includes a broad-spectrum antimicrobial drug-silica co-assembled particles for long-term antimicrobial effect. The release of the drug, octenidine dihydrochloride, is modulated by the oral degradative environment and mathematically modeled to predict effective release throughout the service life of the restoration. Steady-state drug-release kills caries-forming bacteria, preventing biofilm formation over the adhesive surface, without toxicity. This novel material could extend dental restoration service life and may be applied to other long-term medical device-tissue interfaces for responsive drug release upon bacterial infection. Since recurrent cavities (caries) caused by bacteria are the major reason for dental filling failure, this development represents a significant contribution to the biomaterials field in methodology and material performance.
Collapse
|
32
|
Makvandi P, Jamaledin R, Jabbari M, Nikfarjam N, Borzacchiello A. Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dent Mater 2018; 34:851-867. [PMID: 29678327 DOI: 10.1016/j.dental.2018.03.014] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Quaternary ammonium compounds (QACs) represent one of the most effective classes of disinfectant agents in dental materials and resin nanocomposites. This reviews aims to give a wide overview on the research in the field of antibacterial QACs in dental materials and nanocomposites. METHOD An introduction to dental materials components as well as the microorganisms and methods of evaluation for the antimicrobial assays are presented. Then, the properties and synthesis route of QACs, as monomer and filler, are shown. Finally, antimicrobial monomers and fillers, specifically those contain quaternary ammonium salts (QASs), in dental materials are reviewed. RESULTS QACs have been used as monomer and micro/nanofiller in restorative dentistry. They possess one or more methacrylate functional groups to participate in polymerization reactions. QACs with multiple methacrylate groups can also be used as crosslinking agents. Furthermore, QACs with chain length from ∼12 to 16 have higher antimicrobial activity in cured dental resins. In general, increasing the chain length leads to a threshold value (critical point) and then it causes decrease in the antimicrobial activity. SIGNIFICANCE The current state of the art of dental materials and resin nanocomposites includes a wide variety of antimicrobial materials. Among them, QACs presents low cytotoxicity and excellent long-term antimicrobial activity without leaching out over time.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy; Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), Napels, Italy
| | - Mostafa Jabbari
- Swedish Centre for Resource Recovery, University of Borås, Borås SE-50190, Sweden
| | | | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy.
| |
Collapse
|
33
|
Liu S, Wei Y, Zhou X, Zhang K, Peng X, Ren B, Chen V, Cheng L, Li M. Function of alanine racemase in the physiological activity and cariogenicity of Streptococcus mutans. Sci Rep 2018; 8:5984. [PMID: 29654290 PMCID: PMC5899142 DOI: 10.1038/s41598-018-24295-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/29/2018] [Indexed: 02/05/2023] Open
Abstract
The enzyme alanine racemase (Alr) has been a new target for the development of antibacterial drugs based on the involvement of D-Ala in bacterial cell wall biosynthesis. Our previous study noted that Alr is essential for the growth and interspecies competitiveness of S. mutans, the major causative organism of dental caries. However, physiological activity and cariogenicity of S. mutans affected by Alr remains unknown. The current study examined the biofilm biomass, biofilm structure, extracellular polysaccharide (EPS) synthesis, glucosyltransferase (gtf) gene expression, acid production and acid tolerance in the alr-mutant strain. We found that biofilm formation, biofilm structure, and EPS synthesis was in a D-Ala dose-dependent manner. Biofilm structure was loose in alr-mutant group and the ratio of EPS/bacteria was also elevated. Additionally, the expression levels of multiple gtfs were up-regulated, and acid tolerance was decreased. We also established in vivo models of dental caries and found that the incidence and severity of the caries were decreased in the alr-mutant group in comparison to the parental S. mutans group. Our in vivo and in vitro experiments demonstrate that Alr is essential for the cariogenicity of S. mutans and that Alr might be a potential target for the prevention and treatment of caries.
Collapse
Affiliation(s)
- Shiyu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, NO. 14, 3rd Section of South RenMin Rd, Chengdu, Sichuan, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Wei
- Department of Endodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, NO. 30 Zhongyang Road, Nanjing, 210008, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, NO. 14, 3rd Section of South RenMin Rd, Chengdu, Sichuan, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Keke Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, NO. 14, 3rd Section of South RenMin Rd, Chengdu, Sichuan, 610041, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, NO. 14, 3rd Section of South RenMin Rd, Chengdu, Sichuan, 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, NO. 14, 3rd Section of South RenMin Rd, Chengdu, Sichuan, 610041, China
| | | | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, NO. 14, 3rd Section of South RenMin Rd, Chengdu, Sichuan, 610041, China. .,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, NO. 14, 3rd Section of South RenMin Rd, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
34
|
Wang S, Wang H, Ren B, Li X, Wang L, Zhou H, Weir MD, Zhou X, Masri RM, Oates TW, Cheng L, Xu HHK. Drug resistance of oral bacteria to new antibacterial dental monomer dimethylaminohexadecyl methacrylate. Sci Rep 2018; 8:5509. [PMID: 29615732 PMCID: PMC5882658 DOI: 10.1038/s41598-018-23831-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/21/2018] [Indexed: 02/05/2023] Open
Abstract
Only two reports exist on drug-resistance of quaternary ammonium monomers against oral bacteria; both studies tested planktonic bacteria for 10 passages, and neither study tested biofilms or resins. The objectives of this study were to investigate the drug-resistance of Streptococcus mutans, Streptococcus sanguinis and Streptococcus gordonii against dimethylaminohexadecyl methacrylate (DMAHDM), and to evaluate biofilms on resins with repeated exposures for 20 passages for the first time. DMAHDM, dimethylaminododecyl methacrylate (DMADDM) and chlorhexidine (CHX) were tested with planktonic bacteria. Biofilms were grown on a resin containing 3% DMAHDM. Minimum-inhibitory concentrations were measured. To detect drug-resistance, the survived bacteria from the previous passage were used as inoculum for the next passage for repeated exposures. S. gordonii developed drug-resistance against DMADDM and CHX, but not against DMAHDM. Biofilm colony-forming units (CFU) on DMAHDM-resin was reduced by 3–4 log; there was no difference from passages 1 to 20 (p > 0.1). No drug-resistance to DMAHDM was detected for all three bacterial species. In conclusion, this study showed that DMAHDM induced no drug-resistance, and DMAHDM-resin reduced biofilm CFU by 3–4 log, with no significant change from 1 to 20 passages. DMAHDM with potent antibacterial activities and no drug-resistance is promising for dental applications.
Collapse
Affiliation(s)
- Suping Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Haohao Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Li
- Department of Oral Medicine, School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Wang
- VIP Integrated Department, Stomatological Hospital of Jilin University, Changchun, China
| | - Han Zhou
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.,Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Radi M Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA. .,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD, 21250, USA. .,Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
35
|
Zaltsman N, Ionescu AC, Weiss EI, Brambilla E, Beyth S, Beyth N. Surface-modified nanoparticles as anti-biofilm filler for dental polymers. PLoS One 2017; 12:e0189397. [PMID: 29244848 PMCID: PMC5731751 DOI: 10.1371/journal.pone.0189397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/26/2017] [Indexed: 01/30/2023] Open
Abstract
The objective of the study was to synthesis silica nanoparticles modified with (i) a tertiary amine bearing two t-cinnamaldehyde substituents or (ii) dimethyl-octyl ammonium, alongside the well-studied quaternary ammonium polyethyleneimine nanoparticles. These were to be evaluated for their chemical and mechanical properties, as well for antibacterial and antibiofilm activity. Samples were incorporated in commercial dental resin material and the degree of monomer conversion, mechanical strength, and water contact angle were tested to characterize the effect of the nanoparticles on resin material. Antibacterial activity was evaluated with the direct contact test and the biofilm inhibition test against Streptococcus mutans. Addition of cinnamaldehyde-modified particles preserved the degree of conversion and compressive strength of the base material and increased surface hydrophobicity. Quaternary ammonium functional groups led to a decrease in the degree of conversion and to low compressive strength, without altering the hydrophilic nature of the base material. In the direct contact test and the anti-biofilm test, the polyethyleneimine particles exhibited the strongest antibacterial effect. The cinnamaldehyde-modified particles displayed antibiofilm activity, silica particles with quaternary ammonium were ineffective. Immobilization of t-cinnamaldehyde onto a solid surface via amine linkers provided a better alternative to the well-known quaternary ammonium bactericides.
Collapse
Affiliation(s)
- Nathan Zaltsman
- Department of Prosthodontics, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Andrei C. Ionescu
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute, University of Milan, Milan, Italy
| | - Ervin I. Weiss
- Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eugenio Brambilla
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute, University of Milan, Milan, Italy
| | - Shaul Beyth
- Orthopedic Surgery Complex, Hadassah University Hospital, Jerusalem, Israel
| | - Nurit Beyth
- Department of Prosthodontics, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
36
|
Wu T, Li B, Zhou X, Hu Y, Zhang H, Huang Y, Xu HHK, Guo Q, Li M, Feng M, Peng X, Weir MD, Cheng L, Ren B. Evaluation of Novel Anticaries Adhesive in a Secondary Caries Animal Model. Caries Res 2017; 52:14-21. [PMID: 29232675 DOI: 10.1159/000481832] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/08/2017] [Indexed: 02/05/2023] Open
Abstract
We investigated the anticaries properties of an adhesive containing dimethylaminododecyl methacrylate (DMADDM) in vivo via a secondary caries animal model. Cavities were prepared in the maxillary first molars of Wistar rats. DMADDM-containing adhesives were applied on one side and commercial adhesives on the opposite side as a control. After a 3-week feeding period to induce secondary caries, the molars were harvested for the evaluation of the secondary caries. Lesion depth (LD) and mineral loss (ML) were measured via a micro-CT method, and a modified Keyes scoring method yielded scores for the caries lesions. Statistical analysis was divided into 2 parts: a correlation analysis between 2 evaluations with one-way ANOVA and a least-significant differences (LSD) test, and an evaluation of anticaries adhesives with a paired samples t test. The results showed that: (1) secondary caries was successfully produced in rats; (2) there was a correlation between the modified Keyes scoring method and micro-CT in the evaluation of the secondary caries; (3) the adhesive containing DMADDM significantly reduced both LD and ML (according to micro-CT), and also lowered the scores (based on the modified Keyes scoring method). This suggests that the novel DMADDM adhesive could perform an anticaries function in vivo via the secondary caries animal model which was also developed and testified in research. Secondary caries is one of the major reasons leading to the failure of caries restoration treatment. As a solution, anticaries adhesives perform well in biofilm inhibition in vitro. However, the lack of secondary caries animal models limits the evaluation of anticaries adhesives in vivo.
Collapse
Affiliation(s)
- Tianmu Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rego GF, Vidal ML, Viana GM, Cabral LM, Schneider LFJ, Portela MB, Cavalcante LM. Antibiofilm properties of model composites containing quaternary ammonium methacrylates after surface texture modification. Dent Mater 2017; 33:1149-1156. [PMID: 28822582 DOI: 10.1016/j.dental.2017.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Investigate antimicrobial properties and surface texture of model composites with different concentration and alkyl chain length of quaternary ammonium monomers (QAS). METHODS Monomers derived from QAS salts with alkyl chain lengths of 12 carbons ((dimethylaminododecyl methacrylate) DMADDM) and 16 carbons (dimethylaminohexadecyl methacrylate-DMAHDM) were obtained from the reactions of their respective organo-halides with the tertiary amine 2-(dimethylamino)ethyl methacrylate (DMAEMA). DMADDM and DMAHDM were incorporated into model composite in concentrations of 5 or 10%, resulting the following groups: G12.5 (DMADDM 5%), G12.10 (DMADDM 10%), G16.5 (DMAHDM 5%), G16.10 (DMAHDM 10%) and GC (control). Biofilm viability, lactic acid production and surface roughness were analysed 24h after samples preparation (initial), repeated after toothbrush abrasion and after polishing simulation. Data were submitted to ANOVA and Tukey's test (p≤0.05). RESULTS The longer the molecular chain size of QAS and the higher its concentration (G16.10), the lower was the viability and the production of lactic acid by the biofilm. No differences were detected in initial roughness' measurements among groups. However, after abrasion, there was an increase of biofilm viability and lactic acid production. Composites containing QAS presented rougher surfaces compared to the CG. After polishing, biofilm viability and surface roughness were statistically similar for all groups. Nevertheless, DMAHDM at 10% showed reduction in lactic acid production. SIGNIFICANCE Chain length and concentration of QAS influenced biofilm development and production of lactic acid. Longer chains and higher concentrations of QAS promoted better antimicrobial properties. Changes in surface texture caused by abrasion, decreased antibiofilm properties.
Collapse
Affiliation(s)
| | - Marina Lermen Vidal
- School of Dentistry, Federal Fluminense University - UFF, Niterói, RJ, Brazil
| | - Gil Mendes Viana
- School of Pharmacy, LabTIF, Federal University of Rio de Janeiro - UFRJ, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Lucio Mendes Cabral
- School of Pharmacy, LabTIF, Federal University of Rio de Janeiro - UFRJ, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Luis Felipe Jochims Schneider
- School of Dentistry, Federal Fluminense University - UFF, Niterói, RJ, Brazil; Nucleus for Dental Biomaterials Research, UVA-Veiga de Almeida University, Rio de Janeiro, RJ, Brazil
| | | | - Larissa Maria Cavalcante
- School of Dentistry, Federal Fluminense University - UFF, Niterói, RJ, Brazil; Nucleus for Dental Biomaterials Research, UVA-Veiga de Almeida University, Rio de Janeiro, RJ, Brazil; School of Dentistry, UNIVERSO-Salgado de Oliveira University, Niterói, RJ, Brazil.
| |
Collapse
|
38
|
Feng X, Zhang N, Xu HHK, Weir MD, Melo MAS, Bai Y, Zhang K. Novel orthodontic cement containing dimethylaminohexadecyl methacrylate with strong antibacterial capability. Dent Mater J 2017; 36:669-676. [PMID: 28652555 DOI: 10.4012/dmj.2016-370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Orthodontic treatments increase the incidence of white spot lesions. The objectives of this study were to develop an antibacterial orthodontic cement to inhibit demineralization, and to evaluate its enamel shear bond strength and anti-biofilm properties. Novel antibacterial monomer dimethylaminohexadecyl methacrylate (DMAHDM) was synthesized and incorporated into Transbond XT at 0, 1.5 and 3% by mass. Anti-biofilm activity was assessed using a human dental plaque microcosm biofilm model. Shear bond strength and adhesive remnant index were also tested. Biofilm activity precipitously dropped when contacting orthodontic cement with DMAHDM. Orthodontic cement containing 3% DMAHDM significantly reduced biofilm metabolic activity and lactic acid production (p<0.05), and decreased biofilm colony-forming unit (CFU) by two log. Water-aging for 90 days had no adverse influence on enamel shear bond strength (p>0.1). By incorporating DMAHDM into Transbond XT for the first time, the modified orthodontic cement obtained a strong antibacterial capability without compromising the enamel bond strength.
Collapse
Affiliation(s)
- Xiaodong Feng
- Division of Dentistry, Beijing Tongren Hospital, Capital Medical University.,Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine.,Department of Mechanical Engineering, University of Maryland
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry
| | - Mary Anne S Melo
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University
| |
Collapse
|
39
|
Anti-Caries Effects of Dental Adhesives Containing Quaternary Ammonium Methacrylates with Different Chain Lengths. MATERIALS 2017; 10:ma10060643. [PMID: 28773004 PMCID: PMC5554024 DOI: 10.3390/ma10060643] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 02/05/2023]
Abstract
The objectives of this study were to investigate the effects of dental adhesives containing quaternary ammonium methacrylates (QAMs) with different alkyl chain lengths (CL) on ecological caries prevention in vitro. Five QAMs were synthesized with a CL = 3, 6, 9, 12, and 16 and incorporated into adhesives. Micro-tensile bond strength and surface charge density were used to measure the physical properties of the adhesives. The proportion change in three-species biofilms consisting of Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii was tested using the TaqMan real-time polymerase chain reaction. Lactic acid assay, MTT [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, exopolysaccharide staining, live/dead staining, scanning electron microscopy (SEM), and transverse microradiography (TMR) were performed to study the anti-biofilm and anti-demineralization effects of the dental adhesives. The results showed that incorporating QAMs with different alkyl chain lengths into the adhesives had no obvious effect on the dentin bond strength. The adhesives containing QAMs with a longer alkyl chain developed healthier biofilms. The surface charge density, anti-biofilm, and anti-demineralization effects of the adhesives increased with a CL of the QAMs from 3 to 12, but decreased slightly with a CL from 12 to 16. In conclusion, adhesives containing QAMs with a tailored chain length are promising for preventing secondary caries in an “ecological way”.
Collapse
|
40
|
Jiao Y, Niu LN, Ma S, Li J, Tay FR, Chen JH. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci 2017; 71:53-90. [PMID: 32287485 PMCID: PMC7111226 DOI: 10.1016/j.progpolymsci.2017.03.001] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
Microbial infections affect humans worldwide. Many quaternary ammonium compounds have been synthesized that are not only antibacterial, but also possess antifungal, antiviral and anti-matrix metalloproteinase capabilities. Incorporation of quaternary ammonium moieties into polymers represents one of the most promising strategies for preparation of antimicrobial biomaterials. Various polymerization techniques have been employed to prepare antimicrobial surfaces with quaternary ammonium functionalities; in particular, syntheses involving controlled radical polymerization techniques enable precise control over macromolecular structure, order and functionality. Although recent publications report exciting advances in the biomedical field, some of these technological developments have also been accompanied by potential toxicological and antimicrobial resistance challenges. Recent evidenced-based data on the biomedical applications of antimicrobial quaternary ammonium-containing biomaterials that are based on randomized human clinical trials, the golden standard in contemporary medicinal science, are included in the present review. This should help increase visibility, stimulate debates and spur conversations within a wider scientific community on the implications and plausibility for future developments of quaternary ammonium-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Department of Stomatology, PLA Army General Hospital, 100700, Beijing, China
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Corresponding authors.
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Corresponding authors.
| |
Collapse
|
41
|
Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7953920. [PMID: 28280743 PMCID: PMC5322454 DOI: 10.1155/2017/7953920] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/11/2017] [Indexed: 02/05/2023]
Abstract
Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans, and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.
Collapse
|
42
|
Novel Dental Adhesive with Biofilm-Regulating and Remineralization Capabilities. MATERIALS 2017; 10:ma10010026. [PMID: 28772391 PMCID: PMC5344622 DOI: 10.3390/ma10010026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/18/2016] [Accepted: 12/26/2016] [Indexed: 02/05/2023]
Abstract
The mechanical properties and anti-caries effect of a novel anti-caries adhesive containing poly (amidoamine) dendrimer (PAMAM) and dimethylaminododecyl methacrylate (DMADDM) were investigated for the first time. Microtensile bond strength and surface charge density were measured for the novel anti-caries adhesives. Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii were chosen to form three-species biofilms. Lactic acid assay, MTT (3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, exopolysaccharide staining and live/dead staining were performed to study anti-biofilm effect of the adhesive. The TaqMan realtime polymerase chain reaction was used to study the proportion change in three-species biofilms of different groups. The Scanning Electron Microscope (SEM) was used to observe the remineralization effect of PAMAM and DMADDM. The results showed that incorporating PAMAM and DMADDM into adhesive had no adverse effect on the dentin bond strength. The 1% PAMAM and 5% DMADDM adhesive group showed anti-biofilm properties and developed a healthier biofilm with a lower chance of inducing dental caries. Combination of 1% PAMAM and 5% DMADDM solution maintained remineralization capability on dentin, similar to that using 1% PAMAM alone. In conclusion, the adhesive containing PAMAM and DMADDM had strong antimicrobial properties and biological remineralization capabilities, and is promising for anti-caries clinical applications.
Collapse
|
43
|
COLLARES FM, LEITUNE VCB, FRANKEN P, PAROLLO CF, OGLIARI FA, SAMUEL SMW. Influence of addition of [2-(methacryloyloxy)ethyl]trimethylammonium chloride to an experimental adhesive. Braz Oral Res 2017; 31:e31. [DOI: 10.1590/1807-3107bor-2017.vol31.0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/06/2017] [Indexed: 11/22/2022] Open
|
44
|
Qiu W, Ren B, Dai H, Zhang L, Zhang Q, Zhou X, Li Y. Clotrimazole and econazole inhibit Streptococcus mutans biofilm and virulence in vitro. Arch Oral Biol 2016; 73:113-120. [PMID: 27764679 DOI: 10.1016/j.archoralbio.2016.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/01/2016] [Accepted: 10/11/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to determine the inhibitory effect of eight antifungal drugs on S. mutans growth, biofilm formation and virulence factors. METHODS The actions of antifungal drugs on S. mutans were determined by recovery plates and survival kinetic curves. Biofilms were observed by scanning electron microscopy and the viable cells were recovered on BHI plates, meanwhile biofilms were stained by BacLight live/dead kit to investigate the biofilm viability. Bacteria/extracellular polysaccharides staining assays were performed to determine the EPS production of S. mutans biofilms. Acidogenicity and acidurity of S. mutans were determined using pH drop and acid tolerance assays, and the expression of ldh gene was evaluated using qPCR. RESULTS We found that clotrimazole (CTR) and econazole (ECO) showed antibacterial activities on S. mutans UA159 and S. mutans clinical isolates at 12.5 and 25mg/L, respectively. CTR and ECO could also inhibit S. mutans biofilm formation and reduce the viability of preformed biofilm. CTR and ECO affected the live/dead ratio and the EPS/bacteria ratio of S. mutans biofilms. CTR and ECO also inhibited the pH drop, lactate acid production, and acid tolerance. The abilities of CTR and ECO to inhibit S. mutans ldh expression were also confirmed. CONCLUSIONS We found that two antifungal azoles, CTR and ECO, had the abilities to inhibit the growth and biofilm formation of S. mutans and more importantly, they could also inhibit the virulence factors of S. mutans.
Collapse
Affiliation(s)
- Wei Qiu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huanqin Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lixin Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
45
|
Cheng L, Zhang K, Zhou CC, Weir MD, Zhou XD, Xu HHK. One-year water-ageing of calcium phosphate composite containing nano-silver and quaternary ammonium to inhibit biofilms. Int J Oral Sci 2016; 8:172-81. [PMID: 27281037 PMCID: PMC5113087 DOI: 10.1038/ijos.2016.13] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2016] [Indexed: 11/17/2022] Open
Abstract
Dental composites are commonly used restorative materials; however, secondary caries due to biofilm acids remains a major problem. The objectives of this study were (1) to develop a composite containing quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP), and (2) to conduct the first investigation of the mechanical properties, biofilm response and acid production vs water-ageing time from 1 day to 12 months. A 4 × 5 design was utilized, with four composites (NACP-QADM composite, NACP-NAg composite, NACP-QADM-NAg composite, and a commercial control composite), and five water-ageing time periods (1 day, and 3, 6, 9, and 12 months). After each water-ageing period, the mechanical properties of the resins were measured in a three-point flexure, and antibacterial properties were tested via a dental plaque biofilm model using human saliva as an inoculum. After 12 months of water-ageing, NACP-QADM-NAg had a flexural strength and elastic modulus matching those of the commercial control (P>0.1). Incorporation of QADM or NAg into the NACP composite greatly reduced biofilm viability, metabolic activity and acid production. A composite containing both QADM and NAg possessed a stronger antibacterial capability than one with QADM or NAg alone (P<0.05). The anti-biofilm activity was maintained after 12 months of water-ageing and showed no significant decrease with increasing time (P>0.1). In conclusion, the NACP-QADM-NAg composite decreased biofilm viability and lactic acid production, while matching the load-bearing capability of a commercial composite. There was no decrease in its antibacterial properties after 1 year of water-ageing. The durable antibacterial and mechanical properties indicate that NACP-QADM-NAg composites may be useful in dental restorations to combat caries.
Collapse
Affiliation(s)
- Lei Cheng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, USA
| | - Ke Zhang
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, USA
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen-Chen Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, USA
| | - Michael D Weir
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, USA
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Hockin H K Xu
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, USA
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, USA
- Department of Mechanical Engineering, University of Maryland, Baltimore County, USA
| |
Collapse
|
46
|
Zhou W, Ren B, Zhou X, Xu HHK, Weir MD, Li M, Feng M, Li J, Xu X, Cheng L. Novel Cavity Disinfectants Containing Quaternary Ammonium Monomer Dimethylaminododecyl Methacrylate. MATERIALS 2016; 9:ma9080674. [PMID: 28773797 PMCID: PMC5510731 DOI: 10.3390/ma9080674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/31/2016] [Accepted: 08/01/2016] [Indexed: 02/05/2023]
Abstract
This study was set to assess the possible benefits of novel cavity disinfectants with 5% dimethylaminododecyl methacrylate (DMADDM); and compare the effectiveness of saliva microbial-aging method with water-aging in measuring the changing of resin-dentin bond strength. Three cavity disinfectants were tested: 0.2% Chlorhexidine (CHX); 5% DMADDM; and 5% DMADDM + 0.2% CHX. Microtensile bond strength (μTBS) test was performed after microbial-aging with saliva microbial or water aging for one month. Hydroxyproline (HYP), the production of collagen degradation, was measured spectrophotometrically. Additionally, the antibacterial effects of each reagent were evaluated. The 5% DMADDM exerted the least percentage of resin-dentin bond strength loss after one month microbial-aging (p < 0.05). There were no statistically significant differences of bond strength decrease after one month water aging among the tested groups (p > 0.05). Microbial-aging method yield more drop of bond strength than water aging in all groups except 5% DMADDM (p < 0.05). Meanwhile, 5% DMADDM had the same matrix metalloproteinases (MMPs) inhibitory effects as the other two agents (p > 0.05), but much stronger antibacterial capability than 0.2% CHX (p < 0.05). This indicated that a cavity disinfectant with 5% DMADDM is promising for improving the stability of resin-dentin bonds in appearance of saliva biofilm; and the saliva microbial-aging method is more promising for studying the durability of resin-dentin bonds than water aging.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China.
| | - Hockin H K Xu
- Biomaterials &Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Michael D Weir
- Biomaterials &Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China.
| | - Mingye Feng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China.
| | - Xin Xu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
47
|
Zhou H, Liu H, Weir MD, Reynolds MA, Zhang K, Xu HHK. Three-dimensional biofilm properties on dental bonding agent with varying quaternary ammonium charge densities. J Dent 2016; 53:73-81. [PMID: 27472954 DOI: 10.1016/j.jdent.2016.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES Tooth-restoration interfaces are the weak link with secondary caries causing restoration failure. The objectives of this study were to develop an antimicrobial bonding agent with dimethylaminododecyl methacrylate (DMAHDM), and investigate the effects of quaternary amine charge density on three-dimensional (3D) biofilms on dental resin for the first time. METHODS DMAHDM was synthesized and incorporated into Scotchbond Multi-Purpose bonding agent at mass fractions of 0% (control), 2.5%, 5%, 7.5% and 10%. Streptococcus mutans bacteria were inoculated on the polymerized resin and cultured for two days to form biofilms. Confocal laser scanning microscopy was used to measure biofilm thickness, live and dead biofilm volumes, and live bacteria percentage in 3D biofilm vs. distance from resin surface. RESULTS Charge density of the resin had a significant effect on the antibacterial efficacy (p<0.05). Biofilms on control resin had the greatest thicknesses. Biofilm thickness and live biofilm volume decreased with increasing surface charge density (p<0.05). There were significant variations in bacterial viability along the 3D biofilm thickness (p<0.05). At 2.5% and 5% DMAHDM, the bacterial inhibition was the greatest on or near the resin surface, and the killing effect decreased away from the resin surface. At 10% DMAHDM, the entire 3D biofilm was dead and the percentage of live bacteria was nearly 0% throughout the biofilm thickness. CONCLUSIONS Adding new antibacterial monomer DMAHDM into dental bonding agent yielded a strong antimicrobial activity, substantially decreasing the 3D biofilm thickness, live biofilm volume, and percentage of live bacteria on cross-sections through the biofilm thickness. SIGNIFICANCE Novel DMAHDM-containing bonding agent with capability of inhibiting 3D biofilms is promising for a wide range of dental restorative and preventive applications to inhibit biofilms at the tooth-restoration margins and prevent secondary caries.
Collapse
Affiliation(s)
- Han Zhou
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Huaibing Liu
- Restorative Business Unit, Dentsply Sirona, Milford, DE 19963, USA
| | - Michael D Weir
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mark A Reynolds
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ke Zhang
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Hockin H K Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA.
| |
Collapse
|
48
|
Li M, Huang R, Zhou X, Qiu W, Xu X, Gregory RL. Effect of nicotine on cariogenic virulence of Streptococcus mutans. Folia Microbiol (Praha) 2016; 61:505-512. [PMID: 27381088 DOI: 10.1007/s12223-016-0465-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/30/2016] [Indexed: 02/05/2023]
Abstract
Nicotine has well-documented effects on the growth and colonization of Streptococcus mutans. This study attempts to investigate the effects of nicotine on pathogenic factors of S. mutans, such as the effect on biofilm formation and viability, expression of pathogenic genes, and metabolites of S. mutans. The results demonstrated that addition of nicotine did not significantly influence the viability of S. mutans cells. The biofilms became increasingly compact as the concentrations of nicotine increased. The expression of virulence genes, such as ldh and phosphotransferase system (PTS)-associated genes, was upregulated, and nlmC was upregulated significantly, while ftf was downregulated. The lactate concentration of S. mutans grown in 1 mg/mL of nicotine was increased up to twofold over either biofilm or planktonic cells grown without nicotine. Changes in the metabolites involved in central carbon metabolism from sucrose indicated that most selected metabolites were detectable and influenced by increased concentrations of nicotine. This study demonstrated that nicotine can influence the pathogenicity of S. mutans and may lead to increased dental caries through the production of more lactate and the upregulation of virulence genes.
Collapse
Affiliation(s)
- Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd, Chengdu, Sichuan, 610041, China. .,Department of Biomedical and Applied Sciences, School of Dentistry, Indiana University, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA.
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd, Chengdu, Sichuan, 610041, China.,Department of Biomedical and Applied Sciences, School of Dentistry, Indiana University, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd, Chengdu, Sichuan, 610041, China
| | - Wei Qiu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd, Chengdu, Sichuan, 610041, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd, Chengdu, Sichuan, 610041, China
| | - Richard L Gregory
- Department of Biomedical and Applied Sciences, School of Dentistry, Indiana University, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA. .,Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
49
|
Wang SP, Ge Y, Zhou XD, Xu HHK, Weir MD, Zhang KK, Wang HH, Hannig M, Rupf S, Li Q, Cheng L. Effect of anti-biofilm glass-ionomer cement on Streptococcus mutans biofilms. Int J Oral Sci 2016; 8:76-83. [PMID: 27357319 PMCID: PMC4932770 DOI: 10.1038/ijos.2015.55] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 02/05/2023] Open
Abstract
Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes gtfB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P>0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P<0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P<0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P<0.05) and decreased lactic acid production (P<0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, gtfC and gtfD decreased when mass fractions of DMADDM increased (P<0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries.
Collapse
Affiliation(s)
- Su-Ping Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Ge
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hockin HK Xu
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, USA
| | - Michael D Weir
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, USA
| | - Ke-Ke Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao-Hao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Qian Li
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Effect of Antimicrobial Denture Base Resin on Multi-Species Biofilm Formation. Int J Mol Sci 2016; 17:ijms17071033. [PMID: 27367683 PMCID: PMC4964409 DOI: 10.3390/ijms17071033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
Our aims of the research were to study the antimicrobial effect of dimethylaminododecyl methacrylate (DMADDM) modified denture base resin on multi-species biofilms and the biocompatibility of this modified dental material. Candida albicans (C. albicans), Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), as well as Actinomyces naeslundii (A. naeslundii) were used for biofilm formation on denture base resin. Colony forming unit (CFU) counts, microbial viability staining, and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) array were used to evaluate the antimicrobial effect of DMADDM. C. albicans staining and Real-time PCR were used to analyze the morphology and expression of virulence genes of C. albicans in biofilm. Lactate dehydrogenase (LDH) array and Real-time PCR were conducted to examine the results after biofilm co-cultured with epithelial cell. Hematoxylin and eosin (HE) staining followed by histological evaluation were used to study the biocompatibility of this modified material. We found that DMADDM containing groups reduced both biomass and metabolic activity of the biofilm significantly. DMADDM can also inhibit the virulence of C. albicans by means of inhibiting the hyphal development and downregulation of two virulence related genes. DMADDM significantly reduced the cell damage caused by multi-species biofilm according to the LDH activity and reduced the expression of IL-18 gene of the cells simultaneously. The in vivo histological evaluation proved that the addition of DMADDM less than 6.6% in denture material did not increase the inflammatory response (p > 0.05). Therefore, we proposed that the novel denture base resin containing DMADDM may be considered as a new promising therapeutic system against problems caused by microbes on denture base such as denture stomatitis.
Collapse
|