1
|
Ong SG, Dehghan R, Dorajoo R, Liu JJ, Sng AA, Lee YS, Ooi DSQ. Novel Melanocortin-3 and -4 Receptor Functional Variants in Asian Children With Severe Obesity. J Clin Endocrinol Metab 2024; 109:e1249-e1259. [PMID: 37820740 DOI: 10.1210/clinem/dgad602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
CONTEXT Genetic variants in melanocortin 3 receptor (MC3R) and melanocortin 4 receptor (MC4R) genes are strongly associated with childhood obesity. OBJECTIVE This study aims to identify and functionally characterize MC3R and MC4R variants in an Asian cohort of children with severe early-onset obesity. METHODS Whole-exome sequencing was performed to screen for MC3R and MC4R coding variants in 488 Asian children with severe early-onset obesity (body mass index for age ≥97th percentile). Functionality of the identified variants were determined via measurement of intracellular cyclic adenosine monophosphate (cAMP) concentrations and luciferase activity. RESULTS Four MC3R and 2 MC4R heterozygous nonsynonymous rare variants were detected. There were 3 novel variants: MC3R c.151G > C (p.Val51Leu), MC4R c.127C > A (p.Gln43Lys), and MC4R c.272T > G (p.Met91Arg), and 3 previously reported variants: MC3R c.127G > A (p.Glu43Lys), MC3R c.97G > A (p.Ala33Thr), and MC3R c.437T > A (p.Ile146Asn). Both MC3R c.127G > A (p.Glu43Lys) and MC4R c.272T > G (p.Met91Arg) variants demonstrated defective downstream cAMP signaling activity. The MC4R c.127C > A (p.Gln43Lys) variant showed reduced cAMP signaling activity at low substrate concentration but the signaling activity was restored at high substrate concentration. The MC3R c.151G > C (p.Val51Leu) variant did not show a significant reduction in cAMP signaling activity compared to wild-type (WT) MC3R. Coexpression studies of the WT and variant MC3R/MC4R showed that the heterozygous variants did not exhibit dominant negative effect. CONCLUSION Our functional assays demonstrated that MC3R c.127G > A (p.Glu43Lys) and MC4R c.272T > G (p.Met91Arg) variants might predispose individuals to early-onset obesity, and further studies are needed to establish the causative effect of these variants in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Siong Gim Ong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Division of Paediatric Endocrinology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore 119228, Singapore
| | - Roghayeh Dehghan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
- Department of Genetics and Molecular Biology, School of Medicine, University of Medical Science, Isfahan 81746-73461, Iran
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Jian-Jun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Andrew Anjian Sng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Division of Paediatric Endocrinology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore 119228, Singapore
| | - Yung Seng Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Division of Paediatric Endocrinology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore 119228, Singapore
| | - Delicia Shu Qin Ooi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Division of Paediatric Endocrinology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
2
|
Huang L, Deng X, Yang X, Tang Z, Fan S, Zhou Z, Tao M, Liu S. Cloning, distribution, and effects of growth regulation of MC3R and MC4R in red crucian carp ( Carassius auratus red var.). Front Endocrinol (Lausanne) 2024; 14:1310000. [PMID: 38322156 PMCID: PMC10846643 DOI: 10.3389/fendo.2023.1310000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024] Open
Abstract
Background Melanocortin-3 and -4 receptors (MC3R and MC4R), G protein-coupled receptors, play vital roles in the regulation of energy homeostasis. To understand the functions of mc3r and mc4r in the energy homeostasis of red crucian carp (Carassius auratus red var., RCC), we cloned mc3r and mc4r, analyzed the tissue expression and localization of the genes, and investigated the effects of knockout of mc3r (mc3r +/-) and mc4r (mc4r +/-) in RCC. Results The full-length cDNAs of RCC mc3r and mc4r were 1459 base pairs (bp) and 1894 bp, respectively. qRT-PCR indicated that mc3r and mc4r were profusely expressed in the brain, but lower expressed in the periphery tissues. ISH revealed that mc3r and mc4r were located in NPP, NPO, NAPv, NSC, NAT, NRL, NLTl, and NLTp of the brain, suggesting that mc3r and mc4r might regulate many physiological and behavioral aspects in RCC. To further verify the roles of mc3r and mc4r in energy homeostasis, the mc3r+/- and mc4r+/- fish were obtained by the CRISPR/Cas9 system. The average body weights, total lengths, body depths, and food intake of mc4r+/- fish were significantly higher than those of mc3r+/- and the normal wild-type (WT) fish, but there was no difference between the mc3r+/- and WT fish, indicating that the RCC phenotype and food intake were mainly influenced by mc4r but not mc3r. Interestingly, mc4r+/- fish displayed more visceral fat mass than mc3r+/- and WT fish, and mc3r+/- fish also exhibited slightly more visceral fat mass compared to WT. RNA-seq of the liver and muscle revealed that a large number of differentially expressed genes (DEGs) differed in WT vs. mc3r+/-, WT vs. mc4r+/-, and mc3r+/- vs. mc4r+/-, mainly related to lipid, glucose, and energy metabolism. The KEGG enrichment analysis revealed that DEGs were mainly enriched in pathways such as steroid biosynthesis, fatty acid metabolism, fatty acid biosynthesis, glycolysis/gluconeogenesis, wnt signaling pathway, PPAR signaling pathway, and MAPK signaling pathway, thereby affecting lipid accumulation and growth. Conclusion In conclusion, these results will assist in the further investigation of the molecular mechanisms in which MC3R and MC4R were involved in the regulation of energy homeostasis in fish.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
3
|
Du YY, Yao MX, Yu HX, Mo HL, Yang QY, Yu JJ, Wang LX, Zhou JS, Li Y. Molecular cloning, tissue distribution, and pharmacologic function of melanocortin-3 receptor in common carp (Cyprinus carpio). Gen Comp Endocrinol 2023; 330:114149. [PMID: 36336108 DOI: 10.1016/j.ygcen.2022.114149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Melanocortin-3 receptor (MC3R) not only regulates energy homeostasis in animals, but also is an important regulator of inflammation. As one of the most widely farmed freshwater fish, common carp has attracted great interest for its feeding and inflammation regulation. In this study, we cloned the coding sequence (CDS) of common carp Mc3r (ccMc3r), examined its tissue expression profile, and investigated the function of this receptor in mediating downstream signaling pathways. The results showed that the CDS of ccMc3r was 975 bp, encoding a putative protein of 324 amino acids. Homology, phylogeny, and chromosomal synteny analyses revealed that ccMc3r is evolutionarily close to the orthologs of cyprinids. Quantitative real-time PCR (qPCR) indicated that ccMc3r was highly expressed in the brain and intestine. The luciferase reporter systems showed that four ligands, ACTH (1-24), α-MSH, β-MSH, and NDP-MSH, were able to activate the cAMP and MAPK/ERK signaling pathways downstream of ccMc3r with different potencies. For the cAMP signaling pathway, ACTH (1-24) had the highest activation potency; while for the MAPK/ERK signaling pathway, β-MSH had the greatest activation effect. In addition, we found that the four agonists were able to inhibit TNF-α-induced NF-κB signaling in approximately the same order of potency as cAMP signaling activation. This study may facilitate future studies on the role of Mc3r in common carp feed efficiency and immune regulation.
Collapse
Affiliation(s)
- Yu-You Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming-Xing Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui-Xia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao-Lin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qi-Yuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jia-Jia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li-Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ji-Shu Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
5
|
Wallis N, Raffan E. The Genetic Basis of Obesity and Related Metabolic Diseases in Humans and Companion Animals. Genes (Basel) 2020; 11:E1378. [PMID: 33233816 PMCID: PMC7699880 DOI: 10.3390/genes11111378] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the most prevalent health conditions in humans and companion animals globally. It is associated with premature mortality, metabolic dysfunction, and multiple health conditions across species. Obesity is, therefore, of importance in the fields of medicine and veterinary medicine. The regulation of adiposity is a homeostatic process vulnerable to disruption by a multitude of genetic and environmental factors. It is well established that the heritability of obesity is high in humans and laboratory animals, with ample evidence that the same is true in companion animals. In this review, we provide an overview of how genes link to obesity in humans, drawing on a wealth of information from laboratory animal models, and summarise the mechanisms by which obesity causes related disease. Throughout, we focus on how large-scale human studies and niche investigations of rare mutations in severely affected patients have improved our understanding of obesity biology and can inform our ability to interpret results of animal studies. For dogs, cats, and horses, we compare the similarities in obesity pathophysiology to humans and review the genetic studies that have been previously reported in those species. Finally, we discuss how veterinary genetics may learn from humans about studying precise, nuanced phenotypes and implementing large-scale studies, but also how veterinary studies may be able to look past clinical findings to mechanistic ones and demonstrate translational benefits to human research.
Collapse
Affiliation(s)
- Natalie Wallis
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Eleanor Raffan
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
6
|
Ferreira MS, Alves PC, Callahan CM, Giska I, Farelo L, Jenny H, Mills LS, Hackländer K, Good JM, Melo‐Ferreira J. Transcriptomic regulation of seasonal coat color change in hares. Ecol Evol 2020; 10:1180-1192. [PMID: 32076506 PMCID: PMC7029059 DOI: 10.1002/ece3.5956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022] Open
Abstract
Color molts from summer brown to winter white coats have evolved in several species to maintain camouflage year-round in environments with seasonal snow. Despite the eco-evolutionary relevance of this key phenological adaptation, its molecular regulation has only recently begun to be addressed. Here, we analyze skin transcription changes during the autumn molt of the mountain hare (Lepus timidus) and integrate the results with an established model of gene regulation across the spring molt of the closely related snowshoe hare (L. americanus). We quantified differences in gene expression among three stages of molt progression-"brown" (early molt), "intermediate," and "white" (late molt). We found 632 differentially expressed genes, with a major pulse of expression early in the molt, followed by a milder one in late molt. The functional makeup of differentially expressed genes anchored the sampled molt stages to the developmental timeline of the hair growth cycle, associating anagen to early molt and the transition to catagen to late molt. The progression of color change was characterized by differential expression of genes involved in pigmentation, circadian, and behavioral regulation. We found significant overlap between differentially expressed genes across the seasonal molts of mountain and snowshoe hares, particularly at molt onset, suggesting conservatism of gene regulation across species and seasons. However, some discrepancies suggest seasonal differences in melanocyte differentiation and the integration of nutritional cues. Our established regulatory model of seasonal coat color molt provides an important mechanistic context to study the functional architecture and evolution of this crucial seasonal adaptation.
Collapse
Affiliation(s)
- Mafalda S. Ferreira
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
| | - Paulo C. Alves
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
- Wildlife Biology ProgramUniversity of MontanaMissoulaMTUSA
| | | | - Iwona Giska
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
| | - Liliana Farelo
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
| | - Hannes Jenny
- Amt für Jagd und Fischerei GraubündenChurSwitzerland
| | - L. Scott Mills
- Wildlife Biology ProgramUniversity of MontanaMissoulaMTUSA
- Office of Research and Creative ScholarshipUniversity of MontanaMissoulaMTUSA
| | - Klaus Hackländer
- Institute of Wildlife Biology and Game ManagementBOKU—University of Natural Resources and Life SciencesViennaAustria
| | - Jeffrey M. Good
- Wildlife Biology ProgramUniversity of MontanaMissoulaMTUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMTUSA
| | - José Melo‐Ferreira
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
| |
Collapse
|
7
|
Saleh N, Kleinau G, Heyder N, Clark T, Hildebrand PW, Scheerer P. Binding, Thermodynamics, and Selectivity of a Non-peptide Antagonist to the Melanocortin-4 Receptor. Front Pharmacol 2018; 9:560. [PMID: 29910730 PMCID: PMC5992272 DOI: 10.3389/fphar.2018.00560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/10/2018] [Indexed: 11/22/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) is a potential drug target for treatment of obesity, anxiety, depression, and sexual dysfunction. Crystal structures for MC4R are not yet available, which has hindered successful structure-based drug design. Using microsecond-scale molecular-dynamics simulations, we have investigated selective binding of the non-peptide antagonist MCL0129 to a homology model of human MC4R (hMC4R). This approach revealed that, at the end of a multi-step binding process, MCL0129 spontaneously adopts a binding mode in which it blocks the agonistic-binding site. This binding mode was confirmed in subsequent metadynamics simulations, which gave an affinity for human hMC4R that matches the experimentally determined value. Extending our simulations of MCL0129 binding to hMC1R and hMC3R, we find that receptor subtype selectivity for hMC4R depends on few amino acids located in various structural elements of the receptor. These insights may support rational drug design targeting the melanocortin systems.
Collapse
Affiliation(s)
- Noureldin Saleh
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Berlin, Germany.,Computational Modelling and Dynamics of Molecular Complexes, Berlin, Germany
| | - Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Berlin, Germany.,Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Nicolas Heyder
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Berlin, Germany.,Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Timothy Clark
- Computer-Chemie-Centrum, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter W Hildebrand
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Berlin, Germany.,Computational Modelling and Dynamics of Molecular Complexes, Berlin, Germany.,Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Berlin, Germany.,Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| |
Collapse
|
8
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
9
|
Demidowich AP, Jun JY, Yanovski JA. Polymorphisms and mutations in the melanocortin-3 receptor and their relation to human obesity. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2468-2476. [PMID: 28363697 DOI: 10.1016/j.bbadis.2017.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Inactivating mutations in the melanocortin 3 receptor (Mc3r) have been described as causing obesity in mice, but the physiologic effects of MC3R mutations in humans have been less clear. Here we review the MC3R polymorphisms and mutations identified in humans, and the in vitro, murine, and human cohort studies examining their putative effects. Some, but not all, studies suggest that the common human MC3R variant T6K+V81I, as well as several other rare, function-altering mutations, are associated with greater adiposity and hyperleptinemia with altered energy partitioning. In vitro, the T6K+V81I variant appears to decrease MC3R expression and therefore cAMP generation in response to ligand binding. Knockin mouse studies confirm that the T6K+V81I variant increases feeding efficiency and the avidity with which adipocytes derived from bone or adipose tissue stem cells store triglycerides. Other MC3R mutations occur too infrequently in the human population to make definitive conclusions regarding their clinical effects. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Andrew P Demidowich
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Joo Yun Jun
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jack A Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
10
|
Butler AA, Girardet C, Mavrikaki M, Trevaskis JL, Macarthur H, Marks DL, Farr SA. A Life without Hunger: The Ups (and Downs) to Modulating Melanocortin-3 Receptor Signaling. Front Neurosci 2017; 11:128. [PMID: 28360832 PMCID: PMC5352694 DOI: 10.3389/fnins.2017.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
Melanocortin neurons conserve body mass in hyper- or hypo-caloric conditions by conveying signals from nutrient sensors into areas of the brain governing appetite and metabolism. In mice, melanocortin-3 receptor (MC3R) deletion alters nutrient partitioning independently of hyperphagia, promoting accumulation of fat over muscle mass. Enhanced rhythms in insulin and insulin-responsive metabolic genes during hypocaloric feeding suggest partial insulin resistance and enhanced lipogenesis. However, exactly where and how MC3Rs affect metabolic control to alter nutrient partitioning is not known. The behavioral phenotypes exhibited by MC3R-deficient mice suggest a contextual role in appetite control. The impact of MC3R-deficiency on feeding behavior when food is freely available is minor. However, homeostatic responses to hypocaloric conditioning involving increased expression of appetite-stimulating (orexigenic) neuropeptides, binge-feeding, food anticipatory activity (FAA), entrainment to nutrient availability and enhanced feeding-related motivational responses are compromised with MC3R-deficiency. Rescuing Mc3r transcription in hypothalamic and limbic neurons improves appetitive responses during hypocaloric conditioning while having minor effects on nutrient partitioning, suggesting orexigenic functions. Rescuing hypothalamic MC3Rs also restores responses of fasting-responsive hypothalamic orexigenic neurons in hypocaloric conditions, suggesting actions that sensitize fasting-responsive neurons to signals from nutrient sensors. MC3R signaling in ventromedial hypothalamic SF1(+ve) neurons improves metabolic control, but does not restore appetitive responses or nutrient partitioning. In summary, desensitization of fasting-responsive orexigenic neurons may underlie attenuated appetitive responses of MC3R-deficient mice in hypocaloric situations. Further studies are needed to identify the specific location(s) of MC3Rs controlling appetitive responses and partitioning of nutrients between fat and lean tissues.
Collapse
Affiliation(s)
- Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Clemence Girardet
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Maria Mavrikaki
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - James L Trevaskis
- In vivo Pharmacology, Cardiovascular and Metabolic Disease, Medimmune Gaithersburg, MD, USA
| | - Heather Macarthur
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health and Science University Portland, OR, USA
| | - Susan A Farr
- Department of Internal Medicine, Division of Geriatrics, Saint Louis University School of MedicineSt. Louis, MO, USA; VA Medical CenterSt. Louis, MO, USA
| |
Collapse
|
11
|
Melanocortin-3 receptors expressed in Nkx2.1(+ve) neurons are sufficient for controlling appetitive responses to hypocaloric conditioning. Sci Rep 2017; 7:44444. [PMID: 28294152 PMCID: PMC5353610 DOI: 10.1038/srep44444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/08/2017] [Indexed: 01/12/2023] Open
Abstract
Melanocortin-3 receptors (MC3R) have a contextual role in appetite control that is amplified with hypocaloric conditioning. C57BL/6J (B6) mice subjected to hypocaloric feeding schedules (HFS) exhibit compulsive behavioral responses involving food anticipatory activity (FAA) and caloric loading following food access. These homeostatic responses to calorie-poor environs are attenuated in B6 mice in which Mc3r transcription is suppressed by a lox-stop-lox sequence in the 5'UTR (Mc3rTB/TB). Here, we report that optimization of caloric loading in B6 mice subject to HFS, characterized by increased meal size and duration, is not observed in Mc3rTB/TB mice. Analysis of hypothalamic and neuroendocrine responses to HFS throughout the light-dark cycle suggests uncoupling of hypothalamic responses involving appetite-stimulating fasting-responsive hypothalamic neurons expressing agouti-related peptide (AgRP) and neuropeptide Y (Npy). Rescuing Mc3rs expression in Nkx2.1(+ve) neurons is sufficient to restore normal hypothalamic responses to negative energy balance. In addition, Mc3rs expressed in Nkx2.1(+ve) neurons are also sufficient to restore FAA and caloric loading of B6 mice subjected to HFS. In summary, MC3Rs expressed in Nkx2.1(+ve) neurons are sufficient to coordinate hypothalamic response and expression of compulsive behavioral responses involving meal anticipation and consumption of large meals during situations of prolonged negative energy balance.
Collapse
|
12
|
Mavrikaki M, Girardet C, Kern A, Faruzzi Brantley A, Miller CA, Macarthur H, Marks DL, Butler AA. Melanocortin-3 receptors in the limbic system mediate feeding-related motivational responses during weight loss. Mol Metab 2016; 5:566-579. [PMID: 27408780 PMCID: PMC4921936 DOI: 10.1016/j.molmet.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
Objective Appetitive responses to weight loss are mediated by a nutrient-sensing neural network comprised of melanocortin neurons. The role of neural melanocortin-3 receptors (MC3R) in mediating these responses is enigmatic. Mc3r knockout mice exhibit a paradoxical phenotype of obesity and reduced feeding-related behaviors in situations of nutrient scarcity. Here we examined whether MC3Rs expressed in mesolimbic neurons regulate feeding-related motivational responses. Methods Interactions between Mc3r genotype, cognitive function and energy balance on food self-administration were assessed using operant conditioning with fixed- and progressive ratio (FR1/PR1) settings. Inhibition of Mc3r transcription by a loxP-flanked transcriptional blocker (TB) in C57BL/6JN mice (Mc3rTB/TB) was reversed in mesolimbic neurons using DAT-Cre (DAT-MC3R). Results Caloric restriction (CR) caused 10–15% weight loss and increased motivation to acquire food rewards during training sessions. c-Fos-expression in the nucleus accumbens was increased 1 h following food presentation. While exhibiting weight loss, total food self-administration, enhanced motivation to self-administer food rewards in training sessions held during CR and c-Fos-activation in the nucleus accumbens following re-feeding were all markedly attenuated in Mc3rTB/TB mice. In contrast, cognitive abilities were normal in Mc3rTB/TB mice. Total food self-administration during FR1 sessions was not rescued in DAT-MC3R mice, however enhanced motivational responses to self-administer food rewards in PR1 conditions were restored. The nutrient-partitioning phenotype observed with Mc3r-deficiency was not rescued in DAT-MC3R mice. Conclusions Mesolimbic MC3Rs mediate enhanced motivational responses during CR. However, they are insufficient to restore normal caloric loading when food is presented during CR and do not affect metabolic conditions altering nutrient partitioning. Food-related motivational responses in mice increase with caloric restriction (CR). Melanocortin-3 receptors (MC3R) are required for food-related motivational responses. MC3Rs role in food-related motivational responses depends on metabolic condition. Mesolimbic MC3Rs increase food-related motivational responses during CR.
Collapse
Affiliation(s)
- Maria Mavrikaki
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Clemence Girardet
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Andras Kern
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alicia Faruzzi Brantley
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Behavioral Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Courtney A Miller
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Heather Macarthur
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrew A Butler
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
13
|
Girardet C, Burris TP, Butler AA. SIRT1 in the Ventromedial Hypothalamus: A Nutrient Sensor Input Into the Internal Timekeeper. Endocrinology 2015; 156:1936-8. [PMID: 25978598 PMCID: PMC4430617 DOI: 10.1210/en.2015-1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Clemence Girardet
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | | | | |
Collapse
|