1
|
Dyall-Smith M, Pfeiffer F. Global Distribution and Diversity of Haloarchaeal pL6-Family Plasmids. Genes (Basel) 2024; 15:1123. [PMID: 39336713 PMCID: PMC11431627 DOI: 10.3390/genes15091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Australian isolates of Haloquadratum walsbyi, a square-shaped haloarchaeon, often harbor small cryptic plasmids of the pL6-family, approximately 6 kb in size, and five examples have been previously described. These plasmids exhibit a highly conserved gene arrangement and encode replicases similar to those of betapleolipoviruses. To assess their global distribution and recover more examples for analysis, fifteen additional plasmids were reconstructed from the metagenomes of seven hypersaline sites across four countries: Argentina, Australia, Puerto Rico, and Spain. Including the five previously described plasmids, the average plasmid size is 6002 bp, with an average G+C content of 52.5%. The tetramers GGCC and CTAG are either absent or significantly under-represented, except in the two plasmids with the highest %G+C. All plasmids share a similar arrangement of genes organized as outwardly facing replication and ATPase modules, but variations were observed in some core genes, such as F2, and some plasmids had acquired accessory genes. Two plasmids, pCOLO-c1 and pISLA-c6, shared 92.7% nt identity despite originating from Argentina and Spain, respectively. Numerous metagenomic CRISPR spacers matched sequences in the fifteen reconstructed plasmids, indicating frequent invasion of haloarchaea. Spacers could be assigned to haloarchaeal genera by mapping their associated direct repeats (DR), with half of these matching Haloquadratum. Finally, strand-specific metatranscriptome (RNA-seq) data could be used to demonstrate the active transcription of two pL6-family plasmids, including antisense transcripts.
Collapse
Affiliation(s)
- Mike Dyall-Smith
- Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia;
- Computational Systems Biochemistry, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Friedhelm Pfeiffer
- Computational Systems Biochemistry, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
2
|
Liébana R, Viver T, Ramos-Barbero MD, Bustos-Caparros E, Urdiain M, López C, Amoozegar MA, Antón J, Rossello-Mora R. Extremely halophilic brine community manipulation shows higher robustness of microbiomes inhabiting human-driven solar saltern than naturally driven lake. mSystems 2024; 9:e0053824. [PMID: 38934645 PMCID: PMC11324034 DOI: 10.1128/msystems.00538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Hypersaline ecosystems display taxonomically similar assemblages with low diversities and highly dense accompanying viromes. The ecological implications of viral infection on natural microbial populations remain poorly understood, especially at finer scales of diversity. Here, we sought to investigate the influence of changes in environmental physicochemical conditions and viral predation pressure by autochthonous and allochthonous viruses on host dynamics. For this purpose, we transplanted two microbiomes coming from distant hypersaline systems (solar salterns of Es Trenc in Spain and the thalassohaline lake of Aran-Bidgol lake in Iran), by exchanging the cellular fractions with the sterile-filtered accompanying brines with and without the free extracellular virus fraction. The midterm exposure (1 month) of the microbiomes to the new conditions showed that at the supraspecific taxonomic range, the assemblies from the solar saltern brine more strongly resisted the environmental changes and viral predation than that of the lake. The metagenome-assembled genomes (MAGs) analysis revealed an intraspecific transition at the ecotype level, mainly driven by changes in viral predation pressure, by both autochthonous and allochthonous viruses. IMPORTANCE Viruses greatly influence succession and diversification of their hosts, yet the effects of viral infection on the ecological dynamics of natural microbial populations remain poorly understood, especially at finer scales of diversity. By manipulating the viral predation pressure by autochthonous and allochthonous viruses, we uncovered potential phage-host interaction, and their important role in structuring the prokaryote community at an ecotype level.
Collapse
Affiliation(s)
- Raquel Liébana
- Marine Microbiology
Group, Department of Animal and Microbial Biodiversity, Mediterranean
Institute for Advanced Studies (IMEDEA,
UIB-CSIC), Esporles,
Spain
| | - Tomeu Viver
- Marine Microbiology
Group, Department of Animal and Microbial Biodiversity, Mediterranean
Institute for Advanced Studies (IMEDEA,
UIB-CSIC), Esporles,
Spain
- Department of
Molecular Ecology, Max Planck Institute for Marine
Microbiology, Bremen,
Germany
| | - María Dolores Ramos-Barbero
- Department of
Physiology, Genetics and Microbiology, University of
Alicante, Alicante,
Spain
- Department of
Genetics, Microbiology and Statistics, University of
Barcelona, Barcelona,
Spain
| | - Esteban Bustos-Caparros
- Marine Microbiology
Group, Department of Animal and Microbial Biodiversity, Mediterranean
Institute for Advanced Studies (IMEDEA,
UIB-CSIC), Esporles,
Spain
| | - Mercedes Urdiain
- Marine Microbiology
Group, Department of Animal and Microbial Biodiversity, Mediterranean
Institute for Advanced Studies (IMEDEA,
UIB-CSIC), Esporles,
Spain
| | - Cristina López
- Department of
Physiology, Genetics and Microbiology, University of
Alicante, Alicante,
Spain
| | - Mohammad Ali Amoozegar
- Extremophiles
Laboratory, Department of Microbiology, School of Biology and Center of
Excellence in Phylogeny of Living Organisms, College of Science,
University of Tehran,
Tehran, Iran
| | - Josefa Antón
- Department of
Physiology, Genetics and Microbiology, University of
Alicante, Alicante,
Spain
| | - Ramon Rossello-Mora
- Marine Microbiology
Group, Department of Animal and Microbial Biodiversity, Mediterranean
Institute for Advanced Studies (IMEDEA,
UIB-CSIC), Esporles,
Spain
| |
Collapse
|
3
|
Layoun P, López-Pérez M, Haro-Moreno JM, Haber M, Thrash JC, Henson MW, Kavagutti VS, Ghai R, Salcher MM. Flexible genomic island conservation across freshwater and marine Methylophilaceae. THE ISME JOURNAL 2024; 18:wrad036. [PMID: 38365254 PMCID: PMC10872708 DOI: 10.1093/ismejo/wrad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
The evolutionary trajectory of Methylophilaceae includes habitat transitions from freshwater sediments to freshwater and marine pelagial that resulted in genome reduction (genome-streamlining) of the pelagic taxa. However, the extent of genetic similarities in the genomic structure and microdiversity of the two genome-streamlined pelagic lineages (freshwater "Ca. Methylopumilus" and the marine OM43 lineage) has so far never been compared. Here, we analyzed complete genomes of 91 "Ca. Methylopumilus" strains isolated from 14 lakes in Central Europe and 12 coastal marine OM43 strains. The two lineages showed a remarkable niche differentiation with clear species-specific differences in habitat preference and seasonal distribution. On the other hand, we observed a synteny preservation in their genomes by having similar locations and types of flexible genomic islands (fGIs). Three main fGIs were identified: a replacement fGI acting as phage defense, an additive fGI harboring metabolic and resistance-related functions, and a tycheposon containing nitrogen-, thiamine-, and heme-related functions. The fGIs differed in relative abundances in metagenomic datasets suggesting different levels of variability ranging from strain-specific to population-level adaptations. Moreover, variations in one gene seemed to be responsible for different growth at low substrate concentrations and a potential biogeographic separation within one species. Our study provides a first insight into genomic microdiversity of closely related taxa within the family Methylophilaceae and revealed remarkably similar dynamics involving mobile genetic elements and recombination between freshwater and marine family members.
Collapse
Affiliation(s)
- Paul Layoun
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain
| | - Markus Haber
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael W Henson
- Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Vinicius Silva Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
4
|
Rosselli R, López-Pérez M, Martin-Cuadrado AB, Rodriguez-Valera F, Bolhuis H. Differences in gene expression patterns between cultured and natural Haloquadratum walsbyi ecotypes. Front Microbiol 2022; 13:1044446. [PMID: 36439805 PMCID: PMC9684190 DOI: 10.3389/fmicb.2022.1044446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/25/2022] [Indexed: 09/11/2024] Open
Abstract
Solar crystallizer ponds are characterized by high population density with a relatively simple community structure in terms of species composition. The microbial community in the solar saltern of Santa Pola (Alicante, Spain), is largely dominated by the hyperhalophilic square archaeon Haloquadratum walsbyi. Here we studied metatranscriptomes retrieved from a crystallizer pond during the winter of 2012 and summer of 2014 and compared Hqr. walsbyi's transcription patterns with that of the cultured strain Hqr. walsbyi HBSQ001. Significant differences were found between natural and the cultured grown strain in the distribution of transcript levels per gene. This likely reflects the adaptation of the cultured strain to the relative homogeneous growth conditions while the natural species, which is represented by multiple ecotypes, is adapted to heterogeneous environmental conditions and challenges of nutrient competition, viral attack, and other stressors. An important consequence of this study is that expression patterns obtained under artificial cultivation conditions cannot be directly extrapolated to gene expression under natural conditions. Moreover, we found 195 significantly differential expressed genes between the seasons, with 140 genes being higher expressed in winter and mainly encode proteins involved in energy and carbon source acquiring processes, and in stress responses.
Collapse
Affiliation(s)
- Riccardo Rosselli
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Hoorn, Netherlands
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- LABAQUA S.A., Research & Development Department, Las Atalayas, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Francisco Rodriguez-Valera
- LABAQUA S.A., Research & Development Department, Las Atalayas, Alicante, Spain
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Hoorn, Netherlands
| |
Collapse
|
5
|
Aldeguer-Riquelme B, Ramos-Barbero MD, Santos F, Antón J. Environmental dissolved DNA harbours meaningful biological information on microbial community structure. Environ Microbiol 2021; 23:2669-2682. [PMID: 33817941 DOI: 10.1111/1462-2920.15510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/03/2021] [Indexed: 01/21/2023]
Abstract
Extracellular DNA (eDNA) comprises all the DNA molecules outside cells. This component of microbial ecosystems may serve as a source of nutrients and genetic information. Hypersaline environments harbour one of the highest concentrations of eDNA reported for natural systems, which has been attributed to the physicochemical preservative effect of salts and to high viral abundance. Here, we compared centrifugation and filtration protocols for the extraction of dissolved DNA (dDNA, as opposed to eDNA that also includes DNA from free viral particles) from a solar saltern crystallizer pond (CR30) water sample. The crystallizer dDNA fraction has been characterized, for the first time, and compared with cellular and viral metagenomes from the same location. High-speed centrifugation affected CR30 dDNA concentration and composition due to cell lysis, highlighting that protocol optimization should be the first step in dDNA studies. Crystallizer dDNA, which accounted for lower concentrations than those previously reported for hypersaline anoxic sediments, had a mixed viral and cellular origin, was enriched in archaeal DNA and had a distinctive taxonomic composition compared to that from the cellular assemblage of the same sample. Bioinformatic analyses indicated that nanohaloarchaeal viruses could be a cause for these differences.
Collapse
Affiliation(s)
- Borja Aldeguer-Riquelme
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, 03080, Spain
| | | | - Fernando Santos
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, 03080, Spain
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, 03080, Spain.,Multidisciplinary Institute of Environmental Studies Ramón Margalef, University of Alicante, Alicante, 03080, Spain
| |
Collapse
|
6
|
Viver T, Conrad RE, Orellana LH, Urdiain M, González-Pastor JE, Hatt JK, Amann R, Antón J, Konstantinidis KT, Rosselló-Móra R. Distinct ecotypes within a natural haloarchaeal population enable adaptation to changing environmental conditions without causing population sweeps. THE ISME JOURNAL 2021; 15:1178-1191. [PMID: 33342997 PMCID: PMC8182817 DOI: 10.1038/s41396-020-00842-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Microbial communities thriving in hypersaline brines of solar salterns are highly resistant and resilient to environmental changes, and salinity is a major factor that deterministically influences community structure. Here, we demonstrate that this resilience occurs even after rapid osmotic shocks caused by a threefold change in salinity (a reduction from 34 to 12% salts) leading to massive amounts of archaeal cell lysis. Specifically, our temporal metagenomic datasets identified two co-occurring ecotypes within the most dominant archaeal population of the brines Haloquadratum walsbyi that exhibited different salt concentration preferences. The dominant ecotype was generally more abundant and occurred in high-salt conditions (34%); the low abundance ecotype always co-occurred but was enriched at salinities around 20% or lower and carried unique gene content related to solute transport and gene regulation. Despite their apparent distinct ecological preferences, the ecotypes did not outcompete each other presumably due to weak functional differentiation between them. Further, the osmotic shock selected for a temporal increase in taxonomic and functional diversity at both the Hqr. walsbyi population and whole-community levels supporting the specialization-disturbance hypothesis, that is, the expectation that disturbance favors generalists. Altogether, our results provide new insights into how intraspecies diversity is maintained in light of substantial gene-content differences and major environmental perturbations.
Collapse
Affiliation(s)
- Tomeu Viver
- grid.466857.e0000 0000 8518 7126Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Roth E. Conrad
- grid.213917.f0000 0001 2097 4943School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Luis H. Orellana
- grid.419529.20000 0004 0491 3210Department of Molecular Ecology, Max-Planck-Institut für Marine Mikrobiologie, Bremen, D-28359 Germany
| | - Mercedes Urdiain
- grid.466857.e0000 0000 8518 7126Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - José E. González-Pastor
- grid.462011.00000 0001 2199 0769Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología, Consejo Superior de Investigaciones Científicas—Instituto Nacional de Técnica Aeroespacial, Madrid, Spain
| | - Janet K. Hatt
- grid.213917.f0000 0001 2097 4943School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Rudolf Amann
- grid.419529.20000 0004 0491 3210Department of Molecular Ecology, Max-Planck-Institut für Marine Mikrobiologie, Bremen, D-28359 Germany
| | - Josefa Antón
- grid.5268.90000 0001 2168 1800Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Konstantinos T. Konstantinidis
- grid.213917.f0000 0001 2097 4943School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Ramon Rosselló-Móra
- grid.466857.e0000 0000 8518 7126Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| |
Collapse
|
7
|
Sivabalasarma S, Wetzel H, Nußbaum P, van der Does C, Beeby M, Albers SV. Analysis of Cell-Cell Bridges in Haloferax volcanii Using Electron Cryo-Tomography Reveal a Continuous Cytoplasm and S-Layer. Front Microbiol 2021; 11:612239. [PMID: 33519769 PMCID: PMC7838353 DOI: 10.3389/fmicb.2020.612239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/11/2020] [Indexed: 01/28/2023] Open
Abstract
Halophilic archaea have been proposed to exchange DNA and proteins using a fusion-based mating mechanism. Scanning electron microscopy previously suggested that mating involves an intermediate state, where cells are connected by an intercellular bridge. To better understand this process, we used electron cryo-tomography (cryoET) and fluorescence microscopy to visualize cells forming these intercellular bridges. CryoET showed that the observed bridges were enveloped by an surface layer (S-layer) and connected mating cells via a continuous cytoplasm. Macromolecular complexes like ribosomes and unknown thin filamentous helical structures were visualized in the cytoplasm inside the bridges, demonstrating that these bridges can facilitate exchange of cellular components. We followed formation of a cell–cell bridge by fluorescence time-lapse microscopy between cells at a distance of 1.5 μm. These results shed light on the process of haloarchaeal mating and highlight further mechanistic questions.
Collapse
Affiliation(s)
- Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Hanna Wetzel
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Phillip Nußbaum
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Moulana A, Anderson RE, Fortunato CS, Huber JA. Selection Is a Significant Driver of Gene Gain and Loss in the Pangenome of the Bacterial Genus Sulfurovum in Geographically Distinct Deep-Sea Hydrothermal Vents. mSystems 2020; 5:e00673-19. [PMID: 32291353 PMCID: PMC7159903 DOI: 10.1128/msystems.00673-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Microbial genomes have highly variable gene content, and the evolutionary history of microbial populations is shaped by gene gain and loss mediated by horizontal gene transfer and selection. To evaluate the influence of selection on gene content variation in hydrothermal vent microbial populations, we examined 22 metagenome-assembled genomes (MAGs) (70 to 97% complete) from the ubiquitous vent Epsilonbacteraeota genus Sulfurovum that were recovered from two deep-sea hydrothermal vent regions, Axial Seamount in the northeastern Pacific Ocean (13 MAGs) and the Mid-Cayman Rise in the Caribbean Sea (9 MAGs). Genes involved in housekeeping functions were highly conserved across Sulfurovum lineages. However, genes involved in environment-specific functions, and in particular phosphate regulation, were found mostly in Sulfurovum genomes from the Mid-Cayman Rise in the low-phosphate Atlantic Ocean environment, suggesting that nutrient limitation is an important selective pressure for these bacteria. Furthermore, genes that were rare within the pangenome were more likely to undergo positive selection than genes that were highly conserved in the pangenome, and they also appeared to have experienced gene-specific sweeps. Our results suggest that selection is a significant driver of gene gain and loss for dominant microbial lineages in hydrothermal vents and highlight the importance of factors like nutrient limitation in driving microbial adaptation and evolution.IMPORTANCE Microbes can alter their gene content through the gain and loss of genes. However, there is some debate as to whether natural selection or neutral processes play a stronger role in molding the gene content of microbial genomes. In this study, we examined variation in gene content for the Epsilonbacteraeota genus Sulfurovum from deep-sea hydrothermal vents, which are dynamic habitats known for extensive horizontal gene transfer within microbial populations. Our results show that natural selection is a strong driver of Sulfurovum gene content and that nutrient limitation in particular has shaped the Sulfurovum genome, leading to differences in gene content between ocean basins. Our results also suggest that recently acquired genes undergo stronger selection than genes that were acquired in the more distant past. Overall, our results highlight the importance of natural selection in driving the evolution of microbial populations in these dynamic habitats.
Collapse
Affiliation(s)
- Alief Moulana
- Biology Department, Carleton College, Northfield, Minnesota, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, Minnesota, USA
| | | | - Julie A Huber
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
9
|
Mizuno CM, Prajapati B, Lucas‐Staat S, Sime‐Ngando T, Forterre P, Bamford DH, Prangishvili D, Krupovic M, Oksanen HM. Novel haloarchaeal viruses from Lake Retba infecting
Haloferax
and
Halorubrum
species. Environ Microbiol 2019; 21:2129-2147. [DOI: 10.1111/1462-2920.14604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Carolina M. Mizuno
- Unité Biologie Moléculaire du Gène chez les ExtrêmophilesInstitut Pasteur, 25 rue du Docteur Roux 75015, Paris France
| | - Bina Prajapati
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of Helsinki Finland
| | - Soizick Lucas‐Staat
- Unité Biologie Moléculaire du Gène chez les ExtrêmophilesInstitut Pasteur, 25 rue du Docteur Roux 75015, Paris France
| | - Telesphore Sime‐Ngando
- CNRS UMR 6023, Université Clermont‐AuvergneLaboratoire "Microorganismes: Génome et Environnement" (LMGE) F‐63000, Clermont‐Ferrand France
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les ExtrêmophilesInstitut Pasteur, 25 rue du Docteur Roux 75015, Paris France
| | - Dennis H. Bamford
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of Helsinki Finland
| | - David Prangishvili
- Unité Biologie Moléculaire du Gène chez les ExtrêmophilesInstitut Pasteur, 25 rue du Docteur Roux 75015, Paris France
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les ExtrêmophilesInstitut Pasteur, 25 rue du Docteur Roux 75015, Paris France
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of Helsinki Finland
| |
Collapse
|
10
|
Uritskiy G, DiRuggiero J. Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome. Genes (Basel) 2019; 10:genes10030220. [PMID: 30875864 PMCID: PMC6471235 DOI: 10.3390/genes10030220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
In the past decades, the study of microbial life through shotgun metagenomic sequencing has rapidly expanded our understanding of environmental, synthetic, and clinical microbial communities. Here, we review how shotgun metagenomics has affected the field of halophilic microbial ecology, including functional potential reconstruction, virus–host interactions, pathway selection, strain dispersal, and novel genome discoveries. However, there still remain pitfalls and limitations from conventional metagenomic analysis being applied to halophilic microbial communities. Deconvolution of halophilic metagenomes has been difficult due to the high G + C content of these microbiomes and their high intraspecific diversity, which has made both metagenomic assembly and binning a challenge. Halophiles are also underrepresented in public genome databases, which in turn slows progress. With this in mind, this review proposes experimental and analytical strategies to overcome the challenges specific to the halophilic microbiome, from experimental designs to data acquisition and the computational analysis of metagenomic sequences. Finally, we speculate about the potential applications of other next-generation sequencing technologies in halophilic communities. RNA sequencing, long-read technologies, and chromosome conformation assays, not initially intended for microbiomes, are becoming available in the study of microbial communities. Together with recent analytical advancements, these new methods and technologies have the potential to rapidly advance the field of halophile research.
Collapse
Affiliation(s)
- Gherman Uritskiy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
11
|
Abstract
Microbial populations exchange genetic material through a process called homologous recombination. Although this process has been studied in particular organisms, we lack an understanding of its differential impact over the genome and across microbes with different life-styles. We used a common analytical framework to assess this process in a representative set of microorganisms. Our results uncovered important trends. First, microbes with different lifestyles are differentially impacted, with endosymbionts and obligate pathogens being those less prone to undergo this process. Second, certain genetic elements such as restriction-modification systems seem to be associated with higher rates of recombination. Most importantly, recombined genomes show the footprints of natural selection in which recombined regions preferentially contain genes that can be related to specific ecological adaptations. Taken together, our results clarify the relative contributions of factors modulating homologous recombination and show evidence for a clear a role of this process in shaping microbial genomes and driving ecological adaptations. Homologous recombination (HR) enables the exchange of genetic material between and within species. Recent studies suggest that this process plays a major role in the microevolution of microbial genomes, contributing to core genome homogenization and to the maintenance of cohesive population structures. However, we still have a very poor understanding of the possible adaptive roles of intraspecific HR and of the factors that determine its differential impact across clades and lifestyles. Here we used a unified methodological framework to assess HR in 338 complete genomes from 54 phylogenetically diverse and representative prokaryotic species, encompassing different lifestyles and a broad phylogenetic distribution. Our results indicate that lifestyle and presence of restriction-modification (RM) machineries are among the main factors shaping HR patterns, with symbionts and intracellular pathogens having the lowest HR levels. Similarly, the size of exchanged genomic fragments correlated with the presence of RM and competence machineries. Finally, genes exchanged by HR showed functional enrichments which could be related to adaptations to different environments and ecological strategies. Taken together, our results clarify the factors underlying HR impact and suggest important adaptive roles of genes exchanged through this mechanism. Our results also revealed that the extent of genetic exchange correlated with lifestyle and some genomic features. Moreover, the genes in exchanged regions were enriched for functions that reflected specific adaptations, supporting identification of HR as one of the main evolutionary mechanisms shaping prokaryotic core genomes.
Collapse
|
12
|
Ramos-Barbero MD, Martin-Cuadrado AB, Viver T, Santos F, Martinez-Garcia M, Antón J. Recovering microbial genomes from metagenomes in hypersaline environments: The Good, the Bad and the Ugly. Syst Appl Microbiol 2018; 42:30-40. [PMID: 30528276 DOI: 10.1016/j.syapm.2018.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Current metagenomic tools allow the recovery of microbial genomes directly from the environment. This can be accomplished by binning metagenomic contigs according to their coverage and tetranucleotide frequency, followed by an estimation of the bin quality. The public availability of bioinformatics tools, together with the decreasing cost of next generation sequencing, are democratizing this powerful approach that is spreading from specialized research groups to the general public. Using metagenomes from hypersaline environments, as well as mock metagenomes composed of Archaea and Bacteria frequently found in these systems, we have analyzed the advantages and difficulties of the binning process in these extreme environments to tackle microbial population diversity. These extreme systems harbor relatively low species diversity but high intraspecific diversity, which can compromise metagenome assembly and therefore the whole binning process. The main goal is to compare the output of the binning process with what is previously known from the analyzed samples, based on years of study using different approaches. Several scenarios have been analyzed in detail: (i) a good quality bin from a species highly abundant in the environment; (ii) an intermediate quality bin with incongruences that can be solved by further analyses and manual curation, and (iii) a low-quality bin to investigate the failure to recover a very abundant microbial genome as well as some possible solutions. The latter can be considered the "great metagenomics anomaly" and is mainly due to assembly problems derived from the microdiversity of naturally co-existing populations in nature.
Collapse
Affiliation(s)
| | - Ana-B Martin-Cuadrado
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Tomeu Viver
- Department of Animal and Microbial Biodiversity, Marine Microbiology Group, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute of Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain.
| |
Collapse
|
13
|
González-Torres P, Gabaldón T. Genome Variation in the Model Halophilic Bacterium Salinibacter ruber. Front Microbiol 2018; 9:1499. [PMID: 30072959 PMCID: PMC6060240 DOI: 10.3389/fmicb.2018.01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023] Open
Abstract
The halophilic bacterium Salinibacter ruber is an abundant and ecologically important member of halophilic communities worldwide. Given its broad distribution and high intraspecific genetic diversity, S. ruber is considered one of the main models for ecological and evolutionary studies of bacterial adaptation to hypersaline environments. However, current insights on the genomic diversity of this species is limited to the comparison of the genomes of two co-isolated strains. Here, we present a comparative genomic analysis of eight S. ruber strains isolated at two different time points in each of two different Mediterranean solar salterns. Our results show an open pangenome with contrasting evolutionary patterns in the core and accessory genomes. We found that the core genome is shaped by extensive homologous recombination (HR), which results in limited sequence variation within population clusters. In contrast, the accessory genome is modulated by horizontal gene transfer (HGT), with genomic islands and plasmids acting as gateways to the rest of the genome. In addition, both types of genetic exchange are modulated by restriction and modification (RM) or CRISPR-Cas systems. Finally, genes differentially impacted by such processes reveal functional processes potentially relevant for environmental interactions and adaptation to extremophilic conditions. Altogether, our results support scenarios that conciliate “Neutral” and “Constant Diversity” models of bacterial evolution.
Collapse
Affiliation(s)
- Pedro González-Torres
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
14
|
Tschitschko B, Erdmann S, DeMaere MZ, Roux S, Panwar P, Allen MA, Williams TJ, Brazendale S, Hancock AM, Eloe-Fadrosh EA, Cavicchioli R. Genomic variation and biogeography of Antarctic haloarchaea. MICROBIOME 2018; 6:113. [PMID: 29925429 PMCID: PMC6011602 DOI: 10.1186/s40168-018-0495-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/06/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND The genomes of halophilic archaea (haloarchaea) often comprise multiple replicons. Genomic variation in haloarchaea has been linked to viral infection pressure and, in the case of Antarctic communities, can be caused by intergenera gene exchange. To expand understanding of genome variation and biogeography of Antarctic haloarchaea, here we assessed genomic variation between two strains of Halorubrum lacusprofundi that were isolated from Antarctic hypersaline lakes from different regions (Vestfold Hills and Rauer Islands). To assess variation in haloarchaeal populations, including the presence of genomic islands, metagenomes from six hypersaline Antarctic lakes were characterised. RESULTS The sequence of the largest replicon of each Hrr. lacusprofundi strain (primary replicon) was highly conserved, while each of the strains' two smaller replicons (secondary replicons) were highly variable. Intergenera gene exchange was identified, including the sharing of a type I-B CRISPR system. Evaluation of infectivity of an Antarctic halovirus provided experimental evidence for the differential susceptibility of the strains, bolstering inferences that strain variation is important for modulating interactions with viruses. A relationship was found between genomic structuring and the location of variation within replicons and genomic islands, demonstrating that the way in which haloarchaea accommodate genomic variability relates to replicon structuring. Metagenome read and contig mapping and clustering and scaling analyses demonstrated biogeographical patterning of variation consistent with environment and distance effects. The metagenome data also demonstrated that specific haloarchaeal species dominated the hypersaline systems indicating they are endemic to Antarctica. CONCLUSION The study describes how genomic variation manifests in Antarctic-lake haloarchaeal communities and provides the basis for future assessments of Antarctic regional and global biogeography of haloarchaea.
Collapse
Affiliation(s)
- Bernhard Tschitschko
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Present Address: Climate Change Cluster, Department of Environmental Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Susanne Erdmann
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Matthew Z DeMaere
- i3 Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Simon Roux
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Pratibha Panwar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- , Present Address: 476 Lancaster Rd, Pegarah, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Present Address: University of Tasmania Institute of Marine and Antarctic Studies, Antarctic Gateway Partnership and Antarctic Climate and Ecosystem Research Centre, Battery Point, Tasmania, Australia
| | | | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
15
|
Anderson RE, Kouris A, Seward CH, Campbell KM, Whitaker RJ. Structured Populations of Sulfolobus acidocaldarius with Susceptibility to Mobile Genetic Elements. Genome Biol Evol 2018. [PMID: 28633403 PMCID: PMC5554439 DOI: 10.1093/gbe/evx104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The impact of a structured environment on genome evolution can be determined through comparative population genomics of species that live in the same habitat. Recent work comparing three genome sequences of Sulfolobus acidocaldarius suggested that highly structured, extreme, hot spring environments do not limit dispersal of this thermoacidophile, in contrast to other co-occurring Sulfolobus species. Instead, a high level of conservation among these three S. acidocaldarius genomes was hypothesized to result from rapid, global-scale dispersal promoted by low susceptibility to viruses that sets S. acidocaldarius apart from its sister Sulfolobus species. To test this hypothesis, we conducted a comparative analysis of 47 genomes of S. acidocaldarius from spatial and temporal sampling of two hot springs in Yellowstone National Park. While we confirm the low diversity in the core genome, we observe differentiation among S. acidocaldarius populations, likely resulting from low migration among hot spring “islands” in Yellowstone National Park. Patterns of genomic variation indicate that differing geological contexts result in the elimination or preservation of diversity among differentiated populations. We observe multiple deletions associated with a large genomic island rich in glycosyltransferases, differential integrations of the Sulfolobus turreted icosahedral virus, as well as two different plasmid elements. These data demonstrate that neither rapid dispersal nor lack of mobile genetic elements result in low diversity in the S. acidocaldarius genomes. We suggest instead that significant differences in the recent evolutionary history, or the intrinsic evolutionary rates, of sister Sulfolobus species result in the relatively low diversity of the S. acidocaldarius genome.
Collapse
Affiliation(s)
- Rika E Anderson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign.,Biology Department, Carleton College, Northfield, Minnesota
| | - Angela Kouris
- Energy, Bioengineering and Geomicrobiology Group, University of Calgary, Alberta, Canada
| | - Christopher H Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| | - Kate M Campbell
- U.S. Geological Survey National Research Program, Boulder, Colorado
| | - Rachel J Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign.,Department of Microbiology, University of Illinois at Urbana-Champaign
| |
Collapse
|
16
|
Shalev Y, Soucy SM, Papke RT, Gogarten JP, Eichler J, Gophna U. Comparative Analysis of Surface Layer Glycoproteins and Genes Involved in Protein Glycosylation in the Genus Haloferax. Genes (Basel) 2018; 9:genes9030172. [PMID: 29558455 PMCID: PMC5867893 DOI: 10.3390/genes9030172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/01/2018] [Accepted: 03/09/2018] [Indexed: 11/16/2022] Open
Abstract
Within the Haloferax genus, both the surface (S)-layer protein, and the glycans that can decorate it, vary between species, which can potentially result in many different surface types, analogous to bacterial serotypes. This variation may mediate phenotypes, such as sensitivity to different viruses and mating preferences. Here, we describe S-layer glycoproteins found in multiple Haloferax strains and perform comparative genomics analyses of major and alternative glycosylation clusters of isolates from two coastal sites. We analyze the phylogeny of individual glycosylation genes and demonstrate that while the major glycosylation cluster tends to be conserved among closely related strains, the alternative cluster is highly variable. Thus, geographically- and genetically-related strains may exhibit diverse surface structures to such an extent that no two isolates present an identical surface profile.
Collapse
Affiliation(s)
- Yarden Shalev
- School of Molecular and Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Shannon M Soucy
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - J Peter Gogarten
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 8410501, Israel.
| | - Uri Gophna
- School of Molecular and Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
17
|
Anderson RE, Reveillaud J, Reddington E, Delmont TO, Eren AM, McDermott JM, Seewald JS, Huber JA. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat Commun 2017; 8:1114. [PMID: 29066755 PMCID: PMC5655027 DOI: 10.1038/s41467-017-01228-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/30/2017] [Indexed: 02/01/2023] Open
Abstract
Little is known about evolutionary drivers of microbial populations in the warm subseafloor of deep-sea hydrothermal vents. Here we reconstruct 73 metagenome-assembled genomes (MAGs) from two geochemically distinct vent fields in the Mid-Cayman Rise to investigate patterns of genomic variation within subseafloor populations. Low-abundance populations with high intra-population diversity coexist alongside high-abundance populations with low genomic diversity, with taxonomic differences in patterns of genomic variation between the mafic Piccard and ultramafic Von Damm vent fields. Populations from Piccard are significantly enriched in nonsynonymous mutations, suggesting stronger purifying selection in Von Damm relative to Piccard. Comparison of nine Sulfurovum MAGs reveals two high-coverage, low-diversity MAGs from Piccard enriched in unique genes related to the cellular membrane, suggesting these populations were subject to distinct evolutionary pressures that may correlate with genes related to nutrient uptake, biofilm formation, or viral invasion. These results are consistent with distinct evolutionary histories between geochemically different vent fields, with implications for understanding evolutionary processes in subseafloor microbial populations.
Collapse
Affiliation(s)
- Rika E Anderson
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Department of Biology, Carleton College, Northfield, MN, 55057, USA.
| | - Julie Reveillaud
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Cirad UMR 117, Inra UMR 1309 ASTRE, Cirad Campus International de Baillarguet, Montpellier, France
| | - Emily Reddington
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Great Pond Foundation, Edgartown, MA, 02539, USA
| | - Tom O Delmont
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jill M McDermott
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| | - Jeff S Seewald
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Julie A Huber
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| |
Collapse
|
18
|
Microdiversification of a Pelagic Polynucleobacter Species Is Mainly Driven by Acquisition of Genomic Islands from a Partially Interspecific Gene Pool. Appl Environ Microbiol 2017; 83:AEM.02266-16. [PMID: 27836842 DOI: 10.1128/aem.02266-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Microdiversification of a planktonic freshwater bacterium was studied by comparing 37 Polynucleobacter asymbioticus strains obtained from three geographically separated sites in the Austrian Alps. Genome comparison of nine strains revealed a core genome of 1.8 Mb, representing 81% of the average genome size. Seventy-five percent of the remaining flexible genome is clustered in genomic islands (GIs). Twenty-four genomic positions could be identified where GIs are potentially located. These positions are occupied strain specifically from a set of 28 GI variants, classified according to similarities in their gene content. One variant, present in 62% of the isolates, encodes a pathway for the degradation of aromatic compounds, and another, found in 78% of the strains, contains an operon for nitrate assimilation. Both variants were shown in ecophysiological tests to be functional, thus providing the potential for microniche partitioning. In addition, detected interspecific horizontal exchange of GIs indicates a large gene pool accessible to Polynucleobacter species. In contrast to core genes, GIs are spread more successfully across spatially separated freshwater habitats. The mobility and functional diversity of GIs allow for rapid evolution, which may be a key aspect for the ubiquitous occurrence of Polynucleobacter bacteria. IMPORTANCE Assessing the ecological relevance of bacterial diversity is a key challenge for current microbial ecology. The polyphasic approach which was applied in this study, including targeted isolation of strains, genome analysis, and ecophysiological tests, is crucial for the linkage of genetic and ecological knowledge. Particularly great importance is attached to the high number of closely related strains which were investigated, represented by genome-wide average nucleotide identities (ANI) larger than 97%. The extent of functional diversification found on this narrow phylogenetic scale is compelling. Moreover, the transfer of metabolically relevant genomic islands between more distant members of the Polynucleobacter community provides important insights toward a better understanding of the evolution of these globally abundant freshwater bacteria.
Collapse
|
19
|
Haro-Moreno JM, Rodriguez-Valera F, López-García P, Moreira D, Martin-Cuadrado AB. New insights into marine group III Euryarchaeota, from dark to light. ISME JOURNAL 2017; 11:1102-1117. [PMID: 28085158 DOI: 10.1038/ismej.2016.188] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 01/29/2023]
Abstract
Marine Euryarchaeota remain among the least understood major components of marine microbial communities. Marine group II Euryarchaeota (MG-II) are more abundant in surface waters (4-20% of the total prokaryotic community), whereas marine group III Euryarchaeota (MG-III) are generally considered low-abundance members of deep mesopelagic and bathypelagic communities. Using genome assembly from direct metagenome reads and metagenomic fosmid clones, we have identified six novel MG-III genome sequence bins from the photic zone (Epi1-6) and two novel bins from deep-sea samples (Bathy1-2). Genome completeness in those genome bins varies from 44% to 85%. Photic-zone MG-III bins corresponded to novel groups with no similarity, and significantly lower GC content, when compared with previously described deep-MG-III genome bins. As found in many other epipelagic microorganisms, photic-zone MG-III bins contained numerous photolyase and rhodopsin genes, as well as genes for peptide and lipid uptake and degradation, suggesting a photoheterotrophic lifestyle. Phylogenetic analysis of these photolyases and rhodopsins as well as their genomic context suggests that these genes are of bacterial origin, supporting the hypothesis of an MG-III ancestor that lived in the dark ocean. Epipelagic MG-III occur sporadically and in relatively small proportions in marine plankton, representing only up to 0.6% of the total microbial community reads in metagenomes. None of the reconstructed epipelagic MG-III genomes were present in metagenomes from aphotic zone depths or from high latitude regions. Most low-GC bins were highly enriched at the deep chlorophyll maximum zones, with the exception of Epi1, which appeared evenly distributed throughout the photic zone worldwide.
Collapse
Affiliation(s)
- Jose M Haro-Moreno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, UMR CNRS 8079, Université Paris-Sud, Orsay Cedex, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, UMR CNRS 8079, Université Paris-Sud, Orsay Cedex, France
| | - Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
20
|
Moller AG, Liang C. Determining virus-host interactions and glycerol metabolism profiles in geographically diverse solar salterns with metagenomics. PeerJ 2017; 5:e2844. [PMID: 28097058 PMCID: PMC5228507 DOI: 10.7717/peerj.2844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/29/2016] [Indexed: 01/12/2023] Open
Abstract
Solar salterns are excellent model ecosystems for studying virus-microbial interactions because of their low microbial diversity, environmental stability, and high viral density. By using the power of CRISPR spacers to link viruses to their prokaryotic hosts, we explored virus-host interactions in geographically diverse salterns. Using taxonomic profiling, we identified hosts such as archaeal Haloquadratum, Halorubrum, and Haloarcula and bacterial Salinibacter, and we found that community composition related to not only salinity but also local environmental dynamics. Characterizing glycerol metabolism genes in these metagenomes suggested Halorubrum and Haloquadratum possess most dihydroxyacetone kinase genes while Salinibacter possesses most glycerol-3-phosphate dehydrogenase genes. Using two different methods, we detected fewer CRISPR spacers in Haloquadratum-dominated compared with Halobacteriaceae-dominated saltern metagenomes. After CRISPR detection, spacers were aligned against haloviral genomes to map virus to host. While most alignments for each saltern metagenome linked viruses to Haloquadratum walsbyi, there were also alignments indicating interactions with the low abundance taxa Haloarcula and Haloferax. Further examination of the dinucleotide and trinucleotide usage differences between paired viruses and their hosts confirmed viruses and hosts had similar nucleotide usage signatures. Detection of cas genes in the salterns supported the possibility of CRISPR activity. Taken together, our studies suggest similar virus-host interactions exist in different solar salterns and that the glycerol metabolism gene dihydroxyacetone kinase is associated with Haloquadratum and Halorubrum.
Collapse
Affiliation(s)
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, United States
| |
Collapse
|
21
|
Flexible genomic islands as drivers of genome evolution. Curr Opin Microbiol 2016; 31:154-160. [DOI: 10.1016/j.mib.2016.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
|
22
|
Ecophysiological Distinctions of Haloarchaea from a Hypersaline Antarctic Lake as Determined by Metaproteomics. Appl Environ Microbiol 2016; 82:3165-73. [PMID: 26994078 DOI: 10.1128/aem.00473-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/12/2016] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Deep Lake in the Vestfold Hills is hypersaline and the coldest system in Antarctica known to support microbial growth (temperatures as low as -20°C). It represents a strong experimental model because the lake supports a low-complexity community of haloarchaea, with the three most abundant species totaling ∼72%. Moreover, the dominant haloarchaea are cultivatable, and their genomes are sequenced. Here we use metaproteomics linked to metagenome data and the genome sequences of the isolates to characterize the main pathways, trophic strategies, and interactions associated with resource utilization. The dominance of the most abundant member, Halohasta litchfieldiae, appears to be predicated on competitive utilization of substrates (e.g., starch, glycerol, and dihydroxyacetone) produced by Dunaliella, the lake's primary producer, while also possessing diverse mechanisms for acquiring nitrogen and phosphorus. The second most abundant member, strain DL31, is proficient in degrading complex proteinaceous matter. Hht. litchfieldiae and DL31 are inferred to release labile substrates that are utilized by Halorubrum lacusprofundi, the third most abundant haloarchaeon in Deep Lake. The study also linked genome variation to specific protein variants or distinct genetic capacities, thereby identifying strain-level variation indicative of specialization. Overall, metaproteomics revealed that rather than functional differences occurring at different lake depths or through size partitioning, the main lake genera possess major trophic distinctions, and phylotypes (e.g., strains of Hht. litchfieldiae) exhibit a more subtle level of specialization. This study highlights the extent to which the lake supports a relatively uniform distribution of taxa that collectively possess the genetic capacity to effectively exploit available nutrients throughout the lake. IMPORTANCE Life on Earth has evolved to colonize a broad range of temperatures, but most of the biosphere (∼85%) exists at low temperatures (≤5°C). By performing unique roles in biogeochemical cycles, environmental microorganisms perform functions that are critical for the rest of life on Earth to survive. Cold environments therefore make a particularly important contribution to maintaining healthy, stable ecosystems. Here we describe the main physiological traits of the dominant microorganisms that inhabit Deep Lake in Antarctica, the coldest aquatic environment known to support life. The hypersaline system enables the growth of halophilic members of the Archaea: haloarchaea. By analyzing proteins of samples collected from the water column, we determined the functions that the haloarchaea were likely to perform. This study showed that the dominant haloarchaea possessed distinct lifestyles yet formed a uniform community throughout the lake that was collectively adept at using available light energy and diverse organic substrates for growth.
Collapse
|
23
|
Martin-Cuadrado AB, Pašić L, Rodriguez-Valera F. Diversity of the cell-wall associated genomic island of the archaeon Haloquadratum walsbyi. BMC Genomics 2015; 16:603. [PMID: 26268990 PMCID: PMC4535781 DOI: 10.1186/s12864-015-1794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 07/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Haloquadratum walsbyi represents up to 80% of cells in NaCl-saturated brines worldwide, but is notoriously difficult to maintain under laboratory conditions. In order to establish the extent of genetic diversity in a natural population of this microbe, we screened a H. walsbyi enriched metagenomic fosmid library and recovered seven novel version of its cell-wall associated genomic island. The fosmid inserts were sequenced and analysed. RESULTS The novel cell-wall associated islands delineated two major clades within H. walsbyi. The islands predominantly contained genes putatively involved in biosynthesis of surface layer, genes encoding cell surface glycoproteins and genes involved in envelope formation. We further found that these genes are maintained in the population and that the diversity of this region arises through homologous recombination but also through the action of mobile genetic elements, including viruses. CONCLUSIONS The population of H. walsbyi in the studied saltern brine is composed of numerous clonal lineages that differ in surface structures including the cell wall. This type of variation probably reflects a number of mechanisms that minimize the infection rate of predating viruses.
Collapse
Affiliation(s)
- Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan de Alicante, Alicante, Spain.
| | - Lejla Pašić
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan de Alicante, Alicante, Spain. .,Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
24
|
Tschitschko B, Williams TJ, Allen MA, Páez-Espino D, Kyrpides N, Zhong L, Raftery MJ, Cavicchioli R. Antarctic archaea-virus interactions: metaproteome-led analysis of invasion, evasion and adaptation. ISME JOURNAL 2015; 9:2094-107. [PMID: 26125682 DOI: 10.1038/ismej.2015.110] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/15/2015] [Accepted: 05/19/2015] [Indexed: 01/21/2023]
Abstract
Despite knowledge that viruses are abundant in natural ecosystems, there is limited understanding of which viruses infect which hosts, and how both hosts and viruses respond to those interactions-interactions that ultimately shape community structure and dynamics. In Deep Lake, Antarctica, intergenera gene exchange occurs rampantly within the low complexity, haloarchaea-dominated community, strongly balanced by distinctions in niche adaptation which maintain sympatric speciation. By performing metaproteomics for the first time on haloarchaea, genomic variation of S-layer, archaella and other cell surface proteins was linked to mechanisms of infection evasion. CRISPR defense systems were found to be active, with haloarchaea responding to at least eight distinct types of viruses, including those infecting between genera. The role of BREX systems in defending against viruses was also examined. Although evasion and defense were evident, both hosts and viruses also may benefit from viruses carrying and expressing host genes, thereby potentially enhancing genetic variation and phenotypic differences within populations. The data point to a complex inter-play leading to a dynamic optimization of host-virus interactions. This comprehensive overview was achieved only through the integration of results from metaproteomics, genomics and metagenomics.
Collapse
Affiliation(s)
- Bernhard Tschitschko
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | | | - Nikos Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Ventosa A, de la Haba RR, Sánchez-Porro C, Papke RT. Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 2015; 25:80-7. [PMID: 26056770 DOI: 10.1016/j.mib.2015.05.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Recent studies based on metagenomics and other molecular techniques have permitted a detailed knowledge of the microbial diversity and metabolic activities of microorganisms in hypersaline environments. The current accepted model of community structure in hypersaline environments is that the square archaeon Haloquadratum waslbyi, the bacteroidete Salinibacter ruber and nanohaloarchaea are predominant members at higher salt concentrations, while more diverse archaeal and bacterial taxa are observed in habitats with intermediate salinities. Additionally, metagenomic studies may provide insight into the isolation and characterization of the principal microbes in these habitats, such as the recently described gammaproteobacterium Spiribacter salinus.
Collapse
Affiliation(s)
- Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, 06269 Storrs, CT, USA
| |
Collapse
|
26
|
Papke RT, Corral P, Ram-Mohan N, de la Haba RR, Sánchez-Porro C, Makkay A, Ventosa A. Horizontal gene transfer, dispersal and haloarchaeal speciation. Life (Basel) 2015; 5:1405-26. [PMID: 25997110 PMCID: PMC4500145 DOI: 10.3390/life5021405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/28/2022] Open
Abstract
The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria.
Collapse
Affiliation(s)
- R. Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
- Author to whom correspondence should be addressed; E-Mail:
| | - Paulina Corral
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Nikhil Ram-Mohan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Andrea Makkay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| |
Collapse
|
27
|
Takeuchi N, Cordero OX, Koonin EV, Kaneko K. Gene-specific selective sweeps in bacteria and archaea caused by negative frequency-dependent selection. BMC Biol 2015; 13:20. [PMID: 25928466 PMCID: PMC4410459 DOI: 10.1186/s12915-015-0131-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 03/13/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fixation of beneficial genes in bacteria and archaea (collectively, prokaryotes) is often believed to erase pre-existing genomic diversity through the hitchhiking effect, a phenomenon known as genome-wide selective sweep. Recent studies, however, indicate that beneficial genes spread through a prokaryotic population via recombination without causing genome-wide selective sweeps. These gene-specific selective sweeps seem to be at odds with the existing estimates of recombination rates in prokaryotes, which appear far too low to explain such phenomena. RESULTS We use mathematical modeling to investigate potential solutions to this apparent paradox. Most microbes in nature evolve in heterogeneous, dynamic communities, in which ecological interactions can substantially impact evolution. Here, we focus on the effect of negative frequency-dependent selection (NFDS) such as caused by viral predation (kill-the-winner dynamics). The NFDS maintains multiple genotypes within a population, so that a gene beneficial to every individual would have to spread via recombination, hence a gene-specific selective sweep. However, gene loci affected by NFDS often are located in variable regions of microbial genomes that contain genes involved in the mobility of selfish genetic elements, such as integrases or transposases. Thus, the NFDS-affected loci are likely to experience elevated rates of recombination compared with the other loci. Consequently, these loci might be effectively unlinked from the rest of the genome, so that NFDS would be unable to prevent genome-wide selective sweeps. To address this problem, we analyzed population genetic models of selective sweeps in prokaryotes under NFDS. The results indicate that NFDS can cause gene-specific selective sweeps despite the effect of locally elevated recombination rates, provided NFDS affects more than one locus and the basal rate of recombination is sufficiently low. Although these conditions might seem to contradict the intuition that gene-specific selective sweeps require high recombination rates, they actually decrease the effective rate of recombination at loci affected by NFDS relative to the per-locus basal level, so that NFDS can cause gene-specific selective sweeps. CONCLUSION Because many free-living prokaryotes are likely to evolve under NFDS caused by ubiquitous viruses, gene-specific selective sweeps driven by NFDS are expected to be a major, general phenomenon in prokaryotic populations.
Collapse
Affiliation(s)
- Nobuto Takeuchi
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| | - Otto X Cordero
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
| | - Eugene V Koonin
- National Institutes of Health, National Library of Medicine, National Center for Biotechnology Information, Bethesda, USA.
| | - Kunihiko Kaneko
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
28
|
De novo sequences of Haloquadratum walsbyi from Lake Tyrrell, Australia, reveal a variable genomic landscape. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:875784. [PMID: 25709557 PMCID: PMC4330952 DOI: 10.1155/2015/875784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/02/2014] [Accepted: 09/16/2014] [Indexed: 11/29/2022]
Abstract
Hypersaline systems near salt saturation levels represent an extreme environment, in which organisms grow and survive near the limits of life. One of the abundant members of the microbial communities in hypersaline systems is the square archaeon, Haloquadratum walsbyi. Utilizing a short-read metagenome from Lake Tyrrell, a hypersaline ecosystem in Victoria, Australia, we performed a comparative genomic analysis of H. walsbyi to better understand the extent of variation between strains/subspecies. Results revealed that previously isolated strains/subspecies do not fully describe the complete repertoire of the genomic landscape present in H. walsbyi. Rearrangements, insertions, and deletions were observed for the Lake Tyrrell derived Haloquadratum genomes and were supported by environmental de novo sequences, including shifts in the dominant genomic landscape of the two most abundant strains. Analysis pertaining to halomucins indicated that homologs for this large protein are not a feature common for all species of Haloquadratum. Further, we analyzed ATP-binding cassette transporters (ABC-type transporters) for evidence of niche partitioning between different strains/subspecies. We were able to identify unique and variable transporter subunits from all five genomes analyzed and the de novo environmental sequences, suggesting that differences in nutrient and carbon source acquisition may play a role in maintaining distinct strains/subspecies.
Collapse
|
29
|
Gomariz M, Martínez-García M, Santos F, Constantino M, Meseguer I, Antón J. Retinal-binding proteins mirror prokaryotic dynamics in multipond solar salterns. Environ Microbiol 2015; 17:514-26. [DOI: 10.1111/1462-2920.12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/30/2014] [Accepted: 11/02/2014] [Indexed: 11/28/2022]
Affiliation(s)
- María Gomariz
- Department of Materials, Optics and Electronics; University Miguel Hernández of Elche; Alicante 03202 Spain
- Department of Physiology, Genetics, and Microbiology; University of Alicante; Alicante 03080 Spain
| | - Manuel Martínez-García
- Department of Physiology, Genetics, and Microbiology; University of Alicante; Alicante 03080 Spain
| | - Fernando Santos
- Department of Physiology, Genetics, and Microbiology; University of Alicante; Alicante 03080 Spain
| | - Marco Constantino
- Department of Physiology, Genetics, and Microbiology; University of Alicante; Alicante 03080 Spain
| | - Inmaculada Meseguer
- Department of Materials, Optics and Electronics; University Miguel Hernández of Elche; Alicante 03202 Spain
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology; University of Alicante; Alicante 03080 Spain
| |
Collapse
|
30
|
Luk AWS, Williams TJ, Erdmann S, Papke RT, Cavicchioli R. Viruses of haloarchaea. Life (Basel) 2014; 4:681-715. [PMID: 25402735 PMCID: PMC4284463 DOI: 10.3390/life4040681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/26/2022] Open
Abstract
In hypersaline environments, haloarchaea (halophilic members of the Archaea) are the dominant organisms, and the viruses that infect them, haloarchaeoviruses are at least ten times more abundant. Since their discovery in 1974, described haloarchaeoviruses include head-tailed, pleomorphic, spherical and spindle-shaped morphologies, representing Myoviridae, Siphoviridae, Podoviridae, Pleolipoviridae, Sphaerolipoviridae and Fuselloviridae families. This review overviews current knowledge of haloarchaeoviruses, providing information about classification, morphotypes, macromolecules, life cycles, genetic manipulation and gene regulation, and host-virus responses. In so doing, the review incorporates knowledge from laboratory studies of isolated viruses, field-based studies of environmental samples, and both genomic and metagenomic analyses of haloarchaeoviruses. What emerges is that some haloarchaeoviruses possess unique morphological and life cycle properties, while others share features with other viruses (e.g., bacteriophages). Their interactions with hosts influence community structure and evolution of populations that exist in hypersaline environments as diverse as seawater evaporation ponds, to hot desert or Antarctic lakes. The discoveries of their wide-ranging and important roles in the ecology and evolution of hypersaline communities serves as a strong motivator for future investigations of both laboratory-model and environmental systems.
Collapse
Affiliation(s)
- Alison W S Luk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Susanne Erdmann
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA.
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
31
|
Anderson RE, Sogin ML, Baross JA. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLoS One 2014; 9:e109696. [PMID: 25279954 PMCID: PMC4184897 DOI: 10.1371/journal.pone.0109696] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022] Open
Abstract
The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts’ functional capabilities.
Collapse
Affiliation(s)
- Rika E. Anderson
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Mitchell L. Sogin
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - John A. Baross
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
32
|
Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME JOURNAL 2014; 9:643-55. [PMID: 25148481 DOI: 10.1038/ismej.2014.156] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/28/2014] [Accepted: 07/18/2014] [Indexed: 11/08/2022]
Abstract
Nitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems. In Nitrospira-specific 16S rRNA clone libraries retrieved from each plant, closely related phylogenetic clusters (16S rRNA identities between clusters ranged from 95.8% to 99.6%) within Nitrospira lineages I and II were found. Newly designed probes for fluorescence in situ hybridization (FISH) allowed the specific detection of several of these clusters, whose coexistence in the WWTPs was shown for prolonged periods of several years. In situ ecophysiological analyses based on FISH, relative abundance and spatial arrangement quantification, as well as microautoradiography revealed functional differences of these Nitrospira clusters regarding the preferred nitrite concentration, the utilization of formate as substrate and the spatial coaggregation with ammonia-oxidizing bacteria as symbiotic partners. Amplicon pyrosequencing of the nxrB gene, which encodes subunit beta of nitrite oxidoreductase of Nitrospira, revealed in one of the WWTPs as many as 121 species-level nxrB operational taxonomic units with highly uneven relative abundances in the amplicon library. These results show a previously unrecognized high diversity of Nitrospira in engineered systems, which is at least partially linked to niche differentiation and may have important implications for process stability.
Collapse
|
33
|
The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 2014; 18:811-24. [PMID: 25129545 DOI: 10.1007/s00792-014-0681-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/24/2014] [Indexed: 01/24/2023]
Abstract
Multi-pond salterns constitute an excellent model for the study of the microbial diversity and ecology of hypersaline environments, showing a wide range of salt concentrations, from seawater to salt saturation. Accumulated studies on the Santa Pola (Alicante, Spain) multi-pond solar saltern during the last 35 years include culture-dependent and culture-independent molecular methods and metagenomics more recently. These approaches have permitted to determine in depth the microbial diversity of the ponds with intermediate salinities (from 10% salts) up to salt saturation, with haloarchaea and bacteria as the two main dominant groups. In this review, we describe the main results obtained using the different methodologies, the most relevant contributions for understanding the ecology of these extreme environments and the future perspectives for such studies.
Collapse
|
34
|
Diversity of cultivable halophilic archaea and bacteria from superficial hypersaline sediments of Tunisian solar salterns. Antonie van Leeuwenhoek 2014; 106:675-92. [PMID: 25064091 DOI: 10.1007/s10482-014-0238-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
Prokaryotes in the superficial sediments are ecologically important microorganisms that are responsible for the decomposition, mineralization and subsequent recycling of organic matter. The aim of this study was to explore the phylogenetic and functional diversity of halophilic archaea and bacteria isolated from the superficial sediments of solar salterns at Sfax, Tunisia. Sixty four strains were isolated from crystallizer (TS18) and non-crystallizer (M1) ponds and submitted to genotypic characterization and evaluation by amplified ribosomal RNA restriction analysis (ARDRA) techniques. Our findings revealed that the archaeal diversity observed for 29 isolates generated five distinct patterns from the non-crystallizer M1 pond, with Halorubrum chaoviator as the most prevalent cultivable species. However, in the TS18 crystallizer pond, ten restriction patterns were observed, with the prevalence of haloarchaea EB27K, a not yet identified genotype. The construction of a neighbour-joining tree of 16S rRNA gene sequences resulted in the division of the potential new species into two major groups, with four strains closely related to the sequence of the unculturable haloarchaeon EB27K and one strain to the recently described Halovenus aranensis strain. The 35 bacterial strains observed in this work were present only in the non-crystallizer pond (M1) and presented two distinct ARDRA patterns. These strains belonged to the γ-proteobacteria subdivision, with members of Salicola marasensis (83%) being the most predominant species among the isolates. 16S rRNA gene sequencing revealed that Salicola strains displayed different degrees of homogeneity. The results from pulsed field gel electrophoresis assays showed that the Salicola isolates could be clustered in two distinct groups with different genome sizes.
Collapse
|
35
|
López-Pérez M, Martin-Cuadrado AB, Rodriguez-Valera F. Homologous recombination is involved in the diversity of replacement flexible genomic islands in aquatic prokaryotes. Front Genet 2014; 5:147. [PMID: 24904647 PMCID: PMC4033161 DOI: 10.3389/fgene.2014.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/06/2014] [Indexed: 01/22/2023] Open
Abstract
Different strains of the same prokaryotic species, even very similar ones, vary in large regions of their genomes. This flexible genome represents a huge reservoir of diversity that allows prokaryotes to exploit their environment efficiently. Most of the flexible genome is concentrated in genomic islands, some of which are present in all the strains and coding for similar functions but containing different genes. These replacement genomic islands are typically involved in exposed cellular structures, and their diversity has been connected to their recognition as targets by prokaryotic viruses (phages). We have compared genomes of closely related aquatic microbes from different origins and found examples of recent replacement of some of these flexible genomic islands. In all cases, that include Gram positive and negative bacteria and one archaeon, the replaced regions boundaries contain tell-tale peaks of increased, mostly synonymous, nucleotide substitutions. They tended to be sharper at the boundary closest to the origin of replication of the island. We will present the hypothesis that replacement flexible genomic islands are often exchanged by homologous recombination between different clonal frames. These recombination events are possibly selected due to the immediate reward provided by a change in the phage sensitivity spectrum.
Collapse
Affiliation(s)
- Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández Alicante, Spain
| | | |
Collapse
|
36
|
Fernández AB, Ghai R, Martin-Cuadrado AB, Sánchez-Porro C, Rodriguez-Valera F, Ventosa A. Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol Ecol 2014; 88:623-35. [PMID: 24661078 DOI: 10.1111/1574-6941.12329] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 11/28/2022] Open
Abstract
A metagenome was obtained by pyrosequencing the total prokaryotic DNA from the water of a pond with intermediate salinity (13% salts) from a saltern located in Santa Pola, Spain. We analyzed and compared the phylogenomic and metabolic diversity of this saltern pond with respect to other two metagenomes obtained previously from the same saltern (ponds with 19% and 37% salts, respectively) and two reference metagenomes from marine and coastal lagoon habitats. A large microbial diversity, representing seven major higher taxa (Euryarchaeota, Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia and Betaproteobacteria), was found. However, most sequences (57%) were not assigned to any previously described genus. Principal component analysis of tetranucleotide frequencies of assembled contigs showed the presence of new groups of Euryarchaeota, different from those previously described but related to Haloquadratum walsbyi and other members of the Halobacteriaceae. Besides, some new Gammaproteobacteria, several closely related to the recently isolated bacterium 'Spiribacter salinus' were observed. Metabolically, the nitrogen and carbon cycles appear to be very simplified in this extreme habitat. Light is extensively used as energy source by bacteriorhodopsins and other rhodopsins. Microorganisms known to use the 'salt-in' strategy are probably able to combine the accumulation of potassium ions and of compatible solutes.
Collapse
Affiliation(s)
- Ana B Fernández
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Fullmer MS, Soucy SM, Swithers KS, Makkay AM, Wheeler R, Ventosa A, Gogarten JP, Papke RT. Population and genomic analysis of the genus Halorubrum. Front Microbiol 2014; 5:140. [PMID: 24782836 PMCID: PMC3990103 DOI: 10.3389/fmicb.2014.00140] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/18/2014] [Indexed: 11/13/2022] Open
Abstract
The Halobacteria are known to engage in frequent gene transfer and homologous recombination. For stably diverged lineages to persist some checks on the rate of between lineage recombination must exist. We surveyed a group of isolates from the Aran-Bidgol endorheic lake in Iran and sequenced a selection of them. Multilocus Sequence Analysis (MLSA) and Average Nucleotide Identity (ANI) revealed multiple clusters (phylogroups) of organisms present in the lake. Patterns of intein and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) presence/absence and their sequence similarity, GC usage along with the ANI and the identities of the genes used in the MLSA revealed that two of these clusters share an exchange bias toward others in their phylogroup while showing reduced rates of exchange with other organisms in the environment. However, a third cluster, composed in part of named species from other areas of central Asia, displayed many indications of variability in exchange partners, from within the lake as well as outside the lake. We conclude that barriers to gene exchange exist between the two purely Aran-Bidgol phylogroups, and that the third cluster with members from other regions is not a single population and likely reflects an amalgamation of several populations.
Collapse
Affiliation(s)
- Matthew S. Fullmer
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Shannon M. Soucy
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Kristen S. Swithers
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
- Department of Cell Biology, Yale School of Medicine, Yale UniversityNew Haven, CT, USA
| | - Andrea M. Makkay
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Ryan Wheeler
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, University of SevilleSeville, Spain
| | - J. Peter Gogarten
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - R. Thane Papke
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
38
|
Ram Mohan N, Fullmer MS, Makkay AM, Wheeler R, Ventosa A, Naor A, Gogarten JP, Papke RT. Evidence from phylogenetic and genome fingerprinting analyses suggests rapidly changing variation in Halorubrum and Haloarcula populations. Front Microbiol 2014; 5:143. [PMID: 24782838 PMCID: PMC3988388 DOI: 10.3389/fmicb.2014.00143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/19/2014] [Indexed: 01/29/2023] Open
Abstract
Halobacteria require high NaCl concentrations for growth and are the dominant inhabitants of hypersaline environments above 15% NaCl. They are well-documented to be highly recombinogenic, both in frequency and in the range of exchange partners. In this study, we examine the genetic and genomic variation of cultured, naturally co-occurring environmental populations of Halobacteria. Sequence data from multiple loci (~2500 bp) identified many closely and more distantly related strains belonging to the genera Halorubrum and Haloarcula. Genome fingerprinting using a random priming PCR amplification method to analyze these isolates revealed diverse banding patterns across each of the genera and surprisingly even for isolates that are identical at the nucleotide level for five protein coding sequenced loci. This variance in genome structure even between identical multilocus sequence analysis (MLSA) haplotypes indicates that accumulation of genomic variation is rapid: faster than the rate of third codon substitutions.
Collapse
Affiliation(s)
- Nikhil Ram Mohan
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Matthew S Fullmer
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Andrea M Makkay
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Ryan Wheeler
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, University of Seville Seville, Spain
| | - Adit Naor
- Molecular Microbiology and Biotechnology, Tel Aviv University Tel Aviv, Israel
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
39
|
Cordero OX, Polz MF. Explaining microbial genomic diversity in light of evolutionary ecology. Nat Rev Microbiol 2014; 12:263-73. [PMID: 24590245 DOI: 10.1038/nrmicro3218] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Comparisons of closely related microorganisms have shown that individual genomes can be highly diverse in terms of gene content. In this Review, we discuss several studies showing that much of this variation is associated with social and ecological interactions, which have an important role in the population biology of wild populations of bacteria and archaea. These interactions create frequency-dependent selective pressures that can either stabilize gene frequencies at intermediate levels in populations or promote fast gene turnover, which presents as low gene frequencies in genome surveys. Thus, interpretation of gene-content diversity requires the delineation of populations according to cohesive gene flow and ecology, as micro-evolutionary changes arise in response to local selection pressures and population dynamics.
Collapse
Affiliation(s)
- Otto X Cordero
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH-Zürich), CH-8092 Zürich, Switzerland
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
40
|
Humily F, Farrant GK, Marie D, Partensky F, Mazard S, Perennou M, Labadie K, Aury JM, Wincker P, Segui AN, Scanlan DJ, Garczarek L. Development of a targeted metagenomic approach to study a genomic region involved in light harvesting in marine Synechococcus. FEMS Microbiol Ecol 2014; 88:231-49. [PMID: 24862161 DOI: 10.1111/1574-6941.12285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/14/2013] [Accepted: 01/12/2014] [Indexed: 12/01/2022] Open
Abstract
Synechococcus, one of the most abundant cyanobacteria in marine ecosystems, displays a broad pigment diversity. However, the in situ distribution of pigment types remains largely unknown. In this study, we combined flow cytometry cell sorting, whole-genome amplification, and fosmid library construction to target a genomic region involved in light-harvesting complex (phycobilisome) biosynthesis and regulation. Synechococcus community composition and relative contamination by heterotrophic bacteria were assessed at each step of the pipeline using terminal restriction fragment length polymorphism targeting the petB and 16S rRNA genes, respectively. This approach allowed us to control biases inherent to each method and select reliable WGA products to construct a fosmid library from a natural sample collected off Roscoff (France). Sequencing of 25 fosmids containing the targeted region led to the assembly of whole or partial phycobilisome regions. Most contigs were assigned to clades I and IV consistent with the known dominance of these clades in temperate coastal waters. However, one of the fosmids contained genes distantly related to their orthologs in reference genomes, suggesting that it belonged to a novel phylogenetic clade. Altogether, this study provides novel insights into Synechococcus community structure and pigment type diversity at a representative coastal station of the English Channel.
Collapse
Affiliation(s)
- Florian Humily
- UPMC-Université Paris VI, Station Biologique, Roscoff Cedex, France; CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Oceanic Plankton Group, Marine Phototrophic Prokaryotes Team, Roscoff Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mizuno CM, Ghai R, Rodriguez-Valera F. Evidence for metaviromic islands in marine phages. Front Microbiol 2014; 5:27. [PMID: 24550898 PMCID: PMC3909814 DOI: 10.3389/fmicb.2014.00027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/16/2014] [Indexed: 11/13/2022] Open
Abstract
Metagenomic islands (MGIs) have been defined as genomic regions in prokaryotic genomes that under-recruit from metagenomes where most of the same genome recruits at close to 100% identity over most of its length. The presence of MGIs in prokaryotes has been associated to the diversity of concurrent lineages that vary at this level to disperse the predatory pressure of phages that, reciprocally, maintain high clonal diversity in the population and improve ecosystem performance. This was proposed as a Constant-Diversity (C-D) model. Here we have investigated the regions of phage genomes under-recruiting in a metavirome constructed with a sample from the same habitat where they were retrieved. Some of the genes found to under-recruit are involved in host recognition as would be expected from the C-D model. Furthermore, the recruitment of intragenic regions known to be involved in molecular recognition also had a significant under-recruitment compared to the rest of the gene. However, other genes apparently disconnected from the recognition process under-recruited often, specifically the terminases involved in packaging of the phage genome in the capsid and a few others. In addition, some highly related phage genomes (at nucleotide sequence level) had no metaviromic islands (MVIs). We speculate that the latter might be generalist phages with broad infection range that do not require clone specific lineages.
Collapse
Affiliation(s)
- Carolina Megumi Mizuno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández Alicante, Spain
| | - Rohit Ghai
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández Alicante, Spain
| |
Collapse
|
42
|
D'Auria G, Schneider MV, Moya A. Live genomics for pathogen monitoring in public health. Pathogens 2014; 3:93-108. [PMID: 25437609 PMCID: PMC4235738 DOI: 10.3390/pathogens3010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/16/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023] Open
Abstract
Whole genome analysis based on next generation sequencing (NGS) now represents an affordable framework in public health systems. Robust analytical pipelines of genomic data provides in short laps of time (hours) information about taxonomy, comparative genomics (pan-genome) and single polymorphisms profiles. Pathogenic organisms of interest can be tracked at the genomic level, allowing monitoring at one-time several variables including: epidemiology, pathogenicity, resistance to antibiotics, virulence, persistence factors, mobile elements and adaptation features. Such information can be obtained not only at large spectra, but also at the "local" level, such as in the event of a recurrent or emergency outbreak. This paper reviews the state of the art in infection diagnostics in the context of modern NGS methodologies. We describe how actuation protocols in a public health environment will benefit from a "streaming approach" (pipeline). Such pipeline would NGS data quality assessment, data mining for comparative analysis, searching differential genetic features, such as virulence, resistance persistence factors and mutation profiles (SNPs and InDels) and formatted "comprehensible" results. Such analytical protocols will enable a quick response to the needs of locally circumscribed outbreaks, providing information on the causes of resistance and genetic tracking elements for rapid detection, and monitoring actuations for present and future occurrences.
Collapse
Affiliation(s)
- Giuseppe D'Auria
- Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública), Avenida de Cataluña 21, 46020 Valencia, Spain.
| | | | - Andrés Moya
- Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública), Avenida de Cataluña 21, 46020 Valencia, Spain.
| |
Collapse
|
43
|
Mazard S, Ostrowski M, Holland R, Zubkov MV, Scanlan DJ. Targeted genomics of flow cytometrically sorted cultured and uncultured microbial groups. Methods Mol Biol 2014; 1096:203-12. [PMID: 24515371 DOI: 10.1007/978-1-62703-712-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
High throughput sequencing of genetic material recovered from environmental samples (i.e., metagenomics) is becoming the method of choice for either medical or environmental genomic studies. However, the large amount of data and complexity of the sequenced "biomes" present challenges for teasing meaningful results out of the mass. Here, we describe a targeted genomic pipeline which uses fluorescence-activated cell sorting (FACS) in combination with multiple displacement amplification (MDA) of nucleic acids that allows to dissect a complex system into its component parts to facilitate high-quality single-cell, or targeted population, genomic reconstructions of microbial communities. This pipeline is presented with methods for collecting, concentrating, and preserving cells from aquatic and marine environments suitable for flow cytometric processing at a later date.
Collapse
Affiliation(s)
- Sophie Mazard
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
44
|
Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. Expanding the marine virosphere using metagenomics. PLoS Genet 2013; 9:e1003987. [PMID: 24348267 PMCID: PMC3861242 DOI: 10.1371/journal.pgen.1003987] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022] Open
Abstract
Viruses infecting prokaryotic cells (phages) are the most abundant entities of the biosphere and contain a largely uncharted wealth of genomic diversity. They play a critical role in the biology of their hosts and in ecosystem functioning at large. The classical approaches studying phages require isolation from a pure culture of the host. Direct sequencing approaches have been hampered by the small amounts of phage DNA present in most natural habitats and the difficulty in applying meta-omic approaches, such as annotation of small reads and assembly. Serendipitously, it has been discovered that cellular metagenomes of highly productive ocean waters (the deep chlorophyll maximum) contain significant amounts of viral DNA derived from cells undergoing the lytic cycle. We have taken advantage of this phenomenon to retrieve metagenomic fosmids containing viral DNA from a Mediterranean deep chlorophyll maximum sample. This method allowed description of complete genomes of 208 new marine phages. The diversity of these genomes was remarkable, contributing 21 genomic groups of tailed bacteriophages of which 10 are completely new. Sequence based methods have allowed host assignment to many of them. These predicted hosts represent a wide variety of important marine prokaryotic microbes like members of SAR11 and SAR116 clades, Cyanobacteria and also the newly described low GC Actinobacteria. A metavirome constructed from the same habitat showed that many of the new phage genomes were abundantly represented. Furthermore, other available metaviromes also indicated that some of the new phages are globally distributed in low to medium latitude ocean waters. The availability of many genomes from the same sample allows a direct approach to viral population genomics confirming the remarkable mosaicism of phage genomes.
Collapse
Affiliation(s)
- Carolina Megumi Mizuno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- * E-mail:
| | - Nikole E. Kimes
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Rohit Ghai
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
45
|
Meyer JL, Huber JA. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. ISME JOURNAL 2013; 8:867-80. [PMID: 24257443 DOI: 10.1038/ismej.2013.206] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/02/2013] [Accepted: 10/13/2013] [Indexed: 11/09/2022]
Abstract
Chemolithoautotrophic Epsilonproteobacteria are ubiquitous in sulfidic, oxygen-poor habitats, including hydrothermal vents, marine oxygen minimum zones, marine sediments and sulfidic caves and have a significant role in cycling carbon, hydrogen, nitrogen and sulfur in these environments. The isolation of diverse strains of Epsilonproteobacteria and the sequencing of their genomes have revealed that this group has the metabolic potential to occupy a wide range of niches, particularly at dynamic deep-sea hydrothermal vents. We expand on this body of work by examining the population genomics of six strains of Lebetimonas, a vent-endemic, thermophilic, hydrogen-oxidizing Epsilonproteobacterium, from a single seamount in the Mariana Arc. Using Lebetimonas as a model for anaerobic, moderately thermophilic organisms in the warm, anoxic subseafloor environment, we show that genomic content is highly conserved and that recombination is limited between closely related strains. The Lebetimonas genomes are shaped by mobile genetic elements and gene loss as well as the acquisition of novel functional genes by horizontal gene transfer, which provide the potential for adaptation and microbial speciation in the deep sea. In addition, these Lebetimonas genomes contain two operons of nitrogenase genes with different evolutionary origins. Lebetimonas expressed nifH during growth with nitrogen gas as the sole nitrogen source, thus providing the first evidence of nitrogen fixation in any Epsilonproteobacteria from deep-sea hydrothermal vents. In this study, we provide a comparative overview of the genomic potential within the Nautiliaceae as well as among more distantly related hydrothermal vent Epsilonproteobacteria to broaden our understanding of microbial adaptation and diversity in the deep sea.
Collapse
Affiliation(s)
- Julie L Meyer
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA
| | - Julie A Huber
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA
| |
Collapse
|
46
|
López-Pérez M, Ghai R, Leon MJ, Rodríguez-Olmos Á, Copa-Patiño JL, Soliveri J, Sanchez-Porro C, Ventosa A, Rodriguez-Valera F. Genomes of "Spiribacter", a streamlined, successful halophilic bacterium. BMC Genomics 2013; 14:787. [PMID: 24225341 PMCID: PMC3832224 DOI: 10.1186/1471-2164-14-787] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/11/2013] [Indexed: 11/25/2022] Open
Abstract
Background Thalassosaline waters produced by the concentration of seawater are widespread and common extreme aquatic habitats. Their salinity varies from that of sea water (ca. 3.5%) to saturation for NaCl (ca. 37%). Obviously the microbiota varies dramatically throughout this range. Recent metagenomic analysis of intermediate salinity waters (19%) indicated the presence of an abundant and yet undescribed gamma-proteobacterium. Two strains belonging to this group have been isolated from saltern ponds of intermediate salinity in two Spanish salterns and were named “Spiribacter”. Results The genomes of two isolates of “Spiribacter” have been fully sequenced and assembled. The analysis of metagenomic datasets indicates that microbes of this genus are widespread worldwide in medium salinity habitats representing the first ecologically defined moderate halophile. The genomes indicate that the two isolates belong to different species within the same genus. Both genomes are streamlined with high coding densities, have few regulatory mechanisms and no motility or chemotactic behavior. Metabolically they are heterotrophs with a subgroup II xanthorhodopsin as an additional energy source when light is available. Conclusions This is the first bacterium that has been proven by culture independent approaches to be prevalent in hypersaline habitats of intermediate salinity (half a way between the sea and NaCl saturation). Predictions from the proteome and analysis of transporter genes, together with a complete ectoine biosynthesis gene cluster are consistent with these microbes having the salt-out-organic-compatible solutes type of osmoregulation. All these features are also consistent with a well-adapted fully planktonic microbe while other halophiles with more complex genomes such as Salinibacter ruber might have particle associated microniches.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain.
| |
Collapse
|
47
|
Antón J, Lucio M, Peña A, Cifuentes A, Brito-Echeverría J, Moritz F, Tziotis D, López C, Urdiain M, Schmitt-Kopplin P, Rosselló-Móra R. High metabolomic microdiversity within co-occurring isolates of the extremely halophilic bacterium Salinibacter ruber. PLoS One 2013; 8:e64701. [PMID: 23741374 PMCID: PMC3669384 DOI: 10.1371/journal.pone.0064701] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022] Open
Abstract
Salinibacter ruber is an extremely halophilic member of the Bacteroidetes that thrives in crystallizer ponds worldwide. Here, we have analyzed two sets of 22 and 35 co-occurring S. ruber strains, newly isolated respectively, from 100 microliters water samples from crystalizer ponds in Santa Pola and Mallorca, located in coastal and inland Mediterranean Spain and 350 km apart from each other. A set of old strains isolated from the same setting were included in the analysis. Genomic and taxonomy relatedness of the strains were analyzed by means of PFGE and MALDI-TOF, respectively, while their metabolomic potential was explored with high resolution ion cyclotron resonance Fourier transform mass spectrometry (ICR-FT/MS). Overall our results show a phylogenetically very homogeneous species expressing a very diverse metabolomic pool. The combination of MALDI-TOF and PFGE provides, for the newly isolated strains, the same scenario presented by the previous studies of intra-specific diversity of S. ruber using a more restricted number of strains: the species seems to be very homogeneous at the ribosomal level while the genomic diversity encountered was rather high since no identical genome patterns could be retrieved from each of the samples. The high analytical mass resolution of ICR-FT/MS enabled the description of thousands of putative metabolites from which to date only few can be annotated in databases. Some metabolomic differences, mainly related to lipid metabolism and antibiotic-related compounds, provided enough specificity to delineate different clusters within the co-occurring strains. In addition, metabolomic differences were found between old and new strains isolated from the same ponds that could be related to extended exposure to laboratory conditions.
Collapse
Affiliation(s)
- Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Marianna Lucio
- Helmholtz Zentrum Munich, German Research Center for Environmental Health, Analytical BioGeoChemistry, Neuherberg, Germany
| | - Arantxa Peña
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Ana Cifuentes
- Marine Microbiology Group, Departament of Ecology and Marine Resources, Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Jocelyn Brito-Echeverría
- Marine Microbiology Group, Departament of Ecology and Marine Resources, Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Franco Moritz
- Helmholtz Zentrum Munich, German Research Center for Environmental Health, Analytical BioGeoChemistry, Neuherberg, Germany
| | - Dimitrios Tziotis
- Helmholtz Zentrum Munich, German Research Center for Environmental Health, Analytical BioGeoChemistry, Neuherberg, Germany
| | - Cristina López
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Mercedes Urdiain
- Marine Microbiology Group, Departament of Ecology and Marine Resources, Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Philippe Schmitt-Kopplin
- Marine Microbiology Group, Departament of Ecology and Marine Resources, Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan, Germany
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Departament of Ecology and Marine Resources, Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain
| |
Collapse
|
48
|
Williams D, Gogarten JP, Papke RT. Quantifying homologous replacement of loci between haloarchaeal species. Genome Biol Evol 2013; 4:1223-44. [PMID: 23160063 PMCID: PMC3542582 DOI: 10.1093/gbe/evs098] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In vitro studies of the haloarchaeal genus Haloferax have demonstrated
their ability to frequently exchange DNA between species, whereas rates of homologous
recombination estimated from natural populations in the genus Halorubrum
are high enough to maintain random association of alleles between five loci. To quantify
the effects of gene transfer and recombination of commonly held (relaxed core) genes
during the evolution of the class Halobacteria (haloarchaea), we reconstructed the history
of 21 genomes representing all major groups. Using a novel algorithm and a concatenated
ribosomal protein phylogeny as a reference, we created a directed horizontal genetic
transfer (HGT) network of contemporary and ancestral genomes. Gene order analysis revealed
that 90% of testable HGTs were by direct homologous replacement, rather than
nonhomologous integration followed by a loss. Network analysis revealed an inverse
log-linear relationship between HGT frequency and ribosomal protein evolutionary distance
that is maintained across the deepest divergences in Halobacteria. We use this
mathematical relationship to estimate the total transfers and amino acid substitutions
delivered by HGTs in each genome, providing a measure of chimerism. For the relaxed core
genes of each genome, we conservatively estimate that 11–20% of their
evolution occurred in other haloarchaea. Our findings are unexpected, because the transfer
and homologous recombination of relaxed core genes between members of the class
Halobacteria disrupts the coevolution of genes; however, the generation of new
combinations of divergent but functionally related genes may lead to adaptive phenotypes
not available through cumulative mutations and recombination within a single
population.
Collapse
Affiliation(s)
- David Williams
- Department of Molecular and Cell Biology, University of Connecticut, CT, USA
| | | | | |
Collapse
|
49
|
Podell S, Ugalde JA, Narasingarao P, Banfield JF, Heidelberg KB, Allen EE. Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS One 2013; 8:e61692. [PMID: 23637883 PMCID: PMC3630111 DOI: 10.1371/journal.pone.0061692] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/13/2013] [Indexed: 01/10/2023] Open
Abstract
Microbial populations inhabiting a natural hypersaline lake ecosystem in Lake Tyrrell, Victoria, Australia, have been characterized using deep metagenomic sampling, iterative de novo assembly, and multidimensional phylogenetic binning. Composite genomes representing habitat-specific microbial populations were reconstructed for eleven different archaea and one bacterium, comprising between 0.6 and 14.1% of the planktonic community. Eight of the eleven archaeal genomes were from microbial species without previously cultured representatives. These new genomes provide habitat-specific reference sequences enabling detailed, lineage-specific compartmentalization of predicted functional capabilities and cellular properties associated with both dominant and less abundant community members, including organisms previously known only by their 16S rRNA sequences. Together, these data provide a comprehensive, culture-independent genomic blueprint for ecosystem-wide analysis of protein functions, population structure, and lifestyles of co-existing, co-evolving microbial groups within the same natural habitat. The “assembly-driven” community genomic approach demonstrated in this study advances our ability to push beyond single gene investigations, and promotes genome-scale reconstructions as a tangible goal in the quest to define the metabolic, ecological, and evolutionary dynamics that underpin environmental microbial diversity.
Collapse
Affiliation(s)
- Sheila Podell
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Juan A. Ugalde
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Priya Narasingarao
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Jillian F. Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, United States of America
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, United States of America
| | - Karla B. Heidelberg
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Eric E. Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Zhaxybayeva O, Stepanauskas R, Mohan NR, Papke RT. Cell sorting analysis of geographically separated hypersaline environments. Extremophiles 2013; 17:265-75. [PMID: 23358730 DOI: 10.1007/s00792-013-0514-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/04/2013] [Indexed: 11/27/2022]
Abstract
Biogeography of microbial populations remains to be poorly understood, and a novel technique of single cell sorting promises a new level of resolution for microbial diversity studies. Using single cell sorting, we compared saturated NaCl brine environments (32-35 %) of the South Bay Salt Works in Chula Vista in California (USA) and Santa Pola saltern near Alicante (Spain). Although some overlap in community composition was detected, both samples were significantly different and included previously undiscovered 16S rRNA sequences. The community from Chula Vista saltern had a large bacterial fraction, which consisted of diverse Bacteroidetes and Proteobacteria. In contrast, Archaea dominated Santa Pola's community and its bacterial fraction consisted of the previously known Salinibacter lineages. The recently reported group of halophilic Archaea, Nanohaloarchaea, was detected at both sites. We demonstrate that cell sorting is a useful technique for analysis of halophilic microbial communities, and is capable of identifying yet unknown or divergent lineages. Furthermore, we argue that observed differences in community composition reflect restricted dispersal between sites, a likely mechanism for diversification of halophilic microorganisms.
Collapse
Affiliation(s)
- Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|