1
|
Sajid S, Zhang G, Zhang Z, Chen L, Lu Y, Fang JKH, Cai L. Comparative analysis of biofilm bacterial communities developed on different artificial reef materials. J Appl Microbiol 2024; 135:lxae268. [PMID: 39439203 DOI: 10.1093/jambio/lxae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
AIMS Artificial reefs play a vital role in restoring and creating new habitats for marine species by providing suitable substrates, especially in areas where natural substrates have been degraded or lost due to declining water quality, destructive fishing practices, and coral diseases. Artificial reef restoration aimed at coral larval settlement is gaining prominence and initially depends on the development of biofilms on reef surfaces. In this study, we hypothesized that different artificial reef materials selectively influence the composition of biofilm bacterial communities, which in turn affected coral larval settlement and the overall success of coral rehabilitation efforts. To test this hypothesis, we evaluated the impact of six different reef-made materials (porcelain, granite, coral skeleton, calcium carbonate, shell cement, and cement) on the development of biofilm bacterial communities and their potential to support coral larval settlement. METHODS AND RESULTS The biofilm bacterial communities were developed on different artificial reef materials and studied using 16S rRNA gene amplicon sequencing and analysis. The bacterial species richness and evenness were significantly (P < 0.05) low in the seawater, while these values were high in the reef materials. At the phylum level, the biofilm bacterial composition of all materials and seawater was majorly composed of Pseudomonadota, Cyanobacteria, and Bacteroidetes; however, significantly (P < 0.05) low Bacteroidetes were found in the seawater. At the genus level, Thalassomonas, Glaciecola, Halomicronema, Lewinella, Hyphomonas, Thalassospira, Polaribacter, and Tenacibaculum were significantly (P < 0.05) low in the coral skeleton and seawater, compared to the other reef materials. The genera Pseudoaltermonas and Thalassomonas (considered potential inducers of coral larval settlement) were highly abundant in the shell-cement biofilm, while low values were found in the biofilm of the other materials. CONCLUSION The biofilm bacterial community composition can be selective for different substrate materials, such as shell cement exhibited higher abundances of bacteria known to facilitate coral larval settlement, highlighting their potential in enhancing restoration outcomes.
Collapse
Affiliation(s)
- Sumbal Sajid
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoqiang Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Zongyao Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Lin Cai
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| |
Collapse
|
2
|
Uhl R, Bishop J, Jenkins H, Wood C, Adkins P, Azzopardi F. The genome sequence of the ruby bryozoan, Bugula neritina (Linnaeus, 1758). Wellcome Open Res 2024; 9:533. [PMID: 39415781 PMCID: PMC11480708 DOI: 10.12688/wellcomeopenres.23056.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
We present a genome assembly from a specimen of Bugula neritina (the ruby bryozoan; Bryozoa; Gymnolaemata; Cheilostomatida; Bugulidae). The genome sequence has total length of 216.00 megabases. Most of the assembly is scaffolded into 9 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 15.25 kilobases in length. Gene annotation of this assembly on Ensembl identified 20,264 protein-coding genes.
Collapse
Affiliation(s)
- Rebekka Uhl
- The Marine Biological Association, Plymouth, England, UK
| | - John Bishop
- The Marine Biological Association, Plymouth, England, UK
| | - Helen Jenkins
- The Marine Biological Association, Plymouth, England, UK
| | - Christine Wood
- The Marine Biological Association, Plymouth, England, UK
| | - Patrick Adkins
- The Marine Biological Association, Plymouth, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Seasonal dynamics of a complex cheilostome bryozoan symbiosis: vertical transfer challenged. Sci Rep 2023; 13:375. [PMID: 36611035 PMCID: PMC9825505 DOI: 10.1038/s41598-022-26251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Symbiotic associations are dynamic systems influenced by both intrinsic and extrinsic factors. Here we describe for the first time the developmental and seasonal changes of the funicular bodies in the bryozoan Dendrobeania fruticosa, which are unique temporary organs of cheilostome bryozoans containing prokaryotic symbionts. Histological and ultrastructural studies showed that these organs undergo strong seasonal modification in the White Sea during the ice-free period. Initially (in June) they play a trophic function and support the development of a large population of bacteria. From June to September, both funicular bodies and bacteria show signs of degradation accompanied by development of presumed virus-like particles (VLPs); these self-organize to hollow spheres inside bacteria and are also detected outside of them. Although the destruction of bacteria coincides with the development of VLPs and spheres, the general picture differs considerably from the known instances of bacteriophagy in bryozoans. We broadly discuss potential routes of bacterial infection in Bryozoa and question the hypothesis of vertical transfer, which, although widely accepted in the literature, is contradicted by molecular, morphological and ecological evidence.
Collapse
|
4
|
Abstract
Animal development is an inherently complex process that is regulated by highly conserved genomic networks, and the resulting phenotype may remain plastic in response to environmental signals. Despite development having been studied in a more natural setting for the past few decades, this framework often precludes the role of microbial prokaryotes in these processes. Here, we address how microbial symbioses impact animal development from the onset of gametogenesis through adulthood. We then provide a first assessment of which developmental processes may or may not be influenced by microbial symbioses and, in doing so, provide a holistic view of the budding discipline of developmental symbiosis.
Collapse
Affiliation(s)
- Tyler J Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel 24105, Germany.,Zoological Institute, Christian-Albrechts University of Kiel, Kiel 24118, Germany
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Kiel 24118, Germany
| |
Collapse
|
5
|
Unprecedented frequency of mitochondrial introns in colonial bilaterians. Sci Rep 2022; 12:10889. [PMID: 35764672 PMCID: PMC9240083 DOI: 10.1038/s41598-022-14477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Animal mitogenomes are typically devoid of introns. Here, we report the largest number of mitochondrial introns ever recorded from bilaterian animals. Mitochondrial introns were identified for the first time from the phylum Bryozoa. They were found in four species from three families (Order Cheilostomatida). A total of eight introns were found in the complete mitogenome of Exechonella vieirai, and five, 17 and 18 introns were found in the partial mitogenomes of Parantropora penelope, Discoporella cookae and Cupuladria biporosa, respectively. Intron-encoded protein domains reverse transcriptase and intron maturase (RVT-IM) were identified in all species. Introns in E. vieirai and P. penelope had conserved Group II intron ribozyme domains V and VI. Conserved domains were lacking from introns in D. cookae and C. biporosa, preventing their further categorization. Putative origins of metazoan introns were explored in a phylogenetic context, using an up-to-date alignment of mitochondrial RVT-IM domains. Results confirmed previous findings of multiple origins of annelid, placozoan and sponge RVT-IM domains and provided evidence for common intron donor sources across metazoan phyla. Our results corroborate growing evidence that some metazoans with regenerative abilities (i.e. placozoans, sponges, annelids and bryozoans) are susceptible to intron integration, most likely via horizontal gene transfer.
Collapse
|
6
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
7
|
Vishnyakov AE, Karagodina NP, Lim-Fong G, Ivanov PA, Schwaha TF, Letarov AV, Ostrovsky AN. First evidence of virus-like particles in the bacterial symbionts of Bryozoa. Sci Rep 2021; 11:4. [PMID: 33420126 PMCID: PMC7794531 DOI: 10.1038/s41598-020-78616-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/12/2020] [Indexed: 01/29/2023] Open
Abstract
Bacteriophage communities associated with humans and vertebrate animals have been extensively studied, but the data on phages living in invertebrates remain scarce. In fact, they have never been reported for most animal phyla. Our ultrastructural study showed for the first time a variety of virus-like particles (VLPs) and supposed virus-related structures inside symbiotic bacteria in two marine species from the phylum Bryozoa, the cheilostomes Bugula neritina and Paralicornia sinuosa. We also documented the effect of VLPs on bacterial hosts: we explain different bacterial 'ultrastructural types' detected in bryozoan tissues as stages in the gradual destruction of prokaryotic cells caused by viral multiplication during the lytic cycle. We speculate that viruses destroying bacteria regulate symbiont numbers in the bryozoan hosts, a phenomenon known in some insects. We develop two hypotheses explaining exo- and endogenous circulation of the viruses during the life-cycle of B. neritina. Finally, we compare unusual 'sea-urchin'-like structures found in the collapsed bacteria in P. sinuosa with so-called metamorphosis associated contractile structures (MACs) formed in the cells of the marine bacterium Pseudoalteromonas luteoviolacea which are known to trigger larval metamorphosis in a polychaete worm.
Collapse
Affiliation(s)
- A. E. Vishnyakov
- grid.15447.330000 0001 2289 6897Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, Saint Petersburg, Russian Federation 199034
| | - N. P. Karagodina
- grid.15447.330000 0001 2289 6897Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, Saint Petersburg, Russian Federation 199034
| | - G. Lim-Fong
- grid.262455.20000 0001 2205 6070Department of Biology, Randolph-Macon College, 304 Caroline Street, Ashland, VA 23005 USA
| | - P. A. Ivanov
- grid.4886.20000 0001 2192 9124Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow, Russian Federation 117312
| | - T. F. Schwaha
- grid.10420.370000 0001 2286 1424Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - A. V. Letarov
- grid.4886.20000 0001 2192 9124Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow, Russian Federation 117312 ,grid.14476.300000 0001 2342 9668Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russian Federation 119234
| | - A. N. Ostrovsky
- grid.15447.330000 0001 2289 6897Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, Saint Petersburg, Russian Federation 199034 ,grid.10420.370000 0001 2286 1424Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, Geozentrum, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
8
|
Draft genome of Bugula neritina, a colonial animal packing powerful symbionts and potential medicines. Sci Data 2020; 7:356. [PMID: 33082320 PMCID: PMC7576161 DOI: 10.1038/s41597-020-00684-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/09/2020] [Indexed: 11/11/2022] Open
Abstract
Many animal phyla have no representatives within the catalog of whole metazoan genome sequences. This dataset fills in one gap in the genome knowledge of animal phyla with a draft genome of Bugula neritina (phylum Bryozoa). Interest in this species spans ecology and biomedical sciences because B. neritina is the natural source of bioactive compounds called bryostatins. Here we present a draft assembly of the B. neritina genome obtained from PacBio and Illumina HiSeq data, as well as genes and proteins predicted de novo and verified using transcriptome data, along with the functional annotation. These sequences will permit a better understanding of host-symbiont interactions at the genomic level, and also contribute additional phylogenomic markers to evaluate Lophophorate or Lophotrochozoa phylogenetic relationships. The effort also fits well with plans to ultimately sequence all orders of the Metazoa. Measurement(s) | DNA • genome • sequence_assembly • sequence feature annotation | Technology Type(s) | DNA sequencing • sequence assembly process • sequence annotation | Sample Characteristic - Organism | Bugula neritina |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12988355
Collapse
|
9
|
Ciavatta ML, Lefranc F, Vieira LM, Kiss R, Carbone M, van Otterlo WAL, Lopanik NB, Waeschenbach A. The Phylum Bryozoa: From Biology to Biomedical Potential. Mar Drugs 2020; 18:E200. [PMID: 32283669 PMCID: PMC7230173 DOI: 10.3390/md18040200] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023] Open
Abstract
Less than one percent of marine natural products characterized since 1963 have been obtained from the phylum Bryozoa which, therefore, still represents a huge reservoir for the discovery of bioactive metabolites with its ~6000 described species. The current review is designed to highlight how bryozoans use sophisticated chemical defenses against their numerous predators and competitors, and which can be harbored for medicinal uses. This review collates all currently available chemoecological data about bryozoans and lists potential applications/benefits for human health. The core of the current review relates to the potential of bryozoan metabolites in human diseases with particular attention to viral, brain, and parasitic diseases. It additionally weighs the pros and cons of total syntheses of some bryozoan metabolites versus the synthesis of non-natural analogues, and explores the hopes put into the development of biotechnological approaches to provide sustainable amounts of bryozoan metabolites without harming the natural environment.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Leandro M. Vieira
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil;
| | - Robert Kiss
- Retired – formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS), 1000 Brussels, Belgium;
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Nicole B. Lopanik
- School of Earth and Atmospheric Sciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | | |
Collapse
|
10
|
Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression. Proc Natl Acad Sci U S A 2019; 116:7990-7999. [PMID: 30833394 DOI: 10.1073/pnas.1819897116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The colonization of an animal's tissues by its microbial partners creates networks of communication across the host's body. We used the natural binary light-organ symbiosis between the squid Euprymna scolopes and its luminous bacterial partner, Vibrio fischeri, to define the impact of colonization on transcriptomic networks in the host. A night-active predator, E. scolopes coordinates the bioluminescence of its symbiont with visual cues from the environment to camouflage against moon and starlight. Like mammals, this symbiosis has a complex developmental program and a strong day/night rhythm. We determined how symbiont colonization impacted gene expression in the light organ itself, as well as in two anatomically remote organs: the eye and gill. While the overall transcriptional signature of light organ and gill were more alike, the impact of symbiosis was most pronounced and similar in light organ and eye, both in juvenile and adult animals. Furthermore, the presence of a symbiosis drove daily rhythms of transcription within all three organs. Finally, a single mutation in V. fischeri-specifically, deletion of the lux operon, which abrogates symbiont luminescence-reduced the symbiosis-dependent transcriptome of the light organ by two-thirds. In addition, while the gills responded similarly to light-organ colonization by either the wild-type or mutant, luminescence was required for all of the colonization-associated transcriptional responses in the juvenile eye. This study defines not only the impact of symbiont colonization on the coordination of animal transcriptomes, but also provides insight into how such changes might impact the behavior and ecology of the host.
Collapse
|
11
|
Li H, Mishra M, Ding S, Miyamoto MM. Diversity and Dynamics of "Candidatus Endobugula" and Other Symbiotic Bacteria in Chinese Populations of the Bryozoan, Bugula neritina. MICROBIAL ECOLOGY 2019; 77:243-256. [PMID: 30141128 DOI: 10.1007/s00248-018-1233-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Bugula neritina is a common invasive cosmopolitan bryozoan that harbors (like many sessile marine invertebrates) a symbiotic bacterial (SB) community. Among the SB of B. neritina, "Candidatus Endobugula sertula" continues to receive the greatest attention, because it is the source of bryostatins. The bryostatins are potent bioactive polyketides, which have been investigated for their therapeutic potential to treat various cancers, Alzheimer's disease, and AIDS. In this study, we compare the metagenomics sequences for the 16S ribosomal RNA gene of the SB communities from different geographic and life cycle samples of Chinese B. neritina. Using a variety of approaches for estimating alpha/beta diversity and taxonomic abundance, we find that the SB communities vary geographically with invertebrate and fish mariculture and with latitude and environmental temperature. During the B. neritina life cycle, we find that the diversity and taxonomic abundances of the SB communities change with the onset of host metamorphosis, filter feeding, colony formation, reproduction, and increased bryostatin production. "Ca. Endobugula sertula" is confirmed as the symbiont of the Chinese "Ca. Endobugula"/B. neritina symbiosis. Our study extends our knowledge about B. neritina symbiosis from the New to the Old World and offers new insights into the environmental and life cycle factors that can influence its SB communities, "Ca. Endobugula," and bryostatins more globally.
Collapse
Affiliation(s)
- Hai Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Mrinal Mishra
- Department of Biology, University of Florida, Box 118525, Gainesville, FL, 32611-8525, USA
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| | - Michael M Miyamoto
- Department of Biology, University of Florida, Box 118525, Gainesville, FL, 32611-8525, USA
| |
Collapse
|
12
|
Morita M, Schmidt EW. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat Prod Rep 2018; 35:357-378. [PMID: 29441375 PMCID: PMC6025756 DOI: 10.1039/c7np00053g] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Symbiotic microbes interact with animals, often by producing natural products (specialized metabolites; secondary metabolites) that exert a biological role. A major goal is to determine which microbes produce biologically important compounds, a deceptively challenging task that often rests on correlative results, rather than hypothesis testing. Here, we examine the challenges and successes from the perspective of marine animal-bacterial mutualisms. These animals have historically provided a useful model because of their technical accessibility. By comparing biological systems, we suggest a common framework for establishing chemical interactions between animals and microbes.
Collapse
Affiliation(s)
- Maho Morita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA 84112.
| | | |
Collapse
|
13
|
Slocum ST, Lowell AN, Tripathi A, Shende VV, Smith JL, Sherman DH. Chemoenzymatic Dissection of Polyketide β-Branching in the Bryostatin Pathway. Methods Enzymol 2018; 604:207-236. [PMID: 29779653 PMCID: PMC6327954 DOI: 10.1016/bs.mie.2018.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
β-Branching is an expansion upon canonical polyketide synthase extension that allows for the installation of diverse chemical moieties in several natural products. Several of these moieties are unique among natural products, including the two vinyl methylesters found in the core structure of bryostatins. This family of molecules is derived from an obligate bacterial symbiont of a sessile marine bryozoan, Bugula neritina. Within this family, bryostatin 1 has been investigated as an anticancer, neuroprotective, and immunomodulatory compound. We have turned to the biosynthetic gene cluster within the bacterial symbiont to investigate the biosynthesis of bryostatins. Recent sequencing efforts resulted in the annotation of two missing genes: bryT and bryU. Using novel chemoenzymatic techniques, we have validated these as the missing enoyl-CoA hydratase and donor acyl carrier protein, essential components of the β-branching cassette of the bryostatin pathway. Together, this cassette installs the vinyl methylester moieties essential to the activity of bryostatins.
Collapse
Affiliation(s)
- Samuel T Slocum
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Andrew N Lowell
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Vikram V Shende
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Chemistry, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
14
|
Ultrastructural evidence for nutritional relationships between a marine colonial invertebrate (Bryozoa) and its bacterial symbionts. Symbiosis 2017; 75:155-164. [PMID: 29720781 PMCID: PMC5918527 DOI: 10.1007/s13199-017-0516-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022]
Abstract
Autozooids of the cheilostome bryozoan Aquiloniella scabra contain rod-like bacteria in the funicular bodies – the complex swellings of the funicular strands. Each funicular body contains symbionts in the central cavity surrounded by a large, synthetically active internal “sheath-cell” (bacteriocyte) and a group of the flat external cells. The tightly interdigitating lobes of these cells form a capsule well-isolated from the body cavity. Slit-like spaces between bacteria are filled with electron-dense matrix and cytoplasmic processes of various sizes and shapes (often branching) produced by the “sheath-cell”. The cell ultrastructure and complex construction of the funicular bodies as well as multiplication of the bacteria in them suggest metabolic exchange between host and symbiont, involving the nourishment of bacteria. We suggest that the bacteria, in turn, influence the bryozoan mesothelial tissue to form the funicular bodies as capsules for bacterial incubation. We present ultrastructural data, discuss possible variants in the development of the funicular bodies in Bryozoa, and propose the possible role of bacteria in the life of their bryozoan host.
Collapse
|
15
|
Temereva EN. Ground plan of the larval nervous system in phoronids: Evidence from larvae of viviparous phoronid. Evol Dev 2017; 19:171-189. [DOI: 10.1111/ede.12231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Elena N. Temereva
- Department of Invertebrate Zoology; Biological Faculty; Moscow State University; Moscow Russia
| |
Collapse
|
16
|
Flórez LV, Kaltenpoth M. Symbiont dynamics and strain diversity in the defensive mutualism between Lagria beetles and Burkholderia. Environ Microbiol 2017; 19:3674-3688. [PMID: 28752961 DOI: 10.1111/1462-2920.13868] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/18/2017] [Accepted: 07/22/2017] [Indexed: 12/11/2022]
Abstract
Defensive mutualisms are often facultative in nature, and their evolutionary dynamics can be shaped by changes in local antagonist communities or arms races with coevolving antagonists. Under these conditions, selection may favour hosts that flexibly acquire symbionts producing compounds with bioactivity against current antagonists. Here, we study the prevalence, dynamics and strain diversity of Burkholderia gladioli bacteria in Lagria beetles, a recently described protective symbiosis involving vertical transmission and antifungal defense for the host eggs. In Lagria hirta, we investigate the fate of the bacteria during the host life cycle. Despite a transmission route relying solely on the females, the bacteria are present in both sexes during the larval stage, suggesting a potentially multifaceted defensive role. In L. hirta and L. villosa adults, culture-dependent and -independent techniques revealed that individual beetles harbour diverse Burkholderia strains from at least two different phylogenetic clades, yet all closely related to free-living B. gladioli. Interestingly, rearing the beetles in the laboratory strongly impacted symbiont strain profiles in both beetle species. Our findings highlight the dynamic nature of the B. gladioli-Lagria symbiosis and present this as a valuable system for studying multiple strain coinfections, as well as the evolutionary and ecological factors regulating defensive symbiosis.
Collapse
Affiliation(s)
- Laura V Flórez
- Max Planck Institute for Chemical Ecology, Insect Symbiosis Research Group, Hans-Knöll-Str. 8, Jena 07745, Germany.,Department for Evolutionary Ecology, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, Mainz 55128, Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Insect Symbiosis Research Group, Hans-Knöll-Str. 8, Jena 07745, Germany.,Department for Evolutionary Ecology, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, Mainz 55128, Germany
| |
Collapse
|
17
|
Interpreting Microbial Biosynthesis in the Genomic Age: Biological and Practical Considerations. Mar Drugs 2017; 15:md15060165. [PMID: 28587290 PMCID: PMC5484115 DOI: 10.3390/md15060165] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on assembly of the salinilactam (slm) BGC.
Collapse
|
18
|
Olivera BM, Raghuraman S, Schmidt EW, Safavi-Hemami H. Linking neuroethology to the chemical biology of natural products: interactions between cone snails and their fish prey, a case study. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:717-735. [PMID: 28551870 DOI: 10.1007/s00359-017-1183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 11/24/2022]
Abstract
From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively studied by chemists and biochemists in the pharmaceutical industry. However, the biological purpose for which a natural product evolved is rarely addressed. By focusing on a well-studied group of natural products-venom components from predatory marine cone snails-this review provides a rationale for why a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as "Chemical Neuroethology", linking the substantial work carried out by chemists on natural products with accelerating advances in neuroethology.
Collapse
Affiliation(s)
| | | | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
19
|
Parrish SM, Yoshida W, Yang B, Williams PG. Ulapualides C-E Isolated from a Hawaiian Hexabranchus sanguineus Egg Mass. JOURNAL OF NATURAL PRODUCTS 2017; 80:726-730. [PMID: 28098996 PMCID: PMC5365346 DOI: 10.1021/acs.jnatprod.6b00896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three new ulapualides (3-5) were isolated from egg masses of the nudibranch Hexabranchus sanguineus. The structures of 3-5 were deduced by analyses of physical and spectroscopic data in comparisons with ulapualides A (1) and B (2). Ulapualide C demonstrated submicromolar cytotoxicity against select NCI cell lines (768-0, DU-145, MDA-MB-231, and A549) with the most potent activity against MDA-MB-231 cells (IC50 0.58 μM). Ulapualides A (1) and B (2) were 2- to 4-fold more potent than 3.
Collapse
Affiliation(s)
- Stephen M. Parrish
- Department of Chemistry, University of Hawaii at Manoa, Honolulu Hawaii, 96822
| | - Wesley Yoshida
- Department of Chemistry, University of Hawaii at Manoa, Honolulu Hawaii, 96822
| | - Baojun Yang
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii, 96813
| | - Philip G. Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu Hawaii, 96822
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii, 96813
| |
Collapse
|
20
|
Newman DJ. Predominately Uncultured Microbes as Sources of Bioactive Agents. Front Microbiol 2016; 7:1832. [PMID: 27917159 PMCID: PMC5114300 DOI: 10.3389/fmicb.2016.01832] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
In this short review, I am discussing the relatively recent awareness of the role of symbionts in plant, marine-invertebrates and fungal areas. It is now quite obvious that in marine-invertebrates, a majority of compounds found are from either as yet unculturable or poorly culturable microbes, and techniques involving “state of the art” genomic analyses and subsequent computerized analyses are required to investigate these interactions. In the plant kingdom evidence is amassing that endophytes (mainly fungal in nature) are heavily involved in secondary metabolite production and that mimicking the microbial interactions of fermentable microbes leads to involvement of previously unrecognized gene clusters (cryptic clusters is one name used), that when activated, produce previously unknown bioactive molecules.
Collapse
|
21
|
Kollar P, Šmejkal K, Salmonová H, Vlková E, Lepšová-Skácelová O, Balounová Z, Rajchard J, Cvačka J, Jaša L, Babica P, Pazourek J. Assessment of Chemical Impact of Invasive Bryozoan Pectinatella magnifica on the Environment: Cytotoxicity and Antimicrobial Activity of P. magnifica Extracts. Molecules 2016; 21:E1476. [PMID: 27827926 PMCID: PMC6272939 DOI: 10.3390/molecules21111476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022] Open
Abstract
Pectinatella magnifica, an invasive bryozoan, might significantly affect ecosystem balance due to its massive occurrence in many areas in Europe and other parts of the world. Biological and chemical analyses are needed to get complete information about the impact of the animal on the environment. In this paper, we aimed to evaluate in vitro cytotoxic effects of five extracts prepared from P. magnifica using LDH assay on THP-1 cell line. Antimicrobial activities of extracts against 22 different bacterial strains were tested by microdilution method. Our study showed that all extracts tested, except aqueous portion, demonstrated LD50 values below 100 μg/mL, which indicates potential toxicity. The water extract of P. magnifica with LD50 value of 250 μg/mL also shows potentially harmful effects. Also, an environmental risk resulting from the presence and increasing biomass of potentially toxic benthic cyanobacteria in old colonies should not be underestimated. Toxicity of Pectinatella extracts could be partially caused by presence of Aeromonas species in material, since we found members of these genera as most abundant bacteria associated with P. magnifica. Furthermore, P. magnifica seems to be a promising source of certain antimicrobial agents. Its methanolic extract, hexane, and chloroform fractions possessed selective inhibitory effect on some potential pathogens and food spoiling bacteria in the range of MIC 0.5-10 mg/mL. Future effort should be made to isolate and characterize the content compounds derived from P. magnifica, which could help to identify the substance(s) responsible for the toxic effects of P. magnifica extracts.
Collapse
Affiliation(s)
- Peter Kollar
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno 61242, Czech Republic.
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno 61242, Czech Republic.
| | - Hana Salmonová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16521, Czech Republic.
| | - Eva Vlková
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16521, Czech Republic.
| | - Olga Lepšová-Skácelová
- Department of Botany, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, České Budějovice 37005, Czech Republic.
| | - Zuzana Balounová
- Department of Biological Studies, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 13, České Budějovice 37005, Czech Republic.
| | - Josef Rajchard
- Department of Biological Studies, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 13, České Budějovice 37005, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, Prague 16610, Czech Republic.
| | - Libor Jaša
- RECETOX-Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 60200, Czech Republic.
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, Brno 60200, Czech Republic.
| | - Pavel Babica
- RECETOX-Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 60200, Czech Republic.
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, Brno 60200, Czech Republic.
| | - Jiří Pazourek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno 61242, Czech Republic.
| |
Collapse
|
22
|
Lack of Overt Genome Reduction in the Bryostatin-Producing Bryozoan Symbiont "Candidatus Endobugula sertula". Appl Environ Microbiol 2016; 82:6573-6583. [PMID: 27590822 DOI: 10.1128/aem.01800-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/25/2016] [Indexed: 11/20/2022] Open
Abstract
The uncultured bacterial symbiont "Candidatus Endobugula sertula" is known to produce cytotoxic compounds called bryostatins, which protect the larvae of its host, Bugula neritina The symbiont has never been successfully cultured, and it was thought that its genome might be significantly reduced. Here, we took a shotgun metagenomics and metatranscriptomics approach to assemble and characterize the genome of "Ca Endobugula sertula." We found that it had specific metabolic deficiencies in the biosynthesis of certain amino acids but few other signs of genome degradation, such as small size, abundant pseudogenes, and low coding density. We also identified homologs to genes associated with insect pathogenesis in other gammaproteobacteria, and these genes may be involved in host-symbiont interactions and vertical transmission. Metatranscriptomics revealed that these genes were highly expressed in a reproductive host, along with bry genes for the biosynthesis of bryostatins. We identified two new putative bry genes fragmented from the main bry operon, accounting for previously missing enzymatic functions in the pathway. We also determined that a gene previously assigned to the pathway, bryS, is not expressed in reproductive tissue, suggesting that it is not involved in the production of bryostatins. Our findings suggest that "Ca Endobugula sertula" may be able to live outside the host if its metabolic deficiencies are alleviated by medium components, which is consistent with recent findings that it may be possible for "Ca Endobugula sertula" to be transmitted horizontally. IMPORTANCE The bryostatins are potent protein kinase C activators that have been evaluated in clinical trials for a number of indications, including cancer and Alzheimer's disease. There is, therefore, considerable interest in securing a renewable supply of these compounds, which is currently only possible through aquaculture of Bugula neritina and total chemical synthesis. However, these approaches are labor-intensive and low-yielding and thus preclude the use of bryostatins as a viable therapeutic agent. Our genome assembly and transcriptome analysis for "Ca Endobugula sertula" shed light on the metabolism of this symbiont, potentially aiding isolation and culturing efforts. Our identification of additional bry genes may also facilitate efforts to express the complete pathway heterologously.
Collapse
|
23
|
Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome. Sci Rep 2016; 6:34362. [PMID: 27681823 PMCID: PMC5041132 DOI: 10.1038/srep34362] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Direct, untargeted sequencing of environmental samples (metagenomics) and de novo genome assembly enable the study of uncultured and phylogenetically divergent organisms. However, separating individual genomes from a mixed community has often relied on the differential-coverage analysis of multiple, deeply sequenced samples. In the metagenomic investigation of the marine bryozoan Bugula neritina, we uncovered seven bacterial genomes associated with a single B. neritina individual that appeared to be transient associates, two of which were unique to one individual and undetectable using certain “universal” 16S rRNA primers and probes. We recovered high quality genome assemblies for several rare instances of “microbial dark matter,” or phylogenetically divergent bacteria lacking genomes in reference databases, from a single tissue sample that was not subjected to any physical or chemical pre-treatment. One of these rare, divergent organisms has a small (593 kbp), poorly annotated genome with low GC content (20.9%) and a 16S rRNA gene with just 65% sequence similarity to the closest reference sequence. Our findings illustrate the importance of sampling strategy and de novo assembly of metagenomic reads to understand the extent and function of bacterial biodiversity.
Collapse
|
24
|
Martínez-García Á, Martín-Vivaldi M, Ruiz-Rodríguez M, Martínez-Bueno M, Arco L, Rodríguez-Ruano SM, Peralta-Sánchez JM, Soler JJ. The Microbiome of the Uropygial Secretion in Hoopoes Is Shaped Along the Nesting Phase. MICROBIAL ECOLOGY 2016; 72:252-261. [PMID: 27075655 DOI: 10.1007/s00248-016-0765-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Microbial symbiont acquisition by hosts may determine the effectiveness of the mutualistic relationships. A mix of vertical and horizontal transmission may be advantageous for hosts by allowing plastic changes of microbial communities depending on environmental conditions. Plasticity is well known for gut microbiota but is poorly understood for other symbionts of wild animals. We here explore the importance of environmental conditions experienced by nestling hoopoes (Upupa epops) during the late nesting phase determining microbiota in their uropygial gland. In cross-fostering experiments of 8 days old nestlings, "sibling-sibling" and "mother-offspring" comparisons were used to explore whether the bacterial community naturally established in the uropygial gland of nestlings could change depending on experimental environmental conditions (i.e., new nest environment). We found that the final microbiome of nestlings was mainly explained by nest of origin. Moreover, cross-fostered nestlings were more similar to their siblings and mothers than to their stepsiblings and stepmothers. We also detected a significant effect of nest of rearing, suggesting that nestling hoopoes acquire most bacterial symbionts during the first days of life but that the microbiome is dynamic and can be modified along the nestling period depending on environmental conditions. Estimated effects of nest of rearing, but also most of those of nest of origin are associated to environmental characteristics of nests, which are extended phenotypes of parents. Thus, natural selection may favor the acquisition of appropriated microbial symbionts for particular environmental conditions found in nests.
Collapse
Affiliation(s)
| | | | | | | | - Laura Arco
- Departamento de Zoología Universidad de Granada, E-18071, Granada, Spain
| | | | | | - Juan José Soler
- Estación Experimental de Zonas Áridas (CSIC), E-04120, Almería, Spain.
| |
Collapse
|
25
|
Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 2015; 32:904-36. [DOI: 10.1039/c5np00010f] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organisms team up with symbiotic microbes for defense against predators, parasites, parasitoids, or pathogens. Here we review the known defensive symbioses in animals and the microbial secondary metabolites responsible for providing protection to the host.
Collapse
Affiliation(s)
- Laura V. Flórez
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Peter H. W. Biedermann
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Tobias Engl
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| |
Collapse
|
26
|
Linneman J, Paulus D, Lim-Fong G, Lopanik NB. Latitudinal variation of a defensive symbiosis in the Bugula neritina (Bryozoa) sibling species complex. PLoS One 2014; 9:e108783. [PMID: 25275632 PMCID: PMC4183541 DOI: 10.1371/journal.pone.0108783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/04/2014] [Indexed: 11/27/2022] Open
Abstract
Mutualistic relationships are beneficial for both partners and are often studied within a single environment. However, when the range of the partners is large, geographical differences in selective pressure may shift the relationship outcome from positive to negative. The marine bryozoan Bugula neritina is a colonial invertebrate common in temperate waters worldwide. It is the source of bioactive polyketide metabolites, the bryostatins. Evidence suggests that an uncultured vertically transmitted symbiont, "Candidatus Endobugula sertula", hosted by B. neritina produces the bryostatins, which protect the vulnerable larvae from predation. Studies of B. neritina along the North American Atlantic coast revealed a complex of two morphologically similar sibling species separated by an apparent biogeographic barrier: the Type S sibling species was found below Cape Hatteras, North Carolina, while Type N was found above. Interestingly, the Type N colonies lack "Ca. Endobugula sertula" and, subsequently, defensive bryostatins; their documented northern distribution was consistent with traditional biogeographical paradigms of latitudinal variation in predation pressure. Upon further sampling of B. neritina populations, we found that both host types occur in wider distribution, with Type N colonies living south of Cape Hatteras, and Type S to the north. Distribution of the symbiont, however, was not restricted to Type S hosts. Genetic and microscopic evidence demonstrates the presence of the symbiont in some Type N colonies, and larvae from these colonies are endowed with defensive bryostatins and contain "Ca. Endobugula sertula". Molecular analysis of the symbiont from Type N colonies suggests an evolutionarily recent acquisition, which is remarkable for a symbiont thought to be transmitted only vertically. Furthermore, most Type S colonies found at higher latitudes lack the symbiont, suggesting that this host-symbiont relationship is more flexible than previously thought. Our data suggest that the symbiont, but not the host, is restricted by biogeographical boundaries.
Collapse
Affiliation(s)
- Jonathan Linneman
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Darcy Paulus
- Department of Biology, Randolph-Macon College, Ashland, Virginia, United States of America
| | - Grace Lim-Fong
- Department of Biology, Randolph-Macon College, Ashland, Virginia, United States of America
| | - Nicole B. Lopanik
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|
27
|
Mathew M, Lopanik NB. Host differentially expressed genes during association with its defensive endosymbiont. THE BIOLOGICAL BULLETIN 2014; 226:152-163. [PMID: 24797097 DOI: 10.1086/bblv226n2p152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mutualism, a beneficial relationship between two species, often requires intimate interaction between the host and symbiont to establish and maintain the partnership. The colonial marine bryozoan Bugula neritina harbors an as yet uncultured endosymbiont, "Candidatus Endobugula sertula," throughout its life stages. The bacterial symbiont is the putative source of bioactive complex polyketide metabolites, the bryostatins, which chemically defend B. neritina larvae from predation. Despite the presence of "Ca. Endobugula sertula" in all life stages of the host, deterrent bryostatins appear to be concentrated in reproductive portions of the host colony, suggesting an interaction between the two partners to coordinate production and distribution of the metabolites within the colony. In this study, we identified host genes that were differentially expressed in control colonies and in colonies cured of the symbiont. Genes that code for products similar to glycosyl hydrolase family 9 and family 20 proteins, actin, and a Rho-GDP dissociation inhibitor were significantly downregulated (more than twice) in antibiotic-cured non-reproductive zooids compared to control symbiotic ones. Differential expression of these genes leads us to hypothesize that the host B. neritina may regulate the distribution of the symbiont within the colony via mechanisms of biofilm degradation and actin rearrangement, and consequently, influences bryostatin localization to bestow symbiont-associated protection to larvae developing in the reproductive zooids.
Collapse
Affiliation(s)
- Meril Mathew
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | | |
Collapse
|
28
|
Douglas AE. Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb Perspect Biol 2014; 6:6/2/a016113. [PMID: 24492707 DOI: 10.1101/cshperspect.a016113] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotes have evolved and diversified in the context of persistent colonization by non-pathogenic microorganisms. Various resident microorganisms provide a metabolic capability absent from the host, resulting in increased ecological amplitude and often evolutionary diversification of the host. Some microorganisms confer primary metabolic pathways, such as photosynthesis and cellulose degradation, and others expand the repertoire of secondary metabolism, including the synthesis of toxins that confer protection against natural enemies. A further route by which microorganisms affect host fitness arises from their modulation of the eukaryotic-signaling networks that regulate growth, development, behavior, and other functions. These effects are not necessarily based on interactions beneficial to the host, but can be a consequence of either eukaryotic utilization of microbial products as cues or host-microbial conflict. By these routes, eukaryote-microbial interactions play an integral role in the function and evolutionary diversification of eukaryotes.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
29
|
Fehlauer-Ale KH, Mackie JA, Lim-Fong GE, Ale E, Pie MR, Waeschenbach A. Cryptic species in the cosmopolitanBugula neritinacomplex (Bryozoa, Cheilostomata). ZOOL SCR 2013. [DOI: 10.1111/zsc.12042] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Karin H. Fehlauer-Ale
- Laboratório de Sistemática e Evolução de Bryozoa; Centro de Biologia Marinha; Universidade de São Paulo; Rodovia Manoel Hypólito do Rego, km131,5 Praia do Cabelo Gordo CEP 11600-000 São Sebastião São Paulo Brazil
| | - Joshua A. Mackie
- Biological Sciences; San Jose State University; One Washington Square San Jose California 95192 USA
| | - Grace E. Lim-Fong
- Department of Biology; Randolph-Macon College; 304 Caroline Street Ashland Virginia 23005 USA
| | - Ezequiel Ale
- Departamento de Genética e Biologia Evolutiva; Instituto de Biociências da Universidade de São Paulo; Rua do Matão, 277 CEP 05508-090 São Paulo Brazil
| | - Marcio R. Pie
- Laboratório de Dinâmica Evolutiva e Sistemas Complexos; Departamento de Zoologia; Universidade Federal do Paraná; Caixa Postal 19020 CEP 81531-980 Curitiba Paraná Brazil
| | - Andrea Waeschenbach
- Department of Life Sciences; The Natural History Museum; Cromwell Road London SW7 5BD UK
| |
Collapse
|
30
|
Affiliation(s)
- Nicole B. Lopanik
- Department of Biology; Georgia State University; Atlanta Georgia 30303 USA
| |
Collapse
|
31
|
Wietz M, Duncan K, Patin NV, Jensen PR. Antagonistic interactions mediated by marine bacteria: the role of small molecules. J Chem Ecol 2013; 39:879-91. [PMID: 23852047 DOI: 10.1007/s10886-013-0316-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/17/2013] [Accepted: 06/25/2013] [Indexed: 12/21/2022]
Abstract
Marine bacteria are known to produce a wide variety of structurally diverse and biologically active secondary metabolites. Considerably less is known about the ecological functions of these compounds, in part due to methodological challenges associated with this field of research. Here, we review the antagonistic activities mediated by marine bacteria with a focus on activities linked to structurally defined secondary metabolites. Bacterial antagonism has been documented against other marine bacteria as well as eukaryotes, and includes antibiosis, the inhibition of quorum sensing, larval settlement deterrence, and defense against predation. These compounds likely play important ecological roles that ultimately affect ecosystem structure and function, however, much remains to be learned before these roles can be fully appreciated. Recent technological advances coupled with a better understanding of the diverse processes mediated by secondary metabolites provide new opportunities to expand our understanding of the chemical ecology of bacterial antagonism in the marine environment.
Collapse
Affiliation(s)
- Matthias Wietz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0204, USA
| | | | | | | |
Collapse
|
32
|
Piel J. Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annu Rev Microbiol 2012; 65:431-53. [PMID: 21682647 DOI: 10.1146/annurev-micro-090110-102805] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria are one of the most important sources of bioactive natural products for drug discovery. Yet, in most habitats only a small percentage of all existing prokaryotes is amenable to cultivation and chemical study. There is strong evidence that the uncultivated diversity represents an enormous resource of novel biosynthetic enzymes and secondary metabolites. In addition, many animal-derived drug candidates that are structurally characterized but difficult to access seem to be produced by uncultivated, symbiotic bacteria. This review provides an overview about established and emerging techniques for the investigation and exploitation of the environmental metabolome. These include metagenomic library construction and screening, heterologous expression, community sequencing, and single-cell methods. Such tools, the advantages and shortcomings of which are discussed, have just begun to reveal the full metabolic potential of free-living and symbiotic bacteria, providing exciting new avenues for natural product research and environmental microbiology.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé Insitute of Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
33
|
Rath CM, Janto B, Earl J, Ahmed A, Hu FZ, Hiller L, Dahlgren M, Kreft R, Yu F, Wolff JJ, Kweon HK, Christiansen MA, Håkansson K, Williams RM, Ehrlich GD, Sherman DH. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol 2011; 6:1244-56. [PMID: 21875091 DOI: 10.1021/cb200244t] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In many macroorganisms, the ultimate source of potent biologically active natural products has remained elusive due to an inability to identify and culture the producing symbiotic microorganisms. As a model system for developing a meta-omic approach to identify and characterize natural product pathways from invertebrate-derived microbial consortia, we chose to investigate the ET-743 (Yondelis) biosynthetic pathway. This molecule is an approved anticancer agent obtained in low abundance (10(-4)-10(-5) % w/w) from the tunicate Ecteinascidia turbinata and is generated in suitable quantities for clinical use by a lengthy semisynthetic process. On the basis of structural similarities to three bacterial secondary metabolites, we hypothesized that ET-743 is the product of a marine bacterial symbiont. Using metagenomic sequencing of total DNA from the tunicate/microbial consortium, we targeted and assembled a 35 kb contig containing 25 genes that comprise the core of the NRPS biosynthetic pathway for this valuable anticancer agent. Rigorous sequence analysis based on codon usage of two large unlinked contigs suggests that Candidatus Endoecteinascidia frumentensis produces the ET-743 metabolite. Subsequent metaproteomic analysis confirmed expression of three key biosynthetic proteins. Moreover, the predicted activity of an enzyme for assembly of the tetrahydroisoquinoline core of ET-743 was verified in vitro. This work provides a foundation for direct production of the drug and new analogues through metabolic engineering. We expect that the interdisciplinary approach described is applicable to diverse host-symbiont systems that generate valuable natural products for drug discovery and development.
Collapse
Affiliation(s)
| | - Benjamin Janto
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Josh Earl
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Azad Ahmed
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Fen Z. Hu
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
| | - Luisa Hiller
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Meg Dahlgren
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Rachael Kreft
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | | | - Jeremy J. Wolff
- Bruker Daltonics, Billerica, Massachusetts 01821, United States
| | | | | | | | - Robert M. Williams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
| | | |
Collapse
|
34
|
Trindade-Silva AE, Lim-Fong GE, Sharp KH, Haygood MG. Bryostatins: biological context and biotechnological prospects. Curr Opin Biotechnol 2011; 21:834-42. [PMID: 20971628 DOI: 10.1016/j.copbio.2010.09.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/25/2010] [Accepted: 09/29/2010] [Indexed: 11/18/2022]
Abstract
Bryostatins are a family of protein kinase C modulators that have potential applications in biomedicine. Found in miniscule quantities in a small marine invertebrate, lack of supply has hampered their development. In recent years, bryostatins have been shown to have potent bioactivity in the central nervous system, an uncultivated marine bacterial symbiont has been shown to be the likely natural source of the bryostatins, the bryostatin biosynthetic genes have been identified and characterized, and bryostatin analogues with promising biological activity have been developed and tested. Challenges in the development of bryostatins for biomedical and biotechnological application include the cultivation of the bacterial symbiont and heterologous expression of bryostatin biosynthesis genes. Continued exploration of the biology as well as the symbiotic origin of the bryostatins presents promising opportunities for discovery of additional bryostatins, and new functions for bryostatins.
Collapse
Affiliation(s)
- Amaro E Trindade-Silva
- Instituto de Química de São Carlos, Universidade de São Paulo CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
35
|
Gulder TAM, Freeman MF, Piel J. The Catalytic Diversity of Multimodular Polyketide Synthases: Natural Product Biosynthesis Beyond Textbook Assembly Rules. Top Curr Chem (Cham) 2011. [PMID: 21360321 DOI: 10.1007/128_2010_113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacterial multimodular polyketide synthases (PKSs) are responsible for the biosynthesis of a wide range of pharmacologically active natural products. These megaenzymes contain numerous catalytic and structural domains and act as biochemical templates to generate complex polyketides in an assembly line-like fashion. While the prototypical PKS is composed of only a few different domain types that are fused together in a combinatorial fashion, an increasing number of enzymes is being found that contain additional components. These domains can introduce remarkably diverse modifications into polyketides. This review discusses our current understanding of such noncanonical domains and their role in expanding the biosynthetic versatility of bacterial PKSs.
Collapse
|
36
|
In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides. Proc Natl Acad Sci U S A 2010; 107:18067-72. [PMID: 20921390 DOI: 10.1073/pnas.1008573107] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Early embryos of many organisms develop outside the mother and are immediately confronted with myriads of potential colonizers. How these naive developmental stages control and shape the bacterial colonization is largely unknown. Here we show that early embryonic stages of the basal metazoan Hydra are able to control bacterial colonization by using maternal antimicrobial peptides. Antimicrobial peptides of the periculin family selecting for a specific bacterial colonization during embryogenesis are produced in the oocyte and in early embryos. If overexpressed in hydra ectodermal epithelial cells, periculin1a drastically reduces the bacterial load, indicating potent antimicrobial activity. Unexpectedly, transgenic polyps also revealed that periculin, in addition to bactericidal activity, changes the structure of the bacterial community. These findings delineate a role for antimicrobial peptides both in selecting particular bacterial partners during development and as important components of a "be prepared" strategy providing transgenerational protection.
Collapse
|
37
|
Abstract
This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that have recently been recognized as one of the major group of proteins involved in the production of bioactive polyketides. 436 references are cited.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
38
|
Heindl H, Wiese J, Thiel V, Imhoff JF. Phylogenetic diversity and antimicrobial activities of bryozoan-associated bacteria isolated from Mediterranean and Baltic Sea habitats. Syst Appl Microbiol 2010; 33:94-104. [DOI: 10.1016/j.syapm.2009.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/08/2009] [Accepted: 12/14/2009] [Indexed: 10/19/2022]
|
39
|
Abstract
The perpetuation of symbioses through host generations relies on symbiont transmission. Horizontally transmitted symbionts are taken up from the environment anew by each host generation, and vertically transmitted symbionts are most often transferred through the female germ line. Mixed modes also exist. In this Review we describe the journey of symbionts from the initial contact to their final residence. We provide an overview of the molecular mechanisms that mediate symbiont attraction and accumulation, interpartner recognition and selection, as well as symbiont confrontation with the host immune system. We also discuss how the two main transmission modes shape the evolution of the symbiotic partners.
Collapse
Affiliation(s)
- Monika Bright
- University of Vienna, Department of Marine Biology, Althanstrasse 14, A-1090 Vienna, Austria.
| | | |
Collapse
|
40
|
Brady SF, Simmons L, Kim JH, Schmidt EW. Metagenomic approaches to natural products from free-living and symbiotic organisms. Nat Prod Rep 2009; 26:1488-503. [PMID: 19844642 DOI: 10.1039/b817078a] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sean F Brady
- The Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
41
|
Matz C. Biochemische Interaktionen in Marinen Biofilmen. Kampf, Kommunikation, Kooperation. CHEM UNSERER ZEIT 2009. [DOI: 10.1002/ciuz.200900489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Abstract
Insect heritable symbionts have proven to be ubiquitous, based on molecular screening of various insect lineages. Recently, molecular and experimental approaches have yielded an immensely richer understanding of their diverse biological roles, resulting in a burgeoning research literature. Increasingly, commonalities and intermediates are being discovered between categories of symbionts once considered distinct: obligate mutualists that provision nutrients, facultative mutualists that provide protection against enemies or stress, and symbionts such as Wolbachia that manipulate reproductive systems. Among the most far-reaching impacts of widespread heritable symbiosis is that it may promote speciation by increasing reproductive and ecological isolation of host populations, and it effectively provides a means for transfer of genetic information among host lineages. In addition, insect symbionts provide some of the extremes of cellular genomes, including the smallest and the fastest evolving, raising new questions about the limits of evolution of life.
Collapse
Affiliation(s)
- Nancy A Moran
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
43
|
Hay ME. Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2009; 1:193-212. [PMID: 21141035 PMCID: PMC3380104 DOI: 10.1146/annurev.marine.010908.163708] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized.
Collapse
Affiliation(s)
- Mark E Hay
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
44
|
Abstract
This review describes secondary metabolites that have been shown to be synthesized by symbiotic bacteria, or for which this possibility has been discussed. It includes 365 references.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
45
|
Abstract
It is probable that nearly every natural product structure results from interactions between organisms. Symbiosis, a subset of inter-organism interactions involving closely associated partners, has recently provided new and interesting experimental systems for the study of these interactions. This review discusses new observations about natural product function and structural evolution that emerge from the study of symbiotic systems. In particular, these advances directly address long-standing 'how' and 'why' questions about natural products, providing fundamental insights about the evolution, origin and purpose of natural products that are inaccessible by other methods.
Collapse
Affiliation(s)
- Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
46
|
Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 2008; 25:475-516. [PMID: 18497896 DOI: 10.1039/b514294f] [Citation(s) in RCA: 515] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural product and natural product-derived compounds that are being evaluated in clinical trials or are in registration (as at 31st December 2007) have been reviewed, as well as natural product-derived compounds for which clinical trials have been halted or discontinued since 2005. Also discussed are natural product-derived drugs launched since 2005, new natural product templates and late-stage development candidates.
Collapse
Affiliation(s)
- Mark S Butler
- MerLion Pharmaceuticals, 1 Science Park Road, The Capricorn 05-01, Singapore Science Park II, Singapore 117528.
| |
Collapse
|
47
|
|