1
|
Wang W, Bi S, Li F, Degen AA, Li S, Huang M, Luo B, Zhang T, Qi S, Qi T, Bai Y, Liu P, Shang Z. Soil organic matter composition affects ecosystem multifunctionality by mediating the composition of microbial communities in long-term restored meadows. ENVIRONMENTAL MICROBIOME 2025; 20:22. [PMID: 39923116 PMCID: PMC11807318 DOI: 10.1186/s40793-025-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Soil organic matter composition and microbial communities are key factors affecting ecosystem multifunctionality (EMF) during ecosystem restoration. However, there is little information on their interacting mechanisms in degraded and restored meadows. To fill this knowledge gap, plant, root and soil samples from alpine swamp meadows, alpine Kobresia meadows, severely degraded alpine meadows, short-term restored meadows (< 5 years) and long-term restored meadows (6-14 years) were collected. We leveraged high-throughput sequencing, liquid chromatography and mass spectrometry to characterize soil microbial communities and soil organic matter composition, measured microbial carbon metabolism and determined EMF. RESULTS It emerged that the similarity of soil microorganisms in meadows decreased with increasing heterogeneity of soil properties. Dispersal limitation and ecological drift led to the homogenization of the bacterial community. Based on co-occurrence network analysis, an increase in microbial network complexity promoted EMF. Root total phosphorus and soil organic matter components were the key predictors of EMF, while organic acids and phenolic acids increased the stability of the microbial network in long-term restored meadows. Carbon metabolism did not increase in restored meadows, but the niche breadth of soil microorganisms and the utilization efficiency of small molecular carbon sources such as amino acids did increase. CONCLUSIONS These findings emphasize the importance of soil organic matter composition in ecological restoration and that the composition should be considered in management strategies aimed at enhancing EMF.
Collapse
Affiliation(s)
- Wenyin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Sisi Bi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Fei Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - A Allan Degen
- Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8410500, Beer Sheva, Israel
| | - Shanshan Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Mei Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Binyu Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Tao Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shuai Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Tianyun Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yanfu Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Peipei Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhanhuan Shang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Miao Y, Wang W, Xu H, Xia Y, Gong Q, Xu Z, Zhang N, Xun W, Shen Q, Zhang R. A novel decomposer-exploiter interaction framework of plant residue microbial decomposition. Genome Biol 2025; 26:20. [PMID: 39901283 PMCID: PMC11792400 DOI: 10.1186/s13059-025-03486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Plant residue microbial decomposition, subject to significant environmental regulation, represents a crucial ecological process shaping and cycling the largest terrestrial soil organic carbon pool. However, the fundamental understanding of the functional dynamics and interactions between the principal participants, fungi and bacteria, in natural habitats remains limited. RESULTS In this study, the evolution of fungal and bacterial communities and their functional interactions were elucidated during the degradation of complexity-gradient plant residues. The results reveal that with increasing residue complexity, fungi exhibit heightened adaptability, while bacterial richness declines sharply. The differential functional evolution of fungi and bacteria is driven by residue complexity but follows distinct trajectories. Fundamentally, fungi evolve towards promoting plant residue degradation and so consistently act as the dominant decomposers. Conversely, bacteria predominantly increase expression of genes of glycosidases to exploit fungal degradation products, thereby consistently acting as exploiters. The presence of fungi enables and endures bacterial exploitation. CONCLUSIONS This study introduces a novel framework of fungal decomposers and bacterial exploiters during plant residue microbial decomposition, advancing our comprehensive understanding of microbial processes governing the organic carbon cycling.
Collapse
Affiliation(s)
- Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Wei Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Huanhuan Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yanwei Xia
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qingxin Gong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
3
|
Frasca S, Alabiso A, D'Andrea MM, Migliore L. Uncovering the Fungal Community Composition of Alive and Dead Posidonia oceanica Matte. MICROBIAL ECOLOGY 2025; 87:170. [PMID: 39789151 PMCID: PMC11717839 DOI: 10.1007/s00248-025-02492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Posidonia oceanica retains a large amount of carbon within its belowground recalcitrant structure, the 'matte,' which is characterized by low oxygen availability and biodegradation. Fungi may play a pivotal role in carbon sequestration within the matte, even if little/no information is available. To fill this gap, we profiled fungal communities from the upper and lower layers of alive and dead matte, by using an ITS2-5.8S rDNA metabarcoding approach. The study was conducted in a shallow coastal stretch of the Aegean Sea (Crete). Then, 184 operational taxonomic units were identified, predominantly belonging to Ascomycota, in alive and dead matte. Nevertheless, their composition significantly differed: the host-specific Posidoniomyces atricolor was dominant in alive but not in dead matte, while fast-growing saprotrophs, potentially accelerating the decomposition rate, increased in dead matte. These findings lay the groundwork for future investigations on the possible increase of biodegradation under the changing environmental conditions.
Collapse
Affiliation(s)
- Sara Frasca
- PhD Program in Evolutionary Biology and Ecology, Tor Vergata University of Rome, 00133, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Annamaria Alabiso
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Luciana Migliore
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
- eCampus University, 22060, Novedrate (CO), Italy.
| |
Collapse
|
4
|
Singer F, Kuhring M, Renard BY, Muth T. Moving Toward Metaproteogenomics: A Computational Perspective on Analyzing Microbial Samples via Proteogenomics. Methods Mol Biol 2025; 2859:297-318. [PMID: 39436609 DOI: 10.1007/978-1-0716-4152-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Microbial sample analysis has received growing attention within the last decade, driven by important findings in microbiome research and promising applications in the biotechnological field. Modern mass spectrometry-based methodology has been established in this context, providing sufficient sensitivity, resolution, dynamic range, and throughput to analyze the so-called metaproteome of complex microbial mixtures from clinical or environmental samples. While proteomic analyses were previously restricted to common model organisms, next-generation sequencing technologies nowadays allow for the rapid and cost-efficient characterization of whole metagenomes of microbial consortia and specific genomes from non-model organisms to which microbes contribute by significant amounts. This proteogenomic approach, meaning the combined application of genomic and proteomic methods, enables researchers to create a protein database that presents a tailored blueprint of the microbial sample under investigation. This contribution provides an overview of the computational challenges and opportunities in proteogenomics and metaproteomics as of January 2018. For practical application, we first showcase an integrative proteogenomic method that circumvents existing reference databases by creating sample-specific transcripts. The underlying algorithm uses a graph network approach that combines RNA-Seq and peptide information. As a second example, we provide a tutorial for a simulation tool that estimates the computational limits of detecting microbial non-model organisms. This method evaluates the potential influence of error-tolerant searches and proteogenomic approaches on databases of interest. Finally, we discuss recommendations for developing future strategies that may help overcome present limitations by combining the strengths of genome- and proteome-based methods and moving toward an integrated metaproteogenomics approach.
Collapse
Affiliation(s)
- Franziska Singer
- NEXUS Personalized Health Technologies, ETH Zürich, Zürich, Switzerland
- Research Group Bioinformatics (NG4), Robert Koch Institute, Berlin, Germany
| | - Mathias Kuhring
- Core Unit Bioinformatics, Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Bernhard Y Renard
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Potsdam, Germany.
- Bioinformatics Unit, Department for Methods Development and Research Infrastructure, Robert Koch Institute, Berlin, Germany.
| | - Thilo Muth
- Domain Data Competence Center (MF2), Department for Research Infrastructure and Information Technology, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
5
|
Xia Y, Wang S, Zhang X, Fu F, Deng H, Zhao Y, Yu H, Ge C. Deciphering how endogenous mangrove litterfall influences organic matters transformation driven by microbes in sediment with exogenous microplastics inputs. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135763. [PMID: 39270589 DOI: 10.1016/j.jhazmat.2024.135763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The effects of endogenous mangrove litterfall (MF) inputs on organic matter transformation in sediment polluted by exogenous microplastics (MPs) were investigated in this work, and their linkage with microbial characteristics was also explored. MF inputs significantly affected organic carbon transformation in MPs-polluted sediment by improving humification, enzymatic activities and carbon utilisation capacity of microbes. Such effects were mainly linked with the enrichment of microbes responsible for organic substance decomposition induced by MF inputs. Indeed, MF addition increased the relative abundance of fermentation- and cellulysis-assoicated bacteria, together with Saprotrophic fungi. Moreover, dissolved matters derived from MF played a non-neglected role in regulating organic carbon transformation in MPs-polluted sediment. Besides, MF addition decreased the complexity of bacterial community network in MPs-polluted sediment but fungal community network became complicated. And the complexity of microbial network was MF amount-dependent. Even though stochastic process was dominated in sediment with or without MF, MF inputs enhanced the relative contribution of determinism and reduced the migration of microbial communities. A strong response of sediment microbes to MF affected sedimentary organic matters transformation driven by microbes. This work uncovered linkages between organic carbon transformation and microbes in sediment with endogenous litterfall and exogenous MPs inputs in mangroves.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Shu Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xinran Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Faying Fu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China.
| | - Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Whalen ED, Grandy AS, Geyer KM, Morrison EW, Frey SD. Microbial trait multifunctionality drives soil organic matter formation potential. Nat Commun 2024; 15:10209. [PMID: 39587087 PMCID: PMC11589708 DOI: 10.1038/s41467-024-53947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Soil microbes are a major source of organic residues that accumulate as soil organic matter, the largest terrestrial reservoir of carbon on Earth. As such, there is growing interest in determining the microbial traits that drive soil organic matter formation and stabilization; however, whether certain microbial traits consistently predict soil organic matter accumulation across different functional pools (e.g., total vs. stable soil organic matter) is unresolved. To address these uncertainties, we incubated individual species of fungi in soil organic matter-free model soils, allowing us to directly relate the physiological, morphological, and biochemical traits of fungi to their soil organic matter formation potentials. We find that the formation of different soil organic matter functional pools is associated with distinct fungal traits, and that 'multifunctional' species with intermediate investment across this key grouping of traits (namely, carbon use efficiency, growth rate, turnover rate, and biomass protein and phenol contents) promote soil organic matter formation, functional complexity, and stability. Our results highlight the limitations of categorical trait-based frameworks that describe binary trade-offs between microbial traits, instead emphasizing the importance of synergies among microbial traits for the formation of functionally complex soil organic matter.
Collapse
Affiliation(s)
- Emily D Whalen
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA.
- Center for Soil Biogeochemistry and Microbial Ecology, University of New Hampshire, Durham, NH, USA.
| | - A Stuart Grandy
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Center for Soil Biogeochemistry and Microbial Ecology, University of New Hampshire, Durham, NH, USA
| | - Kevin M Geyer
- Department of Biology, Young Harris College, Young Harris, GA, USA
| | - Eric W Morrison
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Serita D Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Center for Soil Biogeochemistry and Microbial Ecology, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
7
|
Wang B, Dou Y, Liang C, Liu C, Ao D, Yao H, Yang E, An S, Wen Z. Microbial necromass in soil profiles increases less efficiently than root biomass in long-term fenced grassland: Effects of microbial nitrogen limitation and soil depth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177058. [PMID: 39461531 DOI: 10.1016/j.scitotenv.2024.177058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/11/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Grassland fencing is acknowledged as a crucial initiative to enhance biodiversity and to increase soil organic carbon (SOC) content in ecologically fragile regions or barren systems. Theoretical perspectives propose that fencing induced an increase in root biomass, and its penetration into the soil profile introduced organic matter that facilitated SOC formation through microbial necromass and root residues. It is hypothesized that long-term grassland fencing increases root biomass, thereby enhancing SOC formation within the soil profile through microbial residues in badland ecosystems. To test this hypothesis, we selected grasslands subjected to varying durations of fencing post-grazing (i.e., 10, 15, 20, 30, and 40 y). Our investigation aimed to clarify microbial necromass dynamics in 0-100 cm soil profiles after fencing and to identify the influencing factors. Long-term grassland fencing (i.e., >30 y) increased root biomass by 160 %, SOC by 69 %, and necromass by 41 % compared to grazed grassland within the 0-40 cm horizon; in contrast, increased root biomass by 870 %, SOC by 111 %, and necromass by 46 % in the 40-100 cm horizon. Necromass in deep soil (40-100 cm) accounted for about 50 % of total residues in the 0-100 cm profile. Increased root and living microbial biomass stimulated the necromass accumulation, with a more pronounced increase in fungal residues compared with bacterial residues. Nonetheless, microbial nutrient limitation increases C or N-acquisition enzyme coefficients, which subsequently reduced fungal and bacterial residues and stimulated their recycling. Despite substantial increases in root biomass within the soil profile after fencing, limitation of microbial N and depth reduced the effectiveness of enhancing SOC and necromass. In conclusion, although microbial residues were the important source of SOC in grasslands of the Loess Plateau, microbial N limitation impeded necromass accumulation, and the interplay of root biomass, soil depth, and nutrient limitation regulated the dynamics of necromass following grassland fencing.
Collapse
Affiliation(s)
- Baorong Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yanxing Dou
- College of forestry, Northwest A&F University, Yangling 712100i, China.
| | - Chao Liang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chunhui Liu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Deng Ao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjia Yao
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Env Yang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Shaoshan An
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
| | - Zhongming Wen
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
8
|
Han Q, Wang S, Han B, Su W, Yang J, Yu Q, Li H. Temporal dynamics of the diazotrophic community during corpse decomposition. Appl Microbiol Biotechnol 2024; 108:506. [PMID: 39520567 PMCID: PMC11550258 DOI: 10.1007/s00253-024-13329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Corpse decomposition affects soil organisms through the formation of "cadaver decomposition islands." Soil diazotrophic microbes possess essential ecological functions on nitrogen input and nutrient cycling in the terrestrial ecosystem. However, our knowledge about how soil diazotrophic communities respond to corpse decomposition is lacking. In this study, we focused on the succession patterns and biological interaction of nitrogen-fixing microorganisms during animal (Ochotona curzoniae) corpse decomposition in terrestrial ecosystems by targeting nifH gene with high-throughput sequencing. Our results revealed that corpse decomposition of pikas reduced the α diversity and significantly impacted the β diversity of diazotrophic community across different decomposition stages. The divergent succession of diazotrophic community occurred under corpse pressure. Furthermore, the relative importance of stochasticity to the community assembly was improved by corpse decomposition, while the importance decreased over decomposition time. Cadaver decay also simplified the diazotrophic networks and weakened the biological interactions among diazotrophic populations. Notably, NH4-N was the most important factor affecting diazotrophic community, followed by time and total carbon. This work emphasized that corpse decomposition perhaps influences the process of biological nitrogen fixation by altering soil diazotrophic communities, which is of great significance for understanding the terrestrial ecosystems' nitrogen cycle functions. KEY POINTS: • Corpse decomposition reduced the α diversity of diazotrophic community. • Corpse decomposition improved the stochasticity of diazotrophic community assembly. • Corpse decomposition weakened the interactions among diazotrophic populations.
Collapse
Affiliation(s)
- Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Binghua Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Song B, Wang T, Wan C, Cai Y, Mao L, Ge Z, Yang N. Diversity Patterns and Drivers of Soil Bacterial and Fungal Communities in a Muddy Coastal Wetland of China. J Fungi (Basel) 2024; 10:770. [PMID: 39590689 PMCID: PMC11595316 DOI: 10.3390/jof10110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Elucidating the dynamics of soil microbial diversity in coastal wetlands is essential for understanding the changes in ecological functions within these ecosystems, particularly in the context of climate change and improper management practices. In this study, the diversity patterns and influencing factors of soil bacterial and fungal communities in a muddy coastal wetland in China were investigated using Illumina sequencing of 16S rRNA and ITS1, across wetlands dominated by different vegetations and varying proximity to the coastline. The wetlands include four plots dominated by Spartina alterniflora (SA1), four plots dominated by Suaeda glauca (SG2), additional four plots of Suaeda glauca (SG3), and four plots dominated by Phragmites australis (PA4), ranging from the nearest to the coast to those farther away. The results revealed significant differences in bacterial richness (Observed_species index) and fungal diversity (Shannon index) across different wetlands, with SG3 demonstrating the lowest bacterial Observed_species value (1430.05), while SA1 exhibited the highest fungal Shannon value (5.55) and PA4 showing the lowest fungal Shannon value (3.10). Soil bacterial and fungal community structures differed significantly across different wetlands. The contents of soil available phosphorus and total phosphorus were the main drivers for fungal Observed_species and Shannon index, respectively. Soil organic carbon, pH, and salinity were indicated as the best predictors of bacterial community structure, accounting for 28.1% of the total variation. The total nitrogen content and soil salinity contributed mostly to regulating fungal community structure across different wetlands, accounting for 19.4% of the total variation. The results of this study offer a thorough understanding of the response and variability in soil microbial diversity across the muddy coastal wetlands in China.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiwei Ge
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.S.); (T.W.); (C.W.); (Y.C.); (L.M.)
| | - Nan Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.S.); (T.W.); (C.W.); (Y.C.); (L.M.)
| |
Collapse
|
10
|
Yu H, Xiao H, Deng H, Frew A, Hossain MA, Tan W, Xi B. Upgrade from aerated static pile to agitated bed systems promotes lignocellulose degradation in large-scale composting through enhanced microbial functional diversity. J Environ Sci (China) 2024; 144:55-66. [PMID: 38802238 DOI: 10.1016/j.jes.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 05/29/2024]
Abstract
Composting presents a viable management solution for lignocellulose-rich municipal solid waste. However, our understanding about the microbial metabolic mechanisms involved in the biodegradation of lignocellulose, particularly in industrial-scale composting plants, remains limited. This study employed metaproteomics to compare the impact of upgrading from aerated static pile (ASP) to agitated bed (AB) systems on physicochemical parameters, lignocellulose biodegradation, and microbial metabolic pathways during large-scale biowaste composting process, marking the first investigation of its kind. The degradation rates of lignocellulose including cellulose, hemicellulose, and lignin were significantly higher in AB (8.21%-32.54%, 10.21%-39.41%, and 6.21%-26.78%) than those (5.72%-23.15%, 7.01%-33.26%, and 4.79%-19.76%) in ASP at three thermal stages, respectively. The AB system in comparison to ASP increased the carbohydrate-active enzymes (CAZymes) abundance and production of the three essential enzymes required for lignocellulose decomposition involving a mixture of bacteria and fungi (i.e., Actinobacteria, Bacilli, Sordariomycetes and Eurotiomycetes). Conversely, ASP primarily produced exoglucanase and β-glucosidase via fungi (i.e., Ascomycota). Moreover, AB effectively mitigated microbial stress caused by acetic acid accumulation by regulating the key enzymes involved in acetate conversion, including acetyl-coenzyme A synthetase and acetate kinase. Overall, the AB upgraded from ASP facilitated the lignocellulose degradation and fostered more diverse functional microbial communities in large-scale composting. Our findings offer a valuable scientific basis to guide the engineering feasibility and environmental sustainability for large-scale industrial composting plants for treating lignocellulose-rich waste. These findings have important implications for establishing green sustainable development models (e.g., a circular economy based on material recovery) and for achieving sustainable development goals.
Collapse
Affiliation(s)
- Hanxia Yu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haoyan Xiao
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Huiyu Deng
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Adam Frew
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Md Akhter Hossain
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
11
|
Nweze JE, Gupta S, Salcher MM, Šustr V, Horváthová T, Angel R. Disruption of millipede-gut microbiota in E. pulchripes and G. connexa highlights the limited role of litter fermentation and the importance of litter-associated microbes for nutrition. Commun Biol 2024; 7:1204. [PMID: 39342029 PMCID: PMC11438867 DOI: 10.1038/s42003-024-06821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Millipedes are thought to depend on their gut microbiome for processing plant-litter-cellulose through fermentation, similar to many other arthropods. However, this hypothesis lacks sufficient evidence. To investigate this, we used inhibitors to disrupt the gut microbiota of juvenile Epibolus pulchripes (tropical, CH4-emitting) and Glomeris connexa (temperate, non-CH4-emitting) and isotopic labelling. Feeding the millipedes sterile or antibiotics-treated litter reduced faecal production and microbial load without major impacts on survival or weight. Bacterial diversity remained similar, with Bacteroidota dominant in E. pulchripes and Pseudomonadota in G. connexa. Sodium-2-bromoethanesulfonate treatment halted CH4 emissions in E. pulchripes, but it resumed after returning to normal feeding. Employing 13C-labeled leaf litter and RNA-SIP revealed a slow and gradual prokaryote labelling, indicating a significant density shift only by day 21. Surprisingly, labelling of the fungal biomass was somewhat quicker. Our findings suggest that fermentation by the gut microbiota is likely not essential for the millipede's nutrition.
Collapse
Affiliation(s)
- Julius Eyiuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Shruti Gupta
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Vladimír Šustr
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Terézia Horváthová
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
- Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland
| | - Roey Angel
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia.
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.
| |
Collapse
|
12
|
Domeignoz-Horta LA, Cappelli SL, Shrestha R, Gerin S, Lohila AK, Heinonsalo J, Nelson DB, Kahmen A, Duan P, Sebag D, Verrecchia E, Laine AL. Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils. Nat Commun 2024; 15:8065. [PMID: 39277633 PMCID: PMC11401882 DOI: 10.1038/s41467-024-52449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/07/2024] [Indexed: 09/17/2024] Open
Abstract
Expanding and intensifying agriculture has led to a loss of soil carbon. As agroecosystems cover over 40% of Earth's land surface, they must be part of the solution put in action to mitigate climate change. Development of efficient management practices to maximize soil carbon retention is currently limited, in part, by a poor understanding of how plants, which input carbon to soil, and microbes, which determine its fate there, interact. Here we implement a diversity gradient by intercropping undersown species with barley in a large field trial, ranging from one to eight undersown species. We find that increasing plant diversity strengthens positive associations within the rhizosphere soil microbial community in relation to negative associations. These associations, in turn, enhance community carbon use efficiency. Jointly, our results highlight how increasing plant diversity in agriculture can be used as a management strategy to enhance carbon retention potential in agricultural soils.
Collapse
Affiliation(s)
- Luiz A Domeignoz-Horta
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, Palaiseau, France.
| | - Seraina L Cappelli
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Rashmi Shrestha
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Stephanie Gerin
- Finnish Meteorological Institute, Climate System Research, Helsinki, Finland
| | - Annalea K Lohila
- Finnish Meteorological Institute, Climate System Research, Helsinki, Finland
| | - Jussi Heinonsalo
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- INAR, Institute for Atmospheric and Earth System Research/ Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Daniel B Nelson
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - Pengpeng Duan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang, China
| | - David Sebag
- IFP Energies Nouvelles, Earth Sciences and Environmental Technologies Division, Rueil-Malmaison, France
| | - Eric Verrecchia
- Institute of Earth Surface Dynamics, Faculty of Geosciences and the Environment, University of Lausanne, Lausanne, Switzerland
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Yates C, King WL, Richards SC, Wilson C, Viddam V, Blakney AJC, Eissenstat DM, Bell TH. Temperate trees locally engineer decomposition and litter-bound microbiomes through differential litter deposits and species-specific soil conditioning. THE NEW PHYTOLOGIST 2024; 243:909-921. [PMID: 38877705 DOI: 10.1111/nph.19900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Leaf decomposition varies widely across temperate forests, shaped by factors like litter quality, climate, soil properties, and decomposers, but forest heterogeneity may mask local tree influences on decomposition and litter-associated microbiomes. We used a 24-yr-old common garden forest to quantify local soil conditioning impacts on decomposition and litter microbiology. We introduced leaf litter bags from 10 tree species (5 arbuscular mycorrhizal; 5 ectomycorrhizal) to soil plots conditioned by all 10 species in a full-factorial design. After 6 months, we assessed litter mass loss, C/N content, and bacterial and fungal composition. We hypothesized that (1) decomposition and litter-associated microbiome composition would be primarily shaped by the mycorrhizal type of litter-producing trees, but (2) modified significantly by underlying soil, based on mycorrhizal type of the conditioning trees. Decomposition and, to a lesser extent, litter-associated microbiome composition, were primarily influenced by the mycorrhizal type of litter-producing trees. Interestingly, however, underlying soils had a significant secondary influence, driven mainly by tree species, not mycorrhizal type. This secondary influence was strongest under trees from the Pinaceae. Temperate trees can locally influence underlying soil to alter decomposition and litter-associated microbiology. Understanding the strength of this effect will help predict biogeochemical responses to forest compositional change.
Collapse
Affiliation(s)
- Caylon Yates
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
- School of Biological Sciences, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - Sarah C Richards
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in International Agriculture and Development, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cullen Wilson
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vedha Viddam
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew J C Blakney
- Department of Physical and Environmental Sciences, University of Toronto - Scarborough, Toronto, ON, M1A 1C4, Canada
| | - David M Eissenstat
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, University Park, PA, 16802, USA
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physical and Environmental Sciences, University of Toronto - Scarborough, Toronto, ON, M1A 1C4, Canada
| |
Collapse
|
14
|
Li J, Dong L, Fan M, Shangguan Z. Long-term vegetation restoration promotes lignin phenol preservation and microbial anabolism in forest plantations: Implications for soil organic carbon dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172635. [PMID: 38643876 DOI: 10.1016/j.scitotenv.2024.172635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Vegetation restoration contributes to soil organic carbon (C; SOC) sequestration through the accumulation of plant and microbial residues, but the mechanisms underlying this microbially mediated process are not well resolved. To depict the dynamics of plant- and microbial-derived C in restored forest ecosystems, soil samples were collected from Robinia pseudoacacia plantations of different stand ages (15, 25, 35, 45 years old) established on degraded wheat fields. The results showed that the degree of lignin phenol oxidation decreased with increasing stand age (P < 0.05), and hemicellulose-degrading genes were detected at higher relative abundances than other functional gene categories, indicating selective preservation of recalcitrant lignin phenols. Despite both glucosamine (R2 = 0.61, P < 0.001) and muramic acid (R2 = 0.37, P < 0.001) contents trending upward over time, fungal residual C accounted for a greater proportion of SOC compared with bacterial residual C. Accordingly, fungal residual C, which exhibited a similar response pattern as total microbial residual C to vegetation restoration, was considered a major contributor to the SOC pool. These results provided evidence that long-term vegetation restoration enhanced SOC sequestration in R. pseudoacacia forest by promoting the preservation of plant-derived lignin phenols and concomitant microbial anabolism. Partial least squares-discriminant analysis identified two important ecological clusters (i.e., modules) in the fungal network that profoundly influenced lignin phenol oxidation (P < 0.05) and microbial residual C accumulation (P < 0.01). Among the dominant taxa in microbial networks, the bacterial phyla Proteobacteria and Acidobacteriota had potential to degrade recalcitrant C compounds (e.g., cellulose, lignin), whereas the fungal phylum Ascomycota could outcompete for labile C fractions (e.g., dissolved organic C). Findings of this study can enable a mechanistic understanding of SOC stability driven by microbial turnover in restored forest ecosystems.
Collapse
Affiliation(s)
- Jiajia Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lingbo Dong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Miaochun Fan
- Department of Grassland Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
15
|
Feng Y, Xu T, Wang W, Sun S, Zhang M, Song F. Nitrogen addition changed soil fungal community structure and increased the biomass of functional fungi in Korean pine plantations in temperate northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172349. [PMID: 38615770 DOI: 10.1016/j.scitotenv.2024.172349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Nitrogen (N) deposition is a global environmental issue that can have significant impacts on the community structure and function in ecosystems. Fungi play a key role in soil biogeochemical cycles and their community structures are tightly linked to the health and productivity of forest ecosystems. Based on high-throughput sequencing and ergosterol extraction, we examined the changes in community structure, composition, and biomass of soil ectomycorrhizal (ECM) and saprophytic (SAP) fungi in 0-10 cm soil layer after 8 years of continuous N addition and their driving factors in a temperate Korean pine plantation in northeast China. Our results showed that N addition increased fungal community richness, with the highest richness and Chao1 index under the low N treatment (LN: 20 kg N ha-1 yr-1). Based on the FUN Guild database, we found that the relative abundance of ECM and SAP fungi increased first and then decreased with increasing N deposition concentration. The molecular ecological network analysis showed that the interaction between ECM and SAP fungi was enhanced by N addition, and the interaction was mainly positive in the ECM fungal network. N addition increased fungal biomass, and the total fungal biomass (TFB) was the highest under the MN treatment (6.05 ± 0.3 mg g-1). Overall, we concluded that N addition changed soil biochemical parameters, increased fungal activity, and enhanced functional fungal interactions in the Korean pine plantation over an 8-year simulated N addition. We need to consider the effects of complex soil conditions on soil fungi and emphasize the importance of regulating soil fungal community structure and biomass for managing forest ecosystems. These findings could deepen our understanding of the effects of increased N deposition on soil fungi in temperate forests in northern China, which can provide the theoretical basis for reducing the effects of increased N deposition on forest soil.
Collapse
Affiliation(s)
- Yuhan Feng
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Tianle Xu
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Wang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Simiao Sun
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Heilongjiang Academy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Mengmeng Zhang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Fuqiang Song
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
16
|
Yang S, Sun J, Wang C, Li S, Li Z, Luo W, Wei G, Chen W. Residue quality drives SOC sequestration by altering microbial taxonomic composition and ecophysiological function in desert ecosystem. ENVIRONMENTAL RESEARCH 2024; 250:118518. [PMID: 38382662 DOI: 10.1016/j.envres.2024.118518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Plant residues are important sources of soil organic carbon in terrestrial ecosystems. The degradation of plant residue by microbes can influence the soil carbon cycle and sequestration. However, little is known about the microbial composition and function, as well as the accumulation of soil organic carbon (SOC) in response to the inputs of different quality plant residues in the desert environment. The present study evaluated the effects of plant residue addition from Pinus sylvestris var. mongolica (Pi), Artemisia desertorum (Ar) and Amorpha fruticosa (Am) on desert soil microbial community composition and function in a field experiment in the Mu Us Desert. The results showed that the addition of the three plant residues with different C/N ratios induced significant variation in soil microbial communities. The Am treatment (low C/N ratio) improved microbial diversity compared with the Ar and Pi treatments (medium and high C/N ratios). The variations in the taxonomic and functional compositions of the dominant phyla Actinobacteria and Proteobacteria were higher than those of the other phyla among the different treatments. Moreover, the network links between Proteobacteria and other phyla and the CAZyme genes abundances from Proteobacteria increased with increasing residue C/N, whereas those decreased for Actinobacteria. The SOC content of the Am, Ar and Pi treatments increased by 45.73%, 66.54% and 107.99%, respectively, as compared to the original soil. The net SOC accumulation was positively correlated with Proteobacteria abundance and negatively correlated with Actinobacteria abundance. These findings showed that changing the initial quality of plant residue from low C/N to high C/N can result in shifts in taxonomic and functional composition from Actinobacteria to Proteobacteria, which favors SOC accumulation. This study elucidates the ecophysiological roles of Actinobacteria and Proteobacteria in the desert carbon cycle, expands our understanding of the potential microbial-mediated mechanisms by which plant residue inputs affect SOC sequestration in desert soils, and provides valuable guidance for species selection in desert vegetation reconstruction.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Jieyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Chang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Shuyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Zubing Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Wen Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China.
| |
Collapse
|
17
|
Du T, Zhang L, Chen Y, Zhang Y, Zhu H, Xu Z, Tan B, You C, Liu Y, Wang L, Liu S, Xu H, Xu L, Li H. Decreased snow depth inhibits litter decomposition via changes in litter microbial biomass and enzyme activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171078. [PMID: 38382615 DOI: 10.1016/j.scitotenv.2024.171078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Decreased snow depth resulting from global warming has the potential to significantly impact biogeochemical cycles in cold forests. However, the specific mechanisms of how snow reduction affects litter decomposition and the underlying microbial processes remain unclear, this knowledge gap limits our ability to precisely predict ecological processes within cold forest ecosystems under climate change. Hence, a field experiment was conducted in a subalpine forest in southwestern China, involving a gradient of snow reduction levels (control, 50 %, 100 %) to investigate the effects of decreased snow on litter decomposition, as well as microbial biomass and activity, specifically focused on two common species: red birch (Betula albosinensis) and masters larch (Larix mastersiana). After one year of incubation, the decomposition rate (k-value) of the two types of litter ranged from 0.12 to 0.24 across three snow treatments. A significant lower litter mass loss, microbial biomass and enzyme activity were observed under decreased snow depth in winter. Furthermore, a hysteresis inhibitory effect of snow reduction on hydrolase activity was observed in the following growing season. Additionally, the high initial quality (lower C/N ratio) of red birch litter facilitated the colonization by a greater quantity of microorganisms, making it more susceptible to snow reduction compared to the low-quality masters larch litter. Structural equation models indicated that decreased snow depth hindered litter decomposition by altering the biological characterization of litter (e.g., microbial biomass and enzyme activity) and environmental variables (e.g., mean temperature and moisture content). The findings suggest that the potential decline in snow depth could inhibit litter decomposition by reducing microbial biomass and activity, implying that the future climate change may alter the material cycling processes in subalpine forest ecosystems.
Collapse
Affiliation(s)
- Ting Du
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhang
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulian Chen
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Zhang
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hemeng Zhu
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenfeng Xu
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Tan
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming You
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Wang
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Sining Liu
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongwei Xu
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Xu
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Han Li
- College of Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
18
|
Pei L, Ye S, Xie L, Zhou P, He L, Yang S, Ding X, Yuan H, Dai T, Laws EA. Differential effects of warming on the complexity and stability of the microbial network in Phragmites australis and Spartina alterniflora wetlands in Yancheng, Jiangsu Province, China. Front Microbiol 2024; 15:1347821. [PMID: 38601935 PMCID: PMC11004437 DOI: 10.3389/fmicb.2024.1347821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
The impact of climate warming on soil microbial communities can significantly influence the global carbon cycle. Coastal wetlands, in particular, are susceptible to changes in soil microbial community structure due to climate warming and the presence of invasive plant species. However, there is limited knowledge about how native and invasive plant wetland soil microbes differ in their response to warming. In this study, we investigated the temporal dynamics of soil microbes (prokaryotes and fungi) under experimental warming in two coastal wetlands dominated by native Phragmites australis (P. australis) and invasive Spartina alterniflora (S. alterniflora). Our research indicated that short-term warming had minimal effects on microbial abundance, diversity, and composition. However, it did accelerate the succession of soil microbial communities, with potentially greater impacts on fungi than prokaryotes. Furthermore, in the S. alterniflora wetland, experimental warming notably increased the complexity and connectivity of the microbial networks. While in the P. australis wetland, it decreased these factors. Analysis of robustness showed that experimental warming stabilized the co-occurrence network of the microbial community in the P. australis wetland, but destabilized it in the S. alterniflora wetland. Additionally, the functional prediction analysis using the Faprotax and FunGuild databases revealed that the S. alterniflora wetland had a higher proportion of saprotrophic fungi and prokaryotic OTUs involved in carbon degradation (p < 0.05). With warming treatments, there was an increasing trend in the proportion of prokaryotic OTUs involved in carbon degradation, particularly in the S. alterniflora wetland. Therefore, it is crucial to protect native P. australis wetlands from S. alterniflora invasion to mitigate carbon emissions and preserve the health of coastal wetland ecosystems under future climate warming in China.
Collapse
Affiliation(s)
- Lixin Pei
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Siyuan Ye
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Liujuan Xie
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Pan Zhou
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Lei He
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Shixiong Yang
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xigui Ding
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Hongming Yuan
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Edward A. Laws
- Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
19
|
Anthony MA, Tedersoo L, De Vos B, Croisé L, Meesenburg H, Wagner M, Andreae H, Jacob F, Lech P, Kowalska A, Greve M, Popova G, Frey B, Gessler A, Schaub M, Ferretti M, Waldner P, Calatayud V, Canullo R, Papitto G, Marinšek A, Ingerslev M, Vesterdal L, Rautio P, Meissner H, Timmermann V, Dettwiler M, Eickenscheidt N, Schmitz A, Van Tiel N, Crowther TW, Averill C. Fungal community composition predicts forest carbon storage at a continental scale. Nat Commun 2024; 15:2385. [PMID: 38493170 PMCID: PMC10944544 DOI: 10.1038/s41467-024-46792-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries. We show that the composition and diversity of fungal, but not bacterial, species is tightly coupled to both forest biotic conditions and a seven-fold variation in tree growth rates and biomass carbon stocks when controlling for the effects of dominant tree type, climate, and other environmental factors. This linkage is particularly strong for symbiotic endophytic and ectomycorrhizal fungi known to directly facilitate tree growth. Since tree growth rates in this system are closely and positively correlated with belowground soil carbon stocks, we conclude that fungal composition is a strong predictor of overall forest carbon storage across the European continent.
Collapse
Affiliation(s)
- Mark A Anthony
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
- Swiss Federal Institute for Forests, Snow, and the Landscape Research (WSL), Birmensdorf, Switzerland.
- Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Bruno De Vos
- Environment & Climate Unit, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Luc Croisé
- French National Forest Office, Fontainebleau, France
| | | | - Markus Wagner
- Northwest German Forest Research Institute, Göttingen, Germany
| | | | - Frank Jacob
- Sachsenforst State Forest, Pirna OT Graupa, Germany
| | - Paweł Lech
- Forest Research Institute, Sękocin Stary, Poland
| | | | - Martin Greve
- Research Institute for Forest Ecology and Forestry, Trippstadt, Germany
| | - Genoveva Popova
- Executive Environmental Agency at the Ministry of Environment and Water, Sofia, Bulgaria
| | - Beat Frey
- Swiss Federal Institute for Forests, Snow, and the Landscape Research (WSL), Birmensdorf, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forests, Snow, and the Landscape Research (WSL), Birmensdorf, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forests, Snow, and the Landscape Research (WSL), Birmensdorf, Switzerland
| | - Marco Ferretti
- Swiss Federal Institute for Forests, Snow, and the Landscape Research (WSL), Birmensdorf, Switzerland
| | - Peter Waldner
- Swiss Federal Institute for Forests, Snow, and the Landscape Research (WSL), Birmensdorf, Switzerland
| | | | - Roberto Canullo
- Department of Plant Diversity and Ecosystem Management, University of Camerino, Camerino, Italy
| | - Giancarlo Papitto
- Arma dei Carabinieri Forestry Environmental and Agri-food protection Units, Rome, Italy
| | | | - Morten Ingerslev
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Lars Vesterdal
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Pasi Rautio
- Natural Resources Institute Finland, Rovaniemi, Finland
| | - Helge Meissner
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Volkmar Timmermann
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Mike Dettwiler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Nadine Eickenscheidt
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, Recklinghausen, Germany
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, Recklinghausen, Germany
- Thuenen Institut of Forest Ecosystems, 16225, Eberswalde, Germany
| | - Nina Van Tiel
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Environmetnal Computational Science and Earth Observation Laboratory, EPFL, Lausanne, Switzerland
| | - Thomas W Crowther
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Colin Averill
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Ferris H, Benavides IV. Opinions and Suggestions on Nematode Faunal Analysis. J Nematol 2024; 56:20240049. [PMID: 39720190 PMCID: PMC11668516 DOI: 10.2478/jofnem-2024-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 12/26/2024] Open
Abstract
We briefly review the history and development of recognizing nematode assemblages as indicators of environmental conditions. We highlight the effects of spatio-temporal successional changes in nematode assemblages on the auto-regeneration of ecosystem functions after disturbance. We expand on the need for herbivory components in the analysis of soil nematode assemblages in recognition of the important impact of plant parasitism on the resources and productivity of the soil system. Finally, we point out some important areas of research that would enhance the process and value of nematode faunal analysis. We include an evaluation of the current potential for molecular assessment of nematode abundance and function and for the application of artificial intelligence in automated nematode identification.
Collapse
Affiliation(s)
- Howard Ferris
- Department of Entomology and Nematology, University of California, Davis, California95616, USA
| | | |
Collapse
|
21
|
Yang A, Zhu D, Zhang W, Shao Y, Shi Y, Liu X, Lu Z, Zhu YG, Wang H, Fu S. Canopy nitrogen deposition enhances soil ecosystem multifunctionality in a temperate forest. GLOBAL CHANGE BIOLOGY 2024; 30:e17250. [PMID: 38500362 DOI: 10.1111/gcb.17250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Nitrogen (N) deposition affects ecosystem functions crucial to human health and well-being. However, the consequences of this scenario for soil ecosystem multifunctionality (SMF) in forests are poorly understood. Here, we conducted a long-term field experiment in a temperate forest in China, where N deposition was simulated by adding N above and under the canopies. We discover that canopy N addition promotes SMF expression, whereas understory N addition suppresses it. SMF was regulated by fungal diversity in canopy N addition treatments, which is largely due to the strong resistance to soil acidification and efficient resource utilization characteristics of fungi. While in understory N addition treatments, SMF is regulated by bacterial diversity, which is mainly because of the strong resilience to disturbances and fast turnover of bacteria. Furthermore, rare microbial taxa may play a more important role in the maintenance of the SMF. This study provides the first evidence that N deposition enhanced SMF in temperate forests and enriches the knowledge on enhanced N deposition affecting forest ecosystems. Given the divergent results from two N addition approaches, an innovative perspective of canopy N addition on soil microbial diversity-multifunctionality relationships is crucial to policy-making for the conservation of soil microbial diversity and sustainable ecosystem management under enhanced N deposition. In future research, the consideration of canopy N processes is essential for more realistic assessments of the effects of atmospheric N deposition in forests.
Collapse
Affiliation(s)
- An Yang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Weixin Zhang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Yuanhu Shao
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ziluo Lu
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hongtao Wang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Shenglei Fu
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| |
Collapse
|
22
|
Khatri-Chhetri U, Banerjee S, Thompson KA, Quideau SA, Boyce MS, Bork EW, Carlyle CN. Cattle grazing management affects soil microbial diversity and community network complexity in the Northern Great Plains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169353. [PMID: 38104847 DOI: 10.1016/j.scitotenv.2023.169353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Soil microbial communities play a vital role in the biogeochemical cycling and ecological functioning of grassland, but may be affected by common land uses such as cattle grazing. Changes in microbial diversity and network complexity can affect key ecosystem functions such as nutrient cycling. However, it is not well known how microbial diversity and network complexity respond to grazing in the Northern Great Plains. Consequently, it is important to understand whether variation in grazing management alters the diversity and complexity of grassland microbial communities. We compared the effect of intensive adaptive multi-paddock (AMP) grazing and conventional grazing practices on soil microbial communities using 16S/ITS amplicon sequencing. Samples were collected from grasslands in 13 AMP ranches and 13 neighboring, conventional ranches located across the Canadian prairies. We found that AMP grazing increased fungal diversity and evenness, and led to more complex microbial associations. Acidobacteria, Actinobacteria, Gemmatimonadetes, and Bacteroidetes were keystone taxa associated with AMP grazing, while Actinobacteria, Acidobacteria, Proteobacteria, and Armatimonadetes were keystone taxa under conventional grazing. Besides overall grazing treatment effects, specific grazing metrics like cattle stocking rate and rest-to-grazing ratio affected microbial richness and diversity. Bacterial and fungal richness increased with elevated stocking rate, and fungal richness and diversity increased directly with the rest-to-grazing ratio. These results suggest that AMP grazing may improve ecosystem by enhancing fungal diversity and increasing microbial network complexity and connectivity.
Collapse
Affiliation(s)
- Upama Khatri-Chhetri
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Karen A Thompson
- Trent School of Environment, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Sylvie A Quideau
- Department of Renewable Resources, Earth Science Building University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Mark S Boyce
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Edward W Bork
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Cameron N Carlyle
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
23
|
Gacura MD, Zak DR, Blackwood CB. From individual leaves to forest stands: importance of niche, distance decay, and stochasticity vary by ecosystem type and functional group for fungal community composition. FEMS Microbiol Ecol 2024; 100:fiae016. [PMID: 38373845 PMCID: PMC10913062 DOI: 10.1093/femsec/fiae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/26/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
Community assembly is influenced by environmental niche processes as well as stochastic processes that can be spatially dependent (e.g. dispersal limitation) or independent (e.g. priority effects). Here, we sampled senesced tree leaves as unit habitats to investigate fungal community assembly at two spatial scales: (i) small neighborhoods of overlapping leaves from differing tree species and (ii) forest stands of differing ecosystem types. Among forest stands, ecosystem type explained the most variation in community composition. Among adjacent leaves within stands, variability in fungal composition was surprisingly high. Leaf type was more important in stands with high soil fertility and dominated by differing tree mycorrhizal types (sugar maple vs. basswood or red oak), whereas distance decay was more important in oak-dominated forest stands with low soil fertility. Abundance of functional groups was explained by environmental factors, but predictors of taxonomic composition within differing functional groups were highly variable. These results suggest that fungal community assembly processes are clearest for functional group abundances and large spatial scales. Understanding fungal community assembly at smaller spatial scales will benefit from further study focusing on differences in drivers for different ecosystems and functional groups, as well as the importance of spatially independent factors such as priority effects.
Collapse
Affiliation(s)
- Matthew D Gacura
- Department of Biological Sciences, Kent State University, 800 E. Summit St., Kent, OH 44242, United States
- Biology Department, Gannon University, 109 University Square, Erie, PA 16541, United States
| | - Donald R Zak
- School for Environment and Sustainability, University of Michigan, 440 Church St., Ann Arbor, MI 48109, United States
| | - Christopher B Blackwood
- Department of Biological Sciences, Kent State University, 800 E. Summit St., Kent, OH 44242, United States
- Department of Plant, Soil, and Microbial Sciences and Department of Plant Biology, Michigan State University, 1066 Bogue St., East Lansing, MI 48842, United States
| |
Collapse
|
24
|
Zhang C, de Pasquale S, Hartman K, Stanley CE, Berendsen RL, van der Heijden MGA. The microbial contribution to litter decomposition and plant growth. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13205. [PMID: 38018445 PMCID: PMC10866077 DOI: 10.1111/1758-2229.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 11/30/2023]
Abstract
Soil and plant roots are colonized by highly complex and diverse communities of microbes. It has been proposed that bacteria and fungi have synergistic effects on litter decomposition, but experimental evidence supporting this claim is weak. In this study, we manipulated the composition of two microbial kingdoms (Bacteria and Fungi) in experimental microcosms. In microcosms that were inoculated with fungi, litter loss was 47% higher than in microcosms that were not inoculated or only inoculated with bacteria. Combined inoculation with both bacteria and fungi did not significantly enhance decomposition compared with the fungi-only treatments, and, as such, we found no evidence for complementary effects using our experimental setup. Inoculation with fungi also had a positive impact on plant growth after 4 and 8 weeks (480% and 710% growth stimulation, respectively). After 16 weeks, plant biomass was highest in microcosms where both bacteria and fungi were present pointing to fungal-bacterial complementarity in stimulating plant growth. Overall, this study suggests that fungi are the main decomposers of plant litter and that the inoculated fungi contribute to plant growth in our experimental system.
Collapse
Affiliation(s)
- Changfeng Zhang
- Plant‐Microbe Interactions, Department of Biology, Faculty of ScienceUtrecht UniversityUtrechtthe Netherlands
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Simone de Pasquale
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Kyle Hartman
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Claire E. Stanley
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Roeland L. Berendsen
- Plant‐Microbe Interactions, Department of Biology, Faculty of ScienceUtrecht UniversityUtrechtthe Netherlands
| | - Marcel G. A. van der Heijden
- Plant‐Microbe Interactions, Department of Biology, Faculty of ScienceUtrecht UniversityUtrechtthe Netherlands
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
25
|
De Castro O, Avino M, Carraturo F, Di Iorio E, Giovannelli D, Innangi M, Menale B, Mormile N, Troisi J, Guida M. Profiling microbial communities in an extremely acidic environment influenced by a cold natural carbon dioxide spring: A study of the Mefite in Ansanto Valley, Southern Italy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13241. [PMID: 38407001 PMCID: PMC10895555 DOI: 10.1111/1758-2229.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
The Ansanto Valley's Mefite, one of the Earth's largest non-volcanic CO2 gas emissions, is distinguished by its cold natural carbon dioxide springs. These emissions originate from the intricate tectonics and geodynamics of the southern Apennines in Italy. Known for over two millennia for its lethal concentration of CO2 and other harmful gases, the Mefite has a reputation for being toxic and dangerous. Despite its historical significance and unique geological features, there is a lack of information on the microbial diversity associated with the Mefite's gas emissions. This study presents an integrated exploration of the microbial diversity in the mud soil, using high-throughput sequencing of 16S rRNA (Prokaryotes) and ITS2 (Fungi), alongside a geochemical site characterisation. Our findings reveal that the Mefite's unique environment imposes a significant bottleneck on microbial diversity, favouring a select few microbial groups such as Actinobacteria and Firmicutes for Prokaryotes, and Basidiomycota for Fungi.
Collapse
Affiliation(s)
- Olga De Castro
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Botanical GardenNaplesItaly
| | - Mariano Avino
- Department of Biochemistry and Functional GenomicsSherbrooke UniversitySherbrookeQuebecCanada
| | | | | | - Donato Giovannelli
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- National Research CouncilInstitute of Marine Biological Resources and Biotechnologies—CNR‐IRBIMAnconaItaly
- Department of Marine and Coastal ScienceRutgers UniversityNew BrunswickNew JerseyUSA
- Marine Chemistry & Geochemistry DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
- Earth‐Life Science InstituteTokyo Institute of TechnologyTokyoJapan
| | - Michele Innangi
- EnvixLab, Department of Biosciences and TerritoryUniversity of Molise Contrada Fonte LapponePesche (IS)Italy
| | - Bruno Menale
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Botanical GardenNaplesItaly
| | - Nicolina Mormile
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Jacopo Troisi
- European Biomedical Research Institute of Salerno (EBRIS)SalernoItaly
- Theoreo srlMontecorvino Pugliano (SA)Italy
| | - Marco Guida
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
26
|
Wu H, Cui H, Fu C, Li R, Qi F, Liu Z, Yang G, Xiao K, Qiao M. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168627. [PMID: 37977383 DOI: 10.1016/j.scitotenv.2023.168627] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Soil microorganisms, by actively participating in the decomposition and transformation of organic matter through diverse metabolic pathways, play a pivotal role in carbon cycling within soil systems and contribute to the stabilization of organic carbon, thereby influencing soil carbon storage and turnover. Investigating the processes, mechanisms, and driving factors of soil microbial carbon cycling is crucial for understanding the functionality of terrestrial carbon sinks and effectively addressing climate change. This review comprehensively discusses the role of soil microorganisms in soil carbon cycling from three perspectives: metabolic pathways, microbial communities, and environmental influences. It elucidates the roles of different microbial species in carbon cycling and highlights the impact of microbial interactions and environmental factors on carbon cycling. Through the synthesis of 2171 relevant papers in the Web of Science Core database, we elucidated the ecological community structure, activity, and assembly mechanisms of soil microorganisms crucial to the soil carbon cycle that have been widely analyzed. The integration of soil microbial carbon cycle and its driving factors are vital for accurately predicting and modeling biogeochemical cycles and effectively addressing the challenges posed by global climate change. Such integration is vital for accurately predicting and modeling biogeochemical cycles and effectively addressing the challenges posed by global climate change.
Collapse
Affiliation(s)
- Haowei Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Huiling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chenxi Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ran Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fengyuan Qi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhelun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Keqing Xiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
27
|
Błońska E, Jankowiak R, Lasota J, Krzemińska N, Zbyryt A, Ciach M. The role of chemical properties of the material deposited in nests of white stork in shaping enzymatic activity and fungal diversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2583-2594. [PMID: 38066283 PMCID: PMC10791925 DOI: 10.1007/s11356-023-31383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Organic debris accumulated in bird nests creates a unique environment for organisms, including microbes. Built from various plant materials that are typically enriched by animal residues, bird nest favours the development of various fungal groups. The aim of this study was to investigate the chemical properties of the material deposited in the white stork Ciconia ciconia nests and the link between extracellular enzyme activity and the diversity and composition of culturable fungi. Our findings revealed low C/P and N/P ratio values in the nest materials, which indicate a high P availability. Nest material C/N/P ratio ranged from 67/8/1 to 438/33/1. Enzymatic activity strongly correlated with the content of carbon, nitrogen, and pH of the material deposited in the nests. A total of 2726 fungal isolates were obtained from the nests, from which 82 taxa were identified based on morphology and DNA sequence data. The study indicates that white stork nests are microhabitat characterised by diverse chemical and biochemical properties. We found relationship between the fungal richness and diversity and the C/P and N/P ratios of materials from the nests. Our study showed that culturable fungi occurred frequently in materials with high levels of C, N, and P, as well as high concentrations of base alkaline elements (Ca, Mg, and K).
Collapse
Affiliation(s)
- Ewa Błońska
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Krakow, Poland.
| | - Robert Jankowiak
- Department of Forest Ecosystem Protection, University of Agriculture, 29 Listopada 46, 31-425, Krakow, Poland
| | - Jarosław Lasota
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Krakow, Poland
| | - Natalia Krzemińska
- Department of Forest Ecosystem Protection, University of Agriculture, 29 Listopada 46, 31-425, Krakow, Poland
| | - Adam Zbyryt
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Michał Ciach
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Krakow, Poland
| |
Collapse
|
28
|
Kang J, Qu C, Chen W, Cai P, Chen C, Huang Q. Organo-organic interactions dominantly drive soil organic carbon accrual. GLOBAL CHANGE BIOLOGY 2024; 30:e17147. [PMID: 38273514 DOI: 10.1111/gcb.17147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Organo-mineral interactions have been regarded as the primary mechanism for the stabilization of soil organic carbon (SOC) over decadal to millennial timescales, and the capacity for soil carbon (C) storage has commonly been assessed based on soil mineralogical attributes, particularly mineral surface availability. However, it remains contentious whether soil C sequestration is exclusively governed by mineral vacancies, making it challenging to accurately predict SOC dynamics. Here, through a 400-day incubation experiment using 13 C-labeled organic materials in two contrasting soils (i.e., Mollisol and Ultisol), we show that despite the unsaturation of mineral surfaces in both soils, the newly incorporated C predominantly adheres to "dirty" mineral surfaces coated with native organic matter (OM), demonstrating the crucial role of organo-organic interactions in exogenous C sequestration. Such interactions lead to multilayered C accumulation that is not constrained by mineral vacancies, a process distinct from direct organo-mineral contacts. The coverage of native OM by new C, representing the degree of organo-organic interactions, is noticeably larger in Ultisol (~14.2%) than in Mollisol (~5.8%), amounting to the net retention of exogenous C in Ultisol by 0.2-1.3 g kg-1 and in Mollisol by 0.1-1.0 g kg-1 . Additionally, organo-organic interactions are primarily mediated by polysaccharide-rich microbial necromass. Further evidence indicates that iron oxides can selectively preserve polysaccharide compounds, thereby promoting the organo-organic interactions. Overall, our findings provide direct empirical evidence for an overlooked but critically important pathway of C accumulation, challenging the prevailing "C saturation" concept that emphasizes the overriding role of mineral vacancies. It is estimated that, through organo-organic interactions, global Mollisols and Ultisols might sequester ~0.1-1.0 and ~0.3-1.7 Pg C per year, respectively, corresponding to the neutralization of ca. 0.5%-3.0% of soil C emissions or 5%-30% of fossil fuel combustion globally.
Collapse
Affiliation(s)
- Jie Kang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Chenchen Qu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Chengrong Chen
- Australian Rivers Institute and School of Environment and Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Yang H, Chen N, Wang Z, Liu J, Qin J, Zhu K, Jia H. Biochar-Associated Free Radicals Reduce Soil Bacterial Diversity: New Insight into Ecoenzymatic Stoichiometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20238-20248. [PMID: 37976412 DOI: 10.1021/acs.est.3c06864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The toxicity of environmentally persistent free radicals (EPFRs), often generated during biochar production, on soil bacteria is still not truly reflected when considering the conditions in real soil. Herein, the influence of free radicals within biochar on soil bacteria was investigated from the perspectives of enzyme activity, community structure, and ecoenzymatic stoichiometry. Biochar addition enhanced the contents of EPFRs and derived hydroxyl radicals (•OH) in the soil, while it reduced bacterial alpha diversity by 5.06-35.44%. The results of redundancy analysis and inhibition experiments collectively demonstrated the key role of EPFRs and •OH in reducing the bacterial alpha diversity. Specifically, EPFRs and •OH increased the stoichiometric imbalance by promoting the release of dissolved organic carbon and ammonium N, thus aggravating the P limitation in soil. This was further confirmed by increased alkaline phosphatase activity from 702 to 874 nmol g-1 h-1. The P limitation induced by EPFRs and •OH decreased the bacterial alpha diversity, as evidenced by the negative correlation between P limitation and bacterial alpha diversity (r2 = -0.931 to -0.979, P < 0.01) and the structural equation model. The obtained results demonstrate a ubiquitous but previously overlooked mechanism for bacterial toxicity of biochar-associated free radicals, providing scientific guidance for safe utilization of biochar.
Collapse
Affiliation(s)
- Huiqiang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Na Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Zhiqiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jinbo Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jianjun Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Kecheng Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| |
Collapse
|
30
|
Min K, Zheng T, Zhu X, Bao X, Lynch L, Liang C. Bacterial community structure and assembly dynamics hinge on plant litter quality. FEMS Microbiol Ecol 2023; 99:fiad118. [PMID: 37771081 DOI: 10.1093/femsec/fiad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/29/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023] Open
Abstract
Litter decomposition is a fundamental ecosystem process controlling the biogeochemical cycling of energy and nutrients. Using a 360-day lab incubation experiment to control for environmental factors, we tested how litter quality (low C/N deciduous vs. high C/N coniferous litter) governed the assembly and taxonomic composition of bacterial communities and rates of litter decomposition. Overall, litter mass loss was significantly faster in soils amended with deciduous (DL) rather than coniferous (CL) litter. Communities degrading DL were also more taxonomically diverse and exhibited stochastic assembly throughout the experiment. By contrast, alpha-diversity rapidly declined in communities exposed to CL. Strong environmental selection and competitive biological interactions induced by molecularly complex, nutrient poor CL were reflected in a transition from stochastic to deterministic assembly after 180 days. Constraining how the diversity and assembly of microbial populations modulates core ecosystem processes, such as litter decomposition, will become increasingly important under novel climate conditions, and as policymakers and land managers emphasize soil carbon sequestration as a key natural climate solution.
Collapse
Affiliation(s)
- Kaikai Min
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tiantian Zheng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Xuefeng Zhu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Xuelian Bao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Laurel Lynch
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, USA
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| |
Collapse
|
31
|
Liu H, Zhang J, Zhang L, Zhang X, Yang R. Funneliformis mosseae influences leaf decomposition by altering microbial communities under saline-alkali conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165079. [PMID: 37356763 DOI: 10.1016/j.scitotenv.2023.165079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Recent studies have indicated that arbuscular mycorrhizal fungi (AMF) can influence decomposition of organic materials. However, the underlying mechanisms remain unclear. Here we investigated whether AMF influence the decomposition of leaf litters and change the associated litter bacterial and fungal communities and whether this effect is altered by the level of soil saline-alkali. A pot experiment was conducted using Trifolium repens as host plant without or with AMF (Funneliformis mosseae) and with two levels of soil saline-alkali (0 and 200 mmol/L). Litterbags with different mesh size were used to measure the effect of AMF on decomposition. Our study found that AMF significantly accelerated leaf litter decomposition under both non-saline-alkali and saline-alkali conditions. The composition of bacterial and fungal communities was also altered by AMF independent of soil saline-alkali conditions. For bacterial community, AMF increased the richness but not the diversity and increased the relative abundance of Firmicutes and Nitrospirota. For fungal community, the richness and diversity were higher in AMF than in non-AMF treatment. AMF significantly resulted in a decrease of the relative abundance of Ascomycota but an increase of the relative abundance of Basidiomycota, Chytridiomycota, Mortierellomycota and Rozellomycota. Structural equation modeling (SEM) showed that AMF increased leaf litter decomposition under saline-alkali conditions primarily by affecting bacterial community composition. Together, we show that AMF increase decomposition and alter the bacterial and fungal communities, and that these effects are not modulated by the level of soil saline-alkali.
Collapse
Affiliation(s)
- Hui Liu
- College of Life Sciences, Dezhou University, Dezhou 253023, PR China.
| | - Jiazhen Zhang
- College of Life Sciences, Dezhou University, Dezhou 253023, PR China
| | - Luying Zhang
- College of Life Sciences, Dezhou University, Dezhou 253023, PR China
| | - Xi Zhang
- College of Life Sciences, Dezhou University, Dezhou 253023, PR China
| | - Rui Yang
- College of Life Sciences, Dezhou University, Dezhou 253023, PR China
| |
Collapse
|
32
|
Li K, Lu Y, Wang QW, Ni R, Han R, Li C, Zhang C, Shen W, Yao Q, Gao Y, de-Miguel S. Leaf litter mixtures alter decomposition rate, nutrient retention, and bacterial community composition in a temperate forest. FORESTRY RESEARCH 2023; 3:22. [PMID: 39526257 PMCID: PMC11524288 DOI: 10.48130/fr-2023-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 11/16/2024]
Abstract
Litter decomposition is a key step in global biogeochemical cycling. In forest ecosystems, litter from different tree spec1ies often decompose together. Although species diversity is widely acknowledged to accelerate decomposition through the regulation of nutrient transfer between litter and decomposer communities, the underlying mechanism remains unclear. To explore the association between the bacterial community and mixed-litter chemical transformation, we conducted a one-year litter mixing decomposition experiment using leaf litter from four dominant tree species in Mount Tai (Eastern China), Robinia pseudoacacia, Quercus acutissima, Pinus tabulaeformis, and Pinus densiflora. Our results showed that: 1) Mass loss of leaf litter mixtures was significantly faster than that of leaf litter monocultures, except for R. pseudoacacia. Litter mixtures without R. pseudoacacia showed non-additive synergistic effects, whereas litter mixtures with R. pseudoacacia exerted additive effects; 2) Litter species in the absence of R. pseudoacacia significantly decreased the nutrient retention rates of litter mixtures compared to those of monocultures; 3) Litter mixtures with or without R. pseudoacacia showing additive and non-additive effects in monocultures had a distinct bacterial community structure; 4) Bacterial community structure was also modified by initial litter traits; carbon (C), nitrogen (N), and phosphorus (P) concentrations in monocultures; N/P and C/N ratios of mixtures with R. pseudoacacia; and the lignin/N ratio of mixtures without R. pseudoacacia. Overall, these findings indicate that tree species diversity controls decomposition and nutrient cycling, implying that an appropriate species community composition is beneficial to maintaining forest ecosystems.
Collapse
Affiliation(s)
- Kun Li
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Tai'an 271018, Shandong, PR China;
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions/Key Laboratory of Ecological Protection and Security Control of the Lower Yellow River of Shandong Higher Education Institutions, Tai’an 271018, Shandong, PR China ;
| | - Ying Lu
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Tai'an 271018, Shandong, PR China;
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions/Key Laboratory of Ecological Protection and Security Control of the Lower Yellow River of Shandong Higher Education Institutions, Tai’an 271018, Shandong, PR China ;
| | - Qing-Wei Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences, Shenyang 110016, PR China;
| | - Ruiqiang Ni
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Tai'an 271018, Shandong, PR China;
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions/Key Laboratory of Ecological Protection and Security Control of the Lower Yellow River of Shandong Higher Education Institutions, Tai’an 271018, Shandong, PR China ;
| | - Rongchu Han
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Tai'an 271018, Shandong, PR China;
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions/Key Laboratory of Ecological Protection and Security Control of the Lower Yellow River of Shandong Higher Education Institutions, Tai’an 271018, Shandong, PR China ;
| | - Chuanrong Li
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Tai'an 271018, Shandong, PR China;
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions/Key Laboratory of Ecological Protection and Security Control of the Lower Yellow River of Shandong Higher Education Institutions, Tai’an 271018, Shandong, PR China ;
| | - Caihong Zhang
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Tai'an 271018, Shandong, PR China;
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions/Key Laboratory of Ecological Protection and Security Control of the Lower Yellow River of Shandong Higher Education Institutions, Tai’an 271018, Shandong, PR China ;
| | - Weixing Shen
- Mount Tai Scenic Spot Management Committee, Tai'an 271000, Shandong, PR China
| | - Qi Yao
- Mount Tai Scenic Spot Management Committee, Tai'an 271000, Shandong, PR China
| | - Yueyin Gao
- State-owned Guangping Forest Farm, Chiping District, Liaocheng 252100, Shandong, PR China
| | - Sergio de-Miguel
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC–AGROTECNIO-CERCA, E-25280 Solsona, Spain
| |
Collapse
|
33
|
Liu L, Cheng M, Yang L, Gu X, Jin J, Fu M. Regulation of straw decomposition and its effect on soil function by the amount of returned straw in a cool zone rice crop system. Sci Rep 2023; 13:15673. [PMID: 37735486 PMCID: PMC10514278 DOI: 10.1038/s41598-023-42650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
The degradation process of returned straw in rice fields can improve soil organic matter and promote sustainable agriculture. The degradation process of returned straw is a humification process as well as a mineralization process involving microorganisms and enzymes. However, the degradation process of returned straw, the effect on straw decomposing microorganisms and the regulatory mechanism on potential functionality under cool climate flooding conditions are currently unknown.For this purpose, we investigated the biodegradation of straw from a biodegradation point of view at 20, 40, 71, 104, and 137 d after return under conventional (130 kg hm-2), 1/3 straw return (2933 kg hm-2), 2/3 straw return (5866 kg hm-2), and full straw return (8800 kg hm-2) applications in cool climate rice fields.. The test found Paludibacteraceae and Archaeaceae were the dominant bacteria for straw degradation, and their relative abundance was highest when 2/3 of straw was returned to the field. The straw degradation extracellular enzyme activity was higher in the late return period (104 d). At this time, the potential functionality of the soil differed significantly among the different return amounts, with the best extracellular enzyme activity and potential functionality at the 2/3 straw return amount. Therefore, the optimal amount of rice straw returned to the field is 5866 kg hm-2 at the current conventional N application rate (130 kg hm-2) in the cold zone.
Collapse
Affiliation(s)
- Lin Liu
- School of Agriculture, Yanbian University, Yanji, 133002, China
- College of Resources and Environment, China Agricultural University, Beijing, 100193, China
| | - Ming Cheng
- School of Agriculture, Yanbian University, Yanji, 133002, China
| | - Lei Yang
- School of Agriculture, Yanbian University, Yanji, 133002, China
| | - Xinyue Gu
- School of Agriculture, Yanbian University, Yanji, 133002, China
| | - Jingyi Jin
- Research Center of Chemical Biology, Yanbian University, Yanji, 133002, China
| | - Minjie Fu
- School of Agriculture, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
34
|
Liu J, You C, Xu Z, Liu Y, Zhang L, Li H, Wang L, Liu S, He S, Luo Z, Tan B. Soil arthropods promote litter enzyme activity by regulating microbial carbon limitation and ecoenzymatic stoichiometry in a subalpine forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162789. [PMID: 36914138 DOI: 10.1016/j.scitotenv.2023.162789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Soil arthropods are crucial decomposers of litter at both global and local scales, yet their functional roles in mediating microbial activity during litter decomposition remain poorly understood. Here, we conducted a two-year field experiment using litterbags to assess the effects of soil arthropods on the extracellular enzyme activities (EEAs) in two litter substrates (Abies faxoniana and Betula albosinensis) in a subalpine forest. A biocide (naphthalene) was used to permit (nonnaphthalene) or exclude (naphthalene application) the presence of soil arthropods in litterbags during decomposition. Our results showed that biocide application was effective in reducing the abundance of soil arthropods in litterbags, with the density and species richness of soil arthropods decreasing by 64.18-75.45 % and 39.19-63.30 %, respectively. Litter with soil arthropods had a greater activity of C-degrading (β-glucosidase, cellobiohydrolase, polyphenol oxidase, peroxidase), N-degrading (N-acetyl-β-D-glucosaminidase, leucine arylamidase) and P-degrading (phosphatase) enzymes than litter from which soil arthropods were excluded. The contributions of soil arthropods to C-, N- and P-degrading EEAs in the fir litter were 38.09 %, 15.62 % and 61.69 %, and those for the birch litter were 27.97 %, 29.18 % and 30.40 %, respectively. Furthermore, the stoichiometric analyses of enzyme activity indicated that there was potential C and P colimitation in both the soil arthropod inclusion and exclusion litterbags, and the presence of soil arthropods decreased C limitation in the two litter species. Our structural equation models suggested that soil arthropods indirectly promoted C-, N- and P-degrading EEAs by regulating the litter C content and litter stoichiometry (e.g., N/P, LN/N and C/P) during litter decomposition. These results demonstrate that soil arthropods play an important functional role in modulating EEAs during litter decomposition.
Collapse
Affiliation(s)
- Jingru Liu
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Chengming You
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Zhenfeng Xu
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Yang Liu
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Li Zhang
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Han Li
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Lixia Wang
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Sining Liu
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Shuqin He
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Ziteng Luo
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Bo Tan
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China.
| |
Collapse
|
35
|
Cai M, Zhao G, Zhao B, Cong N, Zheng Z, Zhu J, Duan X, Zhang Y. Climate warming alters the relative importance of plant root and microbial community in regulating the accumulation of soil microbial necromass carbon in a Tibetan alpine meadow. GLOBAL CHANGE BIOLOGY 2023; 29:3193-3204. [PMID: 36861325 DOI: 10.1111/gcb.16660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 05/03/2023]
Abstract
Climate warming is predicted to considerably affect variations in soil organic carbon (SOC), especially in alpine ecosystems. Microbial necromass carbon (MNC) is an important contributor to stable soil organic carbon pools. However, accumulation and persistence of soil MNC across a gradient of warming are still poorly understood. An 8-year field experiment with four levels of warming was conducted in a Tibetan meadow. We found that low-level (+0-1.5°C) warming mostly enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total MNC compared with control treatment across soil layers, while no significant effect was caused between high-level (+1.5-2.5°C) treatments and control treatments. The contributions of both MNC and BNC to soil organic carbon were not significantly affected by warming treatments across depths. Structural equation modeling analysis demonstrated that the effect of plant root traits on MNC persistence strengthened with warming intensity, while the influence of microbial community characteristics waned along strengthened warming. Overall, our study provides novel evidence that the major determinants of MNC production and stabilization may vary with warming magnitude in alpine meadows. This finding is critical for updating our knowledge on soil carbon storage in response to climate warming.
Collapse
Affiliation(s)
- Mengke Cai
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Guang Zhao
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Bo Zhao
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Nan Cong
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhoutao Zheng
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Juntao Zhu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Duan
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Yangjian Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
36
|
Liu X, Chen Q, Zhang H, Zhang J, Chen Y, Yao F, Chen Y. Effects of exogenous organic matter addition on agricultural soil microbial communities and relevant enzyme activities in southern China. Sci Rep 2023; 13:8045. [PMID: 37198213 DOI: 10.1038/s41598-023-33498-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Soil microbial community composition plays a key role in the decomposition of organic matter, while the quality of exogenous organic matter (EOM: rice straw, roots and pig manure) can influence soil chemical and biological properties. However, the evidences of the effect of combination of crop residues and pig manure on the changes in soil microbial community and enzymes activities are scarce. A greenhouse pot experiment was conducted to investigate the potential effect of EOM by analyzing soil properties, enzyme activities and microbial communities. The experiment consisted of eight treatments: CK (control), S (1% (w/w) rice straw), R (1% (w/w) rice root), SR (1% (w/w) rice straw + 1% (w/w) rice root), and added 1% (w/w) pig manure to CK, S, R and SR, respectively. Results showed that the straw treatment significantly increased the microbial biomass (carbon and nitrogen) and total carbon and nitrogen contents, cellulase and β-1,4-glucosidase activities, bacteria (i.e., gram-positive bacteria and gram-negative bacteria) PLFAs contents relative to CK regardless of whether pig manure was added. Moreover, the interaction between crop residues (e.g., straw and roots) and pig manure significantly influenced the contents of microbial biomass nitrogen and microbial biomass phosphorus, and the ratio of gram-positive bacteria to gram-negative bacteria. Redundance analysis confirmed that pH, nitrate nitrogen, ammonium nitrogen and dissolve organic carbon contents were significantly associated with soil microbial community under crop residues without pig manure addition. Furthermore, the experiment results showed that pig manure application not only provided more abundant nutrients (C, N and P) but also induced higher microbial and enzymatic activity compared with no pig manure addition. Our findings suggest that the combination of above-ground straw and pig manure is a better option for improving the functions of soil ecosystem.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Chen
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huicheng Zhang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaen Zhang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuting Chen
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Fucheng Yao
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yingtong Chen
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
37
|
Sharma I, Kashyap S, Agarwala N. Biotic stress-induced changes in root exudation confer plant stress tolerance by altering rhizospheric microbial community. FRONTIERS IN PLANT SCIENCE 2023; 14:1132824. [PMID: 36968415 PMCID: PMC10036841 DOI: 10.3389/fpls.2023.1132824] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Every organism on the earth maintains some kind of interaction with its neighbours. As plants are sessile, they sense the varied above-ground and below-ground environmental stimuli and decipher these dialogues to the below-ground microbes and neighbouring plants via root exudates as chemical signals resulting in the modulation of the rhizospheric microbial community. The composition of root exudates depends upon the host genotype, environmental cues, and interaction of plants with other biotic factors. Crosstalk of plants with biotic agents such as herbivores, microbes, and neighbouring plants can change host plant root exudate composition, which may permit either positive or negative interactions to generate a battlefield in the rhizosphere. Compatible microbes utilize the plant carbon sources as their organic nutrients and show robust co-evolutionary changes in changing circumstances. In this review, we have mainly focused on the different biotic factors responsible for the synthesis of alternative root exudate composition leading to the modulation of rhizosphere microbiota. Understanding the stress-induced root exudate composition and resulting change in microbial community can help us to devise strategies in engineering plant microbiomes to enhance plant adaptive capabilities in a stressful environment.
Collapse
|
38
|
Kalntremtziou M, Papaioannou IA, Vangalis V, Polemis E, Pappas KM, Zervakis GI, Typas MA. Evaluation of the lignocellulose degradation potential of Mediterranean forests soil microbial communities through diversity and targeted functional metagenomics. Front Microbiol 2023; 14:1121993. [PMID: 36922966 PMCID: PMC10008878 DOI: 10.3389/fmicb.2023.1121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/28/2023] Open
Abstract
The enzymatic arsenal of several soil microorganisms renders them particularly suitable for the degradation of lignocellulose, a process of distinct ecological significance with promising biotechnological implications. In this study, we investigated the spatiotemporal diversity and distribution of bacteria and fungi with 16S and Internally Trascribed Spacer (ITS) ribosomal RNA next-generation-sequencing (NGS), focusing on forest mainland Abies cephalonica and insular Quercus ilex habitats of Greece. We analyzed samples during winter and summer periods, from different soil depths, and we applied optimized and combined targeted meta-omics approaches aiming at the peroxidase-catalase family enzymes to gain insights into the lignocellulose degradation process at the soil microbial community level. The microbial communities recorded showed distinct patterns of response to season, soil depth and vegetation type. Overall, in both forests Proteobacteria, Actinobacteria, Acidobacteria were the most abundant bacteria phyla, while the other phyla and the super-kingdom of Archaea were detected in very low numbers. Members of the orders Agaricales, Russulales, Sebacinales, Gomphales, Geastrales, Hysterangiales, Thelephorales, and Trechisporales (Basidiomycota), and Pezizales, Sordariales, Eurotiales, Pleosporales, Helotiales, and Diaporthales (Ascomycota) were the most abundant for Fungi. By using optimized "universal" PCR primers that targeted the peroxidase-catalase enzyme family, we identified several known and novel sequences from various Basidiomycota, even from taxa appearing at low abundance. The majority of the sequences recovered were manganese peroxidases from several genera of Agaricales, Hysterangiales, Gomphales, Geastrales, Russulales, Hymenochaetales, and Trechisporales, while lignin -and versatile-peroxidases were limited to two to eight species, respectively. Comparisons of the obtained sequences with publicly available data allowed a detailed structural analysis of polymorphisms and functionally relevant amino-acid residues at phylogenetic level. The targeted metagenomics applied here revealed an important role in lignocellulose degradation of hitherto understudied orders of Basidiomycota, such as the Hysterangiales and Gomphales, while it also suggested the auxiliary activity of particular members of Proteobacteria, Actinobacteria, Acidobacteria, Verrucomicrobia, and Gemmatimonadetes. The application of NGS-based metagenomics approaches allows a better understanding of the complex process of lignocellulolysis at the microbial community level as well as the identification of candidate taxa and genes for targeted functional investigations and genetic modifications.
Collapse
Affiliation(s)
- Maria Kalntremtziou
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis A. Papaioannou
- Zentrum für Molekulare Biologie der Universität Heidelberg, ZMBH, University of Heidelberg, Heidelberg, Germany
| | - Vasileios Vangalis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Polemis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | - Katherine M. Pappas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | - Milton A. Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
39
|
Derrien D, Barré P, Basile-Doelsch I, Cécillon L, Chabbi A, Crème A, Fontaine S, Henneron L, Janot N, Lashermes G, Quénéa K, Rees F, Dignac MF. Current controversies on mechanisms controlling soil carbon storage: implications for interactions with practitioners and policy-makers. A review. AGRONOMY FOR SUSTAINABLE DEVELOPMENT 2023; 43:21. [PMID: 36777236 PMCID: PMC9901420 DOI: 10.1007/s13593-023-00876-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage.
Collapse
Affiliation(s)
| | - Pierre Barré
- Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL University, IPSL, Paris, France
| | | | - Lauric Cécillon
- Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL University, IPSL, Paris, France
| | - Abad Chabbi
- UMR EcoSys, INRAE, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Alexandra Crème
- UMR EcoSys, INRAE, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Sébastien Fontaine
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Ecosystème Prairial, 63000 Clermont-Ferrand, France
| | - Ludovic Henneron
- USC ECODIV-Rouen 7603, Normandie Université, UNIROUEN, INRAE, 76000 Rouen, France
| | - Noémie Janot
- ISPA, Bordeaux Sciences Agro, INRAE, F-33140 Villenave d’Ornon, France
| | - Gwenaëlle Lashermes
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51097 Reims, France
| | - Katell Quénéa
- Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, F-75005 Paris, France
| | - Frédéric Rees
- UMR EcoSys, INRAE, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Marie-France Dignac
- INRAE, CNRS, Sorbonne Université, UMR iEES-Paris, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
40
|
Linking processes to community functions—insights into litter decomposition combining fungal metatranscriptomics and environmental NMR profiling. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractIn forest ecosystems, decomposition is essential for carbon and nutrient cycling and therefore a key process for ecosystem functioning. During the decomposition process, litter chemistry, involved decomposer organisms, and enzymatic activity change interdependently. Chemical composition of the litter is the most complex and dynamic component in the decomposition process and therefore challenging to assess holistically. In this study, we aimed to characterize chemical shifts during decomposition and link them to changes in decomposer fungal activity. We characterized the chemical composition of freshly fallen autumn leaves of European beech (Fagus sylvatica) and the corresponding leaf litter after 1 year of decomposition by proton nuclear magnetic resonance spectroscopy. We further tested the applicability of spiking experiments for qualitative and quantitative characterization of leaves and litter chemistry. The composition and transcriptional activity of fungal communities was assessed by high-throughput Illumina sequencing in the same litter samples. We were able to distinguish freshly fallen leaves from 1-year-old litter based on their chemical composition. Chemical composition of leaves converged among regions with progressing decomposition. Fungal litter communities differed in composition among regions, but they were functionally redundant according to the expression of genes encoding litter degrading enzymes (CAZymes). Fungi of the saprotrophic genera Mycena and Chalara correlated with transcription of litter-degrading CAZymes in 1-year-old litter. Forestry measures influenced the diversity and transcription rate of the detected CAZymes transcripts in litter. Their expression was primarily predicted by composition of the soluble chemical fraction of the litter. Environmental NMR fingerprints thus proved valuable for inferring ecological contexts. We propose and discuss a holistic framework to link fungal activity, enzyme expression, and chemical composition.
Collapse
|
41
|
Wahdan SFM, Ji L, Schädler M, Wu YT, Sansupa C, Tanunchai B, Buscot F, Purahong W. Future climate conditions accelerate wheat straw decomposition alongside altered microbial community composition, assembly patterns, and interaction networks. THE ISME JOURNAL 2023; 17:238-251. [PMID: 36352255 PMCID: PMC9860053 DOI: 10.1038/s41396-022-01336-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Although microbial decomposition of plant litter plays a crucial role in nutrient cycling and soil fertility, we know less about likely links of specific microbial traits and decomposition, especially in relation to climate change. We study here wheat straw decomposition under ambient and manipulated conditions simulating a future climate scenario (next 80 years) in agroecosystems, including decay rates, macronutrient dynamics, enzyme activity, and microbial communities. We show that future climate will accelerate straw decay rates only during the early phase of the decomposition process. Additionally, the projected climate change will increase the relative abundance of saprotrophic fungi in decomposing wheat straw. Moreover, the impact of future climate on microbial community assembly and molecular ecological networks of both bacteria and fungi will strongly depend on the decomposition phase. During the early phase of straw decomposition, stochastic processes dominated microbial assembly under ambient climate conditions, whereas deterministic processes highly dominated bacterial and fungal communities under simulated future climate conditions. In the later decomposition phase, similar assembly processes shaped the microbial communities under both climate scenarios. Furthermore, over the early phases of decomposition, simulated future climate enhanced the complexity of microbial interaction networks. We concluded that the impact of future climate on straw decay rate and associated microbial traits like assembly processes and inter-community interactions is restricted to the early phase of decomposition.
Collapse
Affiliation(s)
- Sara Fareed Mohamed Wahdan
- grid.7492.80000 0004 0492 3830Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany ,grid.33003.330000 0000 9889 5690Department of Botany & Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Li Ji
- grid.7492.80000 0004 0492 3830Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany ,grid.440660.00000 0004 1761 0083School of Forestry, Central South University of Forestry and Technology, Changsha, PR China
| | - Martin Schädler
- grid.421064.50000 0004 7470 3956German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany ,grid.7492.80000 0004 0492 3830Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
| | - Yu-Ting Wu
- grid.412083.c0000 0000 9767 1257Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chakriya Sansupa
- grid.7132.70000 0000 9039 7662Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Benjawan Tanunchai
- grid.7492.80000 0004 0492 3830Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
| | - François Buscot
- grid.7492.80000 0004 0492 3830Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany ,grid.421064.50000 0004 7470 3956German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Witoon Purahong
- grid.7492.80000 0004 0492 3830Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
| |
Collapse
|
42
|
Ma G, Wang X, Sun X, Wang S, Du Y, Jiang J. Effects of warming and litter positions on litter decomposition in a boreal peatland. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1078104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Litter decomposition is an important source of carbon accumulation in the permafrost peatlands. Climate warming has led to shrub expansions and accelerated litter mixing with soils and fluctuations in the water table. However, little is known about how changes in the position of the litter will affect litter decomposition under climate warming. To reveal the mechanisms of response of the location of litter in the soil and climate warming to litter decomposition in permafrost peatlands. Here, we selected the evergreen shrub, Chamaedaphne calyculata, and the deciduous shrub, Vaccinium uliginosum, from the permafrost peatlands of the Greater Hing’an Mountains, China. The leaf litter was placed on the soil surface (no-mixing) and mixed with the soil (soil-litter mixing), and then it was incubated for 124 days at 15°C (control) and 20°C (warming). Our results showed that warming significantly increased the CO2 emission rates of C. calyculata and V. uliginosum by 19.9 and 17.4%, respectively. When compared to no-mixing, the CO2 emission rates were reduced (not significantly) by 1.5 (C. calyculata) and increased 13.6% (V. uliginosum) with soil-litter mixing. Interestingly, soil-litter mixing suppressed the positive effect of warming on the CO2 emission rates relative to no-mixing, and the suppressing effects in the V. uliginosum subplot were stronger than those in the C. calyculata subplot. Specifically, warming significantly increased the CO2 emissions of C. calyculata by 27.4% under no-mixing but the increase decreased to 13.1% under soil-litter mixing. Similarly, warming induced significant increases in the CO2 emissions of V. uliginosum, with an increase of 38.8% under no-mixing but non-significant increases (1.9%) were observed under soil-litter mixing. The combination of the enzyme activities of β-1,4-glucosidase, β-1,4-xylosidase and β-D-1,4-cellobiosidase and laccase and phenolics explained more than 60.0% of the variability in the CO2 emissions of C. calyculata and V. uliginosum, respectively. Our study highlights the importance of litter positions in mediating the responses of litter decomposition to climate warming and shrub expansions in the northern peatlands.
Collapse
|
43
|
Taylor AF, Freitag TE, Robinson L, White D, Hedley P, Britton AJ. Nitrogen deposition and temperature structure fungal communities associated with alpine moss-sedge heath in the UK. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
44
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
45
|
He Y, Ding J, Dorji T, Wang T, Li J, Smith P. Observation-based global soil heterotrophic respiration indicates underestimated turnover and sequestration of soil carbon by terrestrial ecosystem models. GLOBAL CHANGE BIOLOGY 2022; 28:5547-5559. [PMID: 35652687 DOI: 10.1111/gcb.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Soil heterotrophic respiration (Rh ) refers to the flux of CO2 released from soil to atmosphere as a result of organic matter decomposition by soil microbes and fauna. As one of the major fluxes in the global carbon cycle, large uncertainties still exist in the estimation of global Rh , which further limits our current understanding of carbon accumulation in soils. Here, we applied a Random Forest algorithm to create a global data set of soil Rh , by linking 761 field observations with both abiotic and biotic predictors. We estimated that global Rh was 48.8 ± 0.9 Pg C year-1 for 1982-2018, which was 16% less than the ensemble mean (58.6 ± 9.9 Pg C year-1 ) of 16 terrestrial ecosystem models. By integrating our observational Rh with independent soil carbon stock data sets, we obtained a global mean soil carbon turnover time of 38.3 ± 11 year. Using observation-based turnover times as a constraint, we found that terrestrial ecosystem models simulated faster carbon turnovers, leading to a 30% (74 Pg C) underestimation of terrestrial ecosystem carbon accumulation for the past century, which was especially pronounced at high latitudes. This underestimation is equivalent to 45% of the total carbon emissions (164 Pg C) caused by global land-use change at the same time. Our analyses highlight the need to constrain ecosystem models using observation-based and locally adapted Rh values to obtain reliable projections of the carbon sink capacity of terrestrial ecosystems.
Collapse
Affiliation(s)
- Yue He
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jinzhi Ding
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Tsechoe Dorji
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
46
|
Liu S, Trevathan-Tackett SM, Jiang Z, Cui L, Wu Y, Zhang X, Li J, Luo H, Huang X. Nutrient loading decreases blue carbon by mediating fungi activities within seagrass meadows. ENVIRONMENTAL RESEARCH 2022; 212:113280. [PMID: 35430277 DOI: 10.1016/j.envres.2022.113280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Coastal pollution, including nutrient loading, can negatively impact seagrass health and cover and may consequently alter soil organic carbon (SOC) accumulation and preservation. Key to understanding how eutrophication impacts SOC cycling in seagrass ecosystems is how nutrient loading changes the sources of carbon being deposited and how these changes in resources, both nutrients and carbon availability, influence soil microbiota community and activity. Currently, the direction and magnitude of nutrient loading impacts on seagrass SOC dynamics are poorly understood at a meadow scale, limiting our ability to reveal the driving mechanisms of SOC remineralisation. The purpose of this study was to assess the response of surface SOC and soil microbiomes to nutrient loading within tropical seagrass meadows. To achieve this, we quantified both total SOC and recalcitrant soil organic carbon (RSOC) concentrations and sources, in addition to the composition of bacterial and fungal communities and soil extracellular enzyme activities. We found that nutrient loading elevated SOC and RSOC content, mainly facilitated by enhanced algal growth. There was no nutrient effect on the soil prokaryotic communities, however, saprotrophic fungi groups (i.e. Trapeliales, Sordaridales, Saccharomycetales and Polyporales) and fungal activities were elevated under high nutrient conditions, including extracellular enzyme activities linked to seagrass-based cellulose and lignin decomposition. This relative increase in RSOC transformation may decrease the relative contribution of seagrass carbon to RSOC pools. Additionally, significantly different fungal communities were observed between adjacent T. hemprichii and E. acoroides areas, which coincided with elevated RSOC-decomposing enzyme activity in T. hemprichii meadows, even though the mixed seagrass meadow received allochthonous SOC and RSOC from the same sources. These results suggest that nutrient loading stimulated fungal activity and community shifts specific to the local seagrass species, thereby causing fine-scale (within-meadow) variability in SOC cycling in response to nutrient loading. This study provides evidence that fungal composition and activity, mediated by human activities (e.g. nutrient loading), can be an important influence on seagrass blue carbon accumulation and remineralisation.
Collapse
Affiliation(s)
- Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Stacey M Trevathan-Tackett
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, Victoria, 3125, Australia
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lijun Cui
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xia Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jinlong Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxue Luo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
47
|
Moitinho MA, Chiaramonte JB, Bononi L, Gumiere T, Melo IS, Taketani RG. Fungal succession on the decomposition of three plant species from a Brazilian mangrove. Sci Rep 2022; 12:14547. [PMID: 36008524 PMCID: PMC9411622 DOI: 10.1038/s41598-022-18667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Leaf decomposition is the primary process in release of nutrients in the dynamic mangrove habitat, supporting the ecosystem food webs. On most environments, fungi are an essential part of this process. However, due to the peculiarities of mangrove forests, this group is currently neglected. Thus, this study tests the hypothesis that fungal communities display a specific succession pattern in different mangrove species and this due to differences in their ecological role. A molecular approach was employed to investigate the dynamics of the fungal community during the decomposition of three common plant species (Rhizophora mangle, Laguncularia racemosa, and Avicennia schaueriana) from a mangrove habitat located at the southeast of Brazil. Plant material was the primary driver of fungi communities, but time also was marginally significant for the process, and evident changes in the fungal community during the decomposition process were observed. The five most abundant classes common to all the three plant species were Saccharomycetes, Sordariomycetes, Tremellomycetes, Eurotiomycetes, and Dothideomycetes, all belonging to the Phylum Ascomycota. Microbotryomycetes class were shared only by A. schaueriana and L. racemosa, while Agaricomycetes class were shared by L. racemosa and R. mangle. The class Glomeromycetes were shared by A. schaueriana and R. mangle. The analysis of the core microbiome showed that Saccharomycetes was the most abundant class. In the variable community, Sordariomycetes was the most abundant one, mainly in the Laguncularia racemosa plant. The results presented in this work shows a specialization of the fungal community regarding plant material during litter decomposition which might be related to the different chemical composition and rate of degradation.
Collapse
Affiliation(s)
- Marta A Moitinho
- Laboratory of Environmental Microbiology, Brazilian Agricultural. Research Corporation, EMBRAPA Environment, SP 340. Highway-Km 127.5, Jaguariúna, SP, 13820-000, Brazil.,College of Agriculture Luiz de Queiroz, University of São Paulo, Pádua Dias Avenue, 11, Piracicaba, SP, 13418-900, Brazil
| | - Josiane B Chiaramonte
- Laboratory of Environmental Microbiology, Brazilian Agricultural. Research Corporation, EMBRAPA Environment, SP 340. Highway-Km 127.5, Jaguariúna, SP, 13820-000, Brazil.,College of Agriculture Luiz de Queiroz, University of São Paulo, Pádua Dias Avenue, 11, Piracicaba, SP, 13418-900, Brazil
| | - Laura Bononi
- Laboratory of Environmental Microbiology, Brazilian Agricultural. Research Corporation, EMBRAPA Environment, SP 340. Highway-Km 127.5, Jaguariúna, SP, 13820-000, Brazil.,College of Agriculture Luiz de Queiroz, University of São Paulo, Pádua Dias Avenue, 11, Piracicaba, SP, 13418-900, Brazil
| | - Thiago Gumiere
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement. 490, rue de la Couronne, Quebec City, QC, G1K 9A9, Canada
| | - Itamar S Melo
- Laboratory of Environmental Microbiology, Brazilian Agricultural. Research Corporation, EMBRAPA Environment, SP 340. Highway-Km 127.5, Jaguariúna, SP, 13820-000, Brazil
| | - Rodrigo G Taketani
- College of Agriculture Luiz de Queiroz, University of São Paulo, Pádua Dias Avenue, 11, Piracicaba, SP, 13418-900, Brazil. .,CETEM, Centre for Mineral Technology, MCTIC Ministry of Science, Technology, Innovation and Communication, Av. Pedro Calmon, 900, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, ZC, 21941-908, Brazil.
| |
Collapse
|
48
|
Bibbo S, Lodge DJ. A Preconditioning Paradox: Contrasting Effects of Initial Phyllosphere and Early Leaf Decomposer Microfungi on Subsequent Colonization by Leaf Decomposing Non-Unit-Restricted Basidiomycetes. J Fungi (Basel) 2022; 8:jof8090903. [PMID: 36135628 PMCID: PMC9501227 DOI: 10.3390/jof8090903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Fungal interactions during leaf decomposition can facilitate or inhibit other fungi. This experiment focused on whether preconditioning of leaf litter by microfungi that were confined to one leaf (Unit-Restricted) made leaf litter less likely to be colonized and decomposed by basidiomycetes that bind litter into mats (Non-Unit-Restricted) than non-preconditioned litter. Leaves of Manilkara bidentata in litterbags were preconditioned by incubating them for 0, 1, 2 or 3 months in flat litter/seed rain baskets 10 cm above the forest floor to avoid colonization by basidiomycete fungi. Preconditioned and non-preconditioned leaves were transferred to 5 replicate basidiomycete fungal mats of Gymnopus johnstonii for 6 weeks. Both attachment by basidiomycete fungi and percent mass loss after 6 weeks decreased significantly with increasing preconditioning time. In non-preconditioned leaves, gamma irradiation did not affect mass loss or percent white-rot despite having significantly increased numbers of basidiomycete fungal connections as compared to non-irradiated leaves. In non-preconditioned leaves, more basidiomycetes attachmented to non-irradiated than irradiated leaves suggest facilitation by phyllosphere microfungi. While basidiomycete colonization was initially facilitated by phyllosphere fungi, we inferred that degradation of resource quality led to fewer fungal attachments and less mass loss after 1–3 months of preconditioning by microfungi. The date suggest there is a 1-month time window for basidiomycete fungi to incorporate fallen leaves into their litter mats.
Collapse
Affiliation(s)
- Silvia Bibbo
- Plant Ecology & Evolution, Evolutionary Biology Center, Uppsala University, SE-751 05 Uppsala, Sweden
- Correspondence:
| | - D. Jean Lodge
- Department of Plant Pathology, Odum School of Ecology, University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
49
|
Chai H, Li J, Ochoa-Hueso R, Yang X, Li J, Meng B, Song W, Zhong X, Ma J, Sun W. Different drivers of soil C accumulation in aggregates in response to altered precipitation in a semiarid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154760. [PMID: 35341864 DOI: 10.1016/j.scitotenv.2022.154760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Soil carbon (C) stabilization partially depends on its distribution within soil structural aggregates, and on the physicochemical processes of C within these aggregates. Changes in precipitation can alter the size distribution of aggregate classes within soils, and C input and output processes within these aggregates, which have potential consequences for soil C storage. However, the mechanisms underlying C accumulation within different aggregates under various precipitation regimes remain unclear. In this study, we conducted a 3-year field manipulation experiment to test the effects of a gradient of altered precipitation (-70%, -50%, -30%, 0%, +30%, and +50% amounts compared with ambient rainfall) on soil aggregate distribution and C accumulation in aggregates (53-250 μm, microaggregates; < 53 μm, silt and clay fractions) in a meadow steppe of northeastern China. Our results revealed that the distribution of soil microaggregates decreased along the precipitation gradient, with no detectable discrepant responses with respect to soil C accumulation within the microaggregates to precipitation treatments. In contrast, higher precipitation amounts coupled with a greater proportion of silt and clay fractions enhanced the accumulation of soil C. Importantly, structural equation models revealed that the pathways by which changes in precipitation control the accumulation of soil C varied across aggregate size fractions. Plant biomass was the main direct factor controlling the accumulation of C within soil microaggregates, whereas soil aggregate distribution and enzyme activities strongly interacted with soil C accumulation in the silt and clay fractions. Our findings imply that identifying how plant and soil aggregate properties respond to precipitation changes and drive C accumulation among soil particles will enhance the ability to predict responses of ecosystem processes to future global change.
Collapse
Affiliation(s)
- Hua Chai
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China; Center for Ecosystem Sciences and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, United States of America
| | - Jie Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus del Rio San Pedro, Puerto Real, Cádiz 11510, Spain
| | - Xuechen Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China; Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Junqin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China
| | - Bo Meng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China; Institute of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Wenzheng Song
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China; Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus del Rio San Pedro, Puerto Real, Cádiz 11510, Spain
| | - Xiaoyue Zhong
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jianying Ma
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China.
| |
Collapse
|
50
|
Luo R, Kuzyakov Y, Zhu B, Qiang W, Zhang Y, Pang X. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest. GLOBAL CHANGE BIOLOGY 2022; 28:4194-4210. [PMID: 35445477 DOI: 10.1111/gcb.16205] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Increasing phosphorus (P) inputs induced by anthropogenic activities have increased P availability in soils considerably, with dramatic effects on carbon (C) cycling and storage. However, the underlying mechanisms via which P drives plant and microbial regulation of soil organic C (SOC) formation and stabilization remain unclear, hampering the accurate projection of soil C sequestration under future global change scenarios. Taking the advantage of an 8-year field experiment with increasing P addition levels in a subalpine forest on the eastern Tibetan Plateau, we explored plant C inputs, soil microbial communities, plant and microbial biomarkers, as well as SOC physical and chemical fractions. We found that continuous P addition reduced fine root biomass, but did not affect total SOC content. P addition decreased plant lignin contribution to SOC, primarily from declined vanillyl-type phenols, which was coincided with a reduction in methoxyl/N-alkyl C by 2.1%-5.5%. Despite a decline in lignin decomposition due to suppressed oxidase activity by P addition, the content of lignin-derived compounds decreased because of low C input from fine roots. In contrast, P addition increased microbial (mainly fungal) necromass and its contribution to SOC due to the slower necromass decomposition under reduced N-acquisition enzyme activity. The larger microbial necromass contribution to SOC corresponded with a 9.1%-12.4% increase in carbonyl C abundance. Moreover, P addition had no influence on the slow-cycing mineral-associated organic C pool, and SOC chemical stability indicated by aliphaticity and recalcitrance indices. Overall, P addition in the subalpine forest over 8 years influenced SOC composition through divergent alterations of plant- and microbial-derived C contributions, but did not shape SOC physical and chemical stability. Such findings may aid in accurately forecasting SOC dynamics and their potential feedbacks to climate change with future scenarios of increasing soil P availability in Earth system models.
Collapse
Affiliation(s)
- Ruyi Luo
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Wei Qiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|