1
|
Li S, Yin L, Duan L, Li J, Wang P, Gao S, Xian W, Li W. Diversity, abundance, and expression of proteorhodopsin genes in the northern South China Sea. ENVIRONMENTAL RESEARCH 2024; 259:119514. [PMID: 38950812 DOI: 10.1016/j.envres.2024.119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
Proteorhodopsins have been suggested as an important strategy among phototrophs to capture solar energy in marine environments. The goals of this study was to investigate the diversity of proteorhodopsin genes and to explore their abundance, distribution, and expression in the coastal surface waters of the northern South China Sea, one of the largest marginal seas of the western North Pacific Ocean. Using 21 metagenomes, we recovered proteorhodopsin genes from a wide range of prokaryotic taxa, and chlorophyll a contributed significantly to the community composition of proteorhodopsin-containing microbes. Most proteorhodopsin sequences were predicted to encode green light-absorbing proton pumps and green light-absorbing proteorhodopsin genes were more abundant than blue-absorbing ones. The variations in the conserved residues involved in ion pumping and several uncharacterized proteorhodopsins were observed. The gene abundance pattern of proteorhodopsin types were significantly influenced by the levels of total organic carbon and soluble reactive phosphorus. Gene expression analysis confirmed the importance of proteorhodopsin-based phototrophy and revealed different expressional patterns among major phyla. In tandem, we screened 2295 metagenome-assembled genomes to describe the taxonomic distribution of proteorhodopsins. Bacteroidota are the key lineages encoding proteorhodopsins, but proteorhodopsins were predicated from members of Proteobacteria, Marinisomatota, Myxococcota, Verrucomicrobiota and Thermoplasmatota. Our study expanded the diversity of proteorhodopsins and improve our understanding on the significance of proteorhodopsin-mediated phototrophy in the marine ecosystem.
Collapse
Affiliation(s)
- Shanhui Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingzi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jialing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaoming Gao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wendong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China; Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Wenjun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
2
|
Muñoz-Marín MDC, Duhamel S, Björkman KM, Magasin JD, Díez J, Karl DM, García-Fernández JM. Differential Timing for Glucose Assimilation in Prochlorococcus and Coexistent Microbial Populations in the North Pacific Subtropical Gyre. Microbiol Spectr 2022; 10:e0246622. [PMID: 36098532 PMCID: PMC9602893 DOI: 10.1128/spectrum.02466-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 01/04/2023] Open
Abstract
The marine cyanobacterium Prochlorococcus can utilize glucose as a source of carbon. However, the relative importance of inorganic and organic carbon assimilation and the timing of glucose assimilation are still poorly understood in these numerically dominant cyanobacteria. Here, we investigated whole microbial community and group-specific primary production and glucose assimilation using incubations with radioisotopes combined with flow cytometry cell sorting. We also studied changes in the microbial community structure in response to glucose enrichments and analyzed the transcription of Prochlorocccus genes involved in carbon metabolism and photosynthesis. Our results showed a diel variation for glucose assimilation in Prochlorococcus, with maximum assimilation at midday and minimum at midnight (~2-fold change), which was different from that of the total microbial community. This suggests that the timing in glucose assimilation in Prochlorococcus is coupled to photosynthetic light reactions producing energy, it being more convenient for Prochlorococcus to show maximum glucose uptake precisely when the rest of microbial populations have their minimum glucose uptake. Many transcriptional responses to glucose enrichment occurred after 12- and 24-h periods, but community composition did not change. High-light Prochlorococcus strains were the most impacted by glucose addition, with transcript-level increases observed for genes in pathways for glucose metabolism, such as the pentose phosphate pathway, the Entner-Doudoroff pathway, glycolysis, respiration, and glucose transport. While Prochlorococcus C assimilation from glucose represented less than 0.1% of the bacterium's photosynthetic C fixation, increased assimilation during the day and glcH gene upregulation upon glucose enrichment indicate an important role of mixotrophic C assimilation by natural populations of Prochlorococcus. IMPORTANCE Several studies have demonstrated that Prochlorococcus, the most abundant photosynthetic organism on Earth, can assimilate organic molecules, such as amino acids, amino sugars, ATP, phosphonates, and dimethylsulfoniopropionate. This autotroph can also assimilate small amounts of glucose, supporting the hypothesis that Prochlorococcus is mixotrophic. Our results show, for the first time, a diel variability in glucose assimilation by natural populations of Prochlorococcus with maximum assimilation during midday. Based on our previous results, this indicates that Prochlorococcus could maximize glucose uptake by using ATP made during the light reactions of photosynthesis. Furthermore, Prochlorococcus showed a different timing of glucose assimilation from the total population, which may offer considerable fitness advantages over competitors "temporal niches." Finally, we observed transcriptional changes in some of the genes involved in carbon metabolism, suggesting that Prochlorococcus can use both pathways previously proposed in cyanobacteria to metabolize glucose.
Collapse
Affiliation(s)
- María del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Solange Duhamel
- Lamont-Doherty Earth Observatory of Columbia University, Division of Biology and Paleo Environment, Palisades, New York, USA
| | - Karin M. Björkman
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, C-MORE Hale, Honolulu, Hawaii, USA
| | - Jonathan D. Magasin
- Ocean Sciences Department, University of California, Santa Cruz, California, USA
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - David M. Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, C-MORE Hale, Honolulu, Hawaii, USA
| | - José M. García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
3
|
Aalto NJ, Schweitzer HD, Krsmanovic S, Campbell K, Bernstein HC. Diversity and Selection of Surface Marine Microbiomes in the Atlantic-Influenced Arctic. Front Microbiol 2022; 13:892634. [PMID: 35910621 PMCID: PMC9329088 DOI: 10.3389/fmicb.2022.892634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Arctic marine environments are experiencing rapid changes due to the polar amplification of global warming. These changes impact the habitat of the cold-adapted microbial communities, which underpin biogeochemical cycles and marine food webs. We comparatively investigated the differences in prokaryotic and microeukaryotic taxa between summer surface water microbiomes sampled along a latitudinal transect from the ice-free southern Barents Sea and into the sea-ice-covered Nansen Basin to disentangle the dominating community (ecological) selection processes driving phylogenetic diversity. The community structure and richness of each site-specific microbiome were assessed in relation to the physical and biogeochemical conditions of the environment. A strong homogeneous deterministic selection process was inferred across the entire sampling transect via a phylogenetic null modeling approach. The microbial species richness and diversity were not negatively influenced by northward decreasing temperature and salinity. The results also suggest that regional phytoplankton blooms are a major prevalent factor in governing the bacterial community structure. This study supports the consideration that strong homogeneous selection is imposed across these cold-water marine environments uniformly, regardless of geographic assignments within either the Nansen Basin or the Barents Sea.
Collapse
Affiliation(s)
- Nerea J. Aalto
- Faculty of Biosciences, Fisheries, and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
- The Arctic Centre for Sustainable Energy, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Hannah D. Schweitzer
- Faculty of Biosciences, Fisheries, and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
- The Arctic Centre for Sustainable Energy, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Stina Krsmanovic
- Faculty of Biosciences, Fisheries, and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Karley Campbell
- Faculty of Biosciences, Fisheries, and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Hans C. Bernstein
- Faculty of Biosciences, Fisheries, and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
- The Arctic Centre for Sustainable Energy, UiT—The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Hans C. Bernstein
| |
Collapse
|
4
|
Reinl KL, Harris TD, Elfferich I, Coker A, Zhan Q, De Senerpont Domis LN, Morales-Williams AM, Bhattacharya R, Grossart HP, North RL, Sweetman JN. The role of organic nutrients in structuring freshwater phytoplankton communities in a rapidly changing world. WATER RESEARCH 2022; 219:118573. [PMID: 35643062 DOI: 10.1016/j.watres.2022.118573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Carbon, nitrogen, and phosphorus are critical macroelements in freshwater systems. Historically, researchers and managers have focused on inorganic forms, based on the premise that the organic pool was not available for direct uptake by phytoplankton. We now know that phytoplankton can tap the organic nutrient pool through a number of mechanisms including direct uptake, enzymatic hydrolysis, mixotrophy, and through symbiotic relationships with microbial communities. In this review, we explore these mechanisms considering current and projected future anthropogenically-driven changes to freshwater systems. In particular, we focus on how naturally- and anthropogenically- derived organic nutrients can influence phytoplankton community structure. We also synthesize knowledge gaps regarding phytoplankton physiology and the potential challenges of nutrient management in an organically dynamic and anthropogenically modified world. Our review provides a basis for exploring these topics and suggests several avenues for future work on the relation between organic nutrients and eutrophication and their ecological implications in freshwater systems.
Collapse
Affiliation(s)
- Kaitlin L Reinl
- Lake Superior National Estuarine Research Reserve, University of Wisconsin-Madison Division of Extension, 14 Marina Drive, Superior, Wisconsin 54880, US; University of Wisconsin-Madison, Center for Limnology, 608 N. Park St., Madison, WI, US; University of Minnesota-Duluth, Large Lakes Observatory, 2205 E. 5th St., Duluth, MN, US.
| | - Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, 2101 Constant Ave., Lawrence, KS, US
| | - Inge Elfferich
- Cardiff University, Earth and Environmental Sciences, Main Building, Park Place CF10 3AT, Cardiff, UK
| | - Ayooluwateso Coker
- University of Minnesota-Duluth, Large Lakes Observatory, 2205 E. 5th St., Duluth, MN, US
| | - Qing Zhan
- Netherlands Institute of Ecology, Dept. of Aquatic Ecology, Droevendaalsesteeg 10, Wageningen, NL
| | | | - Ana M Morales-Williams
- University of Vermont, Rubenstein School of Environment and Natural Resources, 81 Carrigan Drive, Burlington, VT, US
| | - Ruchi Bhattacharya
- University of Waterloo, Department of Earth and Environmental Sciences, 200 University Ave., N2L 1V6, Waterloo, ON, CA
| | - Hans-Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Dept. Plankton and Microbial Ecology, Zur alten Fischerhuette 2, D-16775 Stechlin, DE; Potsdam University, Institute of Biochemistry and Biology, Maulbeerallee 2, 14469 Potsdam
| | - Rebecca L North
- University of Missouri-Columbia, School of Natural Resources, 303L Anheuser Busch Natural Resource Building, Columbia, MO, US
| | - Jon N Sweetman
- Pennsylvania State University, Ecological Science and Management, 457 Agriculture Sciences and Industries Building, State College, PA, US
| |
Collapse
|
5
|
Kamennaya NA, Kennaway G, Sleigh MA, Zubkov MV. Notable predominant morphology of the smallest most abundant protozoa of the open ocean revealed by electron microscopy. JOURNAL OF PLANKTON RESEARCH 2022; 44:542-558. [PMID: 35898814 PMCID: PMC9310263 DOI: 10.1093/plankt/fbac031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
In the microbe-driven ecosystems of the open ocean, the small heterotrophic flagellates (sHF) are the chief microbial predators and recyclers of essential nutrients to phototrophic microbes. Even with intensive molecular phylogenetic studies of the sHF, the origins of their feeding success remain obscure because of limited understanding of their morphological adaptations to feeding. Here, we examined the sHF morphologies in the largest, most oligotrophic South Pacific and Atlantic (sub)tropical gyres and adjacent mesotrophic waters. On four research cruises, the sHF cells were flow cytometrically sorted from bacterioplankton and phytoplankton for electron microscopy. The sorted sHF comprised chiefly heterokont (HK) biflagellates and unikont choanoflagellates numerically at around 10-to-1 ratio. Of the four differentiated morphological types of HK omnipresent in the open ocean, the short-tinsel heterokont (stHK), whose tinsel flagellum is too short to propagate a complete wave, is predominant and a likely candidate to be the most abundant predator on Earth. Modeling shows that the described stHK propulsion is effective in feeding on bacterioplankton cells at low concentrations; however, owing to general prey scarcity in the oligotrophic ocean, selective feeding is unsustainable and omnivory is equally obligatory for the seven examined sHF types irrespective of their mode of propulsion.
Collapse
Affiliation(s)
- Nina A Kamennaya
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sede Boqer, Be'er Sheva 8499000, Israel
| | | | | | | |
Collapse
|
6
|
Sieradzki ET, Morando M, Fuhrman JA. Metagenomics and Quantitative Stable Isotope Probing Offer Insights into Metabolism of Polycyclic Aromatic Hydrocarbon Degraders in Chronically Polluted Seawater. mSystems 2021; 6:e00245-21. [PMID: 33975968 PMCID: PMC8125074 DOI: 10.1128/msystems.00245-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial biodegradation is a significant contributor to remineralization of polycyclic aromatic hydrocarbons (PAHs)-toxic and recalcitrant components of crude oil as well as by-products of partial combustion chronically introduced into seawater via atmospheric deposition. The Deepwater Horizon oil spill demonstrated the speed at which a seed PAH-degrading community maintained by chronic inputs responds to acute pollution. We investigated the diversity and functional potential of a similar seed community in the chronically polluted Port of Los Angeles (POLA), using stable isotope probing with naphthalene, deep-sequenced metagenomes, and carbon incorporation rate measurements at the port and in two sites in the San Pedro Channel. We demonstrate the ability of the community of degraders at the POLA to incorporate carbon from naphthalene, leading to a quick shift in microbial community composition to be dominated by the normally rare Colwellia and Cycloclasticus We show that metagenome-assembled genomes (MAGs) belonged to these naphthalene degraders by matching their 16S-rRNA gene with experimental stable isotope probing data. Surprisingly, we did not find a full PAH degradation pathway in those genomes, even when combining genes from the entire microbial community, leading us to hypothesize that promiscuous dehydrogenases replace canonical naphthalene degradation enzymes in this site. We compared metabolic pathways identified in 29 genomes whose abundance increased in the presence of naphthalene to generate genomic-based recommendations for future optimization of PAH bioremediation at the POLA, e.g., ammonium as opposed to urea, heme or hemoproteins as an iron source, and polar amino acids.IMPORTANCE Oil spills in the marine environment have a devastating effect on marine life and biogeochemical cycles through bioaccumulation of toxic hydrocarbons and oxygen depletion by hydrocarbon-degrading bacteria. Oil-degrading bacteria occur naturally in the ocean, especially where they are supported by chronic inputs of oil or other organic carbon sources, and have a significant role in degradation of oil spills. Polycyclic aromatic hydrocarbons are the most persistent and toxic component of crude oil. Therefore, the bacteria that can break those molecules down are of particular importance. We identified such bacteria at the Port of Los Angeles (POLA), one of the busiest ports worldwide, and characterized their metabolic capabilities. We propose chemical targets based on those analyses to stimulate the activity of these bacteria in case of an oil spill in the Port POLA.
Collapse
Affiliation(s)
- Ella T Sieradzki
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael Morando
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Orruño M, Parada C, Kaberdin VR, Arana I. The Effect of Visible Light on Cell Envelope Subproteome during Vibrio harveyi Survival at 20 °C in Seawater. Microorganisms 2021; 9:microorganisms9030594. [PMID: 33805730 PMCID: PMC8001661 DOI: 10.3390/microorganisms9030594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
A number of Vibrio spp. belong to the well-studied model organisms used to understand the strategies developed by marine bacteria to cope with adverse conditions (starvation, suboptimal temperature, solar radiation, etc.) in their natural environments. Temperature and nutrient availability are considered to be the key factors that influence Vibrio harveyi physiology, morphology, and persistence in aquatic systems. In contrast to the well-studied effects of temperature and starvation on Vibrio survival, little is known about the impact of visible light able to cause photooxidative stress. Here we employ V. harveyi ATCC 14126T as a model organism to analyze and compare the survival patterns and changes in the protein composition of its cell envelope during the long-term permanence of this bacterium in seawater microcosm at 20 °C in the presence and absence of illumination with visible light. We found that V. harveyi exposure to visible light reduces cell culturability likely inducing the entry into the Viable but Non Culturable state (VBNC), whereas populations maintained in darkness remained culturable for at least 21 days. Despite these differences, the starved cells in both populations underwent morphological changes by reducing their size. Moreover, further proteomic analysis revealed a number of changes in the composition of cell envelope potentially accountable for the different adaptation pattern manifested in the absence and presence of visible light.
Collapse
Affiliation(s)
- Maite Orruño
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| | - Claudia Parada
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
| | - Vladimir R. Kaberdin
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- Correspondence:
| |
Collapse
|
8
|
Accumulation of ambient phosphate into the periplasm of marine bacteria is proton motive force dependent. Nat Commun 2020; 11:2642. [PMID: 32457313 PMCID: PMC7250820 DOI: 10.1038/s41467-020-16428-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria acquire phosphate (Pi) by maintaining a periplasmic concentration below environmental levels. We recently described an extracellular Pi buffer which appears to counteract the gradient required for Pi diffusion. Here, we demonstrate that various treatments to outer membrane (OM) constituents do not affect the buffered Pi because bacteria accumulate Pi in the periplasm, from which it can be removed hypo-osmotically. The periplasmic Pi can be gradually imported into the cytoplasm by ATP-powered transport, however, the proton motive force (PMF) is not required to keep Pi in the periplasm. In contrast, the accumulation of Pi into the periplasm across the OM is PMF-dependent and can be enhanced by light energy. Because the conventional mechanism of Pi-specific transport cannot explain Pi accumulation in the periplasm we propose that periplasmic Pi anions pair with chemiosmotic cations of the PMF and millions of accumulated Pi pairs could influence the periplasmic osmolarity of marine bacteria. The ubiquitous oceanic bacteria harbour an external phosphate buffer for modulating phosphate (Pi) uptake. Here, using both oceanic SAR11, Prochlorococcus and Synechococcus strains as a model, the authors show that the Pi buffer accumulation in the periplasm is proton motive force-dependent and can be enhanced by light energy.
Collapse
|
9
|
Muñoz-Marín MC, Gómez-Baena G, López-Lozano A, Moreno-Cabezuelo JA, Díez J, García-Fernández JM. Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus. THE ISME JOURNAL 2020; 14:1065-1073. [PMID: 32034281 PMCID: PMC7174365 DOI: 10.1038/s41396-020-0603-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Marine picocyanobacteria of the Prochlorococcus and Synechococcus genera have been longtime considered as autotrophic organisms. However, compelling evidence published over the last 15 years shows that these organisms can use different organic compounds containing key elements to survive in oligotrophic oceans, such as N (amino acids, amino sugars), S (dimethylsulfoniopropionate, DMSP), or P (ATP). Furthermore, marine picocyanobacteria can also take up glucose and use it as a source of carbon and energy, despite the fact that this compound is devoid of limiting elements and can also be synthesized by using standard metabolic pathways. This review will outline the main findings suggesting mixotrophy in the marine picocyanobacteria Prochlorococcus and Synechococcus, and its ecological relevance for these important primary producers.
Collapse
Affiliation(s)
- M C Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| | - G Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| | - A López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| | - J A Moreno-Cabezuelo
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| | - J Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| | - J M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain.
| |
Collapse
|
10
|
On-Site Analysis of Bacterial Communities of the Ultraoligotrophic South Pacific Gyre. Appl Environ Microbiol 2019; 85:AEM.00184-19. [PMID: 31076426 DOI: 10.1128/aem.00184-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/04/2019] [Indexed: 11/20/2022] Open
Abstract
The South Pacific Gyre (SPG) covers 10% of the ocean's surface and is often regarded as a marine biological desert. To gain an on-site overview of the remote, ultraoligotrophic microbial community of the SPG, we developed a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. We tested the pipeline during the SO-245 "UltraPac" cruise from Chile to New Zealand and found that the overall microbial community of the SPG was highly similar to those of other oceanic gyres. The SPG was dominated by 20 major bacterial clades, including SAR11, SAR116, the AEGEAN-169 marine group, SAR86, Prochlorococcus, SAR324, SAR406, and SAR202. Most of the bacterial clades showed a strong vertical (20 m to 5,000 m), but only a weak longitudinal (80°W to 160°W), distribution pattern. Surprisingly, in the central gyre, Prochlorococcus, the dominant photosynthetic organism, had only low cellular abundances in the upper waters (20 to 80 m) and was more frequent around the 1% irradiance zone (100 to 150 m). Instead, the surface waters of the central gyre were dominated by the SAR11, SAR86, and SAR116 clades known to harbor light-driven proton pumps. The alphaproteobacterial AEGEAN-169 marine group was particularly abundant in the surface waters of the central gyre, indicating a potentially interesting adaptation to ultraoligotrophic waters and high solar irradiance. In the future, the newly developed community analysis pipeline will allow for on-site insights into a microbial community within 35 h of sampling, which will permit more targeted sampling efforts and hypothesis-driven research.IMPORTANCE The South Pacific Gyre, due to its vast size and remoteness, is one of the least-studied oceanic regions on earth. However, both remote sensing and in situ measurements indicated that the activity of its microbial community contributes significantly to global biogeochemical cycles. Presented here is an unparalleled investigation of the microbial community of the SPG from 20- to 5,000-m depths covering a geographic distance of ∼7,000 km. This insight was achieved through the development of a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. The pipeline is well comparable to onshore systems based on the Illumina platforms and yields microbial community data in less than 35 h after sampling. Going forward, the ability to gain on-site knowledge of a remote microbial community will permit hypothesis-driven research, through the generation of novel scientific questions and subsequent additional targeted sampling efforts.
Collapse
|
11
|
Gómez-Consarnau L, Needham DM, Weber PK, Fuhrman JA, Mayali X. Influence of Light on Particulate Organic Matter Utilization by Attached and Free-Living Marine Bacteria. Front Microbiol 2019; 10:1204. [PMID: 31214143 PMCID: PMC6558058 DOI: 10.3389/fmicb.2019.01204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Light plays a central role on primary productivity of aquatic systems. Yet, its potential impact on the degradation of photosynthetically produced biomass is not well understood. We investigated the patterns of light-induced particle breakdown and bacterial assimilation of detrital C and N using 13C and 15N labeled freeze-thawed diatom cells incubated in laboratory microcosms with a marine microbial community freshly collected from the Pacific Ocean. Particles incubated in the dark resulted in increased bacterial counts and dissolved organic carbon concentrations compared to those incubated in the light. Light also influenced the attached and free-living microbial community structure as detected by 16S rRNA gene amplicon sequencing. For example, Sphingobacteriia were enriched on dark-incubated particles and taxa from the family Flavobacteriaceae and the genus Pseudoalteromonas were numerically enriched on particles in the light. Isotope incorporation analysis by phylogenetic microarray and NanoSIMS (a method called Chip-SIP) identified free-living and attached microbial taxa able to incorporate N and C from the particles. Some taxa, including members of the Flavobacteriaceae and Cryomorphaceae, exhibited increased isotope incorporation in the light, suggesting the use of photoheterotrophic metabolisms. In contrast, some members of Oceanospirillales and Rhodospirillales showed decreased isotope incorporation in the light, suggesting that their heterotrophic metabolism, particularly when occurring on particles, might increase at night or may be inhibited by sunlight. These results show that light influences particle degradation and C and N incorporation by attached bacteria, suggesting that the transfer between particulate and free-living phases are likely affected by external factors that change with the light regime, such as time of day, water column depth and season.
Collapse
Affiliation(s)
- Laura Gómez-Consarnau
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - David M Needham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Peter K Weber
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xavier Mayali
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
12
|
Fang X, Liu Y, Zhao Y, Chen Y, Liu R, Qin QL, Li G, Zhang YZ, Chan W, Hess WR, Zeng Q. Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products. Environ Microbiol 2019; 21:2015-2028. [PMID: 30585375 DOI: 10.1111/1462-2920.14513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/19/2018] [Indexed: 01/27/2023]
Abstract
Viral infection of marine phytoplankton releases a variety of dissolved organic matter (DOM). The impact of viral DOM (vDOM) on the uninfected co-occurring phytoplankton remains largely unknown. Here, we conducted transcriptomic analyses to study the effects of vDOM on the cyanobacterium Prochlorococcus, which is the most abundant photosynthetic organism on Earth. Using Prochlorococcus MIT9313, we showed that its growth was not affected by vDOM, but many tRNAs increased in abundance. We tested tRNA-gly and found that its abundance increased upon addition of glycine. The decreased transcript abundances of N metabolism genes also suggested that Prochlorococcus responded to organic N compounds in vDOM. Addition of vDOM to Prochlorococcus reduced the maximum photochemical efficiency of photosystem II and CO2 fixation while increasing its respiration rate, consistent with differentially abundant transcripts related to photosynthesis and respiration. One of the highest positive fold-changes was observed for the 6S RNA, a noncoding RNA functioning as a global transcriptional regulator in bacteria. The high level of 6S RNA might be responsible for some of the observed transcriptional responses. Taken together, our results revealed the transcriptional regulation of Prochlorococcus in response to viral lysis products and suggested its metabolic potential to utilize organic N compounds.
Collapse
Affiliation(s)
- Xiaoting Fang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yaxin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yao Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yue Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Riyue Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qi-Long Qin
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology (CAS), Guangzhou, China
| | - Yu-Zhong Zhang
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Germany
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
13
|
Moreno-Cabezuelo JÁ, López-Lozano A, Díez J, García-Fernández JM. Differential expression of the glucose transporter gene glcH in response to glucose and light in marine picocyanobacteria. PeerJ 2019; 6:e6248. [PMID: 30648008 PMCID: PMC6330958 DOI: 10.7717/peerj.6248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/09/2018] [Indexed: 11/20/2022] Open
Abstract
Background Our team discovered that Prochlorococcus can take up glucose, in a process that changes the transcriptional pattern of several genes involved in glucose metabolization. We have also shown that glcH encodes a very high affinity glucose transporter, and that glucose is taken up by natural Prochlorococcus populations. We demonstrated that the kinetic parameters of glucose uptake show significant diversity in different Prochlorococcus and Synechococcus strains. Here, we tested whether the transcriptional response of glcH to several glucose concentrations and light conditions was also different depending on the studied strain. Methods Cultures were grown in the light, supplemented with five different glucose concentrations or subjected to darkness, and cells harvested after 24 h of treatment. qRT-PCR was used to determine glcH expression in four Prochlorococcus and two Synechococcus strains. Results In all studied strains glcH was expressed in the absence of glucose, and it increased upon glucose addition to cultures. The changes differed depending on the strain, both in the magnitude and in the way cells responded to the tested glucose concentrations. Unlike the other strains, Synechococcus BL107 showed the maximum glucose uptake at 5 nM glucose. Darkness induced a strong decrease in glcH expression, especially remarkable in Prochlorococcus MIT9313. Discussion Our results suggest that marine picocyanobacteria are actively monitoring the availability of glucose, to upregulate glcH expression in order to exploit the presence of sugars in the environment. The diverse responses observed in different strains suggest that the transcriptional regulation of glucose uptake has been adjusted by evolutive selection. Darkness promotes a strong decrease in glcH expression in all studied strains, which fits with previous results on glucose uptake in Prochlorococcus. Overall, this work reinforces the importance of mixotrophy for marine picocyanobacteria.
Collapse
Affiliation(s)
- José Ángel Moreno-Cabezuelo
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Antonio López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
14
|
Sieradzki ET, Fuhrman JA, Rivero-Calle S, Gómez-Consarnau L. Proteorhodopsins dominate the expression of phototrophic mechanisms in seasonal and dynamic marine picoplankton communities. PeerJ 2018; 6:e5798. [PMID: 30370186 PMCID: PMC6202958 DOI: 10.7717/peerj.5798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
The most abundant and ubiquitous microbes in the surface ocean use light as an energy source, capturing it via complex chlorophyll-based photosystems or simple retinal-based rhodopsins. Studies in various ocean regimes compared the abundance of these mechanisms, but few investigated their expression. Here we present the first full seasonal study of abundance and expression of light-harvesting mechanisms (proteorhodopsin, PR; aerobic anoxygenic photosynthesis, AAnP; and oxygenic photosynthesis, PSI) from deep-sequenced metagenomes and metatranscriptomes of marine picoplankton (<1 µm) at three coastal stations of the San Pedro Channel in the Pacific Ocean. We show that, regardless of season or sampling location, the most common phototrophic mechanism in metagenomes of this dynamic region was PR (present in 65–104% of the genomes as estimated by single-copy recA), followed by PSI (5–104%) and AAnP (5–32%). Furthermore, the normalized expression (RNA to DNA ratio) of PR genes was higher than that of oxygenic photosynthesis (average ± standard deviation 26.2 ± 8.4 vs. 11 ± 9.7), and the expression of the AAnP marker gene was significantly lower than both mechanisms (0.013 ± 0.02). We demonstrate that PR expression was dominated by the SAR11-cluster year-round, followed by other Alphaproteobacteria, unknown-environmental clusters and Gammaproteobacteria. This highly dynamic system further allowed us to identify a trend for PR spectral tuning, in which blue-absorbing PR genes dominate in areas with low chlorophyll-a concentrations (<0.25 µgL−1). This suggests that PR phototrophy is not an accessory function but instead a central mechanism that can regulate photoheterotrophic population dynamics.
Collapse
Affiliation(s)
- Ella T Sieradzki
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Sara Rivero-Calle
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Laura Gómez-Consarnau
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
15
|
Duhamel S, Van Wambeke F, Lefevre D, Benavides M, Bonnet S. Mixotrophic metabolism by natural communities of unicellular cyanobacteria in the western tropical South Pacific Ocean. Environ Microbiol 2018; 20:2743-2756. [PMID: 29573372 DOI: 10.1111/1462-2920.14111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 12/31/2022]
Abstract
Cyanobacteria are major contributors to ocean biogeochemical cycling. However, mixotrophic metabolism and the relative importance of inorganic and organic carbon assimilation within the most abundant cyanobacteria are still poorly understood. We explore the ability of Prochlorococcus and Synechococcus to assimilate organic molecules with variable C:N:P composition and its modulation by light availability and photosynthetic impairment. We used a combination of radiolabelled molecules incubations with flow cytometry cell sorting to separate picoplankton groups from the western tropical South Pacific Ocean. Prochlorococcus and Synechococcus assimilated glucose, leucine and ATP at all stations, but cell-specific assimilation rates of N and P containing molecules were significantly higher than glucose. Incubations in the dark or with an inhibitor of photosystem II resulted in reduced assimilation rates. Light-enhanced cell-specific glucose uptake was generally higher for cyanobacteria (∼50%) than for the low nucleic acid fraction of bacterioplankton (LNA, ∼35%). Our results confirm previous findings, based mainly on cultures and genomic potentials, showing that Prochlorococcus and Synechococcus have a flexible mixotrophic metabolism, but demonstrate that natural populations remain primarily photoautotrophs. Our findings indicate that mixotrophy by marine cyanobacteria is more likely to be an adaptation to low inorganic nutrient availability rather than a facultative pathway for carbon acquisition.
Collapse
Affiliation(s)
- Solange Duhamel
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment, PO Box 1000, 61 Route 9W, Palisades, NY 10964, USA
| | - France Van Wambeke
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Dominique Lefevre
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Mar Benavides
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.,Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 98848, Noumea, New Caledonia
| | - Sophie Bonnet
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.,Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 98848, Noumea, New Caledonia
| |
Collapse
|
16
|
Kamennaya NA, Kennaway G, Fuchs BM, Zubkov MV. "Pomacytosis"-Semi-extracellular phagocytosis of cyanobacteria by the smallest marine algae. PLoS Biol 2018; 16:e2003502. [PMID: 29304142 PMCID: PMC5773223 DOI: 10.1371/journal.pbio.2003502] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/18/2018] [Accepted: 12/15/2017] [Indexed: 11/18/2022] Open
Abstract
The smallest algae, less than 3 μm in diameter, are the most abundant eukaryotes of the World Ocean. Their feeding on planktonic bacteria of similar size is globally important but physically enigmatic. Tiny algal cells tightly packed with the voluminous chloroplasts, nucleus, and mitochondria appear to have insufficient organelle-free space for prey internalization. Here, we present the first direct observations of how the 1.3-μm algae, which are only 1.6 times bigger in diameter than their prey, hold individual Prochlorococcus cells in their open hemispheric cytostomes. We explain this semi-extracellular phagocytosis by the cell size limitation of the predatory alga, identified as the Braarudosphaera haptophyte with a nitrogen (N2)-fixing endosymbiont. Because the observed semi-extracellular phagocytosis differs from all other types of protistan phagocytosis, we propose to name it "pomacytosis" (from the Greek πώμα for "plug").
Collapse
Affiliation(s)
- Nina A. Kamennaya
- Ocean Biogeochemistry & Ecosystems Research Group, National Oceanography Centre, Southampton, United Kingdom
| | - Gabrielle Kennaway
- Imaging and Analysis Centre, Science Facilities, Natural History Museum, London, United Kingdom
| | | | - Mikhail V. Zubkov
- Ocean Biogeochemistry & Ecosystems Research Group, National Oceanography Centre, Southampton, United Kingdom
| |
Collapse
|
17
|
Casey JR, Ferrón S, Karl DM. Light-Enhanced Microbial Organic Carbon Yield. Front Microbiol 2017; 8:2157. [PMID: 29250035 PMCID: PMC5715323 DOI: 10.3389/fmicb.2017.02157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 11/30/2022] Open
Abstract
Molecular evidence for proteorhodopsin- and bacteriochlorophyll-based photoheterotrophy is widespread in oligotrophic marine microbial community metagenomes, and has been implicated in light-enhanced growth rates, substrate uptake rates, and anapleurotic carbon fixation, thus complicating the web of interactions within the ‘microbial loop.’ We quantified photoheterotrophic metabolism of the oxidized organic acid glycolate, a fast-turnover and exclusively phytoplankton-derived substrate at an oligotrophic site in the subtropical North Pacific Ocean. As expected, concentration-dependent changes in uptake rates were observed over the diel cycle, with maxima occurring at midday. Although no light-enhanced substrate uptake rates were observed, samples exposed to light altered the balance between assimilation and respiration, resulting in an approximately four-fold increase in glycolate-specific assimilation efficiency. Energy demand for such a metabolic adjustment was linearly related to light, consistent with photoheterotrophy.
Collapse
Affiliation(s)
- John R Casey
- Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Sara Ferrón
- Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| | - David M Karl
- Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
18
|
Evans C, Brandsma J, Pond DW, Venables HJ, Meredith MP, Witte HJ, Stammerjohn S, Wilson WH, Clarke A, Brussaard CPD. Drivers of interannual variability in virioplankton abundance at the coastal western Antarctic peninsula and the potential effects of climate change. Environ Microbiol 2017; 19:740-755. [PMID: 27902869 DOI: 10.1111/1462-2920.13627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An 8-year time-series in the Western Antarctic Peninsula (WAP) with an approximately weekly sampling frequency was used to elucidate changes in virioplankton abundance and their drivers in this climatically sensitive region. Virioplankton abundances at the coastal WAP show a pronounced seasonal cycle with interannual variability in the timing and magnitude of the summer maxima. Bacterioplankton abundance is the most influential driving factor of the virioplankton, and exhibit closely coupled dynamics. Sea ice cover and duration predetermine levels of phytoplankton stock and thus, influence virioplankton by dictating the substrates available to the bacterioplankton. However, variations in the composition of the phytoplankton community and particularly the prominence of Diatoms inferred from silicate drawdown, drive interannual differences in the magnitude of the virioplankton bloom; likely again mediated through changes in the bacterioplankton. Their findings suggest that future warming within the WAP will cause changes in sea ice that will influence viruses and their microbial hosts through changes in the timing, magnitude and composition of the phytoplankton bloom. Thus, the flow of matter and energy through the viral shunt may be decreased with consequences for the Antarctic food web and element cycling.
Collapse
Affiliation(s)
- Claire Evans
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Joost Brandsma
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - David W Pond
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Hugh J Venables
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Michael P Meredith
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Harry J Witte
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Sharon Stammerjohn
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
| | - William H Wilson
- The Laboratory, Sir Alister Hardy Foundation for Ocean Science, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Andrew Clarke
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Corina P D Brussaard
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands.,Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, Amsterdam, 1090 GE, The Netherlands
| |
Collapse
|
19
|
Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone. Appl Environ Microbiol 2017; 83:AEM.00494-17. [PMID: 28667110 DOI: 10.1128/aem.00494-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for <0.1% of the total sequence abundance), the majority of which were unique to each site. The relationship between 16S rRNA and the 16S rRNA gene, i.e., between potential metabolic activity and abundance, was positive for the whole community. However, analysis of individual OTUs revealed high rRNA-to-rRNA gene ratios for most (71.6% ± 16.7%) of the rare taxa, suggesting that these low-abundance organisms were potentially active and hence might be playing an important role in ecosystem diversity and functioning in the GON.IMPORTANCE The study of bacterioplankton in coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically impacted. Their richness and evenness, as well as their potential activity, are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, community composition, and potential metabolic activity in the GON, which is an ideal test site due to its heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varied quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly diverse and strongly regulated by a combination of different environmental factors leading to their heterogeneous distribution, with the rare taxa contributing to a major proportion of diversity and shifts in community composition and potentially holding a key role in ecosystem functioning.
Collapse
|
20
|
Limardo AJ, Sudek S, Choi CJ, Poirier C, Rii YM, Blum M, Roth R, Goodenough U, Church MJ, Worden AZ. Quantitative biogeography of picoprasinophytes establishes ecotype distributions and significant contributions to marine phytoplankton. Environ Microbiol 2017; 19:3219-3234. [PMID: 28585420 DOI: 10.1111/1462-2920.13812] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022]
Abstract
Bathycoccus and Ostreococcus are broadly distributed marine picoprasinophyte algae. We enumerated small phytoplankton using flow cytometry and qPCR assays for phylogenetically distinct Bathycoccus clades BI and BII and Ostreococcus clades OI and OII. Among 259 photic-zone samples from transects and time-series, Ostreococcus maxima occurred in the North Pacific coastal upwelling for OI (36 713 ± 1485 copies ml-1 ) and the Kuroshio Front for OII (50 189 ± 561 copies ml-1 ) and the two overlapped only in frontal regions. The Bathycoccus overlapped more often with maxima along Line-P for BI (10 667 ± 1299 copies ml-1 ) and the tropical Atlantic for BII (4125 ± 339 copies ml-1 ). Only BII and OII were detected at warm oligotrophic sites, accounting for 34 ± 13% of 1589 ± 448 eukaryotic phytoplankton cells ml-1 (annual average) at Station ALOHA's deep chlorophyll maximum. Significant distributional and molecular differences lead us to propose that Bathycoccus clade BII represents a separate species which tolerates higher temperature oceanic conditions than Bathycoccus prasinos (BI). Morphological differences were not evident, but quick-freeze deep-etch electron microscopy provided insight into Bathycoccus scale formation. Our results highlight the importance of quantitative seasonal abundance data for inferring ecological distributions and demonstrate significant, differential picoprasinophyte contributions in mesotrophic and open-ocean waters.
Collapse
Affiliation(s)
- Alexander J Limardo
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,University of California Santa Cruz, Santa Cruz, CA, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Chang Jae Choi
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | - Marguerite Blum
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Robyn Roth
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
21
|
Teira E, Hernando-Morales V, Guerrero-Feijóo E, Varela MM. Leucine, starch and bicarbonate utilization by specific bacterial groups in surface shelf waters off Galicia (NW Spain). Environ Microbiol 2017; 19:2379-2390. [PMID: 28370995 DOI: 10.1111/1462-2920.13748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 11/29/2022]
Abstract
The capability of different bacterial populations to degrade abundant polymers, such as algal-derived polysaccharides, or to utilize preferentially polymers over monomers, remains largely unknown. In this study, microautoradiography was combined with fluorescence in situ hybridization (MAR-FISH) to evaluate the ability of Bacteroidetes, SAR11, Roseobacter spp., Gammaproteobacteria and SAR86 cells to use bicarbonate, leucine and starch under natural light conditions at two locations in shelf surface waters off NW Spain. The percentage of cells incorporating bicarbonate was relatively high (mean 32% ± 4%) and was positively correlated with the intensity of solar radiation. The proportion of cells using starch (mean 56% ± 4%) or leucine (mean 47% ± 4%) was significantly higher than that using bicarbonate. On average, SAR11, Roseobacter spp. and Gammaproteobacteria showed a similarly high percentage of cells using leucine (47%-65% of hybridized cells) than using starch (51%-64% of hybridized cells), while Bacteroidetes and SAR86 cells preferentially used starch (53% of hybridized cells) over leucine (34%-40% of hybridized cells). We suggest that the great percentage of bacteria using starch is related to a high ambient availability of polymers associated to algal cell lysis, which, in turn, weakens the short-term coupling between phytoplankton release and bacterial production.
Collapse
Affiliation(s)
- E Teira
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310, Vigo, Spain.,Estación de Ciencias Marinas de Toralla (ECIMAT), Universidad de Vigo, Vigo, 36331, Spain
| | - V Hernando-Morales
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310, Vigo, Spain.,Estación de Ciencias Marinas de Toralla (ECIMAT), Universidad de Vigo, Vigo, 36331, Spain
| | - E Guerrero-Feijóo
- Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, IEO, Apdo. 130, Coruña, 15080- A, Spain
| | - M M Varela
- Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, IEO, Apdo. 130, Coruña, 15080- A, Spain
| |
Collapse
|
22
|
Muñoz-Marín MDC, Gómez-Baena G, Díez J, Beynon RJ, González-Ballester D, Zubkov MV, García-Fernández JM. Glucose Uptake in Prochlorococcus: Diversity of Kinetics and Effects on the Metabolism. Front Microbiol 2017; 8:327. [PMID: 28337178 PMCID: PMC5340979 DOI: 10.3389/fmicb.2017.00327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/16/2017] [Indexed: 12/30/2022] Open
Abstract
We have previously shown that Prochlorococcus sp. SS120 strain takes up glucose by using a multiphasic transporter encoded by the Pro1404 gene. Here, we studied the glucose uptake kinetics in multiple Prochlorococcus strains from different ecotypes, observing diverse values for the Ks constants (15–126.60 nM) and the uptake rates (0.48–6.36 pmol min-1 mg prot-1). Multiphasic kinetics was observed in all studied strains, except for TAK9803-2. Pro1404 gene expression studies during the 21st Atlantic Meridional Transect cruise showed positive correlation with glucose concentrations in the ocean. This suggests that the Pro1404 transporter has been subjected to diversification along the Prochlorococcus evolution, in a process probably driven by the glucose availabilities at the different niches it inhabits. The glucose uptake mechanism seems to be a primary transporter. Glucose addition induced detectable transcriptomic and proteomic changes in Prochlorococcus SS120, but photosynthetic efficiency was unaffected. Our studies indicate that glucose is actively taken up by Prochlorococcus, but its uptake does not significantly alter the trophic ways of this cyanobacterium, which continues performing photosynthesis. Therefore Prochlorococcus seems to remain acting as a fundamentally phototrophic organism, capable of using glucose as an extra resource of carbon and energy when available in the environment.
Collapse
Affiliation(s)
- María Del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba Córdoba, Spain
| | - Guadalupe Gómez-Baena
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba Córdoba, Spain
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - David González-Ballester
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba Córdoba, Spain
| | | | - José M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba Córdoba, Spain
| |
Collapse
|
23
|
Yelton AP, Acinas SG, Sunagawa S, Bork P, Pedrós-Alió C, Chisholm SW. Global genetic capacity for mixotrophy in marine picocyanobacteria. THE ISME JOURNAL 2016; 10:2946-2957. [PMID: 27137127 PMCID: PMC5148188 DOI: 10.1038/ismej.2016.64] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/02/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022]
Abstract
The assimilation of organic nutrients by autotrophs, a form of mixotrophy, has been demonstrated in the globally abundant marine picocyanobacterial genera Prochlorococcus and Synechococcus. However, the range of compounds used and the distribution of organic compound uptake genes within picocyanobacteria are unknown. Here we analyze genomic and metagenomic data from around the world to determine the extent and distribution of mixotrophy in these phototrophs. Analysis of 49 Prochlorococcus and 18 Synechococcus isolate genomes reveals that all have the transporters necessary to take up amino acids, peptides and sugars. However, the number and type of transporters and associated catabolic genes differ between different phylogenetic groups, with low-light IV Prochlorococcus, and 5.1B, 5.2 and 5.3 Synechococcus strains having the largest number. Metagenomic data from 68 stations from the Tara Oceans expedition indicate that the genetic potential for mixotrophy in picocyanobacteria is globally distributed and differs between clades. Phylogenetic analyses indicate gradual organic nutrient transporter gene loss from the low-light IV to the high-light II Prochlorococcus. The phylogenetic differences in genetic capacity for mixotrophy, combined with the ubiquity of picocyanobacterial organic compound uptake genes suggests that mixotrophy has a more central role in picocyanobacterial ecology than was previously thought.
Collapse
Affiliation(s)
- Alexis P Yelton
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Silvia G Acinas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar-CMIMA, CSIC, Barcelona, Spain
| | - Shinichi Sunagawa
- European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
| | - Carlos Pedrós-Alió
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar-CMIMA, CSIC, Barcelona, Spain
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
24
|
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol Mol Biol Rev 2016; 80:929-54. [PMID: 27630250 DOI: 10.1128/mmbr.00003-16] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.
Collapse
|
25
|
Modification of a High-Throughput Automatic Microbial Cell Enumeration System for Shipboard Analyses. Appl Environ Microbiol 2016; 82:3289-3296. [PMID: 27016562 DOI: 10.1128/aem.03931-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/18/2016] [Indexed: 01/17/2023] Open
Abstract
In the age of ever-increasing "-omics" studies, the accurate and statistically robust determination of microbial cell numbers within often-complex samples remains a key task in microbial ecology. Microscopic quantification is still the only method to enumerate specific subgroups of microbial clades within complex communities by, for example, fluorescence in situ hybridization (FISH). In this study, we improved an existing automatic image acquisition and cell enumeration system and adapted it for usage at high seas on board an oceanographic research ship. The system was evaluated by testing settings such as minimal pixel area and image exposure times ashore under stable laboratory conditions before being brought on board and tested under various wind and wave conditions. The system was robust enough to produce high-quality images even with ship heaves of up to 3 m and pitch and roll angles of up to 6.3°. On board the research ship, on average, 25% of the images acquired from plankton samples on filter membranes could be used for cell enumeration. Automated enumeration was highly correlated with manual counts (r(2) > 0.9). Even the smallest of microbial cells in the open ocean, members of the alphaproteobacterial SAR11 clade, could be confidently detected and enumerated. The automated image acquisition and cell enumeration system developed here enables an accurate and reproducible determination of microbial cell counts in planktonic samples and allows insight into the abundance and distribution of specific microorganisms already on board within a few hours.IMPORTANCE In this research article, we report on a new system and software pipeline, which allows for an easy and quick image acquisition and the subsequent enumeration of cells in the acquired images. We put this pipeline through vigorous testing and compared it to manual microscopy counts of microbial cells on membrane filters. Furthermore, we tested this system at sea on board a marine research vessel and counted bacteria on board within a few hours after the retrieval of water samples. The imaging and counting system described here has been successfully applied to a number of laboratory-based studies and allowed the quantification of thousands of samples and FISH preparations (see, e.g., H. Teeling, B. M. Fuchs, D. Becher, C. Klockow, A. Gardebrecht, C. M. Bennke, M. Kassabgy, S. Huang, A. J. Mann, J. Waldmann, M. Weber, A. Klindworth, A. Otto, J. Lange, J. Bernhardt, C. Reinsch, M. Hecker, J. Peplies, F. D. Bockelmann, U. Callies, G. Gerdts, A. Wichels, K. H. Wiltshire, F. O. Glöckner, T. Schweder, and R. Amann, Science 336:608-611, 2012, http://dx.doi.org/10.1126/science.1218344). We adjusted the standard image acquisition software to withstand ship movements. This system will allow for more targeted sampling of the microbial community, leading to a better understanding of the role of microorganisms in the global oceans.
Collapse
|
26
|
Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, Vidoudez C, Amann R, Meyerdierks A. HeterotrophicProteobacteriain the vicinity of diffuse hydrothermal venting. Environ Microbiol 2016; 18:4348-4368. [DOI: 10.1111/1462-2920.13304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Dimitri V. Meier
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Wolfgang Bach
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
| | - Peter R. Girguis
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | | | - Eoghan P. Reeves
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
- University of Bergen, Department of Earth Science and Centre for Geobiology; Postboks 7803 N-5020 Bergen Norway
| | - Michael Richter
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Charles Vidoudez
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Anke Meyerdierks
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| |
Collapse
|
27
|
Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, Reintjes G, Waldmann J, Quast C, Glöckner FO, Lucas J, Wichels A, Gerdts G, Wiltshire KH, Amann RI. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife 2016; 5:e11888. [PMID: 27054497 PMCID: PMC4829426 DOI: 10.7554/elife.11888] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/13/2016] [Indexed: 12/30/2022] Open
Abstract
A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing. DOI:http://dx.doi.org/10.7554/eLife.11888.001 Small algae in the world's oceans remove about as much carbon dioxide from the atmosphere as land plants. These algae do not grow continuously, but often surge in numbers during temporary blooms. Such blooms can be large enough to be seen from space by satellites. The lifespan of algae within such blooms is short, and when they die, marine bacteria feed on the remnants, which releases much of the stored carbon dioxide. Much of an algal cell consists of different types of polysaccharides. These large molecules are essentially made from sugars linked together. Polysaccharides are varied molecules and can contain many different sugars that can be linked in a number of different ways. During algae blooms bacteria proliferate that are specialized in the degradation of these polysaccharides. In 2012, researchers reported how over the progression of an algae bloom different groups of marine bacteria bloomed in rapid succession. However, it remained unknown whether the same or different groups of bacteria respond to algae blooms at the same place from year to year, and whether or not these bacteria use the same enzymes to degrade the polysaccharides. Teeling, Fuchs et al. – who include many of the researchers from the 2012 study – now report on the analysis of a series of algae blooms that occurred in the southern North Sea between 2009 and 2012. The analysis is based on samples collected every week during the spring seasons, and shows that certain groups of related bacteria, known as clades, became common during each bloom. Teeling, Fuchs et al. also found indications that the clades that repeatedly occurred had similar sets of genes for degrading algal polysaccharides, but that the sets were different between the clades. These data suggest that there is a specialized bacterial community that together can degrade the complex mixture of algal polysaccharides during blooms. This community reappears each year with an unexpectedly low level of variation. Since different species of algae made up the blooms in each year, this finding suggests that the major polysaccharides in these algae are similar or even identical. Future work will focus on the specific activities of bacterial enzymes that are needed to degrade polysaccharides during algae blooms. Study of these enzymes in the laboratory will help to resolve, which polysaccharides are attacked in which manner, and to ultimately help to identify the most abundant algal polysaccharides. This will improve our current understanding of the carbon cycle in the world’s oceans. DOI:http://dx.doi.org/10.7554/eLife.11888.002
Collapse
Affiliation(s)
- Hanno Teeling
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | - Karen Krüger
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Meghan Chafee
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Greta Reintjes
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jost Waldmann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Christian Quast
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Judith Lucas
- Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research, Helgoland, Germany
| | - Antje Wichels
- Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research, Helgoland, Germany
| | - Gunnar Gerdts
- Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research, Helgoland, Germany
| | - Karen H Wiltshire
- Alfred Wegener Institute for Polar and Marine Research, List auf Sylt, Germany
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
28
|
West NJ, Lepère C, Manes CLDO, Catala P, Scanlan DJ, Lebaron P. Distinct Spatial Patterns of SAR11, SAR86, and Actinobacteria Diversity along a Transect in the Ultra-oligotrophic South Pacific Ocean. Front Microbiol 2016; 7:234. [PMID: 27014192 PMCID: PMC4781884 DOI: 10.3389/fmicb.2016.00234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/15/2016] [Indexed: 11/20/2022] Open
Abstract
Distinct distribution patterns of members of the major bacterial clades SAR11, SAR86, and Actinobacteria were observed across a transect from the Marquesas islands through the ultra-oligotrophic South Pacific Gyre into the Chilean upwelling using 16S rRNA gene sequencing and RNA–DNA fingerprinting. Three different Actinobacteria sequence clusters belonging to “Candidatus Actinomarinidae” were localized in the western half of the transect, one was limited to the gyre deep chlorophyll maximum (DCM) and sequences affiliated to the OCS155 clade were unique to the upwelling. The structure of the surface bacterial community was highly correlated with water mass and remained similar across the whole central gyre (1300 nautical miles). The surface hyperoligotrophic gyre was dominated (>70% of all sequences) by highly diverse SAR11 and SAR86 operational taxonomic units and these communities were significantly different from those in the DCM. Analysis of 16S rRNA fingerprints generated from RNA allowed insights into the potential activity of assigned bacterial groups. SAR11 and Prochlorococcus showed the highest potential activity in all water masses except for the upwelling, accounting together for 65% of the total bacterial 16S rRNA in the gyre surface waters in equal proportions whereas the contribution of SAR11 decreased significantly at the DCM.
Collapse
Affiliation(s)
- Nyree J West
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls , Banyuls-sur-Mer, France
| | - Cécile Lepère
- Université Clermont Auvergne, Université Blaise Pascal, CNRS, Laboratoire Microorganismes Génome et Environnement , Aubière, France
| | - Carmem-Lara de O Manes
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, Observatoire Océanologique , Banyuls-sur-Mer, France
| | - Philippe Catala
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique , Banyuls-sur-Mer, France
| | - David J Scanlan
- School of Life Sciences, University of Warwick , Coventry, UK
| | - Philippe Lebaron
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, Observatoire Océanologique , Banyuls-sur-Mer, France
| |
Collapse
|
29
|
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 2015; 18:1403-14. [PMID: 26271760 DOI: 10.1111/1462-2920.13023] [Citation(s) in RCA: 1742] [Impact Index Per Article: 193.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/31/2015] [Accepted: 08/12/2015] [Indexed: 11/29/2022]
Abstract
Microbial community analysis via high-throughput sequencing of amplified 16S rRNA genes is an essential microbiology tool. We found the popular primer pair 515F (515F-C) and 806R greatly underestimated (e.g. SAR11) or overestimated (e.g. Gammaproteobacteria) common marine taxa. We evaluated marine samples and mock communities (containing 11 or 27 marine 16S clones), showing alternative primers 515F-Y (5'-GTGYCAGCMGCCGCGGTAA) and 926R (5'-CCGYCAATTYMTTTRAGTTT) yield more accurate estimates of mock community abundances, produce longer amplicons that can differentiate taxa unresolvable with 515F-C/806R, and amplify eukaryotic 18S rRNA. Mock communities amplified with 515F-Y/926R yielded closer observed community composition versus expected (r(2) = 0.95) compared with 515F-Y/806R (r(2) ∼ 0.5). Unexpectedly, biases with 515F-Y/806R against SAR11 in field samples (∼4-10-fold) were stronger than in mock communities (∼2-fold). Correcting a mismatch to Thaumarchaea in the 515F-C increased their apparent abundance in field samples, but not as much as using 926R rather than 806R. With plankton samples rich in eukaryotic DNA (> 1 μm size fraction), 18S sequences averaged ∼17% of all sequences. A single mismatch can strongly bias amplification, but even perfectly matched primers can exhibit preferential amplification. We show that beyond in silico predictions, testing with mock communities and field samples is important in primer selection.
Collapse
Affiliation(s)
- Alma E Parada
- University of Southern California, Los Angeles, CA, USA
| | | | - Jed A Fuhrman
- University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Rees A, Robinson C, Smyth T, Aiken J, Nightingale P, Zubkov M. 20 Years of the Atlantic Meridional Transect-AMT. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/lob.10069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Zubkov MV, Martin AP, Hartmann M, Grob C, Scanlan DJ. Dominant oceanic bacteria secure phosphate using a large extracellular buffer. Nat Commun 2015. [PMID: 26198420 PMCID: PMC4525184 DOI: 10.1038/ncomms8878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5–40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate. Oceanic SAR11 Alphaproteobacteria and Prochlorococcus cyanobacteria are abundant in phosphate-poor regions, despite it being vital for growth. Here, Zubkov et al. show these bacterioplankton exploit an extracellular buffer of labile phosphate to reduce their dependency on bioavailable ambient phosphate.
Collapse
Affiliation(s)
- Mikhail V Zubkov
- National Oceanography Centre, Ocean Biogeochemistry &Ecosystems Research Group, European Way, Southampton SO14 3ZH, UK
| | - Adrian P Martin
- National Oceanography Centre, Ocean Biogeochemistry &Ecosystems Research Group, European Way, Southampton SO14 3ZH, UK
| | - Manuela Hartmann
- National Oceanography Centre, Ocean Biogeochemistry &Ecosystems Research Group, European Way, Southampton SO14 3ZH, UK
| | - Carolina Grob
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
32
|
Rapid and sensitive identification of marine bacteria by an improved in situ DNA hybridization chain reaction (quickHCR-FISH). Syst Appl Microbiol 2015. [PMID: 26215142 DOI: 10.1016/j.syapm.2015.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) with rRNA-targeted oligonucleotide probes has significantly improved the identification of microorganisms in various environmental samples. However, one of the major constraints of CARD-FISH is the low probe penetration due to the high molecular weight of the horseradish peroxidase (HRP) label. Recently, this limitation has been overcome by a novel signal amplification approach termed in situ DNA-hybridization chain reaction (in situ DNA-HCR). In this study, we present an improved and accelerated in situ DNA-HCR protocol (quickHCR-FISH) with increased signal intensity, which was approximately 2 times higher than that of standard in situ DNA-HCR. In addition, the amplification time was only 15 min for the extension of amplifier probes from the initiator probe compared to 2h in the original protocol. The quickHCR-FISH was successfully tested for the quantification of marine bacteria with low rRNA contents in both seawater and sediment samples. It was possible to detect the same number of marine bacteria with quickHCR-FISH compared to CARD-FISH within only 3h. Thus, this newly developed protocol could be an attractive alternative to CARD-FISH for the detection and visualization of microorganisms in their environmental context.
Collapse
|
33
|
Prokaryotic functional gene diversity in the sunlit ocean: Stumbling in the dark. Curr Opin Microbiol 2015; 25:33-9. [PMID: 25863027 DOI: 10.1016/j.mib.2015.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 11/24/2022]
Abstract
Prokaryotes are extremely abundant in the ocean where they drive biogeochemical cycles. The recent development and application of -omics techniques has provided an astonishing amount of information revealing the existence of a vast diversity of functional genes and a large heterogeneity within each gene. The big challenge for microbial ecologists is now to understand the ecological relevance of this variability for ecosystem functioning, a question that remains largely understudied. This brief review highlights some of the latest advances in the study of the diversity of biogeochemically relevant functional genes in the sunlit ocean.
Collapse
|
34
|
Grob C, Jardillier L, Hartmann M, Ostrowski M, Zubkov MV, Scanlan DJ. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:211-218. [PMID: 25345650 DOI: 10.1111/1758-2229.12228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition.
Collapse
Affiliation(s)
- Carolina Grob
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Payet JP, McMinds R, Burkepile DE, Vega Thurber RL. Unprecedented evidence for high viral abundance and lytic activity in coral reef waters of the South Pacific Ocean. Front Microbiol 2014; 5:493. [PMID: 25295032 PMCID: PMC4172022 DOI: 10.3389/fmicb.2014.00493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/01/2014] [Indexed: 11/25/2022] Open
Abstract
Despite nutrient-depleted conditions, coral reef waters harbor abundant and diverse microbes; as major agents of microbial mortality, viruses are likely to influence microbial processes in these ecosystems. However, little is known about marine viruses in these rapidly changing ecosystems. Here we examined spatial and short-term temporal variability in marine viral abundance (VA) and viral lytic activity across various reef habitats surrounding Moorea Island (French Polynesia) in the South Pacific. Water samples were collected along four regional cross-reef transects and during a time-series in Opunohu Bay. Results revealed high VA (range: 5.6 × 10(6)-3.6 × 10(7) viruses ml(-1)) and lytic viral production (range: 1.5 × 10(9)-9.2 × 10(10) viruses l(-1) d(-1)). Flow cytometry revealed that viral assemblages were composed of three subsets that each displayed distinct spatiotemporal relationships with nutrient concentrations and autotrophic and heterotrophic microbial abundances. The results highlight dynamic shifts in viral community structure and imply that each of these three subsets is ecologically important and likely to infect distinct microbial hosts in reef waters. Based on viral-reduction approach, we estimate that lytic viruses were responsible for the removal of ca. 24-367% of bacterial standing stock d(-1) and the release of ca. 1.0-62 μg of organic carbon l(-1) d(-1) in reef waters. Overall, this work demonstrates the highly dynamic distribution of viruses and their critical roles in controlling microbial mortality and nutrient cycling in coral reef water ecosystems.
Collapse
Affiliation(s)
- Jérôme P. Payet
- Department of Microbiology, Oregon State UniversityCorvallis, OR, USA
- Institute for Pacific Coral ReefsMoorea, French Polynesia
| | - Ryan McMinds
- Department of Microbiology, Oregon State UniversityCorvallis, OR, USA
| | - Deron E. Burkepile
- Department of Biological Sciences, Florida International UniversityMiami, FL, USA
| | | |
Collapse
|
37
|
Stegman MR, Cottrell MT, Kirchman DL. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary. ISME JOURNAL 2014; 8:2339-48. [PMID: 24824666 DOI: 10.1038/ismej.2014.75] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 11/09/2022]
Abstract
Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell (3)H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect (3)H-leucine incorporation in light-dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance.
Collapse
Affiliation(s)
- Monica R Stegman
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Matthew T Cottrell
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - David L Kirchman
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| |
Collapse
|
38
|
Faster growth of the major prokaryotic versus eukaryotic CO2 fixers in the oligotrophic ocean. Nat Commun 2014; 5:3776. [PMID: 24777140 PMCID: PMC4015317 DOI: 10.1038/ncomms4776] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/01/2014] [Indexed: 01/10/2023] Open
Abstract
Because maintenance of non-scalable cellular components—membranes and chromosomes—requires an increasing fraction of energy as cell size decreases, miniaturization comes at a considerable energetic cost for a phytoplanktonic cell. Consequently, if eukaryotes can use their superior energetic resources to acquire nutrients with more or even similar efficiency compared with prokaryotes, larger unicellular eukaryotes should be able to achieve higher growth rates than smaller cyanobacteria. Here, to test this hypothesis, we directly compare the intrinsic growth rates of phototrophic prokaryotes and eukaryotes from the equatorial to temperate South Atlantic using an original flow cytometric 14CO2-tracer approach. At the ocean basin scale, cyanobacteria double their biomass twice as frequently as the picoeukaryotes indicating that the prokaryotes are faster growing CO2 fixers, better adapted to phototrophic living in the oligotrophic open ocean—the most extensive biome on Earth. After the energetically superior eukaryotes had evolved, prokaryotes appeared to lose control over biological CO2 fixation in all major biomes on Earth. Here the author shows that in the oligotrophic ocean, the most extensive biome on Earth, the prokaryotes fix CO2 twice as fast as eukaryotes.
Collapse
|
39
|
Efficient CO2 fixation by surface Prochlorococcus in the Atlantic Ocean. ISME JOURNAL 2014; 8:2280-9. [PMID: 24763372 PMCID: PMC4992072 DOI: 10.1038/ismej.2014.56] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 11/08/2022]
Abstract
Nearly half of the Earth's surface is covered by the ocean populated by the most abundant photosynthetic organisms on the planet--Prochlorococcus cyanobacteria. However, in the oligotrophic open ocean, the majority of their cells in the top half of the photic layer have levels of photosynthetic pigmentation barely detectable by flow cytometry, suggesting low efficiency of CO2 fixation compared with other phytoplankton living in the same waters. To test the latter assumption, CO2 fixation rates of flow cytometrically sorted (14)C-labelled phytoplankton cells were directly compared in surface waters of the open Atlantic Ocean (30°S to 30°N). CO2 fixation rates of Prochlorococcus are at least 1.5-2.0 times higher than CO2 fixation rates of the smallest plastidic protists and Synechococcus cyanobacteria when normalised to photosynthetic pigmentation assessed using cellular red autofluorescence. Therefore, our data indicate that in oligotrophic oceanic surface waters, pigment minimisation allows Prochlorococcus cells to harvest plentiful sunlight more effectively than other phytoplankton.
Collapse
|
40
|
Becker JW, Berube PM, Follett CL, Waterbury JB, Chisholm SW, DeLong EF, Repeta DJ. Closely related phytoplankton species produce similar suites of dissolved organic matter. Front Microbiol 2014; 5:111. [PMID: 24748874 PMCID: PMC3975126 DOI: 10.3389/fmicb.2014.00111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 03/05/2014] [Indexed: 11/25/2022] Open
Abstract
Production of dissolved organic matter (DOM) by marine phytoplankton supplies the majority of organic substrate consumed by heterotrophic bacterioplankton in the sea. This production and subsequent consumption converts a vast quantity of carbon, nitrogen, and phosphorus between organic and inorganic forms, directly impacting global cycles of these biologically important elements. Details regarding the chemical composition of DOM produced by marine phytoplankton are sparse, and while often assumed, it is not currently known if phylogenetically distinct groups of marine phytoplankton release characteristic suites of DOM. To investigate the relationship between specific phytoplankton groups and the DOM they release, hydrophobic phytoplankton-derived dissolved organic matter (DOMP) from eight axenic strains was analyzed using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Identification of DOM features derived from Prochlorococcus, Synechococcus, Thalassiosira, and Phaeodactylum revealed DOMP to be complex and highly strain dependent. Connections between DOMP features and the phylogenetic relatedness of these strains were identified on multiple levels of phylogenetic distance, suggesting that marine phytoplankton produce DOM that in part reflects its phylogenetic origin. Chemical information regarding the size and polarity ranges of features from defined biological sources was also obtained. Our findings reveal DOMP composition to be partially conserved among related phytoplankton species, and implicate marine DOM as a potential factor influencing microbial diversity in the sea by acting as a link between autotrophic and heterotrophic microbial community structures.
Collapse
Affiliation(s)
- Jamie W. Becker
- Department of Biology, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Paul M. Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Christopher L. Follett
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
| | - John B. Waterbury
- Department of Biology, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Biology, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Edward F. DeLong
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Daniel J. Repeta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
| |
Collapse
|
41
|
Kuo J, Tew KS, Ye YX, Cheng JO, Meng PJ, Glover DC. Picoplankton dynamics and picoeukaryote diversity in a hyper-eutrophic subtropical lagoon. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:116-124. [PMID: 24117091 DOI: 10.1080/10934529.2013.824784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Picoplankton (cells with a diameter of 0.2-3.0 μm) is the dominant contributor to both primary production and biomass in the ocean. Most of the previous studies on picoplankton have been conducted in the oligotrophic open sea with few in the eutrophic area. In this study, we investigated the dynamics of different groups of picoplankton and the diversity of picoeukaryote (based on 18S rDNA) in a hyper-eutrophic marine coastal lagoon. The results indicated that temperature and phosphate concentration were most responsible for the dynamics of different picoplankton groups. Examination of 135 clones revealed 27 different Denaturing Gradient Gel Electrophoresis (DGGE) patterns. At least 7 high-level taxonomic groups of picoeukaryote were recorded. The picoeukaryotic diversities included Alveolates, Stramenopiles, Haptophyceae, and Viridiplantae, with Stramenopiles being the most diverse group. Overall the results of this study indicated that picoplankton diversity was low relative to studies conducted in more oligotrophic waters.
Collapse
Affiliation(s)
- Jimmy Kuo
- a National Museum of Marine Biology and Aquarium , Checheng , Pingtung , Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Hartmann M, Zubkov MV, Scanlan DJ, Lepère C. In situ interactions between photosynthetic picoeukaryotes and bacterioplankton in the Atlantic Ocean: evidence for mixotrophy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:835-40. [PMID: 24249292 DOI: 10.1111/1758-2229.12084] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/20/2013] [Accepted: 06/22/2013] [Indexed: 05/25/2023]
Abstract
Heterotrophic bacterioplankton, cyanobacteria and phototrophic picoeukaryotes (< 5 μm in size) numerically dominate planktonic oceanic communities. While feeding on bacterioplankton is often attributed to aplastidic protists, recent evidence suggests that phototrophic picoeukaryotes could be important bacterivores. Here, we present direct visual evidence from the surface mixed layer of the Atlantic Ocean that bacterioplankton are internalized by phototrophic picoeukaryotes. In situ interactions of phototrophic picoeukaryotes and bacterioplankton (specifically Prochlorococcus cyanobacteria and the SAR11 clade) were investigated using a combination of flow cytometric cell sorting and dual tyramide signal amplification fluorescence in situ hybridization. Using this method, we observed plastidic Prymnesiophyceae and Chrysophyceae cells containing Prochlorococcus, and to a lesser extent SAR11 cells. These microscopic observations of in situ microbial trophic interactions demonstrate the frequency and likely selectivity of phototrophic picoeukaryote bacterivory in the surface mixed layer of both the North and South Atlantic subtropical gyres and adjacent equatorial region, broadening our views on the ecological role of the smallest oceanic plastidic protists.
Collapse
Affiliation(s)
- Manuela Hartmann
- Ocean Biogeochemistry and Ecosystems Research Group, National Oceanography Centre, Southampton, SO14 3ZH, UK
| | | | | | | |
Collapse
|
43
|
Sharma AK, Becker JW, Ottesen EA, Bryant JA, Duhamel S, Karl DM, Cordero OX, Repeta DJ, DeLong EF. Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations ofProchlorococcus,Pelagibacterand the OM60 clade. Environ Microbiol 2013; 16:2815-30. [DOI: 10.1111/1462-2920.12254] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/26/2013] [Accepted: 08/15/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Adrian K. Sharma
- Departments of Civil and Environmental Engineering and Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Jamie W. Becker
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA 02543 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Elizabeth A. Ottesen
- Departments of Civil and Environmental Engineering and Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Department of Microbiology; University of Georgia; Athens GA 30602 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Jessica A. Bryant
- Departments of Civil and Environmental Engineering and Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Solange Duhamel
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA 02543 USA
- Lamont Doherty Earth Observatory; Columbia University; Palisades NY 10964 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - David M. Karl
- Department of Oceanography; School of Ocean and Earth Science and Technology (SOEST); University of Hawaii; Honolulu HI 96822 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Otto X. Cordero
- Departments of Civil and Environmental Engineering and Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Daniel J. Repeta
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA 02543 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Edward F. DeLong
- Departments of Civil and Environmental Engineering and Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| |
Collapse
|
44
|
Ruiz-González C, Simó R, Sommaruga R, Gasol JM. Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity. Front Microbiol 2013; 4:131. [PMID: 23734148 PMCID: PMC3661993 DOI: 10.3389/fmicb.2013.00131] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022] Open
Abstract
Heterotrophic bacterioplankton are main consumers of dissolved organic matter (OM) in aquatic ecosystems, including the sunlit upper layers of the ocean and freshwater bodies. Their well-known sensitivity to ultraviolet radiation (UVR), together with some recently discovered mechanisms bacteria have evolved to benefit from photosynthetically available radiation (PAR), suggest that natural sunlight plays a relevant, yet difficult to predict role in modulating bacterial biogeochemical functions in aquatic ecosystems. Three decades of experimental work assessing the effects of sunlight on natural bacterial heterotrophic activity reveal responses ranging from high stimulation to total inhibition. In this review, we compile the existing studies on the topic and discuss the potential causes underlying these contrasting results, with special emphasis on the largely overlooked influences of the community composition and the previous light exposure conditions, as well as the different temporal and spatial scales at which exposure to solar radiation fluctuates. These intricate sunlight-bacteria interactions have implications for our understanding of carbon fluxes in aquatic systems, yet further research is necessary before we can accurately evaluate or predict the consequences of increasing surface UVR levels associated with global change.
Collapse
Affiliation(s)
- Clara Ruiz-González
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSICBarcelona, Spain
- Département des Sciences Biologiques, Université du Québéc à MontréalMontréal, QC, Canada
| | - Rafel Simó
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSICBarcelona, Spain
| | - Ruben Sommaruga
- Laboratory of Aquatic Photobiology and Plankton Ecology, Institute of Ecology, University of InnsbruckInnsbruck, Austria
| | - Josep M. Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSICBarcelona, Spain
| |
Collapse
|
45
|
Grob C, Ostrowski M, Holland RJ, Heldal M, Norland S, Erichsen ES, Blindauer C, Martin AP, Zubkov MV, Scanlan DJ. Elemental composition of natural populations of key microbial groups in Atlantic waters. Environ Microbiol 2013; 15:3054-64. [PMID: 23663455 DOI: 10.1111/1462-2920.12145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/19/2013] [Indexed: 11/30/2022]
Abstract
Intracellular carbon (C), nitrogen (N) and phosphorus (P) content of marine phytoplankton and bacterioplankton can vary according to cell requirements or physiological acclimation to growth under nutrient limited conditions. Although such variation in macronutrient content is well known for cultured organisms, there is a dearth of data from natural populations that reside under a range of environmental conditions. Here, we compare C, N and P content of Synechococcus, Prochlorococcus, low nucleic acid (LNA) content bacterioplankton and small plastidic protists inhabiting surface waters of the North and South subtropical gyres and the Equatorial Region of the Atlantic Ocean. While intracellular C:N ratios ranged between 3.5 and 6, i.e. below the Redfield ratio of 6.6, all the C:P and N:P ratios were up to 10 times higher than the corresponding Redfield ratio of 106 and 16, respectively, reaching and in some cases exceeding maximum values reported in the literature. Similar C:P or N:P ratios in areas with different concentrations of inorganic phosphorus suggests that this is not just a response to the prevailing environmental conditions but an indication of the extremely low P content of these oceanic microbes.
Collapse
Affiliation(s)
- Carolina Grob
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Ross J Holland
- National Oceanography Centre, Southampton, Hampshire, SO14 3ZH, UK
| | - Mikal Heldal
- Department of Biology, University of Bergen, Bergen, Norway
| | - Svein Norland
- Department of Biology, University of Bergen, Bergen, Norway
| | - Egil S Erichsen
- Laboratory for Electron Microscopy, University of Bergen, Bergen, Norway
| | - Claudia Blindauer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Adrian P Martin
- National Oceanography Centre, Southampton, Hampshire, SO14 3ZH, UK
| | - Mikhail V Zubkov
- National Oceanography Centre, Southampton, Hampshire, SO14 3ZH, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|