1
|
Rengefors K, Annenkova N, Wallenius J, Svensson M, Kremp A, Ahrén D. Population genomic analyses reveal that salinity and geographic isolation drive diversification in a free-living protist. Sci Rep 2024; 14:4986. [PMID: 38424140 PMCID: PMC10904836 DOI: 10.1038/s41598-024-55362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Protists make up the vast diversity of eukaryotic life and play a critical role in biogeochemical cycling and in food webs. Because of their small size, cryptic life cycles, and large population sizes, our understanding of speciation in these organisms is very limited. We performed population genomic analyses on 153 strains isolated from eight populations of the recently radiated dinoflagellate genus Apocalathium, to explore the drivers and mechanisms of speciation processes. Species of this genus inhabit both freshwater and saline habitats, lakes and seas, and are found in cold temperate environments across the world. RAD sequencing analyses revealed that the populations were overall highly differentiated, but morphological similarity was not congruent with genetic similarity. While geographic isolation was to some extent coupled to genetic distance, this pattern was not consistent. Instead, we found evidence that the environment, specifically salinity, is a major factor in driving ecological speciation in Apocalathium. While saline populations were unique in loci coupled to genes involved in osmoregulation, freshwater populations appear to lack these. Our study highlights that adaptation to freshwater through loss of osmoregulatory genes may be an important speciation mechanism in free-living aquatic protists.
Collapse
Affiliation(s)
- Karin Rengefors
- Department of Biology, Lund University, 223 62, Lund, Sweden.
| | - Nataliia Annenkova
- Department of Biology, Lund University, 223 62, Lund, Sweden
- Institute of Cytology of the Russian Academy of Science, Tikhoretsky Avenue 4, St. Petersburg, 194064, Russia
| | - Joel Wallenius
- Department of Biology, Lund University, 223 62, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, 223 62, Lund, Sweden
| | - Marie Svensson
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | - Anke Kremp
- Biology Department, Leibniz Institute for Baltic Sea Research Warnemuende, Seestr. 15, 18119, Rostock, Germany
| | - Dag Ahrén
- Department of Biology, Lund University, 223 62, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Škaloud P, Jadrná I, Dvořák P, Škvorová Z, Pusztai M, Čertnerová D, Bestová H, Rengefors K. Rapid diversification of a free-living protist is driven by adaptation to climate and habitat. Curr Biol 2024; 34:92-105.e6. [PMID: 38103550 DOI: 10.1016/j.cub.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Microbial eukaryotes (protists) have major functional roles in aquatic ecosystems, including the biogeochemical cycling of elements as well as occupying various roles in the food web. Despite their importance for ecosystem function, the factors that drive diversification in protists are not known. Here, we aimed to identify the factors that drive differentiation and, subsequently, speciation in a free-living protist, Synura petersenii (Chrysophyceae). We sampled five different geographic areas and utilized population genomics and quantitative trait analyses. Habitat and climate were the major drivers of diversification on the local geographical scale, while geography played a role over longer distances. In addition to conductivity and temperature, precipitation was one of the most important environmental drivers of differentiation. Our results imply that flushing episodes (floods) drive microalgal adaptation to different niches, highlighting the potential for rapid diversification in protists.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic.
| | - Iva Jadrná
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic.
| | - Zuzana Škvorová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Martin Pusztai
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117 Liberec, Czech Republic
| | - Dora Čertnerová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Helena Bestová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
3
|
Jang SH. Assessment of biodiversity, global distribution, and putative ecological niches of suessiacean dinoflagellates by DNA metabarcoding. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1010854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dinoflagellates in the family Suessiaceae, so-called suessiacean dinoflagellates, play diverse roles in aquatic ecosystems, being distributed from tropical to polar waters and from marine to freshwater habitats and encompassing free-living forms, symbionts, and parasites. Despite their importance due to the variety of ecological roles and biodiversity, very few studies have characterized small suessiacean species. Recent advances in molecular techniques could provide insights into the yet unexplored ecological roles they play in aquatic environments. Using a global DNA metabarcoding dataset, this study elucidated the hidden biodiversity, global distribution, and ecological characteristics of suessiacean dinoflagellates. The results of this study indicated that the family Suessiaceae was the sixth highest in terms of read count and the ninth highest in terms of amplicon sequence variant (ASV) richness from a total of 42 categorized dinoflagellate families, suggesting that their global abundance has been greatly underestimated. Furthermore, metabarcodes of suessiacean dinoflagellates were found to be cosmopolitan in distribution, although the ecological niche of each taxon was distinctly different within the group based on their latitudinal and vertical distribution patterns. Moreover, phylogenetic analysis discovered at least five new phylogenetic groups and three new individual species within the family. Collectively, the findings of this study highlight the significance of suessiacean dinoflagellates in global aquatic ecosystems and reveal the importance of big data obtained from environmental DNA in exploring the ecological functions of understudied species.
Collapse
|
4
|
Jamy M, Biwer C, Vaulot D, Obiol A, Jing H, Peura S, Massana R, Burki F. Global patterns and rates of habitat transitions across the eukaryotic tree of life. Nat Ecol Evol 2022; 6:1458-1470. [PMID: 35927316 PMCID: PMC9525238 DOI: 10.1038/s41559-022-01838-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/23/2022] [Indexed: 12/30/2022]
Abstract
The successful colonization of new habitats has played a fundamental role during the evolution of life. Salinity is one of the strongest barriers for organisms to cross, which has resulted in the evolution of distinct marine and non-marine (including both freshwater and soil) communities. Although microbes represent by far the vast majority of eukaryote diversity, the role of the salt barrier in shaping the diversity across the eukaryotic tree is poorly known. Traditional views suggest rare and ancient marine/non-marine transitions but this view is being challenged by the discovery of several recently transitioned lineages. Here, we investigate habitat evolution across the tree of eukaryotes using a unique set of taxon-rich phylogenies inferred from a combination of long-read and short-read environmental metabarcoding data spanning the ribosomal DNA operon. Our results show that, overall, marine and non-marine microbial communities are phylogenetically distinct but transitions have occurred in both directions in almost all major eukaryotic lineages, with hundreds of transition events detected. Some groups have experienced relatively high rates of transitions, most notably fungi for which crossing the salt barrier has probably been an important aspect of their successful diversification. At the deepest phylogenetic levels, ancestral habitat reconstruction analyses suggest that eukaryotes may have first evolved in non-marine habitats and that the two largest known eukaryotic assemblages (TSAR and Amorphea) arose in different habitats. Overall, our findings indicate that the salt barrier has played an important role during eukaryote evolution and provide a global perspective on habitat transitions in this domain of life.
Collapse
Affiliation(s)
- Mahwash Jamy
- Department of Organismal Biology (Systematic Biology), Uppsala University, Uppsala, Sweden
| | - Charlie Biwer
- Department of Organismal Biology (Systematic Biology), Uppsala University, Uppsala, Sweden
| | - Daniel Vaulot
- CNRS, UMR7144, Team ECOMAP, Station Biologique, Sorbonne Université, Roscoff, France
| | - Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Hongmei Jing
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Sari Peura
- Department of Ecology and Genetics (Limnology), Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Fabien Burki
- Department of Organismal Biology (Systematic Biology), Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Ott BM, Litaker RW, Holland WC, Delwiche CF. Using RDNA sequences to define dinoflagellate species. PLoS One 2022; 17:e0264143. [PMID: 35213572 PMCID: PMC8880924 DOI: 10.1371/journal.pone.0264143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Dinoflagellate species are traditionally defined using morphological characters, but molecular evidence accumulated over the past several decades indicates many morphologically-based descriptions are inaccurate. This recognition led to an increasing reliance on DNA sequence data, particularly rDNA gene segments, in defining species. The validity of this approach assumes the divergence in rDNA or other selected genes parallels speciation events. Another concern is whether single gene rDNA phylogenies by themselves are adequate for delineating species or if multigene phylogenies are required instead. Currently, few studies have directly assessed the relative utility of multigene versus rDNA-based phylogenies for distinguishing species. To address this, the current study examined D1-D3 and ITS/5.8S rDNA gene regions, a multi-gene phylogeny, and morphological characters in Gambierdiscus and other related dinoflagellate genera to determine if they produce congruent phylogenies and identify the same species. Data for the analyses were obtained from previous sequencing efforts and publicly available dinoflagellate transcriptomic libraries as well from the additional nine well-characterized Gambierdiscus species transcriptomic libraries generated in this study. The D1-D3 and ITS/5.8S phylogenies successfully identified the described Gambierdiscus and Alexandrium species. Additionally, the data showed that the D1-D3 and multigene phylogenies were equally capable of identifying the same species. The multigene phylogenies, however, showed different relationships among species and are likely to prove more accurate at determining phylogenetic relationships above the species level. These data indicated that D1-D3 and ITS/5.8S rDNA region phylogenies are generally successful for identifying species of Gambierdiscus, and likely those of other dinoflagellates. To assess how broadly general this finding is likely to be, rDNA molecular phylogenies from over 473 manuscripts representing 232 genera and 863 described species of dinoflagellates were reviewed. Results showed the D1-D3 rDNA and ITS phylogenies in combination are capable of identifying 97% of dinoflagellate species including all the species belonging to the genera Alexandrium, Ostreopsis and Gambierdiscus, although it should be noted that multi-gene phylogenies are preferred for inferring relationships among these species. A protocol is presented for determining when D1-D3, confirmed by ITS/5.8S rDNA sequence data, would take precedence over morphological features when describing new dinoflagellate species. This protocol addresses situations such as: a) when a new species is both morphologically and molecularly distinct from other known species; b) when a new species and closely related species are morphologically indistinguishable, but genetically distinct; and c) how to handle potentially cryptic species and cases where morphotypes are clearly distinct but have the same rDNA sequence. The protocol also addresses other molecular, morphological, and genetic approaches required to resolve species boundaries in the small minority of species where the D1-D3/ITS region phylogenies fail.
Collapse
Affiliation(s)
- Brittany M. Ott
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland—College Park, College Park, MD, United States of America
- Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, MD, United States of America
- * E-mail: (BMO); (RWL)
| | - R. Wayne Litaker
- CSS, Inc. Under Contract to National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, North Carolina, United States of America
- * E-mail: (BMO); (RWL)
| | - William C. Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, North Carolina, United States of America
| | - Charles F. Delwiche
- Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, MD, United States of America
| |
Collapse
|
6
|
Sildever S, Laas P, Kolesova N, Lips I, Lips U, Nagai S. Plankton biodiversity and species co-occurrence based on environmental DNA – a multiple marker study. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.72371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Metabarcoding in combination with high-throughput sequencing (HTS) allows simultaneous detection of multiple taxa by targeting single or several taxonomically informative gene regions from environmental DNA samples. In this study, a multiple-marker HTS approach was applied to investigate the plankton diversity and seasonal succession in the Baltic Sea from winter to autumn. Four different markers targeting the 16S, 18S, and 28S ribosomal RNA genes were employed, including a marker for more efficient dinoflagellate detection. Typical seasonal changes were observed in phyto- and bacterioplankton communities. In phytoplankton, the appearance patterns of selected common, dominant, or harmful species followed the patterns also confirmed based on 20 years of phytoplankton monitoring data. In the case of zooplankton, both macro- and microzooplankton species were detected. However, no seasonal patterns were detected in their appearance. In total, 15 and 2 new zoo- and phytoplankton species were detected from the Baltic Sea. HTS approach was especially useful for detecting microzooplankton species as well as for investigating the co-occurrence and potential interactions of different taxa. The results of this study further exemplify the efficiency of metabarcoding for biodiversity monitoring and the advantage of employing multiple markers through the detection of species not identifiable based on a single marker survey and/or by traditional morphology-based methods.
Collapse
|
7
|
Fermani P, Metz S, Balagué V, Descy JP, Morana C, Logares R, Massana R, Sarmento H. Microbial eukaryotes assemblages and potential novel diversity in four tropical East-African Great Lakes. FEMS Microbiol Ecol 2021; 97:6335480. [PMID: 34338764 DOI: 10.1093/femsec/fiab114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Abstract
East-African Great Lakes are old and unique natural resources heavily utilized by their bordering countries. In those lakes, ecosystem functioning is dominated by pelagic processes, where microorganisms are key components, however protistan diversity is barely known. We investigated the community composition of small eukaryotes (< 10 µm) in surface waters of four African Lakes (Kivu, Edward, Albert and Victoria) by sequencing the 18S rRNA gene. Moreover, in the meromictic Lake Kivu, two stations were vertically studied. We found high protistan diversity distributed in 779 operational taxonomic units (OTUs), spanning in eleven high-rank lineages, being Alveolata (31%), Opisthokonta (20%) and Stramenopiles (17%) the most represented supergroups. Surface protistan assemblage were associated to conductivity and productivity gradients; whereas depth, had a strong effect on protistan community in Kivu, with higher contribution of heterotrophic organisms. Approximately 40% of OTUs had low similarity (< 90%) with reported sequences in public databases, these were mostly coming from deep anoxic waters of Kivu, suggesting a high extent of novel diversity. We also detected several taxa so far considered exclusive of marine ecosystems. Our results unveiled a complex and largely undescribed protistan community, in which several lineages have adapted to different niches after crossing the salinity boundary.
Collapse
Affiliation(s)
- Paulina Fermani
- Laboratorio de Ecología Acuática. Instituto Tecnológico de Chascomús (UNSAM-CONICET) Chascomús, Buenos Aires, Argentina
| | - Sebastián Metz
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Vanessa Balagué
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain
| | | | - Cédric Morana
- Unit of Chemical Oceanography, University of Liège, Liège, Belgium
| | - Ramiro Logares
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain
| | - Ramon Massana
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain
| | - Hugo Sarmento
- Departamento de Hidrobiologia (DHb), Universidade Federal de São Carlos, São Carlos - SP, Brazil
| |
Collapse
|
8
|
Bowen BW, Forsman ZH, Whitney JL, Faucci A, Hoban M, Canfield SJ, Johnston EC, Coleman RR, Copus JM, Vicente J, Toonen RJ. Species Radiations in the Sea: What the Flock? J Hered 2021; 111:70-83. [PMID: 31943081 DOI: 10.1093/jhered/esz075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Species flocks are proliferations of closely-related species, usually after colonization of depauperate habitat. These radiations are abundant on oceanic islands and in ancient freshwater lakes, but rare in marine habitats. This contrast is well documented in the Hawaiian Archipelago, where terrestrial examples include the speciose silverswords (sunflower family Asteraceae), Drosophila fruit flies, and honeycreepers (passerine birds), all derived from one or a few ancestral lineages. The marine fauna of Hawai'i is also the product of rare colonization events, but these colonizations usually yield only one species. Dispersal ability is key to understanding this evolutionary inequity. While terrestrial fauna rarely colonize between oceanic islands, marine fauna with pelagic larvae can make this leap in every generation. An informative exception is the marine fauna that lack a pelagic larval stage. These low-dispersal species emulate a "terrestrial" mode of reproduction (brooding, viviparity, crawl-away larvae), yielding marine species flocks in scattered locations around the world. Elsewhere, aquatic species flocks are concentrated in specific geographic settings, including the ancient lakes of Baikal (Siberia) and Tanganyika (eastern Africa), and Antarctica. These locations host multiple species flocks across a broad taxonomic spectrum, indicating a unifying evolutionary phenomenon. Hence marine species flocks can be singular cases that arise due to restricted dispersal or other intrinsic features, or they can be geographically clustered, promoted by extrinsic ecological circumstances. Here, we review and contrast intrinsic cases of species flocks in individual taxa, and extrinsic cases of geological/ecological opportunity, to elucidate the processes of species radiations.
Collapse
Affiliation(s)
- Brian W Bowen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Zac H Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Jonathan L Whitney
- Joint Institute for Marine and Atmospheric Research, University of Hawai'i, Honolulu, HI
| | - Anuschka Faucci
- Math & Sciences Division, Leeward Community College, University of Hawai'i, Pearl City, HI
| | - Mykle Hoban
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | | | - Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Richard R Coleman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Joshua M Copus
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Jan Vicente
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| |
Collapse
|
9
|
Annenkova NV, Giner CR, Logares R. Tracing the Origin of Planktonic Protists in an Ancient Lake. Microorganisms 2020; 8:microorganisms8040543. [PMID: 32283732 PMCID: PMC7232311 DOI: 10.3390/microorganisms8040543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/28/2022] Open
Abstract
Ancient lakes are among the most interesting models for evolution studies because their biodiversity is the result of a complex combination of migration and speciation. Here, we investigate the origin of single celled planktonic eukaryotes from the oldest lake in the world—Lake Baikal (Russia). By using 18S rDNA metabarcoding, we recovered 1414 Operational Taxonomic Units (OTUs) belonging to protists populating surface waters (1–50 m) and representing pico/nano-sized cells. The recovered communities resembled other lacustrine freshwater assemblages found elsewhere, especially the taxonomically unclassified protists. However, our results suggest that a fraction of Baikal protists could belong to glacial relicts and have close relationships with marine/brackish species. Moreover, our results suggest that rapid radiation may have occurred among some protist taxa, partially mirroring what was already shown for multicellular organisms in Lake Baikal. We found 16% of the OTUs belonging to potential species flocks in Stramenopiles, Alveolata, Opisthokonta, Archaeplastida, Rhizaria, and Hacrobia. Putative flocks predominated in Chrysophytes, which are highly diverse in Lake Baikal. Also, the 18S rDNA of a number of species (7% of the total) differed >10% from other known sequences. These taxa as well as those belonging to the flocks may be endemic to Lake Baikal. Overall, our study points to novel diversity of planktonic protists in Lake Baikal, some of which may have emerged in situ after evolutionary diversification.
Collapse
Affiliation(s)
- Nataliia V. Annenkova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences 3, Ulan-Batorskaya St., 664033 Irkutsk, Russia
- Correspondence: (N.V.A.); (R.L.)
| | - Caterina R. Giner
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, ES08003 Barcelona, Spain;
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, ES08003 Barcelona, Spain;
- Correspondence: (N.V.A.); (R.L.)
| |
Collapse
|
10
|
Romeikat C, Knechtel J, Gottschling M. Clarifying the taxonomy of Gymnodinium fuscum var. rubrum from Bavaria (Germany) and placing it in a molecular phylogeny of the Gymnodiniaceae (Dinophyceae). SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1699197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Corinna Romeikat
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians-Universität München, Menzinger Str. 67, München, D – 80638, Germany
| | - Johanna Knechtel
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians-Universität München, Menzinger Str. 67, München, D – 80638, Germany
| | - Marc Gottschling
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians-Universität München, Menzinger Str. 67, München, D – 80638, Germany
| |
Collapse
|
11
|
Žerdoner Čalasan A, Kretschmann J, Gottschling M. They are young, and they are many: dating freshwater lineages in unicellular dinophytes. Environ Microbiol 2019; 21:4125-4135. [DOI: 10.1111/1462-2920.14766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Anže Žerdoner Čalasan
- Department Biologie/Chemie, Botanik Universität Osnabrück Barbarastr. 11, 49076 Osnabrück Germany
- Department Biologie Systematische Botanik und Mykologie, GeoBio‐Center, Ludwig‐Maximilians‐Universität München Menzinger Street. 67, 80638 Munich Germany
| | - Juliane Kretschmann
- Department Biologie Systematische Botanik und Mykologie, GeoBio‐Center, Ludwig‐Maximilians‐Universität München Menzinger Street. 67, 80638 Munich Germany
| | - Marc Gottschling
- Department Biologie Systematische Botanik und Mykologie, GeoBio‐Center, Ludwig‐Maximilians‐Universität München Menzinger Street. 67, 80638 Munich Germany
| |
Collapse
|
12
|
Shang L, Hu Z, Deng Y, Liu Y, Zhai X, Chai Z, Liu X, Zhan Z, Dobbs FC, Tang YZ. Metagenomic Sequencing Identifies Highly Diverse Assemblages of Dinoflagellate Cysts in Sediments from Ships' Ballast Tanks. Microorganisms 2019; 7:E250. [PMID: 31405065 PMCID: PMC6724030 DOI: 10.3390/microorganisms7080250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 11/17/2022] Open
Abstract
Ships' ballast tanks have long been known as vectors for the introduction of organisms. We applied next-generation sequencing to detect dinoflagellates (mainly as cysts) in 32 ballast tank sediments collected during 2001-2003 from ships entering the Great Lakes or Chesapeake Bay and subsequently archived. Seventy-three dinoflagellates were fully identified to species level by this metagenomic approach and single-cell polymerase chain reaction (PCR)-based sequencing, including 19 toxic species, 36 harmful algal bloom (HAB) forming species, 22 previously unreported as producing cysts, and 55 reported from ballast tank sediments for the first time (including 13 freshwater species), plus 545 operational taxonomic units (OTUs) not fully identified due to a lack of reference sequences, indicating tank sediments are repositories of many previously undocumented taxa. Analyses indicated great heterogeneity of species composition among samples from different sources. Light and scanning electron microscopy and single-cell PCR sequencing supported and confirmed results of the metagenomic approach. This study increases the number of fully identified dinoflagellate species from ballast tank sediments to 142 (> 50% increase). From the perspective of ballast water management, the high diversity and spatiotemporal heterogeneity of dinoflagellates in ballast tanks argues for continuing research and stringent adherence to procedures intended to prevent unintended introduction of non-indigenous toxic and HAB-forming species.
Collapse
Affiliation(s)
- Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuyang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Zhai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaohan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifeng Zhan
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fred C Dobbs
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VI 23529, USA
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
13
|
Tillmann U, Gottschling M, Krock B, Smith KF, Guinder V. High abundance of Amphidomataceae (Dinophyceae) during the 2015 spring bloom of the Argentinean Shelf and a new, non-toxigenic ribotype of Azadinium spinosum. HARMFUL ALGAE 2019; 84:244-260. [PMID: 31128809 DOI: 10.1016/j.hal.2019.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Azaspiracids (AZA) are the most recently discovered group of lipophilic marine biotoxins of microalgal origin, and associated with human incidents of shellfish poisoning. They are produced by a few species of Amphidomataceae, but diversity and occurrence of the small-sized dinophytes remain poorly explored for many regions of the world. In order to analyze the presence and importance of Amphidomataceae in a highly productive area of Argentinean coastal waters (El Rincón area, SW Atlantic), a scientific cruise was performed in 2015 to sample the early spring bloom. In a multi-method approach, light microscopy was combined with real-time PCR molecular detection of Amphidomataceae, with chemical analysis of AZA, and with the establishment and characterization of amphidomatacean strains. Both light microscopy and PCR revealed that Amphidomataceae were widely present in spring plankton communities along the El Rincón area. They were particularly abundant offshore at the shelf front, reaching peak densities of 2.8 × 105 cells L-1, but no AZA were detected in field samples. In total, 31 new strains were determined as Az. dalianense and Az. spinosum, respectively. All Az. dalianense were non-toxigenic and shared the same rRNA sequences. The large majority of the new Az. spinosum strains revealed for the first time the presence of a non-toxigenic ribotype of this species, which is otherwise the most important AZA producer in European waters. One of the new Az. spinosum strains, with a particular slender shape and some other morphological peculiarities, clustered with toxigenic strains of Az. spinosum from Norway and, exceptionally for the species, produced only AZA-2 but not AZA-1. Results indicate a wide diversity within Az. spinosum, both in terms of sequence data and toxin profiles, which also will affect the qualitative and quantitative performance of the specific qPCR assay for this species. Overall, the new data provide a more differentiated perspective of diversity, toxin productivity and occurrence of Amphidomataceae in a poorly explored region of the global ocean.
Collapse
Affiliation(s)
- Urban Tillmann
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570, Bremerhaven, Germany.
| | - Marc Gottschling
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians-Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Bernd Krock
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570, Bremerhaven, Germany
| | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Valeria Guinder
- Instituto Argentino de Oceanografía, IADO - CONICET - UNS, La Carrindanga km 7.5 c.c. 804, B8000FWB, Bahía Blanca, Argentina
| |
Collapse
|
14
|
Saburova M, Chomérat N. Laciniporus arabicus gen. et sp. nov. (Dinophyceae, Peridiniales), a new thecate, marine, sand-dwelling dinoflagellate from the northern Indian Ocean (Arabian Sea) 1. JOURNAL OF PHYCOLOGY 2019; 55:84-103. [PMID: 30179255 DOI: 10.1111/jpy.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
A new thecate, photosynthetic, sand-dwelling marine dinoflagellate, Laciniporus arabicus gen. et sp. nov., is described from the subtidal sediments of the Omani coast in the Arabian Sea, northern Indian Ocean, based on detailed morphological and molecular data. Cells of L. arabicus are small (16.2-30.1 μm long and 13.1-23.2 μm wide), dorsoventrally compressed, with a small apical flap-shaped projection pointing to the left. The thecal plate pattern is distinguished by minute first precingular plate and sulcus, which extends into the epitheca, with large anterior and right sulcal plates. The Kofoidian thecal tabulation is Po, X, 4', 2a, 7'', 6c, 6s, 5''', 2''''. Morphologically, the revealed plate pattern has an affinity to the Peridiniales, and LSU rDNA based phylogenetic analyses placed L. arabicus within the Thoracosphaeraceae, close to calcareous-cyst producing scrippsielloids, predatory pfiesteriaceans, and photosynthetic freshwater peridinioids Chimonodinium lomnickii and Apocalathium spp. However, the thecal plate arrangement of L. arabicus differs noticeably from any currently described dinoflagellates, and the species stands out from closely related taxa by extensive differences in physiology and ecology.
Collapse
Affiliation(s)
- Maria Saburova
- Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. BOX 1638, Salmiya, 22017, Kuwait
| | - Nicolas Chomérat
- IFREMER, LER BO, Station de Biologie Marine, Place de la Croix, F-29900, Concarneau, France
| |
Collapse
|
15
|
Annenkova NV. Identification of Lake Baikal Plankton Dinoflagellates from the Genera Gyrodinium and Gymnodinium Using Single-Cell PCR. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418110030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Stelbrink B, Jovanovska E, Levkov Z, Ognjanova-Rumenova N, Wilke T, Albrecht C. Diatoms do radiate: evidence for a freshwater species flock. J Evol Biol 2018; 31:1969-1975. [PMID: 30113099 DOI: 10.1111/jeb.13368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/30/2018] [Accepted: 08/11/2018] [Indexed: 11/30/2022]
Abstract
Due to the ubiquity and high dispersal capacity of unicellular eukaryotes, their often extraordinary diversity found in isolated and long-lived ecosystems such as ancient lakes is typically attributed to multiple colonization events rather than to in situ speciation. However, respective evolutionary studies are very scarce and the often high number of species flocks in ancient lakes across multicellular taxa raises the question whether unicellular species, such as diatoms, may radiate as well. Here, we use an integrative approach that includes molecular data from benthic diatom species of the genus Aneumastus endemic to ancient Lake Ohrid, fossil data obtained from the sediment record of a recent deep-drilling project and biogeographical information to test if this group, indeed, constitutes a species flock. Molecular-clock and phylogenetic analyses indicate a young monophyletic group of several endemic species. Molecular, fossil and biogeographical data strongly suggest a rapid intralacustrine diversification, which was possibly triggered by the emergence of novel habitats. This finding is the first evidence for a species flock in diatoms and suggests that in situ speciation is also a relevant evolutionary process for unicellular eukaryotes in isolated ecosystems.
Collapse
Affiliation(s)
- Björn Stelbrink
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Elena Jovanovska
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Zlatko Levkov
- Institute of Biology, Faculty of Natural Sciences, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Nadja Ognjanova-Rumenova
- Department of Paleontology, Stratigraphy and Sedimentology, Institute of Geology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
17
|
Tesson SVM, Weißbach A, Kremp A, Lindström Å, Rengefors K. The potential for dispersal of microalgal resting cysts by migratory birds. JOURNAL OF PHYCOLOGY 2018; 54:518-528. [PMID: 29889985 DOI: 10.1111/jpy.12756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/17/2018] [Indexed: 05/16/2023]
Abstract
Most microalgal species are geographically widespread, but little is known about how they are dispersed. One potential mechanism for long-distance dispersal is through birds, which may transport cells internally (endozoochory) and deposit them during, or in-between, their migratory stopovers. We hypothesize that dinoflagellates, in particular resting stages, can tolerate bird digestion; that bird temperature, acidity, and retention time negatively affect dinoflagellate viability; and that recovered cysts can germinate after passage through the birds' gut, contributing to species-specific dispersal of the dinoflagellates across scales. Tolerance of two dinoflagellate species (Peridiniopsis borgei, a warm-water species and Apocalathium malmogiense, a cold-water species) to Mallard gut passage was investigated using in vitro experiments simulating the gizzard and caeca conditions. The effect of in vitro digestion and retention time on cell integrity, cell viability, and germination capacity of the dinoflagellate species was examined targeting both their vegetative and resting stages. Resting stages (cysts) of both species were able to survive simulated bird gut passage, even if their survival rate and germination were negatively affected by exposure to acidic condition and bird internal temperature. Cysts of A. malmogiense were more sensitive than P. borgei to treatments and to the presence of digestive enzymes. Vegetative cells did not survive conditions of bird internal temperature and formed pellicle cysts when exposed to gizzard-like acid conditions. We show that dinoflagellate resting cysts serve as dispersal propagules through migratory birds. Assuming a retention time of viable cysts of 2-12 h to duck stomach conditions, cysts could be dispersed 150-800 km and beyond.
Collapse
Affiliation(s)
| | - Astrid Weißbach
- Department of Biology, Lund University, SE-22362, Lund, Sweden
| | - Anke Kremp
- Marine Research Centre, Finnish Environment Institute, FI-00560, Helsinki, Finland
| | - Åke Lindström
- Department of Biology, Lund University, SE-22362, Lund, Sweden
| | - Karin Rengefors
- Department of Biology, Lund University, SE-22362, Lund, Sweden
| |
Collapse
|
18
|
Annenkova NV, Ahrén D, Logares R, Kremp A, Rengefors K. Delineating closely related dinoflagellate lineages using phylotranscriptomics. JOURNAL OF PHYCOLOGY 2018; 54:571-576. [PMID: 29676790 DOI: 10.1111/jpy.12748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Recently radiated dinoflagellates Apocalathium aciculiferum (collected in Lake Erken, Sweden), Apocalathium malmogiense (Baltic Sea) and Apocalathium aff. malmogiense (Highway Lake, Antarctica) represent a lineage with an unresolved phylogeny. We determined their phylogenetic relationships using phylotranscriptomics based on 792 amino acid sequences. Our results showed that A. aciculiferum diverged from the other two closely related lineages, consistent with their different morphologies in cell size, relative cell length and presence of spines. We hypothesized that A. aff. malmogiense and A. malmogiense, which inhabit different hemispheres, are evolutionarily more closely related because they diverged from a marine common ancestor, adapting to a wide salinity range, while A. aciculiferum colonized a freshwater habitat, by acquiring adaptations to this environment, in particular, salinity intolerance. We show that phylotranscriptomics can resolve the phylogeny of recently diverged protists. This has broad relevance, given that many phytoplankton species are morphologically very similar, and single genes sometimes lack the information to determine species' relationships.
Collapse
Affiliation(s)
- Nataliia V Annenkova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences 3, Ulan-Batorskaya St., 664033, Irkutsk, Russia
| | - Dag Ahrén
- Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Bioinformatics Infrastructures for Life Sciences (BILS), Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Science (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim de la Barceloneta 37-49, E08003, Barcelona, Spain
| | - Anke Kremp
- Marine Research Centre, Finnish Environment Institute, Erik Palmenin aukio 1, 00560, Helsinki, Finland
| | - Karin Rengefors
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
19
|
Kretschmann J, Owsianny PM, Žerdoner Čalasan A, Gottschling M. The Hot Spot in a Cold Environment: Puzzling Parvodinium (Peridiniopsidaceae, Peridiniales) from the Polish Tatra Mountains. Protist 2018; 169:206-230. [DOI: 10.1016/j.protis.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 10/18/2022]
|
20
|
Kretschmann J, Žerdoner Čalasan A, Gottschling M. Molecular phylogenetics of dinophytes harboring diatoms as endosymbionts (Kryptoperidiniaceae, Peridiniales), with evolutionary interpretations and a focus on the identity of Durinskia oculata from Prague. Mol Phylogenet Evol 2018; 118:392-402. [DOI: 10.1016/j.ympev.2017.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/27/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|
21
|
Nozaki H, Ueki N, Isaka N, Saigo T, Yamamoto K, Matsuzaki R, Takahashi F, Wakabayashi KI, Kawachi M. A New Morphological Type of Volvox from Japanese Large Lakes and Recent Divergence of this Type and V. ferrisii in Two Different Freshwater Habitats. PLoS One 2016; 11:e0167148. [PMID: 27880842 PMCID: PMC5120847 DOI: 10.1371/journal.pone.0167148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 11/26/2022] Open
Abstract
Volvox sect. Volvox is characterized by having unique morphological characteristics, such as thick cytoplasmic bridges between adult somatic cells in the spheroids and spiny zygote walls. Species of this section are found from various freshwater habitats. Recently, three species of Volvox sect. Volvox originating from rice paddies and a marsh were studied taxonomically based on molecular and morphological data of cultured materials. However, taxonomic studies have not been performed on cultured materials of this section originating from large lake water bodies. We studied a new morphological type of Volvox sect. Volvox (“Volvox sp. Sagami”), using cultured materials originating from two large lakes and a pond in Japan. Volvox sp. Sagami produced monoecious sexual spheroids and may represent a new morphological species; it could be clearly distinguished from all previously described monoecious species of Volvox sect. Volvox by its small number of eggs or zygotes (5–25) in sexual spheroids, with short acute spines (up to 3 μm long) on the zygote walls and elongated anterior somatic cells in asexual spheroids. Based on sequences of internal transcribed spacer (ITS) regions of nuclear ribosomal DNA (rDNA; ITS-1, 5.8S rDNA and ITS-2) and plastid genes, however, the Volvox sp. Sagami lineage and its sister lineage (the monoecious species V. ferrisii) showed very small genetic differences, which correspond to the variation within a single biological species in other volvocalean algae. Since V. ferrisii was different from Volvox sp. Sagami, by having approximately 100–200 zygotes in the sexual spheroids and long spines (6–8.5 μm long) on the zygote walls, as well as growing in Japanese rice paddies, these two morphologically distinct lineages might have diverged rapidly in the two different freshwater habitats. In addition, the swimming velocity during phototaxis of Volvox sp. Sagami spheroids originating from large lakes was significantly higher than that of V. ferrisii originating from rice paddies, suggesting adaptation of Volvox sp. Sagami to large water bodies.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
- * E-mail:
| | - Noriko Ueki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226–8503, Japan
| | - Nanako Isaka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Tokiko Saigo
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Kayoko Yamamoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Ryo Matsuzaki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16–2, Tsukuba-shi, Ibaraki, 305–8506, Japan
| | - Fumio Takahashi
- College of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu-shi, Shiga, 525–8577, Japan
| | - Ken-ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226–8503, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16–2, Tsukuba-shi, Ibaraki, 305–8506, Japan
| |
Collapse
|