1
|
Singh RN, Sani RK. Genome-Wide Computational Prediction and Analysis of Noncoding RNAs in Oleidesulfovibrio alaskensis G20. Microorganisms 2024; 12:960. [PMID: 38792789 PMCID: PMC11124144 DOI: 10.3390/microorganisms12050960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Noncoding RNAs (ncRNAs) play key roles in the regulation of important pathways, including cellular growth, stress management, signaling, and biofilm formation. Sulfate-reducing bacteria (SRB) contribute to huge economic losses causing microbial-induced corrosion through biofilms on metal surfaces. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation. This study aimed to identify ncRNAs in the genome of a model SRB, Oleidesulfovibrio alaskensis G20 (OA G20). Three in silico approaches revealed genome-wide distribution of 37 ncRNAs excluding tRNAs in the OA G20. These ncRNAs belonged to 18 different Rfam families. This study identified riboswitches, sRNAs, RNP, and SRP. The analysis revealed that these ncRNAs could play key roles in the regulation of several pathways of biosynthesis and transport involved in biofilm formation by OA G20. Three sRNAs, Pseudomonas P10, Hammerhead type II, and sX4, which were found in OA G20, are rare and their roles have not been determined in SRB. These results suggest that applying various computational methods could enrich the results and lead to the discovery of additional novel ncRNAs, which could lead to understanding the "rules of life of OA G20" during biofilm formation.
Collapse
Affiliation(s)
- Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD 57701, USA;
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD 57701, USA
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD 57701, USA;
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota Mines, Rapid City, SD 57701, USA
| |
Collapse
|
2
|
Zhang S, Liu Y, Wang H, Xu Z, Peng J, Xu Q, Li K, Wang H, Guo Y. Achromobacter seleniivolatilans sp. nov. and Buttiauxella selenatireducens sp. nov., isolated from the rhizosphere of selenium hyperaccumulator Cardamine hupingshanesis. Int J Syst Evol Microbiol 2024; 74. [PMID: 38619980 DOI: 10.1099/ijsem.0.006334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Two Gram-stain-negative bacterial strains, R39T and R73T, were isolated from the rhizosphere soil of the selenium hyperaccumulator Cardamine hupingshanesis in China. Strain R39T transformed selenite into elemental and volatile selenium, whereas strain R73T transformed both selenate and selenite into elemental selenium. Phylogenetic and phylogenomic analyses indicated that strain R39T belonged to the genus Achromobacter, while strain R73T belonged to the genus Buttiauxella. Strain R39T (genome size, 6.68 Mb; G+C content, 61.6 mol%) showed the closest relationship to Achromobacter marplatensis LMG 26219T and Achromobacter kerstersii LMG 3441T, with average nucleotide identity (ANI) values of 83.6 and 83.4 %, respectively. Strain R73T (genome size, 5.22 Mb; G+C content, 50.3 mol%) was most closely related to Buttiauxella ferragutiae ATCC 51602T with an ANI value of 86.4 %. Furthermore, strain A111 from the GenBank database was found to cluster with strain R73T within the genus Buttiauxella through phylogenomic analyses. The ANI and digital DNA-DNA hybridization values between strains R73T and A111 were 97.5 and 80.0% respectively, indicating that they belong to the same species. Phenotypic characteristics also differentiated strain R39T and strain R73T from their closely related species. Based on the polyphasic analyses, strain R39T and strain R73T represent novel species of the genera Achromobacter and Buttiauxella, respectively, for which the names Achromobacter seleniivolatilans sp. nov. (type strain R39T=GDMCC 1.3843T=JCM 36009T) and Buttiauxella selenatireducens sp. nov. (type strain R73T=GDMCC 1.3636T=JCM 35850T) are proposed.
Collapse
Affiliation(s)
- Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, PR China
| | - Yi Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, PR China
| | - Hao Wang
- Division of Biology and Biological Engineering, California Institute of Technology, California, 91125, USA
| | - Zhongnan Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, PR China
| | - Jing Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, PR China
| | - Qiaolin Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, PR China
| | - Kui Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, PR China
| | - Haoyang Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, PR China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
3
|
Douglas GM, Shapiro BJ. Pseudogenes act as a neutral reference for detecting selection in prokaryotic pangenomes. Nat Ecol Evol 2024; 8:304-314. [PMID: 38177690 DOI: 10.1038/s41559-023-02268-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024]
Abstract
A long-standing question is to what degree genetic drift and selection drive the divergence in rare accessory gene content between closely related bacteria. Rare genes, including singletons, make up a large proportion of pangenomes (all genes in a set of genomes), but it remains unclear how many such genes are adaptive, deleterious or neutral to their host genome. Estimates of species' effective population sizes (Ne) are positively associated with pangenome size and fluidity, which has independently been interpreted as evidence for both neutral and adaptive pangenome models. We hypothesized that pseudogenes, used as a neutral reference, could be used to distinguish these models. We find that most functional categories are depleted for rare pseudogenes when a genome encodes only a single intact copy of a gene family. In contrast, transposons are enriched in pseudogenes, suggesting they are mostly neutral or deleterious to the host genome. Thus, even if individual rare accessory genes vary in their effects on host fitness, we can confidently reject a model of entirely neutral or deleterious rare genes. We also define the ratio of singleton intact genes to singleton pseudogenes (si/sp) within a pangenome, compare this measure across 668 prokaryotic species and detect a signal consistent with the adaptive value of many rare accessory genes. Taken together, our work demonstrates that comparing with pseudogenes can improve inferences of the evolutionary forces driving pangenome variation.
Collapse
Affiliation(s)
- Gavin M Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.
- McGill Genome Centre, McGill University, Montréal, Québec, Canada.
| | - B Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.
- McGill Genome Centre, McGill University, Montréal, Québec, Canada.
- McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Huang B, Xiao Y, Zhang Y. Asgard archaeal selenoproteome reveals a roadmap for the archaea-to-eukaryote transition of selenocysteine incorporation machinery. THE ISME JOURNAL 2024; 18:wrae111. [PMID: 38896033 PMCID: PMC11227280 DOI: 10.1093/ismejo/wrae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Selenocysteine (Sec) is encoded by the UGA codon that normally functions as a stop signal and is specifically incorporated into selenoproteins via a unique recoding mechanism. The translational recoding of UGA as Sec is directed by an unusual RNA structure, the SECIS element. Although archaea and eukaryotes adopt similar Sec encoding machinery, the SECIS elements have no similarities to each other with regard to sequence and structure. We analyzed >400 Asgard archaeal genomes to examine the occurrence of both Sec encoding system and selenoproteins in this archaeal superphylum, the closest prokaryotic relatives of eukaryotes. A comprehensive map of Sec utilization trait has been generated, providing the most detailed understanding of the use of this nonstandard amino acid in Asgard archaea so far. By characterizing the selenoproteomes of all organisms, several selenoprotein-rich phyla and species were identified. Most Asgard archaeal selenoprotein genes possess eukaryotic SECIS-like structures with varying degrees of diversity. Moreover, euryarchaeal SECIS elements might originate from Asgard archaeal SECIS elements via lateral gene transfer, indicating a complex and dynamic scenario of the evolution of SECIS element within archaea. Finally, a roadmap for the transition of eukaryotic SECIS elements from archaea was proposed, and selenophosphate synthetase may serve as a potential intermediate for the generation of ancestral eukaryotic SECIS element. Our results offer new insights into a deeper understanding of the evolution of Sec insertion machinery.
Collapse
Affiliation(s)
- Biyan Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, Guangdong Province, P. R. China
| | - Yao Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, Guangdong Province, P. R. China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, Guangdong Province, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong Province, P. R. China
| |
Collapse
|
5
|
Wright DE, O’Donoghue P. Biosynthesis, Engineering, and Delivery of Selenoproteins. Int J Mol Sci 2023; 25:223. [PMID: 38203392 PMCID: PMC10778597 DOI: 10.3390/ijms25010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Selenocysteine (Sec) was discovered as the 21st genetically encoded amino acid. In nature, site-directed incorporation of Sec into proteins requires specialized biosynthesis and recoding machinery that evolved distinctly in bacteria compared to archaea and eukaryotes. Many organisms, including higher plants and most fungi, lack the Sec-decoding trait. We review the discovery of Sec and its role in redox enzymes that are essential to human health and important targets in disease. We highlight recent genetic code expansion efforts to engineer site-directed incorporation of Sec in bacteria and yeast. We also review methods to produce selenoproteins with 21 or more amino acids and approaches to delivering recombinant selenoproteins to mammalian cells as new applications for selenoproteins in synthetic biology.
Collapse
Affiliation(s)
- David E. Wright
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
6
|
Eight Unexpected Selenoprotein Families in Organometallic Biochemistry in Clostridium difficile, in ABC Transport, and in Methylmercury Biosynthesis. J Bacteriol 2023; 205:e0025922. [PMID: 36598231 PMCID: PMC9879109 DOI: 10.1128/jb.00259-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The bioinformatics of a nine-gene locus, designated selenocysteine-assisted organometallic (SAO), was investigated after identifying six new selenoprotein families and constructing hidden Markov models (HMMs) that find and annotate members of those families. Four are selenoproteins in most SAO loci, including Clostridium difficile. They include two ABC transporter subunits, namely, permease SaoP, with selenocysteine (U) at the channel-gating position, and substrate-binding subunit SaoB. Cytosolic selenoproteins include SaoL, homologous to MerB organomercurial lyases from mercury resistance loci, and SaoT, related to thioredoxins. SaoL, SaoB, and surface protein SaoC (an occasional selenoprotein) share an unusual CU dipeptide motif, which is something rare in selenoproteins but found in selenoprotein variants of mercury resistance transporter subunit MerT. A nonselenoprotein, SaoE, shares homology with Cu/Zn efflux and arsenical efflux pumps. The organization of the SAO system suggests substrate interaction with surface-exposed selenoproteins, followed by import, metabolism that may cleave a carbon-to-heavy metal bond, and finally metal efflux. A novel type of mercury resistance is possible, but SAO instead may support fermentative metabolism, with selenocysteine-mediated formation of organometallic intermediates, followed by import, degradation, and metal efflux. Phylogenetic profiling shows SOA loci consistently co-occur with Stickland fermentation markers but even more consistently with 8Fe-9S cofactor-type double-cubane proteins. Hypothesizing that the SAO system forms organometallic intermediates, we investigated the known methylmercury formation protein families HgcA and HgcB. Both families contained overlooked selenoproteins. Most HgcAs have a CU motif N terminal to their previously accepted start sites. Seeking additional rare and overlooked selenoproteins may help reveal more cryptic aspects of microbial biochemistry. IMPORTANCE This work adds 8 novel prokaryotic selenoproteins to the 80 or so families previously known. It describes the SAO (selenocysteine-assisted organometallic) locus, with the most selenoproteins of any known system. The rare CU motif recurs throughout, suggesting the formation and degradation of organometallic compounds. That suggestion triggered a reexamination of HgcA and HcgB, which are methylmercury formation proteins that can adversely impact food safety. Both are selenoproteins, once corrected, with HgcA again showing a CU motif. The SAO system is plausibly a mercury resistance locus for selenium-dependent anaerobes. But instead, it may exploit heavy metals as cofactors in organometallic intermediate-forming pathways that circumvent high activation energies and facilitate the breakdown of otherwise poorly accessible nutrients. SAO could provide an edge that helps Clostridium difficile, an important pathogen, establish disease.
Collapse
|
7
|
Haas R, Nikel PI. Challenges and opportunities in bringing nonbiological atoms to life with synthetic metabolism. Trends Biotechnol 2023; 41:27-45. [PMID: 35786519 DOI: 10.1016/j.tibtech.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
The relatively narrow spectrum of chemical elements within the microbial 'biochemical palate' limits the reach of biotechnology, because several added-value compounds can only be produced with traditional organic chemistry. Synthetic biology offers enabling tools to tackle this issue by facilitating 'biologization' of non-canonical chemical atoms. The interplay between xenobiology and synthetic metabolism multiplies routes for incorporating nonbiological atoms into engineered microbes. In this review, we survey natural assimilation routes for elements beyond the essential biology atoms [i.e., carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S)], discussing how these mechanisms could be repurposed for biotechnology. Furthermore, we propose a computational framework to identify chemical elements amenable to biologization, ranking reactions suitable to build synthetic metabolism. When combined and deployed in robust microbial hosts, these approaches will offer sustainable alternatives for smart chemical production.
Collapse
Affiliation(s)
- Robert Haas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Genome-Wide Association Studies across Environmental and Genetic Contexts Reveal Complex Genetic Architecture of Symbiotic Extended Phenotypes. mBio 2022; 13:e0182322. [PMID: 36286519 PMCID: PMC9765617 DOI: 10.1128/mbio.01823-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A goal of modern biology is to develop the genotype-phenotype (G→P) map, a predictive understanding of how genomic information generates trait variation that forms the basis of both natural and managed communities. As microbiome research advances, however, it has become clear that many of these traits are symbiotic extended phenotypes, being governed by genetic variation encoded not only by the host's own genome, but also by the genomes of myriad cryptic symbionts. Building a reliable G→P map therefore requires accounting for the multitude of interacting genes and even genomes involved in symbiosis. Here, we use naturally occurring genetic variation in 191 strains of the model microbial symbiont Sinorhizobium meliloti paired with two genotypes of the host Medicago truncatula in four genome-wide association studies (GWAS) to determine the genomic architecture of a key symbiotic extended phenotype-partner quality, or the fitness benefit conferred to a host by a particular symbiont genotype, within and across environmental contexts and host genotypes. We define three novel categories of loci in rhizobium genomes that must be accounted for if we want to build a reliable G→P map of partner quality; namely, (i) loci whose identities depend on the environment, (ii) those that depend on the host genotype with which rhizobia interact, and (iii) universal loci that are likely important in all or most environments. IMPORTANCE Given the rapid rise of research on how microbiomes can be harnessed to improve host health, understanding the contribution of microbial genetic variation to host phenotypic variation is pressing, and will better enable us to predict the evolution of (and select more precisely for) symbiotic extended phenotypes that impact host health. We uncover extensive context-dependency in both the identity and functions of symbiont loci that control host growth, which makes predicting the genes and pathways important for determining symbiotic outcomes under different conditions more challenging. Despite this context-dependency, we also resolve a core set of universal loci that are likely important in all or most environments, and thus, serve as excellent targets both for genetic engineering and future coevolutionary studies of symbiosis.
Collapse
|
9
|
Liu Y, Zhang Z, Ji M, Hu A, Wang J, Jing H, Liu K, Xiao X, Zhao W. Comparison of prokaryotes between Mount Everest and the Mariana Trench. MICROBIOME 2022; 10:215. [PMID: 36476562 PMCID: PMC9727886 DOI: 10.1186/s40168-022-01403-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mount Everest and the Mariana Trench represent the highest and deepest places on Earth, respectively. They are geographically separated, with distinct extreme environmental parameters that provide unique habitats for prokaryotes. Comparison of prokaryotes between Mount Everest and the Mariana Trench will provide a unique perspective to understanding the composition and distribution of environmental microbiomes on Earth. RESULTS Here, we compared prokaryotic communities between Mount Everest and the Mariana Trench based on shotgun metagenomic analysis. Analyzing 25 metagenomes and 1176 metagenome-assembled genomes showed distinct taxonomic compositions between Mount Everest and the Mariana Trench, with little taxa overlap, and significant differences in genome size, GC content, and predicted optimal growth temperature. However, community metabolic capabilities exhibited striking commonality, with > 90% of metabolic modules overlapping among samples of Mount Everest and the Mariana Trench, with the only exception for CO2 fixations (photoautotrophy in Mount Everest but chemoautotrophy in the Mariana Trench). Most metabolic pathways were common but performed by distinct taxa in the two extreme habitats, even including some specialized metabolic pathways, such as the versatile degradation of various refractory organic matters, heavy metal metabolism (e.g., As and Se), stress resistance, and antioxidation. The metabolic commonality indicated the overall consistent roles of prokaryotes in elemental cycling and common adaptation strategies to overcome the distinct stress conditions despite the intuitively huge differences in Mount Everest and the Mariana Trench. CONCLUSION Our results, the first comparison between prokaryotes in the highest and the deepest habitats on Earth, may highlight the principles of prokaryotic diversity: although taxa are habitat-specific, primary metabolic functions could be always conserved. Video abstract.
Collapse
Affiliation(s)
- Yongqin Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Mukan Ji
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Aoran Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Wang
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, China
| | - Hongmei Jing
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China.
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China.
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, China.
| |
Collapse
|
10
|
Manta B, Makarova NE, Mariotti M. The selenophosphate synthetase family: A review. Free Radic Biol Med 2022; 192:63-76. [PMID: 36122644 DOI: 10.1016/j.freeradbiomed.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Selenophosphate synthetases use selenium and ATP to synthesize selenophosphate. This is required for biological utilization of selenium, most notably for the synthesis of the non-canonical amino acid selenocysteine (Sec). Therefore, selenophosphate synthetases underlie all functions of selenoproteins, which include redox homeostasis, protein quality control, hormone regulation, metabolism, and many others. This protein family comprises two groups, SelD/SPS2 and SPS1. The SelD/SPS2 group represent true selenophosphate synthetases, enzymes central to selenium metabolism which are present in all Sec-utilizing organisms across the tree of life. Notably, many SelD/SPS2 proteins contain Sec as catalytic residue in their N-terminal flexible selenium-binding loop, while others replace it with cysteine (Cys). The SPS1 group comprises proteins originated through gene duplications of SelD/SPS2 in metazoa in which the Sec/Cys-dependent catalysis was disrupted. SPS1 proteins do not synthesize selenophosphate and are not required for Sec synthesis. They have essential regulatory functions related to redox homeostasis and pyridoxal phosphate, which affect signaling pathways for growth and differentiation. In this review, we summarize the knowledge about the selenophosphate synthetase family acquired through decades of research, encompassing their structure, mechanism, function, and evolution.
Collapse
Affiliation(s)
- Bruno Manta
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Uruguay, Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Uruguay
| | - Nadezhda E Makarova
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Marco Mariotti
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
11
|
Selenium Metabolism and Selenoproteins in Prokaryotes: A Bioinformatics Perspective. Biomolecules 2022; 12:biom12070917. [PMID: 35883471 PMCID: PMC9312934 DOI: 10.3390/biom12070917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Selenium (Se) is an important trace element that mainly occurs in the form of selenocysteine in selected proteins. In prokaryotes, Se is also required for the synthesis of selenouridine and Se-containing cofactor. A large number of selenoprotein families have been identified in diverse prokaryotic organisms, most of which are thought to be involved in various redox reactions. In the last decade or two, computational prediction of selenoprotein genes and comparative genomics of Se metabolic pathways and selenoproteomes have arisen, providing new insights into the metabolism and function of Se and their evolutionary trends in bacteria and archaea. This review aims to offer an overview of recent advances in bioinformatics analysis of Se utilization in prokaryotes. We describe current computational strategies for the identification of selenoprotein genes and generate the most comprehensive list of prokaryotic selenoproteins reported to date. Furthermore, we highlight the latest research progress in comparative genomics and metagenomics of Se utilization in prokaryotes, which demonstrates the divergent and dynamic evolutionary patterns of different Se metabolic pathways, selenoprotein families, and selenoproteomes in sequenced organisms and environmental samples. Overall, bioinformatics analyses of Se utilization, function, and evolution may contribute to a systematic understanding of how this micronutrient is used in nature.
Collapse
|
12
|
Zhou YL, Mara P, Cui GJ, Edgcomb VP, Wang Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Nat Commun 2022; 13:1515. [PMID: 35314706 PMCID: PMC8938466 DOI: 10.1038/s41467-022-29144-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Hadal trenches are the deepest and most remote regions of the ocean. The 11-kilometer deep Challenger Deep is the least explored due to the technical challenges of sampling hadal depths. It receives organic matter and heavy metals from the overlying water column that accumulate differently across its V-shaped topography. Here, we collected sediments across the slope and bottom-axis of the Challenger Deep that enable insights into its in situ microbial communities. Analyses of 586 metagenome-assembled genomes retrieved from 37 metagenomes show distinct diversity and metabolic capacities between bottom-axis and slope sites. 26% of prokaryotic 16S rDNA reads in metagenomes were novel, with novelty increasing with water and sediment depths. These predominantly heterotrophic microbes can recycle macromolecules and utilize simple and complex hydrocarbons as carbon sources. Metagenome and metatranscriptome data support reduction and biotransformation of arsenate for energy gain in sediments that present a two-fold greater accumulation of arsenic compared to non-hadal sites. Complete pathways for anaerobic ammonia oxidation are predominantly identified in genomes recovered from bottom-axis sediments compared to slope sites. Our results expand knowledge of microbially-mediated elemental cycling in hadal sediments, and reveal differences in distribution of processes involved in nitrogen loss across the trench.
Collapse
Affiliation(s)
- Ying-Li Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paraskevi Mara
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Guo-Jie Cui
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
13
|
Expressing recombinant selenoproteins using redefinition of a single UAG codon in an RF1-depleted E. coli host strain. Methods Enzymol 2022; 662:95-118. [PMID: 35101220 DOI: 10.1016/bs.mie.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selenoproteins containing the rare amino acid selenocysteine (Sec), typically being enzymes utilizing the selenium atom of Sec for promoted catalysis of redox reactions, are challenging to obtain at high amounts in pure form. The technical challenges limiting selenoprotein supply derive from intricacies in their translation, necessitating the recoding of a UGA stop codon to a sense codon for Sec. This, in turn, involves the interactions of a Sec-dedicated elongation factor, either directly or indirectly, with a structure in the selenoprotein-encoding mRNA called a SECIS element (Selenocysteine Insertion Sequence), a dedicated tRNA species for Sec with an anticodon for the UGA, and several accessory enzymes and proteins involved in the selenoprotein synthesis. Here, we describe an alternative method for recombinant selenoprotein production using UAG as the Sec codon in a specific strain of E. coli lacking other UAG codons and lacking the release factor RF1 that normally terminates translation at UAG. We also describe how such recombinant selenoproteins can be purified and further analyzed for final Sec contents. The methodology can be used for production of natural selenoproteins in recombinant form as well as for production of synthetic selenoproteins that may be designed to use the unique biophysical properties of Sec for diverse biotechnological applications.
Collapse
|
14
|
Wang D, Rensing C, Zheng S. Microbial reduction and resistance to selenium: Mechanisms, applications and prospects. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126684. [PMID: 34339989 DOI: 10.1016/j.jhazmat.2021.126684] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Selenium is an essential trace element for humans, animals and microorganisms. Microbial transformations, in particular, selenium dissimilatory reduction and bioremediation applications have received increasing attention in recent years. This review focuses on multiple Se-reducing pathways under anaerobic and aerobic conditions, and the phylogenetic clustering of selenium reducing enzymes that are involved in these processes. It is emphasized that a selenium reductase may have more than one metabolic function, meanwhile, there are several Se(VI) and/or Se(IV) reduction pathways in a bacterial strain. It is noted that Se(IV)-reducing efficiency is inconsistent with Se(IV) resistance in bacteria. Moreover, we discussed the links of selenium transformations to biogeochemical cycling of other elements, roles of Se-reducing bacteria in soil, plant and digestion system, and the possibility of using functional genes involved in Se transformation as biomarker in different environments. In addition, we point out the gaps and perspectives both on Se transformation mechanisms and applications in terms of bioremediation, Se fortification or dietary supplementation.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
15
|
Tsuji PA, Santesmasses D, Lee BJ, Gladyshev VN, Hatfield DL. Historical Roles of Selenium and Selenoproteins in Health and Development: The Good, the Bad and the Ugly. Int J Mol Sci 2021; 23:ijms23010005. [PMID: 35008430 PMCID: PMC8744743 DOI: 10.3390/ijms23010005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/25/2022] Open
Abstract
Selenium is a fascinating element that has a long history, most of which documents it as a deleterious element to health. In more recent years, selenium has been found to be an essential element in the diet of humans, all other mammals, and many other life forms. It has many health benefits that include, for example, roles in preventing heart disease and certain forms of cancer, slowing AIDS progression in HIV patients, supporting male reproduction, inhibiting viral expression, and boosting the immune system, and it also plays essential roles in mammalian development. Elucidating the molecular biology of selenium over the past 40 years generated an entirely new field of science which encompassed the many novel features of selenium. These features were (1) how this element makes its way into protein as the 21st amino acid in the genetic code, selenocysteine (Sec); (2) the vast amount of machinery dedicated to synthesizing Sec uniquely on its tRNA; (3) the incorporation of Sec into protein; and (4) the roles of the resulting Sec-containing proteins (selenoproteins) in health and development. One of the research areas receiving the most attention regarding selenium in health has been its role in cancer prevention, but further research has also exposed the role of this element as a facilitator of various maladies, including cancer.
Collapse
Affiliation(s)
- Petra A. Tsuji
- Department of Biological Sciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
- Correspondence:
| | - Didac Santesmasses
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA; (D.S.); (V.N.G.)
| | - Byeong J. Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea;
| | - Vadim N. Gladyshev
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA; (D.S.); (V.N.G.)
| | - Dolph L. Hatfield
- Scientist Emeritus, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
16
|
Markley RL, Restori KH, Katkere B, Sumner SE, Nicol MJ, Tyryshkina A, Nettleford SK, Williamson DR, Place DE, Dewan KK, Shay AE, Carlson BA, Girirajan S, Prabhu KS, Kirimanjeswara GS. Macrophage Selenoproteins Restrict Intracellular Replication of Francisella tularensis and Are Essential for Host Immunity. Front Immunol 2021; 12:701341. [PMID: 34777335 PMCID: PMC8586653 DOI: 10.3389/fimmu.2021.701341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
The essential micronutrient Selenium (Se) is co-translationally incorporated as selenocysteine into proteins. Selenoproteins contain one or more selenocysteines and are vital for optimum immunity. Interestingly, many pathogenic bacteria utilize Se for various biological processes suggesting that Se may play a role in bacterial pathogenesis. A previous study had speculated that Francisella tularensis, a facultative intracellular bacterium and the causative agent of tularemia, sequesters Se by upregulating Se-metabolism genes in type II alveolar epithelial cells. Therefore, we investigated the contribution of host vs. pathogen-associated selenoproteins in bacterial disease using F. tularensis as a model organism. We found that F. tularensis was devoid of any Se utilization traits, neither incorporated elemental Se, nor exhibited Se-dependent growth. However, 100% of Se-deficient mice (0.01 ppm Se), which express low levels of selenoproteins, succumbed to F. tularensis-live vaccine strain pulmonary challenge, whereas 50% of mice on Se-supplemented (0.4 ppm Se) and 25% of mice on Se-adequate (0.1 ppm Se) diet succumbed to infection. Median survival time for Se-deficient mice was 8 days post-infection while Se-supplemented and -adequate mice was 11.5 and >14 days post-infection, respectively. Se-deficient macrophages permitted significantly higher intracellular bacterial replication than Se-supplemented macrophages ex vivo, corroborating in vivo observations. Since Francisella replicates in alveolar macrophages during the acute phase of pneumonic infection, we hypothesized that macrophage-specific host selenoproteins may restrict replication and systemic spread of bacteria. F. tularensis infection led to an increased expression of several macrophage selenoproteins, suggesting their key role in limiting bacterial replication. Upon challenge with F. tularensis, mice lacking selenoproteins in macrophages (TrspM) displayed lower survival and increased bacterial burden in the lung and systemic tissues in comparison to WT littermate controls. Furthermore, macrophages from TrspM mice were unable to restrict bacterial replication ex vivo in comparison to macrophages from littermate controls. We herein describe a novel function of host macrophage-specific selenoproteins in restriction of intracellular bacterial replication. These data suggest that host selenoproteins may be considered as novel targets for modulating immune response to control a bacterial infection.
Collapse
Affiliation(s)
- Rachel L. Markley
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Katherine H. Restori
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Bhuvana Katkere
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Sarah E. Sumner
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - McKayla J. Nicol
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Anastasia Tyryshkina
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Shaneice K. Nettleford
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David R. Williamson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David E. Place
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kalyan K. Dewan
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
| | - Ashley E. Shay
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bradley A. Carlson
- Office of Research Support, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| | - Girish S. Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States,*Correspondence: Girish S. Kirimanjeswara,
| |
Collapse
|
17
|
Zhu D, Niu Y, Fan K, Zhang F, Wang Y, Wang G, Zheng S. Selenium-oxidizing Agrobacterium sp. T3F4 steadily colonizes in soil promoting selenium uptake by pak choi (Brassica campestris). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148294. [PMID: 34126490 DOI: 10.1016/j.scitotenv.2021.148294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Selenium (Se) deficiency in soil is linked to its low content in edible crops, resulting in adverse impacts on the health of 15% of the global population. The crop mainly absorbs oxidized selenate and selenite from soil, then converts them into organic Se. However, the role of Se-oxidizing bacteria in soil Se oxidation, Se bioavailability and Se absorption into plants remains unclear. The strain Agrobacterium sp. T3F4, isolated from seleniferous soil, was able to oxidize elemental Se into selenite under pure culture conditions. The green fluorescent protein (gfp)-gene-marked strain (T3F4-GFP) and elemental Se or selenite (5 mg·kg-1) were added to pak choi (Brassica campestris ssp. chinensis) pot cultures. Observation of the fluorescence and viable counting indicated that GFP-expressing bacterial cells steadily colonized the soil in the pots and the leaves of the pak choi, reaching up to 6.6 × 106 and 2.0 × 105 CFU g-1 at 21 days post cultivation, respectively. Moreover, the total Se content (mostly organic Se) was significantly increased in the pak choi under T3F4 inoculated pot culture, with elemental Se(0) being oxidized into Se(IV), and soil Se(IV) being dissolved before being absorbed by the crop. After strain T3F4 was inoculated, no significant differences in microbial diversity were observed in the soils and roots, whereas the abundance of Rhizobium spp. was significantly increased. To our knowledge, this is the first time that Se-oxidizing Agrobacterium sp. T3F4 has been found to steadily colonize soil and plant tissues, and that its addition to soil increases the absorption of Se in plants. This study provides a potential strategy for Se biofortification.
Collapse
Affiliation(s)
- Dahui Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yaxin Niu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Keke Fan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fujun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
18
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
19
|
Kivenson V, Paul BG, Valentine DL. An Ecological Basis for Dual Genetic Code Expansion in Marine Deltaproteobacteria. Front Microbiol 2021; 12:680620. [PMID: 34335502 PMCID: PMC8318568 DOI: 10.3389/fmicb.2021.680620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Marine benthic environments may be shaped by anthropogenic and other localized events, leading to changes in microbial community composition evident decades after a disturbance. Marine sediments in particular harbor exceptional taxonomic diversity and can shed light on distinctive evolutionary strategies. Genetic code expansion is a strategy that increases the structural and functional diversity of proteins in cells, by repurposing stop codons to encode non-canonical amino acids: pyrrolysine (Pyl) and selenocysteine (Sec). Here, we report both a study of the microbiome at a deep sea industrial waste dumpsite and an unanticipated discovery of codon reassignment in its most abundant member, with potential ramifications for interpreting microbial interactions with ocean-dumped wastes. The genomes of abundant Deltaproteobacteria from the sediments of a deep-ocean chemical waste dump site have undergone genetic code expansion. Pyl and Sec in these organisms appear to augment trimethylamine (TMA) and one-carbon metabolism, representing an increased metabolic versatility. The inferred metabolism of these sulfate-reducing bacteria places them in competition with methylotrophic methanogens for TMA, a contention further supported by earlier isotope tracer studies and reanalysis of metatranscriptomic studies. A survey of genomic data further reveals a broad geographic distribution of a niche group of similarly specialized Deltaproteobacteria, including at sulfidic sites in the Atlantic Ocean, Gulf of Mexico, Guaymas Basin, and North Sea, as well as in terrestrial and estuarine environments. These findings reveal an important biogeochemical role for specialized Deltaproteobacteria at the interface of the carbon, nitrogen, selenium, and sulfur cycles, with their niche adaptation and ecological success potentially augmented by genetic code expansion.
Collapse
Affiliation(s)
- Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Blair G. Paul
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - David L. Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
20
|
Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC. Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases. Front Nutr 2021; 8:685317. [PMID: 34150830 PMCID: PMC8211732 DOI: 10.3389/fnut.2021.685317] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
This review covers current knowledge of selenium in the dietary intake, its bioavailability, metabolism, functions, biomarkers, supplementation and toxicity, as well as its relationship with diseases and gut microbiota specifically on the symbiotic relationship between gut microflora and selenium status. Selenium is essential for the maintenance of the immune system, conversion of thyroid hormones, protection against the harmful action of heavy metals and xenobiotics as well as for the reduction of the risk of chronic diseases. Selenium is able to balance the microbial flora avoiding health damage associated with dysbiosis. Experimental studies have shown that inorganic and organic selenocompounds are metabolized to selenomethionine and incorporated by bacteria from the gut microflora, therefore highlighting their role in improving the bioavailability of selenocompounds. Dietary selenium can affect the gut microbial colonization, which in turn influences the host's selenium status and expression of selenoproteoma. Selenium deficiency may result in a phenotype of gut microbiota that is more susceptible to cancer, thyroid dysfunctions, inflammatory bowel disease, and cardiovascular disorders. Although the host and gut microbiota benefit each other from their symbiotic relationship, they may become competitors if the supply of micronutrients is limited. Intestinal bacteria can remove selenium from the host resulting in two to three times lower levels of host's selenoproteins under selenium-limiting conditions. There are still gaps in whether these consequences are unfavorable to humans and animals or whether the daily intake of selenium is also adapted to meet the needs of the bacteria.
Collapse
Affiliation(s)
| | - Karine Cavalcanti Maurício Sena-Evangelista
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eduardo Pereira de Azevedo
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Francisco Irochima Pinheiro
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Ricardo Ney Cobucci
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Lucia Fatima Campos Pedrosa
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
21
|
Jia L, Chen C, Zhao N, He X, Zhang B. Effects of low and high levels of nano-selenium on intestinal microbiota of Chinese tongue sole (Cynoglossus semilaevis). AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Wells M, Basu P, Stolz JF. The physiology and evolution of microbial selenium metabolism. Metallomics 2021; 13:6261189. [PMID: 33930157 DOI: 10.1093/mtomcs/mfab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
23
|
Biogeographic and Evolutionary Patterns of Trace Element Utilization in Marine Microbial World. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:958-972. [PMID: 33631428 PMCID: PMC9402790 DOI: 10.1016/j.gpb.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/23/2019] [Accepted: 06/06/2019] [Indexed: 12/01/2022]
Abstract
Trace elements are required by all organisms, which are key components of many enzymes catalyzing important biological reactions. Many trace element-dependent proteins have been characterized; however, little is known about their occurrence in microbial communities in diverse environments, especially the global marine ecosystem. Moreover, the relationships between trace element utilization and different types of environmental stressors are unclear. In this study, we used metagenomic data from the Global Ocean Sampling expedition project to identify the biogeographic distribution of genes encoding trace element-dependent proteins (for copper, molybdenum, cobalt, nickel, and selenium) in a variety of marine and non-marine aquatic samples. More than 56,000 metalloprotein and selenoprotein genes corresponding to nearly 100 families were predicted, becoming the largest dataset of marine metalloprotein and selenoprotein genes reported to date. In addition, samples with enriched or depleted metalloprotein/selenoprotein genes were identified, suggesting an active or inactive usage of these micronutrients in various sites. Further analysis of interactions among the elements showed significant correlations between some of them, especially those between nickel and selenium/copper. Finally, investigation of the relationships between environmental conditions and metalloprotein/selenoprotein families revealed that many environmental factors might contribute to the evolution of different metalloprotein and/or selenoprotein genes in the marine microbial world. Our data provide new insights into the utilization and biological roles of these trace elements in extant marine microbes, and might also be helpful for the understanding of how these organisms have adapted to their local environments.
Collapse
|
24
|
Konieczka P, Szkopek D, Kinsner M, Fotschki B, Juśkiewicz J, Banach J. Cannabis-derived cannabidiol and nanoselenium improve gut barrier function and affect bacterial enzyme activity in chickens subjected to C. perfringens challenge. Vet Res 2020; 51:141. [PMID: 33225993 PMCID: PMC7682017 DOI: 10.1186/s13567-020-00863-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Revealing the multifocal mechanisms affecting cross-talk between Clostridium perfringens pathogenesis and the host response is an urgent need in the poultry industry. Herein, the activity of Cannabis sativa-derived cannabidiol (CBD) and selenium nanoparticles (Nano-Se) in modulating the host response to Clostridium perfringens challenge was investigated in broiler chickens subjected to a mild infection model. The infected chickens exhibited no clinical manifestations, confirming the potential hazard of pathogen transmission to the food chain in the commercial sector. However, both CBD and Nano-Se affected the responses of chickens to C. perfringens challenge. The beneficial actions of both agents were manifested in the upregulated expression of genes determining gut barrier function. Both CBD and Nano-Se promoted shifts in gut bacterial enzyme activity to increased energy uptake in challenged chickens and upregulated potential collagenase activity. There was no opposite effect of CBD and Nano-Se in mediating the host response to challenge, whereas an additive effect was evidenced on the upregulation of gene determining gut integrity. Collectively, these findings indicate that understanding the action mechanisms of CBD and Nano-Se is of great interest for developing a preventive strategy for C. perfringens infection in broilers.
Collapse
Affiliation(s)
- Paweł Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland. .,Department of Poultry Science, University of Warmia and Mazury, Oczapowskiego 5, 10-718, Olsztyn, Poland.
| | - Dominika Szkopek
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Misza Kinsner
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Bartosz Fotschki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Joanna Banach
- Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630, Poznań, Poland
| |
Collapse
|
25
|
Prometheus, an omics portal for interkingdom comparative genomic analyses. PLoS One 2020; 15:e0240191. [PMID: 33112870 PMCID: PMC7592745 DOI: 10.1371/journal.pone.0240191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022] Open
Abstract
Functional analyses of genes are crucial for unveiling biological responses, genetic engineering, and developing new medicines. However, functional analyses have largely been restricted to model organisms, representing a major hurdle for functional studies and industrial applications. To resolve this, comparative genome analyses can be used to provide clues to gene functions as well as their evolutionary history. To this end, we present Prometheus, a web-based omics portal that contains more than 17,215 sequences from prokaryotic and eukaryotic genomes. This portal supports interkingdom comparative analyses via a domain architecture-based gene identification system and Gene Search, and users can easily and rapidly identify single or entire gene sets in specific pathways. Bioinformatics tools for further analyses are provided in Prometheus or through Bio-Express, a cloud-based bioinformatics analysis platform. Prometheus is a new paradigm for comparative analyses of large amounts of genomic information.
Collapse
|
26
|
Wells M, Stolz JF. Microbial selenium metabolism: a brief history, biogeochemistry and ecophysiology. FEMS Microbiol Ecol 2020; 96:5921172. [DOI: 10.1093/femsec/fiaa209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
ABSTRACTSelenium is an essential trace element for organisms from all three domains of life. Microorganisms, in particular, mediate reductive transformations of selenium that govern the element's mobility and bioavailability in terrestrial and aquatic environments. Selenium metabolism is not just ubiquitous but an ancient feature of life likely extending back to the universal common ancestor of all cellular lineages. As with the sulfur biogeochemical cycle, reductive transformations of selenium serve two metabolic functions: assimilation into macromolecules and dissimilatory reduction during anaerobic respiration. This review begins with a historical overview of how research in both aspects of selenium metabolism has developed. We then provide an overview of the global selenium biogeochemical cycle, emphasizing the central role of microorganisms in the cycle. This serves as a basis for a robust discussion of current models for the evolution of the selenium biogeochemical cycle over geologic time, and how knowledge of the evolution and ecophysiology of selenium metabolism can enrich and refine these models. We conclude with a discussion of the ecophysiological function of selenium-respiring prokaryotes within the cycle, and the tantalizing possibility of oxidative selenium transformations during chemolithoautotrophic growth.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
27
|
Santesmasses D, Mariotti M, Gladyshev VN. Bioinformatics of Selenoproteins. Antioxid Redox Signal 2020; 33:525-536. [PMID: 32031018 PMCID: PMC7409585 DOI: 10.1089/ars.2020.8044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Significance: Bioinformatics has brought important insights into the field of selenium research. The progress made in the development of computational tools in the last two decades, coordinated with growing genome resources, provided new opportunities to study selenoproteins. The present review discusses existing tools for selenoprotein gene finding and other bioinformatic approaches to study the biology of selenium. Recent Advances: The availability of complete selenoproteomes allowed assessing a global distribution of the use of selenocysteine (Sec) across the tree of life, as well as studying the evolution of selenoproteins and their biosynthetic pathway. Beyond gene identification and characterization, human genetic variants in selenoprotein genes were used to examine adaptations to selenium levels in diverse human populations and to estimate selective constraints against gene loss. Critical Issues: The synthesis of selenoproteins is essential for development in mice. In humans, several mutations in selenoprotein genes have been linked to rare congenital disorders. And yet, the mechanism of Sec insertion and the regulation of selenoprotein synthesis in mammalian cells are not completely understood. Future Directions: Omics technologies offer new possibilities to study selenoproteins and mechanisms of Sec incorporation in cells, tissues, and organisms.
Collapse
Affiliation(s)
- Didac Santesmasses
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Ojeda JJ, Merroun ML, Tugarova AV, Lampis S, Kamnev AA, Gardiner PHE. Developments in the study and applications of bacterial transformations of selenium species. Crit Rev Biotechnol 2020; 40:1250-1264. [PMID: 32854560 DOI: 10.1080/07388551.2020.1811199] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microbial bio-transformations of the essential trace element selenium are now recognized to occur among a wide variety of microorganisms. These transformations are used to convert this element into its assimilated form of selenocysteine, which is at the active center of a number of key enzymes, and to produce selenium nanoparticles, quantum dots, metal selenides, and methylated selenium species that are indispensable for biotechnological and bioremediation applications. The focus of this review is to present the state-of-the-art of all aspects of the investigations into the bacterial transformations of selenium species, and to consider the characterization and biotechnological uses of these transformations and their products.
Collapse
Affiliation(s)
- Jesus J Ojeda
- College of Engineering, Swansea University, Systems and Process Engineering Centre, Swansea, UK
| | | | - Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Philip H E Gardiner
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
29
|
Zhang Y, Zheng J. Bioinformatics of Metalloproteins and Metalloproteomes. Molecules 2020; 25:molecules25153366. [PMID: 32722260 PMCID: PMC7435645 DOI: 10.3390/molecules25153366] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Trace metals are inorganic elements that are required for all organisms in very low quantities. They serve as cofactors and activators of metalloproteins involved in a variety of key cellular processes. While substantial effort has been made in experimental characterization of metalloproteins and their functions, the application of bioinformatics in the research of metalloproteins and metalloproteomes is still limited. In the last few years, computational prediction and comparative genomics of metalloprotein genes have arisen, which provide significant insights into their distribution, function, and evolution in nature. This review aims to offer an overview of recent advances in bioinformatic analysis of metalloproteins, mainly focusing on metalloprotein prediction and the use of different metals across the tree of life. We describe current computational approaches for the identification of metalloprotein genes and metal-binding sites/patterns in proteins, and then introduce a set of related databases. Furthermore, we discuss the latest research progress in comparative genomics of several important metals in both prokaryotes and eukaryotes, which demonstrates divergent and dynamic evolutionary patterns of different metalloprotein families and metalloproteomes. Overall, bioinformatic studies of metalloproteins provide a foundation for systematic understanding of trace metal utilization in all three domains of life.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-2692-2024
| | - Junge Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
30
|
Methane, arsenic, selenium and the origins of the DMSO reductase family. Sci Rep 2020; 10:10946. [PMID: 32616801 PMCID: PMC7331816 DOI: 10.1038/s41598-020-67892-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Mononuclear molybdoenzymes of the dimethyl sulfoxide reductase (DMSOR) family catalyze a number of reactions essential to the carbon, nitrogen, sulfur, arsenic, and selenium biogeochemical cycles. These enzymes are also ancient, with many lineages likely predating the divergence of the last universal common ancestor into the Bacteria and Archaea domains. We have constructed rooted phylogenies for over 1,550 representatives of the DMSOR family using maximum likelihood methods to investigate the evolution of the arsenic biogeochemical cycle. The phylogenetic analysis provides compelling evidence that formylmethanofuran dehydrogenase B subunits, which catalyze the reduction of CO2 to formate during hydrogenotrophic methanogenesis, constitutes the most ancient lineage. Our analysis also provides robust support for selenocysteine as the ancestral ligand for the Mo/W atom. Finally, we demonstrate that anaerobic arsenite oxidase and respiratory arsenate reductase catalytic subunits represent a more ancient lineage of DMSORs compared to aerobic arsenite oxidase catalytic subunits, which evolved from the assimilatory nitrate reductase lineage. This provides substantial support for an active arsenic biogeochemical cycle on the anoxic Archean Earth. Our work emphasizes that the use of chalcophilic elements as substrates as well as the Mo/W ligand in DMSORs has indelibly shaped the diversification of these enzymes through deep time.
Collapse
|
31
|
Rohwerder T, Rohde MT, Jehmlich N, Purswani J. Actinobacterial Degradation of 2-Hydroxyisobutyric Acid Proceeds via Acetone and Formyl-CoA by Employing a Thiamine-Dependent Lyase Reaction. Front Microbiol 2020; 11:691. [PMID: 32351493 PMCID: PMC7176365 DOI: 10.3389/fmicb.2020.00691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
The tertiary branched short-chain 2-hydroxyisobutyric acid (2-HIBA) has been associated with several metabolic diseases and lysine 2-hydroxyisobutyrylation seems to be a common eukaryotic as well as prokaryotic post-translational modification in proteins. In contrast, the underlying 2-HIBA metabolism has thus far only been detected in a few microorganisms, such as the betaproteobacterium Aquincola tertiaricarbonis L108 and the Bacillus group bacterium Kyrpidia tusciae DSM 2912. In these strains, 2-HIBA can be specifically activated to the corresponding CoA thioester by the 2-HIBA-CoA ligase (HCL) and is then isomerized to 3-hydroxybutyryl-CoA in a reversible and B12-dependent mutase reaction. Here, we demonstrate that the actinobacterial strain Actinomycetospora chiangmaiensis DSM 45062 degrades 2-HIBA and also its precursor 2-methylpropane-1,2-diol via acetone and formic acid by employing a thiamine pyrophosphate-dependent lyase. The corresponding gene is located directly upstream of hcl, which has previously been found only in operonic association with the 2-hydroxyisobutyryl-CoA mutase genes in other bacteria. Heterologous expression of the lyase gene from DSM 45062 in E. coli established a 2-hydroxyisobutyryl-CoA lyase activity in the latter. In line with this, analysis of the DSM 45062 proteome reveals a strong induction of the lyase-HCL gene cluster on 2-HIBA. Acetone is likely degraded via hydroxylation to acetol catalyzed by a MimABCD-related binuclear iron monooxygenase and formic acid appears to be oxidized to CO2 by selenium-dependent dehydrogenases. The presence of the lyase-HCL gene cluster in isoprene-degrading Rhodococcus strains and Pseudonocardia associated with tropical leafcutter ant species points to a role in degradation of biogenic short-chain ketones and highly branched organic compounds.
Collapse
Affiliation(s)
- Thore Rohwerder
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maria-Teresa Rohde
- Institut für Chemie - Biophysikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jessica Purswani
- Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
32
|
Selenium nanovirus and its cytotoxicity in selenite-exposed higher living organisms. Biochem Biophys Rep 2020; 21:100733. [PMID: 32016161 PMCID: PMC6992533 DOI: 10.1016/j.bbrep.2020.100733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 11/23/2022] Open
Abstract
Selenium (Se) is an essential micronutrient in living organisms, having a narrow margin between essential and potentially toxic intake/exposure. Thus, the biochemistry of Se in living organisms must be studied in-depth to determine the underlying mechanism of Se cytotoxicity. In this study, we report the emergence of selenium nanovirus (SeNVs) in selenite-exposed fish (freshwater and saltwater) and plants (dryland) and its toxicity in them. SeNVs were found in both the abdomen and tail of Oryzias melastigma and saltwater Rhodeus ocellatus, which led to their death. The occurrence of the intracellular assembly of SeNVs was observed in the roots and leaves of corn Zea mays, but not in those of Limnobium laevigatum. SeNVs led to the death of Z. mays but caused chronic toxicity in L. laevigatum. SeNVs should be a system or structure that dissipates the intracellular redox gradients of the host cells, with simple information consisting Se-O, Se-N, or Se-S bond, that would ensure elemental Se ligand binding with nearly specific biomolecules in host cells, thereby maintaining their composition and stabilizing their structure. The multiple toxic effects of Se, therefore, could be the consequence of increase of entropy in the host cells caused by the intracellular assembly of SeNVs. This study may provide an insight into the underlying mechanism of Se in environmental toxicology and its applications in human health.
Collapse
|
33
|
Farukh M. Comparative genomic analysis of selenium utilization traits in different marine environments. J Microbiol 2020; 58:113-122. [PMID: 31993987 DOI: 10.1007/s12275-020-9250-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/02/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022]
Abstract
Selenium (Se) is an essential trace element for many organisms, which is required in the biosynthesis of proteins with selenocysteine, tRNAs with selenouridine, and certain enzymes with Se as a cofactor. Recent large-scale metagenomics projects provide a unique opportunity for studying the global trends of Se utilization in marine environments. Here, we analyzed samples from different marine microbial communities, revealed by the Tara Oceans project, to characterize the Se utilization traits. We found that the selenophosphate synthetase gene, which defines the overall Se utilization, and Se utilization traits are present in all samples. Regions with samples rich and poor in Se utilization traits were categorized. From the analysis of environmental factors, the mesopelagic zone and high temperature (> 15°C) of water are favorable, while geographical location has little influence on Se utilization. All Se utilization traits showed a relatively independent occurrence. The taxonomic classification of Se traits shows that most of the sequences corresponding to Se utilization traits belong to the phylum Proteobacteria. Overall, our study provides useful insights into the general features of Se utilization in ocean samples and may help to understand the evolutionary dynamics of Se utilization in different marine environments.
Collapse
Affiliation(s)
- Muhammad Farukh
- Department of Biotechnology, School of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, Hubei, P. R. China.
| |
Collapse
|
34
|
Sumner SE, Markley RL, Kirimanjeswara GS. Role of Selenoproteins in Bacterial Pathogenesis. Biol Trace Elem Res 2019; 192:69-82. [PMID: 31489516 PMCID: PMC6801102 DOI: 10.1007/s12011-019-01877-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The trace element selenium is an essential micronutrient that plays an important role in maintaining homeostasis of several tissues including the immune system of mammals. The vast majority of the biological functions of selenium are mediated via selenoproteins, proteins which incorporate the selenium-containing amino acid selenocysteine. Several bacterial infections of humans and animals are associated with decreased levels of selenium in the blood and an adjunct therapy with selenium often leads to favorable outcomes. Many pathogenic bacteria are also capable of synthesizing selenocysteine suggesting that selenoproteins may have a role in bacterial physiology. Interestingly, the composition of host microbiota is also regulated by dietary selenium levels. Therefore, bacterial pathogens, microbiome, and host immune cells may be competing for a limited supply of selenium. Elucidating how selenium, in particular selenoproteins, may regulate pathogen virulence, microbiome diversity, and host immune response during a bacterial infection is critical for clinical management of infectious diseases.
Collapse
Affiliation(s)
- Sarah E Sumner
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rachel L Markley
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Girish S Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
35
|
Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, Pruitt KD. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2019; 46:D851-D860. [PMID: 29112715 PMCID: PMC5753331 DOI: 10.1093/nar/gkx1068] [Citation(s) in RCA: 650] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) provides annotation for over 95 000 prokaryotic genomes that meet standards for sequence quality, completeness, and freedom from contamination. Genomes are annotated by a single Prokaryotic Genome Annotation Pipeline (PGAP) to provide users with a resource that is as consistent and accurate as possible. Notable recent changes include the development of a hierarchical evidence scheme, a new focus on curating annotation evidence sources, the addition and curation of protein profile hidden Markov models (HMMs), release of an updated pipeline (PGAP-4), and comprehensive re-annotation of RefSeq prokaryotic genomes. Antimicrobial resistance proteins have been reannotated comprehensively, improved structural annotation of insertion sequence transposases and selenoproteins is provided, curated complex domain architectures have given upgraded names to millions of multidomain proteins, and we introduce a new kind of annotation rule—BlastRules. Continual curation of supporting evidence, and propagation of improved names onto RefSeq proteins ensures that the functional annotation of genomes is kept current. An increasing share of our annotation now derives from HMMs and other sets of annotation rules that are portable by nature, and available for download and for reuse by other investigators. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/.
Collapse
Affiliation(s)
- Daniel H Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Michael DiCuccio
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Azat Badretdin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Vyacheslav Brover
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Vyacheslav Chetvernin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Kathleen O'Neill
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Wenjun Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Farideh Chitsaz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Myra K Derbyshire
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Noreen R Gonzales
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Marc Gwadz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Fu Lu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Gabriele H Marchler
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - James S Song
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Narmada Thanki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Roxanne A Yamashita
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Chanjuan Zheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Lewis Y Geer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892-6511, USA
| |
Collapse
|
36
|
Phylogenomics Provides New Insights into Gains and Losses of Selenoproteins among Archaeplastida. Int J Mol Sci 2019; 20:ijms20123020. [PMID: 31226841 PMCID: PMC6627142 DOI: 10.3390/ijms20123020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/17/2022] Open
Abstract
Selenoproteins that contain selenocysteine (Sec) are found in all kingdoms of life. Although they constitute a small proportion of the proteome, selenoproteins play essential roles in many organisms. In photosynthetic eukaryotes, selenoproteins have been found in algae but are missing in land plants (embryophytes). In this study, we explored the evolutionary dynamics of Sec incorporation by conveying a genomic search for the Sec machinery and selenoproteins across Archaeplastida. We identified a complete Sec machinery and variable sizes of selenoproteomes in the main algal lineages. However, the entire Sec machinery was missing in the Bangiophyceae-Florideophyceae clade (BV) of Rhodoplantae (red algae) and only partial machinery was found in three species of Archaeplastida, indicating parallel loss of Sec incorporation in different groups of algae. Further analysis of genome and transcriptome data suggests that all major lineages of streptophyte algae display a complete Sec machinery, although the number of selenoproteins is low in this group, especially in subaerial taxa. We conclude that selenoproteins tend to be lost in Archaeplastida upon adaptation to a subaerial or acidic environment. The high number of redox-active selenoproteins found in some bloom-forming marine microalgae may be related to defense against viral infections. Some of the selenoproteins in these organisms may have been gained by horizontal gene transfer from bacteria.
Collapse
|
37
|
Zhang J, Wang Y, Shao Z, Li J, Zan S, Zhou S, Yang R. Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. J Environ Sci (China) 2019; 77:238-249. [PMID: 30573088 DOI: 10.1016/j.jes.2018.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 06/09/2023]
Abstract
Microbes play important roles in the transport and transformation of selenium (Se) in the environment, thereby influencing plant resistance to Se and Se accumulation in plant. The objectives are to characterize the bacteria with high Se tolerance and reduction capacity and explore the significance of microbial origins on their Se tolerance, reduction rate and efficiency. Two bacterial strains were isolated from a naturally occurred Se-rich soil at tea orchard in southern Anhui Province, China. The reduction kinetics of selenite was investigated and the reducing product was characterized using scanning electron microscopy and transmission electron microscopy-energy dispersive spectroscopy. The bacteria were identified as Lysinibacillus xylanilyticus and Lysinibacillus macrolides, respectively, using morphological, physiological and molecular methods. The results showed that the minimal inhibitory concentrations (MICs) of selenite for L. xylanilyticus and L. macrolides were 120 and 220 mmol/L, respectively, while MICs of selenate for L. xylanilyticus and L. macrolides were 800 and 700 mmol/L, respectively. Both strains aerobically reduced selenite with an initial concentration of 1.0 mmol/L to elemental Se nanoparticles (SeNPs) completely within 36 hr. Biogenic SeNPs were observed both inside and outside the cells suggesting either an intra- or extracellular reduction process. Our study implied that the microbes from Se-rich environments were more tolerant to Se and generally quicker and more efficient than those from Se-free habitats in the reduction of Se oxyanions. The bacterial strains with high Se reduction capacity and the biological synthesized SeNPs would have potential applications in agriculture, food, environment and medicine.
Collapse
Affiliation(s)
- Ju Zhang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Yue Wang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Zongyuan Shao
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Jing Li
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Shuting Zan
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Shoubiao Zhou
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Institute of Functional Food, Anhui Normal University, Wuhu 241002, China
| | - Ruyi Yang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Institute of Functional Food, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
38
|
Zhang Y, Ying H, Xu Y. Comparative genomics and metagenomics of the metallomes. Metallomics 2019; 11:1026-1043. [DOI: 10.1039/c9mt00023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent achievements and advances in comparative genomic and metagenomic analyses of trace metals were reviewed and discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huimin Ying
- Department of Endocrinology
- Hangzhou Xixi Hospital
- Hangzhou
- P. R. China
| | - Yinzhen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
39
|
The genomics of selenium: Its past, present and future. Biochim Biophys Acta Gen Subj 2018; 1862:2427-2432. [DOI: 10.1016/j.bbagen.2018.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/29/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
|
40
|
Chen XD, Zhao ZP, Zhou JC, Lei XG. Evolution, regulation, and function of porcine selenogenome. Free Radic Biol Med 2018; 127:116-123. [PMID: 29698745 PMCID: PMC6420226 DOI: 10.1016/j.freeradbiomed.2018.04.560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
Much less research on regulation and function of selenoproteins has been conducted in domestic pigs than in rodents or humans, although pigs are an excellent model of human nutrition and medicine and pork is a widely consumed meat in the world. Phylogenetically, the 25 identified porcine selenoproteins fell into two primitive groups, and might be further divided into three parallel branches. Despite a high similarity to that of humans and rodents, the porcine selenoproteome exhibited the closest evolutionary relationship with that of sheep and cattle among eight domestic species. Expression (mRNA, protein, and/or enzyme activity) of 2/3 of the 25 porcine selenoproteins in various tissues of pigs was affected by dietary Se intakes, and 14 of them showed responses to a high fat diet. When dietary Se deficiency mainly down-regulated the expression of selected selenoproteins, dietary Se excess exerted rather diverse effects on their expression. Overdosing pigs with dietary Se induced hyperinsulinemia, along with lipid accumulation and protein increase, in the liver and muscle by affecting key genes and(or) proteins involved in the metabolisms of glucose, lipid, and protein. In conclusion, expression of porcine selenoproteins was highly responsive to dietary Se and fat intakes, and was involved in body glucose, lipid, and protein metabolism as those of rodents and humans.
Collapse
Affiliation(s)
- Xiao-Dong Chen
- College of Life Science and Technology, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ze-Ping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Ji-Chang Zhou
- School of Public Health School (Shenzhen), Sun Yat-Sen University, Shenzhen 518100, China; Molecular Biology Laboratory, Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
41
|
Tan Y, Wang Y, Wang Y, Xu D, Huang Y, Wang D, Wang G, Rensing C, Zheng S. Novel mechanisms of selenate and selenite reduction in the obligate aerobic bacterium Comamonas testosteroni S44. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:129-138. [PMID: 30014908 DOI: 10.1016/j.jhazmat.2018.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Selenium oxyanion reduction is an effective detoxification or/and assimilation processes in organisms, but little is known the mechanisms in aerobic bacteria. Aerobic Comamonas testosteroni S44 reduces Se(VI)/Se(IV) to less-toxic elemental selenium nanoparticles (SeNPs). For Se(VI) reduction, sulfate and Se(VI) reduction displayed a competitive relationship. When essential sulfate reducing genes were respectively disrupted, Se(VI) was not reduced to red-colored SeNPs. Consequently, Se(VI) reduction was catalyzed by enzymes of the sulfate reducing pathway. For Se(IV) reduction, one of the potential periplasm molybdenum oxidoreductase named SerT was screened and further used to analyze Se(IV) reduction. Compared to the wild type and the complemented mutant strain, the ability of Se(IV) reduction was reduced 75% in the deletion mutant ΔserT. Moreover, the Se(IV) reduction rate was significantly enhanced when the gene serT was overexpressed in Escherichia coli W3110. In addition, Se(IV) was reduced to SeNPs by the purified SerT with the presence of NADPH as the electron donor in vitro, showing a Vmax of 61 nmol/min·mg and a Km of 180 μmol/L. A model of Se(VI)/Se(IV) reduction was generated in aerobic C. testosteroni S44. This work provides new insights into the molecular mechanisms of Se(VI)/Se(IV) reduction activities in aerobic bacteria.
Collapse
Affiliation(s)
- Yuanqing Tan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yuantao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yu Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ding Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yeting Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
42
|
Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants (Basel) 2018; 7:E66. [PMID: 29758013 PMCID: PMC5981252 DOI: 10.3390/antiox7050066] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Unlike other essential trace elements that interact with proteins in the form of cofactors, selenium (Se) becomes co-translationally incorporated into the polypeptide chain as part of 21st naturally occurring amino acid, selenocysteine (Sec), encoded by the UGA codon. Any protein that includes Sec in its polypeptide chain is defined as selenoprotein. Members of the selenoproteins family exert various functions and their synthesis depends on specific cofactors and on dietary Se. The Se intake in productive animals such as chickens affect nutrient utilization, production performances, antioxidative status and responses of the immune system. Although several functions of selenoproteins are unknown, many disorders are related to alterations in selenoprotein expression or activity. Selenium insufficiency and polymorphisms or mutations in selenoproteins' genes and synthesis cofactors are involved in the pathophysiology of many diseases, including cardiovascular disorders, immune dysfunctions, cancer, muscle and bone disorders, endocrine functions and neurological disorders. Finally, heavy metal poisoning decreases mRNA levels of selenoproteins and increases mRNA levels of inflammatory factors, underlying the antagonistic effect of Se. This review is an update on Se dependent antioxidant enzymes, presenting the current state of the art and is focusing on results obtained mainly in chicken.
Collapse
Affiliation(s)
- Evangelos Zoidis
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Isidoros Seremelis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Nikolaos Kontopoulos
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Georgios P Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| |
Collapse
|
43
|
Xu D, Yang L, Wang Y, Wang G, Rensing C, Zheng S. Proteins enriched in charged amino acids control the formation and stabilization of selenium nanoparticles in Comamonas testosteroni S44. Sci Rep 2018; 8:4766. [PMID: 29555951 PMCID: PMC5859168 DOI: 10.1038/s41598-018-23295-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
Elemental selenium nanoparticles (SeNPs) are useful in medicine, environmental remediation and in material science. Biosynthesized SeNPs (BioSeNPs) by bacteria are cheap, eco-friendly and have a lower cytotoxicity in comparison with chemically synthesized ones. Organic matters were found to cap on the surface of BioSeNPs, but the functions were still not entirely clear. The purified BioSeNPs were coated in a thick layer of organic substrates observed by transmission electron microscopy (TEM). Fourier Transform Infrared (FT-IR) and quantitative detection of the coating agents showed that one gram of purified BioSeNPs bound 1069 mg proteins, 23 mg carbohydrates and only very limited amounts of lipids. Proteomics of BioSeNPs showed more than 800 proteins bound to BioSeNPs. Proteins enriched in charged amino acids are the major factor thought to govern the formation process and stabilization of BioSeNPs in bacteria. In view of the results reported here, a schematic model for the molecular mechanism of BioSeNPs formation in bacteria is proposed. These findings are helpful for the artificial green synthesis of stable SeNPs under specific condition and guiding the surface modification of SeNPs for medicine application.
Collapse
Affiliation(s)
- Ding Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Lichen Yang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yu Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
44
|
Fu X, Söll D, Sevostyanova A. Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli. RNA Biol 2018; 15:461-470. [PMID: 29447106 DOI: 10.1080/15476286.2018.1440876] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Selenocysteine (Sec), a rare genetically encoded amino acid with unusual chemical properties, is of great interest for protein engineering. Sec is synthesized on its cognate tRNA (tRNASec) by the concerted action of several enzymes. While all other aminoacyl-tRNAs are delivered to the ribosome by the elongation factor Tu (EF-Tu), Sec-tRNASec requires a dedicated factor, SelB. Incorporation of Sec into protein requires recoding of the stop codon UGA aided by a specific mRNA structure, the SECIS element. This unusual biogenesis restricts the use of Sec in recombinant proteins, limiting our ability to study the properties of selenoproteins. Several methods are currently available for the synthesis selenoproteins. Here we focus on strategies for in vivo Sec insertion at any position(s) within a recombinant protein in a SECIS-independent manner: (i) engineering of tRNASec for use by EF-Tu without the SECIS requirement, and (ii) design of a SECIS-independent SelB route.
Collapse
Affiliation(s)
- Xian Fu
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| | - Dieter Söll
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA.,b Department of Chemistry , Yale University , New Haven , CT , USA
| | - Anastasia Sevostyanova
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
45
|
Surai PF, Kochish II, Velichko OA. Nano-Se Assimilation and Action in Poultry and Other Monogastric Animals: Is Gut Microbiota an Answer? NANOSCALE RESEARCH LETTERS 2017; 12:612. [PMID: 29204909 PMCID: PMC5714942 DOI: 10.1186/s11671-017-2383-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/22/2017] [Indexed: 05/30/2023]
Abstract
Recently, a comprehensive review paper devoted to roles of nano-Se in livestock and fish nutrition has been published in the Nanoscale Research Letters. The authors described in great details an issue related to nano-Se production and its possible applications in animal industry and medicine. However, molecular mechanisms of nano-Se action were not described and the question of how nano-Se is converted into active selenoproteins is not resolved. It seems likely that the gut microbiota can convert nano-Se into selenite, H2Se or Se-phosphate with the following synthesis of selenoproteins. This possibility needs to be further studied in detail, and advantages and disadvantages of nano-Se as a source of Se in animal/poultry/fish nutrition await critical evaluations.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, Moscow, 109472 Russia
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, Gödöllo, H-2103 Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, Moscow, 109472 Russia
| | - Oksana A. Velichko
- Department of Ecology and Genetics, Tyumen State University, Tyumen, 625003 Russia
| |
Collapse
|