1
|
Fullerton H, Smith L, Enriquez A, Butterfield D, Wheat CG, Moyer CL. Seafloor incubation experiments at deep-sea hydrothermal vents reveal distinct biogeographic signatures of autotrophic communities. FEMS Microbiol Ecol 2024; 100:fiae001. [PMID: 38200713 PMCID: PMC10808952 DOI: 10.1093/femsec/fiae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/20/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
The discharge of hydrothermal vents on the seafloor provides energy sources for dynamic and productive ecosystems, which are supported by chemosynthetic microbial populations. These populations use the energy gained by oxidizing the reduced chemicals contained within the vent fluids to fix carbon and support multiple trophic levels. Hydrothermal discharge is ephemeral and chemical composition of such fluids varies over space and time, which can result in geographically distinct microbial communities. To investigate the foundational members of the community, microbial growth chambers were placed within the hydrothermal discharge at Axial Seamount (Juan de Fuca Ridge), Magic Mountain Seamount (Explorer Ridge), and Kama'ehuakanaloa Seamount (Hawai'i hotspot). Campylobacteria were identified within the nascent communities, but different amplicon sequence variants were present at Axial and Kama'ehuakanaloa Seamounts, indicating that geography in addition to the composition of the vent effluent influences microbial community development. Across these vent locations, dissolved iron concentration was the strongest driver of community structure. These results provide insights into nascent microbial community structure and shed light on the development of diverse lithotrophic communities at hydrothermal vents.
Collapse
Affiliation(s)
- Heather Fullerton
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, United States
| | - Lindsey Smith
- Department of Biology, Western Washington University, 516 High St, Bellingham, WA 98225, United States
| | - Alejandra Enriquez
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, United States
| | - David Butterfield
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington and NOAA/PMEL, John M. Wallace Hall, 3737 Brooklyn Ave NE, Seattle, WA 98105, United States
| | - C Geoffrey Wheat
- Institute of Marine Studies, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 2150 Koyukuk Drive, 245 O’Neill Building, PO Box 757220, Fairbanks, Alaska 99775-7220, United States
| | - Craig L Moyer
- Department of Biology, Western Washington University, 516 High St, Bellingham, WA 98225, United States
| |
Collapse
|
2
|
Molari M, Hassenrueck C, Laso-Pérez R, Wegener G, Offre P, Scilipoti S, Boetius A. A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes. Nat Microbiol 2023; 8:651-665. [PMID: 36894632 PMCID: PMC10066037 DOI: 10.1038/s41564-023-01342-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023]
Abstract
Members of the bacterial genus Sulfurimonas (phylum Campylobacterota) dominate microbial communities in marine redoxclines and are important for sulfur and nitrogen cycling. Here we used metagenomics and metabolic analyses to characterize a Sulfurimonas from the Gakkel Ridge in the Central Arctic Ocean and Southwest Indian Ridge, showing that this species is ubiquitous in non-buoyant hydrothermal plumes at Mid Ocean Ridges across the global ocean. One Sulfurimonas species, USulfurimonas pluma, was found to be globally abundant and active in cold (<0-4 °C), oxygen-saturated and hydrogen-rich hydrothermal plumes. Compared with other Sulfurimonas species, US. pluma has a reduced genome (>17%) and genomic signatures of an aerobic chemolithotrophic metabolism using hydrogen as an energy source, including acquisition of A2-type oxidase and loss of nitrate and nitrite reductases. The dominance and unique niche of US. pluma in hydrothermal plumes suggest an unappreciated biogeochemical role for Sulfurimonas in the deep ocean.
Collapse
Affiliation(s)
- Massimiliano Molari
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | | - Rafael Laso-Pérez
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| | - Stefano Scilipoti
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
3
|
McClain CR, Bryant SR, Hanks G, Bowles MW. Extremophiles in Earth's Deep Seas: A View Toward Life in Exo-Oceans. ASTROBIOLOGY 2022; 22:1009-1028. [PMID: 35549348 DOI: 10.1089/ast.2021.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Humanity's search for extraterrestrial life is a modern manifestation of the exploratory and curious nature that has led us through millennia of scientific discoveries. With the ongoing exploration of extraterrestrial bodies, the potential for discovery of extraterrestrial life has expanded. We may better inform this search through an understanding of how life persists and flourishes on Earth in a myriad of environmental extremes. A significant proportion of our knowledge of extremophiles on Earth comes from studies on deep ocean life. Here, we review and synthesize the range of environmental extremes observed in the deep sea, the life that persists in these extreme conditions, and the biological adaptations utilized by these remarkable life-forms. We also review confirmed and predicted extraterrestrial oceans in our solar system and propose deep-sea sites that may serve as planetary field analog environments. We show that the clever ingenuity of evolution under deep-sea conditions suggests that the plausibility of extraterrestrial life is much greater than previously thought.
Collapse
Affiliation(s)
- Craig R McClain
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - S River Bryant
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Granger Hanks
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | |
Collapse
|
4
|
Wang S, Jiang L, Hu Q, Cui L, Zhu B, Fu X, Lai Q, Shao Z, Yang S. Characterization of Sulfurimonas hydrogeniphila sp. nov., a Novel Bacterium Predominant in Deep-Sea Hydrothermal Vents and Comparative Genomic Analyses of the Genus Sulfurimonas. Front Microbiol 2021; 12:626705. [PMID: 33717015 PMCID: PMC7952632 DOI: 10.3389/fmicb.2021.626705] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the genus Sulfurimonas within the class Campylobacteria are predominant in global deep-sea hydrothermal environments and widespread in global oceans. However, only few bacteria of this group have been isolated, and their adaptations for these extreme environments remain poorly understood. Here, we report a novel mesophilic, hydrogen- and sulfur-oxidizing bacterium, strain NW10T, isolated from a deep-sea sulfide chimney of Northwest Indian Ocean.16S rRNA gene sequence analysis showed that strain NW10T was most closely related to the vent species Sulfurimonas paralvinellae GO25T with 95.8% similarity, but ANI and DDH values between two strains were only 19.20 and 24.70%, respectively, indicating that strain NW10 represents a novel species. Phenotypic characterization showed strain NW10T is an obligate chemolithoautotroph utilizing thiosulfate, sulfide, elemental sulfur, or molecular hydrogen as energy sources, and molecular oxygen, nitrate, or elemental sulfur as electron acceptors. Moreover, hydrogen supported a better growth than reduced sulfur compounds. During thiosulfate oxidation, the strain can produce extracellular sulfur of elemental α-S8 with an unknown mechanism. Polyphasic taxonomy results support that strain NW10T represents a novel species of the genus Sulfurimonas, and named as Sulfurimonas hydrogeniphila sp. nov. Genome analyses revealed its diverse energy metabolisms driving carbon fixation via rTCA cycling, including pathways of sulfur/hydrogen oxidation, coupled oxygen/sulfur respiration and denitrification. Comparative analysis of the 11 available genomes from Sulfurimonas species revealed that vent bacteria, compared to marine non-vent strains, possess unique genes encoding Type V Sqr, Group II, and Coo hydrogenase, and are selectively enriched in genes related to signal transduction and inorganic ion transporters. These phenotypic and genotypic features of vent Sulfurimonas may explain their thriving in hydrothermal environments and help to understand the ecological role of Sulfurimonas bacteria in hydrothermal ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Qitao Hu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Liang Cui
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| | - Bitong Zhu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| | - Xiaoteng Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Suping Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| |
Collapse
|
5
|
Nitrosophilus alvini gen. nov., sp. nov., a hydrogen-oxidizing chemolithoautotroph isolated from a deep-sea hydrothermal vent in the East Pacific Rise, inferred by a genome-based taxonomy of the phylum "Campylobacterota". PLoS One 2020; 15:e0241366. [PMID: 33301463 PMCID: PMC7728183 DOI: 10.1371/journal.pone.0241366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
A novel bacterium, strain EPR55-1T, was isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The cells were motile rods. Growth was observed at temperatures between 50 and 60°C (optimum, 60°C), at pH values between 5.4 and 8.6 (optimum, pH 6.6) and in the presence of 2.4–3.2% (w/v) NaCl (optimum, 2.4%). The isolate used molecular hydrogen as its sole electron donor, carbon dioxide as its sole carbon source, ammonium as its sole nitrogen source, and thiosulfate, sulfite (0.01 to 0.001%, w/v) or elemental sulfur as its sole sulfur source. Nitrate, nitrous oxide (33%, v/v), thiosulfate, molecular oxygen (0.1%, v/v) or elemental sulfur could serve as the sole electron acceptor to support growth. Phylogenetic analyses based on both 16S rRNA gene sequences and whole genome sequences indicated that strain EPR55-1T belonged to the family Nitratiruptoraceae of the class “Campylobacteria”, but it had the distinct phylogenetic relationship with the genus Nitratiruptor. On the basis of the physiological and molecular characteristics of the isolate, the name Nitrosophilus alvini gen. nov. sp. nov. is proposed, with EPR55-1T as the type strain (= JCM 32893T = KCTC 15925T). In addition, it is shown that “Nitratiruptor labii” should be transferred to the genus Nitrtosophilus; the name Nitrosophilus labii comb. nov. (JCM 34002T = DSM 111345T) is proposed for this organism. Furthermore, 16S rRNA gene-based and genome-based analyses showed that Cetia pacifica is phylogenetically associated with Caminibacter species. We therefore propose the reclassification of Cetia pacifica as Caminibacter pacificus comb. nov. (DSM 27783T = JCM 19563T). Additionally, AAI thresholds for genus classification and the reclassification of subordinate taxa within “Campylobacteria” are also evaluated, based on the analyses using publicly available genomes of all the campylobacterial species.
Collapse
|
6
|
Wang S, Jiang L, Hu Q, Liu X, Yang S, Shao Z. Elemental sulfur reduction by a deep-sea hydrothermal vent Campylobacterium Sulfurimonas sp. NW10. Environ Microbiol 2020; 23:965-979. [PMID: 32974951 DOI: 10.1111/1462-2920.15247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023]
Abstract
Sulfurimonas species (class Campylobacteria, phylum Campylobacterota) were globally distributed and especially predominant in deep-sea hydrothermal environments. They were previously identified as chemolithoautotrophic sulfur-oxidizing bacteria (SOB), whereas little is known about their potential in sulfur reduction. In this report, we found that the elemental sulfur reduction is quite common in different species of genus Sulfurimonas. To gain insights into the sulfur reduction mechanism, growth tests, morphology observation, as well as genomic and transcriptomic analyses were performed on a deep-sea hydrothermal vent bacterium Sulfurimonas sp. NW10. Scanning electron micrographs and dialysis tubing tests confirmed that elemental sulfur reduction occurred without direct contact of cells with sulfur particles while direct access strongly promoted bacterial growth. Furthermore, we demonstrated that most species of Sulfurimonas probably employ both periplasmic and cytoplasmic polysulfide reductases, encoded by genes psrA1 B1 CDE and psrA2 B2 , respectively, to accomplish cyclooctasulfur reduction. This is the first report showing two different sulfur reduction pathways coupled to different energy conservations could coexist in one sulfur-reducing microorganism, and demonstrates that most bacteria of Sulfurimonas could employ both periplasmic and cytoplasmic polysulfide reductases to perform cyclooctasulfur reduction. The capability of sulfur reduction coupling with hydrogen oxidation may partially explain the prevalenceof Sulfurimonas in deep-sea hydrothermal vent environments.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.,Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Qitao Hu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Xuewen Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Suping Yang
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| |
Collapse
|
7
|
Tschoeke DA, Coutinho FH, Leomil L, Cavalcanti G, Silva BS, Garcia GD, Dos Anjos LC, Nascimento LB, Moreira LS, Otsuki K, Cordeiro RC, Rezende CE, Thompson FL, Thompson CC. New bacterial and archaeal lineages discovered in organic rich sediments of a large tropical Bay. Mar Genomics 2020; 54:100789. [PMID: 32563694 DOI: 10.1016/j.margen.2020.100789] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
The nutrient and oxygen gradient present in marine sediments promotes high levels of microbial diversity. We applied metagenomics and biogeochemical tools to analyze microbial communities in different sediment depths (0-4 m below sea floor, mbsf) from Guanabara Bay, Brazil, a brackish tropical ecosystem with a history of massive anthropogenic impacts, and a largely unknown sediment microbial diversity. Methanogens (e.g. Methanosarcinales, Methanomicrobiales) were more abundant at 1 mbsf, while sulphate-reducing microbes (Desulfurococcales, Thermoprotales, and Sulfolobales) were more abundant at deeper layers (4 mbsf; corresponding to 3 K Radiocarbon years before present, Holocene Epoch). Taxonomic analyzes and functional gene identification associated with anaerobic methane oxidation (e.g. monomethylamine methyltransferase (mtmB), trimethylamine methyltransferase (mttB) and CO dehydrogenase/acetyl-CoA synthase delta subunit) and sulfate reduction indicated the dominance of Campylobacteria (Sulfurimonas) at deeper sediment layers. Gene sequences related to assimilation of inorganic sulfur increased with depth, while organic sulfur related sequences decrease, accompanying the clear reduction in the concentration of sulfur, organic carbon and chla torwards deeper layers. Analyzes of metagenome assembled genomes also led to the discovery of a novel order within the phylum Acidobacteriota, named Guanabacteria. This novel order had several in silico phenotyping features that differentiate it from closely related phylogenetic neighbors (e.g. Acidobacteria, Aminicenantes, and Thermoanaerobaculum), including several genes (carbon monoxide dehydrogenase, CO dehydrogenase/CO-methylating acetyl-CoA synthase complex subunit beta, heterodisulfide reductase, sulfite exporter TauE/SafE family protein, sulfurtransferase) that relevant for the S and C cycles. Furthermore, the recovered Bathyarchaeota genome SS9 illustrates the methanogenic potential in deeper sediment layer.
Collapse
Affiliation(s)
- Diogo A Tschoeke
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Programa de Engenharia Biomédica, COPPE, CT, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Felipe H Coutinho
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Luciana Leomil
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Giselle Cavalcanti
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Bruno S Silva
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Gizele D Garcia
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro (UFRJ), Departamento de Ensino de Graduação, Campus UFRJ - Macaé Professor Aloisio Teixeira, Macaé, RJ, Brazil
| | - Leandro Candeia Dos Anjos
- Programa de Geoquímica, Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Larissa Borges Nascimento
- Programa de Geoquímica, Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luciane S Moreira
- Programa de Geoquímica, Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Koko Otsuki
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Renato C Cordeiro
- Programa de Geoquímica, Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Carlos E Rezende
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, UENF, RJ, Brazil
| | - Fabiano L Thompson
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Cristiane C Thompson
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol 2020; 17:271-283. [PMID: 30867583 DOI: 10.1038/s41579-019-0160-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of chemosynthetic ecosystems at deep-sea hydrothermal vents in 1977 changed our view of biology. Chemosynthetic bacteria and archaea form the foundation of vent ecosystems by exploiting the chemical disequilibrium between reducing hydrothermal fluids and oxidizing seawater, harnessing this energy to fix inorganic carbon into biomass. Recent research has uncovered fundamental aspects of these microbial communities, including their relationships with underlying geology and hydrothermal geochemistry, interactions with animals via symbiosis and distribution both locally in various habitats within vent fields and globally across hydrothermal systems in diverse settings. Although 'black smokers' and symbioses between microorganisms and macrofauna attract much attention owing to their novelty and the insights they provide into life under extreme conditions, habitats such as regions of diffuse flow, subseafloor aquifers and hydrothermal plumes have important roles in the global cycling of elements through hydrothermal systems. Owing to sharp contrasts in physical and chemical conditions between these various habitats and their dynamic, extreme and geographically isolated nature, hydrothermal vents provide a valuable window into the environmental and ecological forces that shape microbial communities and insights into the limits, origins and evolution of microbial life.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Duchinski K, Moyer CL, Hager K, Fullerton H. Fine-Scale Biogeography and the Inference of Ecological Interactions Among Neutrophilic Iron-Oxidizing Zetaproteobacteria as Determined by a Rule-Based Microbial Network. Front Microbiol 2019; 10:2389. [PMID: 31708884 PMCID: PMC6823593 DOI: 10.3389/fmicb.2019.02389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Hydrothermal vents, such as those at Lō‘ihi Seamount and the Mariana Arc and back-arc, release iron required to support life from the Earth’s crust. In these ecosystems, bacteria and archaea can oxidize the released iron and therefore play an important role in the biogeochemical cycles of essential nutrients. These organisms often form microbial mats, and the primary producers in these communities can support diverse higher trophic levels. One such class of bacteria are the Zetaproteobacteria. This class of bacteria oxidize iron and commonly produce extracellular iron oxyhydroxide matrices that provide architecture to the microbial mats, so they are considered foundational members of the community and ecosystem engineers. Zetaproteobacteria are responsible for the majority of iron-oxidation in circumneutral, marine, low-oxygen environments. To study the composition of these communities, microbial mats were collected using a biomat sampler, which allows for fine-scale collection of microbial mats. DNA was then extracted and amplified for analysis of the SSU rRNA gene. After quality control and filtering, the SSU rRNA genes from Mariana Arc and Lō‘ihi Seamount microbial mat communities were compared pairwise to determine which site exhibits a greater microbial diversity and how much community overlap exists between the two sites. In-depth analysis was performed with the rule-based microbial network (RMN) algorithm, which identified a possible competitive relationship across oligotypes of a cosmopolitan Zetaproteobacteria operational taxonomic unit (OTU). This result demonstrated the ecological relevance of oligotypes, or fine-scale OTU variants. The oligotype distributions of the cosmopolitan ZetaOTUs varied greatly across the Pacific Ocean. The competitive relationship between dominant oligotypes at Lō‘ihi Seamount and the Mariana Arc and back-arc may be driving their differential distributions across the two regions and may result in species divergence within a cosmopolitan ZetaOTU. This implementation of the RMN algorithm can both predict directional relationships within a community and provide insight to the level at which evolution is occurring across ecosystems.
Collapse
Affiliation(s)
| | - Craig L Moyer
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Kevin Hager
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Heather Fullerton
- Department of Biology, College of Charleston, Charleston, SC, United States
| |
Collapse
|
10
|
Varliero G, Bienhold C, Schmid F, Boetius A, Molari M. Microbial Diversity and Connectivity in Deep-Sea Sediments of the South Atlantic Polar Front. Front Microbiol 2019; 10:665. [PMID: 31024475 PMCID: PMC6465420 DOI: 10.3389/fmicb.2019.00665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Ultraslow spreading ridges account for one-third of the global mid-ocean ridges. Their impact on the diversity and connectivity of benthic deep-sea microbial assemblages is poorly understood, especially for hydrothermally inactive, magma-starved ridges. We investigated bacterial and archaeal diversity in sediments collected from an amagmatic segment (10°–17°E) of the Southwest Indian Ridge (SWIR) and in the adjacent northern and southern abyssal zones of similar water depths within one biogeochemical province of the Indian Ocean. Microbial diversity was determined by 16S ribosomal RNA (rRNA) gene sequencing. Our results show significant differences in microbial communities between stations outside and inside the SWIR, which were mostly explained by environmental selection. Community similarity correlated significantly with differences in chlorophyll a content and with the presence of upward porewater fluxes carrying reduced compounds (e.g., ammonia and sulfide), suggesting that trophic resource availability is a main driver for changes in microbial community composition. At the stations in the SWIR axial valley (3,655–4,448 m water depth), microbial communities were enriched in bacterial and archaeal taxa common in organic matter-rich subsurface sediments (e.g., SEEP-SRB1, Dehalococcoida, Atribacteria, and Woesearchaeota) and chemosynthetic environments (mainly Helicobacteraceae). The abyssal stations outside the SWIR communities (3,760–4,869 m water depth) were dominated by OM1 clade, JTB255, Planctomycetaceae, and Rhodospirillaceae. We conclude that ultraslow spreading ridges create a unique environmental setting in sedimented segments without distinct hydrothermal activity, and play an important role in shaping microbial communities and promoting diversity, but also in connectivity among deep-sea habitats.
Collapse
Affiliation(s)
- Gilda Varliero
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Christina Bienhold
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Florian Schmid
- Helmholtz Centre for Ocean Research Kiel, GEOMAR, Kiel, Germany.,MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.,MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | |
Collapse
|
11
|
Hotaling S, Quackenbush CR, Bennett-Ponsford J, New DD, Arias-Rodriguez L, Tobler M, Kelley JL. Bacterial Diversity in Replicated Hydrogen Sulfide-Rich Streams. MICROBIAL ECOLOGY 2019; 77:559-573. [PMID: 30105506 DOI: 10.1007/s00248-018-1237-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Extreme environments typically require costly adaptations for survival, an attribute that often translates to an elevated influence of habitat conditions on biotic communities. Microbes, primarily bacteria, are successful colonizers of extreme environments worldwide, yet in many instances, the interplay between harsh conditions, dispersal, and microbial biogeography remains unclear. This lack of clarity is particularly true for habitats where extreme temperature is not the overarching stressor, highlighting a need for studies that focus on the role other primary stressors (e.g., toxicants) play in shaping biogeographic patterns. In this study, we leveraged a naturally paired stream system in southern Mexico to explore how elevated hydrogen sulfide (H2S) influences microbial diversity. We sequenced a portion of the 16S rRNA gene using bacterial primers for water sampled from three geographically proximate pairings of streams with high (> 20 μM) or low (~ 0 μM) H2S concentrations. After exploring bacterial diversity within and among sites, we compared our results to a previous study of macroinvertebrates and fish for the same sites. By spanning multiple organismal groups, we were able to illuminate how H2S may differentially affect biodiversity. The presence of elevated H2S had no effect on overall bacterial diversity (p = 0.21), a large effect on community composition (25.8% of variation explained, p < 0.0001), and variable influence depending upon the group-whether fish, macroinvertebrates, or bacteria-being considered. For bacterial diversity, we recovered nine abundant operational taxonomic units (OTUs) that comprised a core H2S-rich stream microbiome in the region. Many H2S-associated OTUs were members of the Epsilonproteobacteria and Gammaproteobacteria, which both have been implicated in endosymbiotic relationships between sulfur-oxidizing bacteria and eukaryotes, suggesting the potential for symbioses that remain to be discovered in these habitats.
Collapse
Affiliation(s)
- Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Corey R Quackenbush
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | | | - Daniel D New
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
12
|
Haverkamp THA, Geslin C, Lossouarn J, Podosokorskaya OA, Kublanov I, Nesbø CL. Thermosipho spp. Immune System Differences Affect Variation in Genome Size and Geographical Distributions. Genome Biol Evol 2018; 10:2853-2866. [PMID: 30239713 PMCID: PMC6211235 DOI: 10.1093/gbe/evy202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2018] [Indexed: 01/24/2023] Open
Abstract
Thermosipho species inhabit thermal environments such as marine hydrothermal vents, petroleum reservoirs, and terrestrial hot springs. A 16S rRNA phylogeny of available Thermosipho spp. sequences suggested habitat specialists adapted to living in hydrothermal vents only, and habitat generalists inhabiting oil reservoirs, hydrothermal vents, and hotsprings. Comparative genomics of 15 Thermosipho genomes separated them into three distinct species with different habitat distributions: The widely distributed T. africanus and the more specialized, T. melanesiensis and T. affectus. Moreover, the species can be differentiated on the basis of genome size (GS), genome content, and immune system composition. For instance, the T. africanus genomes are largest and contained the most carbohydrate metabolism genes, which could explain why these isolates were obtained from ecologically more divergent habitats. Nonetheless, all the Thermosipho genomes, like other Thermotogae genomes, show evidence of genome streamlining. GS differences between the species could further be correlated to differences in defense capacities against foreign DNA, which influence recombination via HGT. The smallest genomes are found in T. affectus that contain both CRISPR-cas Type I and III systems, but no RM system genes. We suggest that this has caused these genomes to be almost devoid of mobile elements, contrasting the two other species genomes that contain a higher abundance of mobile elements combined with different immune system configurations. Taken together, the comparative genomic analyses of Thermosipho spp. revealed genetic variation allowing habitat differentiation within the genus as well as differentiation with respect to invading mobile DNA.
Collapse
Affiliation(s)
- Thomas H A Haverkamp
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway.,Norwegian Veterinary Institute, Oslo, Norway
| | - Claire Geslin
- Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Université de Bretagne Occidentale (UBO), Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, Plouzané, France
| | - Julien Lossouarn
- Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Université de Bretagne Occidentale (UBO), Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, Plouzané, France
| | - Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Camilla L Nesbø
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Miyazaki J, Kawagucci S, Makabe A, Takahashi A, Kitada K, Torimoto J, Matsui Y, Tasumi E, Shibuya T, Nakamura K, Horai S, Sato S, Ishibashi JI, Kanzaki H, Nakagawa S, Hirai M, Takaki Y, Okino K, Watanabe HK, Kumagai H, Chen C. Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171570. [PMID: 29308272 PMCID: PMC5750039 DOI: 10.1098/rsos.171570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Since the initial discovery of hydrothermal vents in 1977, these 'extreme' chemosynthetic systems have been a focus of interdisciplinary research. The Okinawa Trough (OT), located in the semi-enclosed East China Sea between the Eurasian continent and the Ryukyu arc, hosts more than 20 known vent sites but all within a relatively narrow depth range (600-1880 m). Depth is a significant factor in determining fluid temperature and chemistry, as well as biological composition. However, due to the narrow depth range of known sites, the actual influence of depth here has been poorly resolved. Here, the Yokosuka site (2190 m), the first OT vent exceeding 2000 m depth is reported. A highly active hydrothermal vent site centred around four active vent chimneys reaching 364°C in temperature, it is the hottest in the OT. Notable Cl depletion (130 mM) and both high H2 and CH4 concentrations (approx. 10 mM) probably result from subcritical phase separation and thermal decomposition of sedimentary organic matter. Microbiota and fauna were generally similar to other sites in the OT, although with some different characteristics. In terms of microbiota, the H2-rich vent fluids in Neuschwanstein chimney resulted in the dominance of hydrogenotrophic chemolithoautotrophs such as Thioreductor and Desulfobacterium. For fauna, the dominance of the deep-sea mussel Bathymodiolus aduloides is surprising given other nearby vent sites are usually dominated by B. platifrons and/or B. japonicus, and a sponge field in the periphery dominated by Poecilosclerida is unusual for OT vents. Our insights from the Yokosuka site implies that although the distribution of animal species may be linked to depth, the constraint is perhaps not water pressure and resulting chemical properties of the vent fluid but instead physical properties of the surrounding seawater. The potential significance of these preliminary results and prospect for future research on this unique site are discussed.
Collapse
Affiliation(s)
- Junichi Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Shinsuke Kawagucci
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Institute of Geochemistry and Petrology, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland
| | - Akiko Makabe
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Ayu Takahashi
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kazuya Kitada
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Junji Torimoto
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yohei Matsui
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Eiji Tasumi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Takazo Shibuya
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kentaro Nakamura
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shunsuke Horai
- Department of Earth and Planetary Sciences, School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shun Sato
- Department of Earth and Planetary Sciences, School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jun-ichiro Ishibashi
- Department of Earth and Planetary Sciences, School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hayato Kanzaki
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Nakagawa
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Marine Biosciences, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kyoko Okino
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8564, Japan
| | - Hiromi Kayama Watanabe
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Department of Marine Biodiversity Research (BIO-DIVE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Hidenori Kumagai
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Chong Chen
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
14
|
Djurhuus A, Mikalsen SO, Giebel HA, Rogers AD. Cutting through the smoke: the diversity of microorganisms in deep-sea hydrothermal plumes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160829. [PMID: 28484604 PMCID: PMC5414241 DOI: 10.1098/rsos.160829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/10/2017] [Indexed: 05/19/2023]
Abstract
There are still notable gaps regarding the detailed distribution of microorganisms between and within insular habitats such as deep-sea hydrothermal vents. This study investigates the community composition of black smoker vent microorganisms in the Southern Hemisphere, and changes thereof along a spatial and chemical gradient ranging from the vent plume to surrounding waters. We sampled two hydrothermal vent fields, one at the South West Indian Ridge (SWIR), the other at the East Scotia Ridge (ESR). Samples were collected across vent fields at varying vertical distances from the origin of the plumes. The microbial data were sequenced on an Illumina MiSeq platform for the 16SrRNA gene. A substantial amount of vent-specific putative chemosynthetic microorganisms were found, particularly in samples from focused hydrothermal venting. Common vent-specific organisms from both vent fields were the genera Arcobacter, Caminibacter and Sulfurimonas from the Epsilonproteobacteria and the SUP05 group from the Gammaproteobacteria. There were no major differences in microbial composition between SWIR and ESR for focused plume samples. However, within the ESR the diffuse flow and focused samples differed significantly in microbial community composition and relative abundance. For Epsilonproteobacteria, we found evidence of niche-specificity to hydrothermal vent environments. This taxon decreased in abundance by three orders of magnitude from the vent orifice to background water. Epsilonproteobacteria distribution followed a distance-decay relationship as vent-effluents mixed with the surrounding seawater. This study demonstrates strong habitat affinity of vent microorganisms on a metre scale with distinct environmental selection.
Collapse
Affiliation(s)
- Anni Djurhuus
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
- e-mail:
| | - Svein-Ole Mikalsen
- Department of Science and Technology, University of the Faroe Islands, Noatun 3, Torshavn, Faroe Islands
| | - Helge-Ansgar Giebel
- Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, , Germany
| | - Alex D. Rogers
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
| |
Collapse
|