1
|
Yu L, Chen X, Guo Y, You J, Shi M, Xi Y, Yin L. Quantification of tricyclic glycopeptide in human plasma by UHPLC-MS 3 coupled with counter-extraction follow by protein precipitation to enhance sensitivity. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124343. [PMID: 39461019 DOI: 10.1016/j.jchromb.2024.124343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
An ultra-high performance liquid chromatography tandem mass spectrometry cubed (UHPLC/MS3) assay coupled with protein precipitation and counter-extraction for detection of tricyclic glycopeptide vancomycin in human plasma was established and validated in this study. After protein precipitation and counter-extraction with dichloromethane, chromatographic separation of vancomycin and norvancomycin were performed on a reversed phase column (XBridge Peptide BEH C18 column, 2.1 × 100 mm I.D, 3.5 μm). The transition (parent ions → fragment ions → further fragment ions) at m/z 725.3 → 144.1 → 100.1 was used for quantification of vancomycin. The transition (parent ions → fragment ions) at m/z 718.3 → 144.2 was used for detection of norvancomycin. The linear range of the developed analytical method for quantification of vancomycin was 0.5-100 µg/mL (r = 0.9989). The range of intra- and inter-day precisions of the assay among low, medium and high concentrations is between 1.88 % and 6.33 %. The sensitivity of the analytical method was significantly improved by using MS3 technique as monitoring mode and counter-extraction with dichloromethane followed by protein precipitation as sample processing assay. The developed UHPLC/MS3 assay was successfully applied for clinical therapeutic drug monitoring (TDM) of vancomycin in 45 human plasma samples.
Collapse
Affiliation(s)
- Luyao Yu
- Central Hospital of Dalian University of Technology, Dalian University of Technology Dalian, 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China
| | - Xiaoqian Chen
- Central Hospital of Dalian University of Technology, Dalian University of Technology Dalian, 116023, China
| | - Yingxia Guo
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China
| | - Jiansong You
- Aim Honesty Biopharmaceutical Co. LTD, Dalian, 116600, China
| | - Meiyun Shi
- Central Hospital of Dalian University of Technology, Dalian University of Technology Dalian, 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China.
| | - Yalin Xi
- Central Hospital of Dalian University of Technology, Dalian University of Technology Dalian, 116023, China.
| | - Lei Yin
- Central Hospital of Dalian University of Technology, Dalian University of Technology Dalian, 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China.
| |
Collapse
|
2
|
Saikia S, Chetia P. Antibiotics: From Mechanism of Action to Resistance and Beyond. Indian J Microbiol 2024; 64:821-845. [PMID: 39282166 PMCID: PMC11399512 DOI: 10.1007/s12088-024-01285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/15/2024] [Indexed: 09/18/2024] Open
Abstract
Antibiotics are the super drugs that have revolutionized modern medicine by curing many infectious diseases caused by various microbes. They efficiently inhibit the growth and multiplication of the pathogenic microbes without causing adverse effects on the host. However, prescribing suboptimal antibiotic and overuse in agriculture and animal husbandry have led to the emergence of antimicrobial resistance, one of the most serious threats to global health at present. The efficacy of a new antibiotic is high when introduced; however, a small bacterial population attains resistance gradually and eventually survives. Understanding the mode of action of these miracle drugs, as well as their interaction with targets is very complex. However, it is necessary to fulfill the constant need for novel therapeutic alternatives to address the inevitable development of resistance. Therefore, considering the need of the hour, this article has been prepared to discuss the mode of action and recent advancements in the field of antibiotics. Efforts has also been made to highlight the current scenario of antimicrobial resistance and drug repurposing as a fast-track solution to combat the issue.
Collapse
Affiliation(s)
- Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
3
|
Scribel L, Galiotto A, Rodrigues IDS, Hahn R, Linden R, Zavascki AP. Comparison of vancomycin assays in patients undergoing hemodialysis. Braz J Infect Dis 2024; 28:103869. [PMID: 39299299 PMCID: PMC11439842 DOI: 10.1016/j.bjid.2024.103869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/27/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Vancomycin is a glycopeptide antibiotic mainly excreted by glomerular filtration. Therefore, patients undergoing hemodialysis tend to accumulate its crystalline degradation product, which has been associated with cross-reaction in commercial immunoassays. The aim of this study was to assess the performance of two commercial immunoassays for measuring vancomycin levels in patients undergoing hemodialysis. This method-comparison study enrolled patients undergoing hemodialysis at two hospitals in Porto Alegre, Brazil. Vancomycin serum concentrations measured by Chemiluminescent Microparticle Assay (CMIA) and measured by Kinetic Interaction of Microparticles in Solution (KIMS) were compared with Liquid Chromatography coupled with Tandem Mass Spectrometry (LC-MS/MS). A total of 64 samples from 42 patients and 54 samples from 23 patients were included in CMIA and KIMS groups. Both measurements were highly correlated with LC-MS/MS, with Spearman rank correlation coefficient r = 0.840 (p < 0.001) and r = 0.926 (p < 0.001), respectively. No deviation of linearity was observed (p = 0.81 and p = 0.49, respectively). The mean difference between CMIA and LC-MS/MS was -1.19 μg/mL and between KIMS and LC-MS/MS was -2.28 μg/mL. LC-MS/MS measured levels were, on average, 2.64 % higher than CMIA and 8.81 % higher than KIMS. CMIA and KIMS revealed accurate commercial methods to measure vancomycin serum concentrations in patients undergoing hemodialysis.
Collapse
Affiliation(s)
- Letícia Scribel
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Porto Alegre, RS, Brazil.
| | - Aline Galiotto
- Hospital Moinhos de Vento, Serviço de Farmácia, Porto Alegre, RS, Brazil
| | | | - Roberta Hahn
- Universidade Feevale, Instituto de Ciências da Saúde, Laboratório de Toxicologia, Novo Hamburgo, RS, Brazil
| | - Rafael Linden
- Universidade Feevale, Instituto de Ciências da Saúde, Laboratório de Toxicologia, Novo Hamburgo, RS, Brazil
| | - Alexandre P Zavascki
- Infectious Diseases and Infection Control Service, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil; Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
5
|
Bellucci MC, Romani C, Sani M, Volonterio A. Dual Antibiotic Approach: Synthesis and Antibacterial Activity of Antibiotic-Antimicrobial Peptide Conjugates. Antibiotics (Basel) 2024; 13:783. [PMID: 39200083 PMCID: PMC11352213 DOI: 10.3390/antibiotics13080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
In recent years, bacterial resistance to conventional antibiotics has become a major concern in the medical field. The global misuse of antibiotics in clinics, personal use, and agriculture has accelerated this resistance, making infections increasingly difficult to treat and rendering new antibiotics ineffective more quickly. Finding new antibiotics is challenging due to the complexity of bacterial mechanisms, high costs and low financial incentives for the development of new molecular scaffolds, and stringent regulatory requirements. Additionally, innovation has slowed, with many new antibiotics being modifications of existing drugs rather than entirely new classes. Antimicrobial peptides (AMPs) are a valid alternative to small-molecule antibiotics offering several advantages, including broad-spectrum activity and a lower likelihood of inducing resistance due to their multifaceted mechanisms of action. However, AMPs face challenges such as stability issues in physiological conditions, potential toxicity to human cells, high production costs, and difficulties in large-scale manufacturing. A reliable strategy to overcome the drawbacks associated with the use of small-molecule antibiotics and AMPs is combination therapy, namely the simultaneous co-administration of two or more antibiotics or the synthesis of covalently linked conjugates. This review aims to provide a comprehensive overview of the literature on the development of antibiotic-AMP conjugates, with a particular emphasis on critically analyzing the design and synthetic strategies employed in their creation. In addition to the synthesis, the review will also explore the reported antibacterial activity of these conjugates and, where available, examine any data concerning their cytotoxicity.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20131 Milano, Italy;
| | - Carola Romani
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| | - Monica Sani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimica “G. Natta” (SCITEC), Via Mario Bianco 9, 20131 Milano, Italy;
| | - Alessandro Volonterio
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| |
Collapse
|
6
|
Voitsekhovskaia I, Ho YTC, Klatt C, Müller A, Machell DL, Tan YJ, Triesman M, Bingel M, Schittenhelm RB, Tailhades J, Kulik A, Maier ME, Otting G, Wohlleben W, Schneider T, Cryle M, Stegmann E. Altering glycopeptide antibiotic biosynthesis through mutasynthesis allows incorporation of fluorinated phenylglycine residues. RSC Chem Biol 2024:d4cb00140k. [PMID: 39247680 PMCID: PMC11376024 DOI: 10.1039/d4cb00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
Glycopeptide antibiotics (GPAs) are peptide natural products used as last resort treatments for antibiotic resistant bacterial infections. They are produced by the sequential activities of a linear nonribosomal peptide synthetase (NRPS), which assembles the heptapeptide core of GPAs, and cytochrome P450 (Oxy) enzymes, which perform a cascade of cyclisation reactions. The GPAs contain proteinogenic and nonproteinogenic amino acids, including phenylglycine residues such as 4-hydroxyphenylglycine (Hpg). The ability to incorporate non-proteinogenic amino acids in such peptides is a distinctive feature of the modular architecture of NRPSs, with each module selecting and incorporating a desired amino acid. Here, we have exploited this ability to produce and characterise GPA derivatives containing fluorinated phenylglycine (F-Phg) residues through a combination of mutasynthesis, biochemical, structural and bioactivity assays. Our data indicate that the incorporation of F-Phg residues is limited by poor acceptance by the NRPS machinery, and that the phenol moiety normally present on Hpg residues is essential to ensure both acceptance by the NRPS and the sequential cyclisation activity of Oxy enzymes. The principles learnt here may prove useful for the future production of GPA derivatives with more favourable properties through mixed feeding mutasynthesis approaches.
Collapse
Affiliation(s)
- Irina Voitsekhovskaia
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
| | - Y T Candace Ho
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
| | - Christoph Klatt
- Institute of Organic Chemistry, University of Tübingen Tübingen Germany
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Bonn Germany
| | - Daniel L Machell
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
| | - Yi Jiun Tan
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
- Research School of Chemistry, The Australian National University Acton ACT 2601 Australia
| | - Maxine Triesman
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
| | - Mara Bingel
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Bonn Germany
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash University Clayton VIC 3800 Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
| | - Andreas Kulik
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
| | - Martin E Maier
- Institute of Organic Chemistry, University of Tübingen Tübingen Germany
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
- Research School of Chemistry, The Australian National University Acton ACT 2601 Australia
| | - Wolfgang Wohlleben
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
| | - Tanja Schneider
- Institute of Organic Chemistry, University of Tübingen Tübingen Germany
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Bonn Germany
| | - Max Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
| | - Evi Stegmann
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
- German Centre for Infection Research (DZIF), Partner Site Tübingen Tübingen Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen Tübingen Germany
| |
Collapse
|
7
|
Zaidi SEZ, Zaheer R, Zovoilis A, McAllister TA. Enterococci as a One Health indicator of antimicrobial resistance. Can J Microbiol 2024; 70:303-335. [PMID: 38696839 DOI: 10.1139/cjm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
8
|
Nguy AKL, Martinie RJ, Cai A, Seyedsayamdost MR. Detection of a Kinetically Competent Compound-I Intermediate in the Vancomycin Biosynthetic Enzyme OxyB. J Am Chem Soc 2024; 146:19629-19634. [PMID: 38989876 DOI: 10.1021/jacs.4c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Cytochrome P450 enzymes are abundantly encoded in microbial genomes. Their reactions have two general outcomes, one involving oxygen insertion via a canonical "oxygen rebound" mechanism and a second that diverts from this pathway and leads to a wide array of products, notably intramolecular oxidative cross-links. The antibiotic of-last-resort, vancomycin, contains three such cross-links, which are crucial for biological activity and are installed by the P450 enzymes OxyB, OxyA, and OxyC. The mechanisms of these enzymes have remained elusive in part because of the difficulty in spectroscopically capturing transient intermediates. Using stopped-flow UV/visible absorption and rapid freeze-quench electron paramagnetic resonance spectroscopies, we show that OxyB generates the highly reactive compound-I intermediate, which can react with a model vancomycin peptide substrate in a kinetically competent fashion to generate product. Our results have implications for the mechanism of OxyB and are in line with the notion that oxygen rebound and oxidative cross-links share early steps in their catalytic cycles.
Collapse
Affiliation(s)
- Andy K L Nguy
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryan J Martinie
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Amanda Cai
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Liu X, de Bakker V, Heggenhougen MV, Mårli MT, Frøynes AH, Salehian Z, Porcellato D, Morales Angeles D, Veening JW, Kjos M. Genome-wide CRISPRi screens for high-throughput fitness quantification and identification of determinants for dalbavancin susceptibility in Staphylococcus aureus. mSystems 2024; 9:e0128923. [PMID: 38837392 PMCID: PMC11265419 DOI: 10.1128/msystems.01289-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Antibiotic resistance and tolerance remain a major problem for the treatment of staphylococcal infections. Identifying genes that influence antibiotic susceptibility could open the door to novel antimicrobial strategies, including targets for new synergistic drug combinations. Here, we developed a genome-wide CRISPR interference library for Staphylococcus aureus, demonstrated its use by quantifying gene fitness in different strains through CRISPRi-seq, and used it to identify genes that modulate susceptibility to the lipoglycopeptide dalbavancin. By exposing the library to sublethal concentrations of dalbavancin using both CRISPRi-seq and direct selection methods, we not only found genes previously reported to be involved in antibiotic susceptibility but also identified genes thus far unknown to affect antibiotic tolerance. Importantly, some of these genes could not have been detected by more conventional transposon-based knockout approaches because they are essential for growth, stressing the complementary value of CRISPRi-based methods. Notably, knockdown of a gene encoding the uncharacterized protein KapB specifically sensitizes the cells to dalbavancin, but not to other antibiotics of the same class, whereas knockdown of the Shikimate pathway showed the opposite effect. The results presented here demonstrate the promise of CRISPRi-seq screens to identify genes and pathways involved in antibiotic susceptibility and pave the way to explore alternative antimicrobial treatments through these insights.IMPORTANCEAntibiotic resistance is a challenge for treating staphylococcal infections. Identifying genes that affect how antibiotics work could help create new treatments. In our study, we made a CRISPR interference library for Staphylococcus aureus and used this to find which genes are critical for growth and also mapped genes that are important for antibiotic sensitivity, focusing on the lipoglycopeptide antibiotic dalbavancin. With this method, we identified genes that altered the sensitivity to dalbavancin upon knockdown, including genes involved in different cellular functions. CRISPRi-seq offers a means to uncover untapped antibiotic targets, including those that conventional screens would disregard due to their essentiality. This paves the way for the discovery of new ways to fight infections.
Collapse
Affiliation(s)
- Xue Liu
- Department of Pathogen, Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | - Vincent de Bakker
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | | | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Anette Heidal Frøynes
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Zhian Salehian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| |
Collapse
|
10
|
Leone S, Pezone I, Pisaturo M, McCaffery E, Alfieri A, Fiore M. Pharmacotherapies for multidrug-resistant gram-positive infections: current options and beyond. Expert Opin Pharmacother 2024; 25:1027-1037. [PMID: 38863433 DOI: 10.1080/14656566.2024.2367003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Infections due to multidrug-resistant organisms (MDRO) are a serious concern for public health with high morbidity and mortality. Though many antibiotics have been introduced to manage these infections, there are remaining concerns regarding the optimal management of Gram-positive MDROs. AREAS COVERED A literature search on the PubMed/Medline database was conducted. We applied no language and time limits for the search strategy. In this narrative review, we discuss the current options for managing Gram-positive MDROs as well as non-traditional antibacterial agents in development. EXPERT OPINION Despite their introduction more than 70 years ago, glycopeptides are still the cornerstone in treating Gram-positive infections: all registrative studies of new antibiotics have glycopeptides as control; these studies are designed as not inferior studies, therefore it is almost impossible to give recommendations other than the use of glycopeptides in the treatment of Gram-positive infections. The best evidence on treatments different from glycopeptides comes from post-hoc analysis and meta-analysis. Non-traditional antibacterial agents are being studied to aid in short and effective antibiotic therapies. The use of non-traditional antibacterial agents is not restricted to replacing traditional antibacterial agents with alternative therapies; instead, they should be used in combination with antibiotic therapies.
Collapse
Affiliation(s)
- Sebastiano Leone
- Division of Infectious Diseases, "San Giuseppe Moscati" Hospital, Avellino, Italy
| | - Ilaria Pezone
- Department of Pediatrics, "San Giuseppe Moscati" Hospital, Aversa CE, Italy
| | - Mariantonietta Pisaturo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Eleni McCaffery
- Department of Emergency Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Aniello Alfieri
- Department of Elective Surgery, Postoperative Intensive Care Unit and Hyperbaric Oxygen Therapy, A.O.R.N. Antonio Cardarelli, Naples, Italy
| | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
11
|
Lalhmangaihzuala S, Vanlaldinpuia K, Khiangte V, Laldinpuii Z, Liana T, Lalhriatpuia C, Pachuau Z. Therapeutic applications of carbohydrate-based compounds: a sweet solution for medical advancement. Mol Divers 2024:10.1007/s11030-024-10810-2. [PMID: 38554170 DOI: 10.1007/s11030-024-10810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 04/01/2024]
Abstract
Carbohydrates, one of the most abundant biomolecules found in nature, have been seen traditionally as a dietary component of foods. Recent findings, however, have unveiled their medicinal potential in the form of carbohydrates-derived drugs. Their remarkable structural diversity, high optical purity, bioavailability, low toxicity and the presence of multiple functional groups have positioned them as a valuable scaffold and an exciting frontier in contemporary therapeutics. At present, more than 170 carbohydrates-based therapeutics have been granted approval by varying regulatory agencies such as United States Food and Drug Administration (FDA), Japan Pharmaceuticals and Medical Devices Agency (PMDA), Chinese National Medical Products Administration (NMPA), and the European Medicines Agency (EMA). This article explores an overview of the fascinating potential and impact of carbohydrate-derived compounds as pharmacological agents and drug delivery vehicles.
Collapse
Affiliation(s)
- Samson Lalhmangaihzuala
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Khiangte Vanlaldinpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India.
| | - Vanlalngaihawma Khiangte
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Zathang Laldinpuii
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Thanhming Liana
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Chhakchhuak Lalhriatpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Zodinpuia Pachuau
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| |
Collapse
|
12
|
Zou X, Lin Y, Zhang S, Deng T, Xu X, Zhou Y, Liu Z, Lu W, Hu Q, Lin C, Zhu C, Liu F. Fluorescence detecting glycopeptide antibiotics via a dynamic molecular switch. Anal Chim Acta 2024; 1294:342309. [PMID: 38336411 DOI: 10.1016/j.aca.2024.342309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Glycopeptide antibiotics (GPAs) represented by vancomycin (VAN) are clinically used as a first-line treatment for serious infections caused by Gram-positive pathogens. The use and dosing methods of GPAs are rigorously managed for safety considerations, which calls for fast and accurate quantification approaches. RESULT A new sort of fluorescent probes for GPAs has been proposed, each of which was integrated by a fluorescein-based reporter and a GPAs' recognition peptide D-alanyl-D-alanine (D-Ala-D-Ala). These probes work as dynamic molecular switches, which mainly exist as non-fluorescent spirolactam forms in the absence of GPAs. GPAs binding with the dipeptide regulates the dynamic balance between fluorescence OFF lactam form and fluorescence ON ring-opened form, rendering these probes capable of GPAs detecting. The most promising one P1 exhibits excellent sensitivity and selectivity towards GPAs detection. SIGNIFICANCE Different to previous developments, P1 consists of a single fluorophore without the need of a fluorescence-quenching group or a secondary dye, which is the smallest fluorescent probe for GPAs up to now. P1 realizes direct VAN quantification from complex biological samples including real serums, dispensing with additional drug extraction. More interestingly, both P1 and P6 can distinguish GPAs with different peptide backbones, which has not been achieved previously.
Collapse
Affiliation(s)
- Xiaomei Zou
- The First Clinical Medical College and the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yanting Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Shihui Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Tao Deng
- School of Medicine, Foshan University, Foshan, 528000, PR China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, PR China
| | - Yingchun Zhou
- The First Clinical Medical College and the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Zhihui Liu
- The First Clinical Medical College and the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Weiguo Lu
- The First Clinical Medical College and the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Qingzhong Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Fang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
13
|
Guan D, Liu J, Chen F, Li J, Wang X, Lu W, Suo Y, Tang F, Lan L, Lu X, Huang W. A Vancomycin-Templated DNA-Encoded Library for Combating Drug-Resistant Bacteria. J Med Chem 2024; 67:3778-3794. [PMID: 38482826 DOI: 10.1021/acs.jmedchem.3c02197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
It is an urgent need to tackle the global crisis of multidrug-resistant bacterial infections. We report here an innovative strategy for large-scale screening of new antibacterial agents using a whole bacteria-based DNA-encoded library (DEL) of vancomycin derivatives via peripheral modifications. A bacterial binding affinity assay was established to select the modification fragments in high-affinity compounds. The optimal resynthesized derivatives demonstrated excellently enhanced activity against various resistant bacterial strains and provided useful structures for vancomycin derivatization. This work presents the new concept in a natural product-templated DEL and in antibiotic discovery through bacterial affinity screening, which promotes the fight against drug-resistant bacteria.
Collapse
Affiliation(s)
- Dongliang Guan
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd., Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Jiaxiang Liu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd., Pudong, Shanghai 201203, China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd., Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Jian Li
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd., Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Xiaowen Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd., Pudong, Shanghai 201203, China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd., Pudong, Shanghai 201203, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd., Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lefu Lan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd., Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd., Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
14
|
Werner J, Umstätter F, Hertlein T, Beijer B, Kleist C, Mühlberg E, Zimmermann S, Haberkorn U, Ohlsen K, Fricker G, Mier W, Uhl P. Improved pharmacokinetics and enhanced efficacy of the vancomycin derivative FU002 using a liposomal nanocarrier. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102731. [PMID: 38158147 DOI: 10.1016/j.nano.2023.102731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/25/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Antibiotic resistance still represents a global health concern which diminishes the pool of effective antibiotics. With the vancomycin derivative FU002, we recently reported a highly potent substance active against Gram-positive bacteria with the potential to overcome vancomycin resistance. However, the translation of its excellent antimicrobial activity into clinical efficiency could be hampered by its rapid elimination from the blood stream. To improve its pharmacokinetics, we encapsulated FU002 in PEGylated liposomes. For PEG-liposomal FU002, no relevant cytotoxicity on liver, kidney and red blood cells was observed. Studies in Wistar rats revealed a significantly prolonged blood circulation of the liposomal antibiotic. In microdilution assays it could be demonstrated that encapsulation does not diminish the antimicrobial activity against staphylococci and enterococci. Highlighting its great potency, liposomal FU002 exhibited a superior therapeutic efficacy when compared to the free form in a Galleria mellonella larvae infection model.
Collapse
Affiliation(s)
- Julia Werner
- Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg, Germany
| | - Florian Umstätter
- Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg, Germany
| | - Tobias Hertlein
- University of Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Barbro Beijer
- Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg, Germany
| | - Christian Kleist
- Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg, Germany
| | - Eric Mühlberg
- Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg, Germany
| | - Stefan Zimmermann
- Heidelberg University Hospital, Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg, Germany
| | - Uwe Haberkorn
- Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg, Germany
| | - Knut Ohlsen
- University of Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Gert Fricker
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, Heidelberg, Germany
| | - Walter Mier
- Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg, Germany
| | - Philipp Uhl
- Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg, Germany; Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, Heidelberg, Germany.
| |
Collapse
|
15
|
Zhukrovska K, Binda E, Fedorenko V, Marinelli F, Yushchuk O. The Impact of Heterologous Regulatory Genes from Lipodepsipeptide Biosynthetic Gene Clusters on the Production of Teicoplanin and A40926. Antibiotics (Basel) 2024; 13:115. [PMID: 38391501 PMCID: PMC10886168 DOI: 10.3390/antibiotics13020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
StrR-like pathway-specific transcriptional regulators (PSRs) function as activators in the biosynthesis of various antibiotics, including glycopeptides (GPAs), aminoglycosides, aminocoumarins, and ramoplanin-like lipodepsipeptides (LDPs). In particular, the roles of StrR-like PSRs have been previously investigated in the biosynthesis of streptomycin, novobiocin, GPAs like balhimycin, teicoplanin, and A40926, as well as LDP enduracidin. In the current study, we focused on StrR-like PSRs from the ramoplanin biosynthetic gene cluster (BGC) in Actinoplanes ramoplaninifer ATCC 33076 (Ramo5) and the chersinamycin BGC in Micromonospora chersina DSM 44151 (Chers28). Through the analysis of the amino acid sequences of Ramo5 and Chers28, we discovered that these proteins are phylogenetically distant from other experimentally investigated StrR PSRs, although all StrR-like PSRs found in BGCs for different antibiotics share a conserved secondary structure. To investigate whether Ramo5 and Chers28, given their phylogenetic positions, might influence the biosynthesis of other antibiotic pathways governed by StrR-like PSRs, the corresponding genes (ramo5 and chers28) were heterologously expressed in Actinoplanes teichomyceticus NRRL B-16726 and Nonomuraea gerenzanensis ATCC 39727, which produce the clinically-relevant GPAs teicoplanin and A40926, respectively. Recombinant strains of NRRL B-16726 and ATCC 39727 expressing chers28 exhibited improved antibiotic production, although the expression of ramo5 did not yield the same effect. These results demonstrate that some StrR-like PSRs can "cross-talk" between distant biosynthetic pathways and might be utilized as tools for the activation of silent BGCs regulated by StrR-like PSRs.
Collapse
Affiliation(s)
- Kseniia Zhukrovska
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
16
|
Adhikari A, Shakya S, Shrestha S, Aryal D, Timalsina KP, Dhakal D, Khatri Y, Parajuli N. Biocatalytic role of cytochrome P450s to produce antibiotics: A review. Biotechnol Bioeng 2023; 120:3465-3492. [PMID: 37691185 DOI: 10.1002/bit.28548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C-H, C-C, and C-N bonds, including heteroatom oxidation, oxidative C-C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Sajan Shakya
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Shreesti Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Dipa Aryal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kavi Prasad Timalsina
- Department of Biotechnology, National College, Tribhuvan University, Kathmandu, Nepal
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida, USA
| | | | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
17
|
Guo Y, Wang S, Li P, Zhang P, Wang W. Rapid Colloidal Gold Immunoassay for Pharmacokinetic Evaluation of Vancomycin in the Cerebrospinal Fluid and Plasma of Beagle Dogs. SENSORS (BASEL, SWITZERLAND) 2023; 23:8978. [PMID: 37960677 PMCID: PMC10649247 DOI: 10.3390/s23218978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Vancomycin (VAN), a glycopeptide antibiotic, is the preferred therapeutic agent for treating Gram-positive bacteria. Rapid and precise quantification of VAN levels in cerebrospinal fluid (CSF) and plasma is crucial for optimized drug administration, particularly among elderly patients. Herein, we introduce a novel clinical test strip utilizing colloidal gold competitive immunoassay technology for the expedient detection of VAN. This test strip enables the detection of VAN concentrations in clinical samples such as plasma within 10 min and has a limit of detection of 10.3 ng/mL, with an inhibitory concentration 50% (IC50) value of 44.5 ng/mL. Furthermore, we used the test strip for pharmacokinetic analysis of VAN in the CSF and plasma of beagle dogs. Our results provide valuable insights into the fluctuations of the drug concentration in the CSF and plasma over a 24 h period after a single intravenous dose of 12 mg/kg. The test strip results were compared with the results obtained via liquid chromatography-mass spectrometry methods, and the measured VAN concentrations in the CSF and plasma via both of the methods showed excellent agreement.
Collapse
Affiliation(s)
- Yechang Guo
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
| | - Shaofeng Wang
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;
| | - Peiyue Li
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
| | - Pan Zhang
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
| | - Wei Wang
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| |
Collapse
|
18
|
Kumar G, Engle K. Natural products acting against S. aureus through membrane and cell wall disruption. Nat Prod Rep 2023; 40:1608-1646. [PMID: 37326041 DOI: 10.1039/d2np00084a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Covering: 2015 to 2022Staphylococcus aureus (S. aureus) is responsible for several community and hospital-acquired infections with life-threatening complications such as bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi and the treatment of nonmicrobial diseases have led to the rapid emergence of multidrug-resistant pathogens. The bacterial wall is a complex structure consisting of the cell membrane, peptidoglycan cell wall, and various associated polymers. The enzymes involved in bacterial cell wall synthesis are established antibiotic targets and continue to be a central focus for antibiotic development. Natural products play a vital role in drug discovery and development. Importantly, natural products provide a starting point for active/lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. Notably, microorganisms and plant metabolites have contributed as antibiotics for noninfectious diseases. In this study, we have summarized the recent advances in understanding the activity of the drugs or agents of natural origin that directly inhibit the bacterial membrane, membrane components, and membrane biosynthetic enzymes by targeting membrane-embedded proteins. We also discussed the unique aspects of the active mechanisms of established antibiotics or new agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
19
|
Allegra S, Chiara F, Zanatta M, Mengozzi G, Puccinelli MP, De Francia S. Age and Sex-Related Differences in Teicoplanine Isoform Concentrations in SARS-CoV-2 Patients. Life (Basel) 2023; 13:1792. [PMID: 37763195 PMCID: PMC10532956 DOI: 10.3390/life13091792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Teicoplanin, a glycopeptide antibiotic commonly used to treat bacterial infections, was discovered to be active in vitro against SARS-CoV-2. The aim of this study was to assess the levels of teicoplanin and its components in a cohort of adult and pediatric SARS-CoV-2 patients, evaluating the effect of sex and age on analyte concentrations. The levels of AST, ALT and leukocytes were shown to be higher in females, while the C reactive protein was higher in males. Evaluating the absence/presence of teicoplanin isoforms, we observed that A2-2_3 is the only one consistently present in pediatrics and adults. In adult men and all pediatrics, A2-4_5 is always present. In pediatrics, except for A3-1, median isoform concentrations were higher in females; on the contrary, in adult patients, males showed higher levels. This is the first study to describe levels of teicoplanin isoforms in SARS-CoV-2 infected patients in males and females, and pediatrics and adults, despite the small sample size of our cohort. The observed results imply that additional testing, via therapeutic drug monitoring, may be helpful to more effectively manage infections, particularly those caused by the most recent viruses.
Collapse
Affiliation(s)
- Sarah Allegra
- Laboratory of Clinical Pharmacology “Franco Ghezzo”, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10124 Orbassano, TO, Italy; (F.C.); (M.Z.); (S.D.F.)
| | - Francesco Chiara
- Laboratory of Clinical Pharmacology “Franco Ghezzo”, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10124 Orbassano, TO, Italy; (F.C.); (M.Z.); (S.D.F.)
| | - Marina Zanatta
- Laboratory of Clinical Pharmacology “Franco Ghezzo”, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10124 Orbassano, TO, Italy; (F.C.); (M.Z.); (S.D.F.)
| | - Giulio Mengozzi
- Laboratory of Clinical Biochemistry “Baldi e Riberi”, Metabolic Diseases Unit, AOU Città della Salute e della Scienza di Torino, 10126 Torino, TO, Italy; (G.M.); (M.P.P.)
| | - Maria Paola Puccinelli
- Laboratory of Clinical Biochemistry “Baldi e Riberi”, Metabolic Diseases Unit, AOU Città della Salute e della Scienza di Torino, 10126 Torino, TO, Italy; (G.M.); (M.P.P.)
| | - Silvia De Francia
- Laboratory of Clinical Pharmacology “Franco Ghezzo”, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10124 Orbassano, TO, Italy; (F.C.); (M.Z.); (S.D.F.)
| |
Collapse
|
20
|
Koh AJJ, Thombare V, Hussein M, Rao GG, Li J, Velkov T. Bifunctional antibiotic hybrids: A review of clinical candidates. Front Pharmacol 2023; 14:1158152. [PMID: 37397488 PMCID: PMC10313405 DOI: 10.3389/fphar.2023.1158152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Antibiotic resistance is a top threat to human health and a priority across the globe. This problematic issue is accompanied by the decline of new antibiotics in the pipeline over the past 30 years. In this context, an urgent need to develop new strategies to combat antimicrobial resistance is in great demand. Lately, among the possible approaches used to deal with antimicrobial resistance is the covalent ligation of two antibiotic pharmacophores that target the bacterial cells through a dissimilar mode of action into a single hybrid molecule, namely hybrid antibiotics. This strategy exhibits several advantages, including better antibacterial activity, overcoming the existing resistance towards individual antibiotics, and may ultimately delay the onset of bacterial resistance. This review sheds light on the latest development of the dual antibiotic hybrids pipeline, their potential mechanisms of action, and challenges in their use.
Collapse
Affiliation(s)
- Augustine Jing Jie Koh
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIP, Australia
| | - Varsha Thombare
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Parkville, VIP, Australia
| | - Maytham Hussein
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Parkville, VIP, Australia
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Parkville, VIP, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIP, Australia
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Parkville, VIP, Australia
| |
Collapse
|
21
|
Ahmed ETM, Hassan M, Shamma RN, Makky A, Hassan DH. Controlling the Evolution of Selective Vancomycin Resistance through Successful Ophthalmic Eye-Drop Preparation of Vancomycin-Loaded Nanoliposomes Using the Active-Loading Method. Pharmaceutics 2023; 15:1636. [PMID: 37376084 DOI: 10.3390/pharmaceutics15061636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Vancomycin is the front-line defense and drug of choice for the most serious and life-threatening methicillin-resistant Staphylococcus aureus (MRSA) infections. However, poor vancomycin therapeutic practice limits its use, and there is a consequent rise of the threat of vancomycin resistance by complete loss of its antibacterial activity. Nanovesicles as a drug-delivery platform, with their featured capabilities of targeted delivery and cell penetration, are a promising strategy to resolve the shortcomings of vancomycin therapy. However, vancomycin's physicochemical properties challenge its effective loading. In this study, we used the ammonium sulfate gradient method to enhance vancomycin loading into liposomes. Depending on the pH difference between the extraliposomal vancomycin-Tris buffer solution (pH 9) and the intraliposomal ammonium sulfate solution (pH 5-6), vancomycin was actively and successfully loaded into liposomes (up to 65% entrapment efficiency), while the liposomal size was maintained at 155 nm. Vancomycin-loaded nanoliposomes effectively enhanced the bactericidal effect of vancomycin; the minimum inhibitory concentration (MIC) value for MRSA decreased 4.6-fold. Furthermore, they effectively inhibited and killed heteroresistant vancomycin-intermediate S.aureous (h-VISA) with an MIC of 0.338 μg mL-1. Moreover, MRSA could not develop resistance against vancomycin that was loaded into and delivered by liposomes. Vancomycin-loaded nanoliposomes could be a feasible solution for enhancing vancomycin's therapeutic use and controlling the emerging vancomycin resistance.
Collapse
Affiliation(s)
- El Tahra M Ahmed
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza 12585, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43511, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
| | - Amna Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
| | - Doaa H Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza 12585, Egypt
| |
Collapse
|
22
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int J Pept Res Ther 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
23
|
Hromada S, Venturelli OS. Gut microbiota interspecies interactions shape the response of Clostridioides difficile to clinically relevant antibiotics. PLoS Biol 2023; 21:e3002100. [PMID: 37167201 PMCID: PMC10174544 DOI: 10.1371/journal.pbio.3002100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
In the human gut, the growth of the pathogen Clostridioides difficile is impacted by a complex web of interspecies interactions with members of human gut microbiota. We investigate the contribution of interspecies interactions on the antibiotic response of C. difficile to clinically relevant antibiotics using bottom-up assembly of human gut communities. We identify 2 classes of microbial interactions that alter C. difficile's antibiotic susceptibility: interactions resulting in increased ability of C. difficile to grow at high antibiotic concentrations (rare) and interactions resulting in C. difficile growth enhancement at low antibiotic concentrations (common). Based on genome-wide transcriptional profiling data, we demonstrate that metal sequestration due to hydrogen sulfide production by the prevalent gut species Desulfovibrio piger increases the minimum inhibitory concentration (MIC) of metronidazole for C. difficile. Competition with species that display higher sensitivity to the antibiotic than C. difficile leads to enhanced growth of C. difficile at low antibiotic concentrations due to competitive release. A dynamic computational model identifies the ecological principles driving this effect. Our results provide a deeper understanding of ecological and molecular principles shaping C. difficile's response to antibiotics, which could inform therapeutic interventions.
Collapse
Affiliation(s)
- Susan Hromada
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
24
|
Esposito S, Blasi F, Curtis N, Kaplan S, Lazzarotto T, Meschiari M, Mussini C, Peghin M, Rodrigo C, Vena A, Principi N, Bassetti M. New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA). Antibiotics (Basel) 2023; 12:742. [PMID: 37107104 PMCID: PMC10135047 DOI: 10.3390/antibiotics12040742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Staphylococcus aureus is an extremely virulent pathogen that is capable of quickly evolving and developing antibiotic resistance. To overcome this problem, new antibiotics have been developed. Some of these have been licenced for use in clinical practice, mainly for the treatment of adults with acute skin and soft tissue infections, in addition to both community-acquired pneumonia (CAP) and nosocomial pneumonia (hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia). In this paper, the main characteristics and clinical use of new licenced anti-staphylococcal drugs have been discussed. In vitro studies have demonstrated that some new anti-staphylococcal antibiotics have better antimicrobial activity and, at least in certain cases, more favourable pharmacokinetic properties and higher safety and tolerability than the presently available anti-staphylococcal drugs. This suggests that they may have a potential use in reducing the risk of failure of S. aureus therapy. However, an in-depth analysis of microbiological and clinical studies carried out with these new drugs seems to indicate that further studies need to be conducted before the problem of resistance of S. aureus to the antibiotics available today can be completely solved. Considering the overall available research, the drugs that are active against S. aureus appear to present a great therapeutic opportunity for overcoming resistance to traditional therapy. There are advantages in the pharmacokinetic characteristics of some of these drugs and they have the potential to reduce hospital stays and economic costs associated with their use.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, 20122 Milan, Italy
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Infectious Diseases, The Royal Children’s Hospital Melbourne, Parkville, VIC 3010, Australia
| | - Sheldon Kaplan
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tiziana Lazzarotto
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Marianna Meschiari
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria of Modena, 41124 Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria of Modena, 41124 Modena, Italy
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, 21110 Varese, Italy
| | - Carlos Rodrigo
- Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet, 08916 Barcelona, Spain
- Germans Trias i Pujol Research Institute, Carretera de Can Ruti, Camí de les Escoles, 08916 Badalona, Spain
| | - Antonio Vena
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Matteo Bassetti
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
25
|
Ottonello A, Wyllie JA, Yahiaoui O, Sun S, Koelln RA, Homer JA, Johnson RM, Murray E, Williams P, Bolla JR, Robinson CV, Fallon T, Soares da Costa TP, Moses JE. Shapeshifting bullvalene-linked vancomycin dimers as effective antibiotics against multidrug-resistant gram-positive bacteria. Proc Natl Acad Sci U S A 2023; 120:e2208737120. [PMID: 37011186 PMCID: PMC10104512 DOI: 10.1073/pnas.2208737120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
The alarming rise in superbugs that are resistant to drugs of last resort, including vancomycin-resistant enterococci and staphylococci, has become a significant global health hazard. Here, we report the click chemistry synthesis of an unprecedented class of shapeshifting vancomycin dimers (SVDs) that display potent activity against bacteria that are resistant to the parent drug, including the ESKAPE pathogens, vancomycin-resistant Enterococcus (VRE), methicillin-resistant Staphylococcus aureus (MRSA), as well as vancomycin-resistant S. aureus (VRSA). The shapeshifting modality of the dimers is powered by a triazole-linked bullvalene core, exploiting the dynamic covalent rearrangements of the fluxional carbon cage and creating ligands with the capacity to inhibit bacterial cell wall biosynthesis. The new shapeshifting antibiotics are not disadvantaged by the common mechanism of vancomycin resistance resulting from the alteration of the C-terminal dipeptide with the corresponding d-Ala-d-Lac depsipeptide. Further, evidence suggests that the shapeshifting ligands destabilize the complex formed between the flippase MurJ and lipid II, implying the potential for a new mode of action for polyvalent glycopeptides. The SVDs show little propensity for acquired resistance by enterococci, suggesting that this new class of shapeshifting antibiotic will display durable antimicrobial activity not prone to rapidly acquired clinical resistance.
Collapse
Affiliation(s)
- Alessandra Ottonello
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Jessica A. Wyllie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Oussama Yahiaoui
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Shoujun Sun
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Rebecca A. Koelln
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Robert M. Johnson
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Ewan Murray
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Jani R. Bolla
- Department of Biology, University of Oxford, OxfordOX1 3RB, U.K.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
| | - Carol V. Robinson
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
- Physical and Theoretical Chemistry Laboratory, University of Oxford, OxfordOX1 3QZ, U.K.
| | - Thomas Fallon
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | | | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| |
Collapse
|
26
|
D'Achille G, Morroni G. Side effects of antibiotics and perturbations of mitochondria functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 377:121-139. [PMID: 37268348 DOI: 10.1016/bs.ircmb.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Antibiotics are one of the greatest discoveries of medicine of the past century. Despite their invaluable contribution to infectious disease, their administration could lead to side effects that in some cases are serious. The toxicity of some antibiotics is in part due to their interaction with mitochondria: these organelles derive from a bacterial ancestor and possess specific translation machinery that shares similarities with the bacterial counterpart. In other cases, the antibiotics could interfere with mitochondrial functions even if their main bacterial targets are not shared with the eukaryotic cells. The purpose of this review is to summarize the effects of antibiotics administration on mitochondrial homeostasis and the opportunity that some of these molecules could represent in cancer treatment. The importance of antimicrobial therapy is unquestionable, but the identification of interaction with eukaryotic cells and in particular with mitochondria is crucial to reduce the toxicity of these drugs and to explore other useful medical applications.
Collapse
Affiliation(s)
- Gloria D'Achille
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Gianluca Morroni
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
27
|
Andreo-Vidal A, Yushchuk O, Marinelli F, Binda E. Cross-Talking of Pathway-Specific Regulators in Glycopeptide Antibiotics (Teicoplanin and A40926) Production. Antibiotics (Basel) 2023; 12:antibiotics12040641. [PMID: 37107003 PMCID: PMC10135024 DOI: 10.3390/antibiotics12040641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Teicoplanin and A40926 (natural precursor of dalbavancin) are clinically relevant glycopeptide antibiotics (GPAs) produced by Actinoplanes teichomyceticus NRRL B-16726 and Nonomuraea gerenzanensis ATCC 39727. Their biosynthetic enzymes are coded within large biosynthetic gene clusters (BGCs), named tei for teicoplanin and dbv for A40926, whose expression is strictly regulated by pathway-specific transcriptional regulators (PSRs), coded by cluster-situated regulatory genes (CSRGs). Herein, we investigated the "cross-talk" between the CSRGs from tei and dbv, through the analysis of GPA production levels in A. teichomyceticus and N. gerenzanensis strains, with knockouts of CSRGs cross-complemented by the expression of heterologous CSRGs. We demonstrated that Tei15* and Dbv4 StrR-like PSRs, although orthologous, were not completely interchangeable: tei15* and dbv4 were only partially able or unable to cross-complement N. gerenzanensis knocked out in dbv4 and A. teichomyceticus knocked out in tei15*, implying that the DNA-binding properties of these PSRs are more different in vivo than it was believed before. At the same time, the unrelated LuxR-like PSRs Tei16* and Dbv3 were able to cross-complement corresponding N. gerenzanensis knocked out in dbv3 and A. teichomyceticus knocked out in tei16*. Moreover, the heterologous expression of dbv3 in A. teichomyceticus led to a significant increase in teicoplanin production. Although the molecular background of these events merits further investigations, our results contribute to a deeper understanding of GPA biosynthesis regulation and offer novel biotechnological tools to improve their production.
Collapse
Affiliation(s)
- Andrés Andreo-Vidal
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
28
|
Balasiu AD, MacKenzie CR. Teicoplanin-Resistant Coagulase-Negative Staphylococci: Do the Current Susceptibility Testing Methods Reliably Detect This Elusive Phenotype? Antibiotics (Basel) 2023; 12:antibiotics12030611. [PMID: 36978478 PMCID: PMC10045118 DOI: 10.3390/antibiotics12030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Coagulase-negative staphylococci (CoNS), members of the skin commensal microbiota, are increasingly associated with local or systemic infections due to a shift in patient populations in recent decades. Subsequently, more CoNS strains have been subjected to antibiotic susceptibility testing (AST), thus leading to the increased detection of teicoplanin resistance. However, data concerning teicoplanin resistance among CoNS strains remain limited, heterogeneous, and inconclusive. We collected 162 consecutive CoNS strains identified using Vitek-2 as teicoplanin-resistant and tested them with a range of AST methods. The results of standard and high inoculum broth microdilution (sBMD; hBMD), agar dilution (AD) after 24 h and 48 h incubation, standard and macrogradient diffusion strip (sGDT, MET), screening agar, and disc diffusion were compared to assess their robustness and to establish a diagnostic algorithm to detect teicoplanin resistance. sBMD was used as the reference method, and the lowest number of strains were teicoplanin-resistant using this method. sGDT and disc diffusion generated similar results to sBMD. Compared with sBMD, AD-24 h generated the lowest number of false teicoplanin-resistant strains, followed by hBMD, AD-48 h, and Vitek-2. sGDT, a fast, easy, affordable method in diagnostic settings, generated the highest rate of false teicoplanin-susceptible strains. Vitek-2 testing produced the highest number of teicoplanin-resistant strains. Only in two strains was the initial Vitek-2 teicoplanin resistance confirmed using five other AST methods. In conclusion, the different antibiotic susceptibility testing methods generated inconsistent, inconclusive, and discrepant results, thus making it difficult to establish a diagnostic algorithm for suspected teicoplanin resistance. Teicoplanin testing proved to be challenging and easily influenced by technical factors. This study aimed not only to raise awareness of teicoplanin resistance testing but also of the need for future studies focusing on the clinical efficacy of teicoplanin in relation to its susceptibility results.
Collapse
Affiliation(s)
- Adriana D Balasiu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany
| | - Colin R MacKenzie
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany
| |
Collapse
|
29
|
Guan D, Chen F, Shi W, Lan L, Huang W. Single Modification at the N-Terminus of Norvancomycin to Combat Drug-Resistant Gram-Positive Bacteria. ChemMedChem 2023; 18:e202200708. [PMID: 36823383 DOI: 10.1002/cmdc.202200708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
In the arsenal of glycopeptide antibiotics, norvancomycin, which differs from vancomycin by a single methyl group, has received much less attention. Facing the risks of serious antibiotic resistance and even the collapse of last-line defenses, we designed and synthesized 40 novel norvancomycin derivatives to combat the threat. 32 compounds are single N-terminally modified derivatives generated through simple and efficient methods. Diversity at the N-terminus was greatly enriched, mainly by lipophilic attachment and strategies for the introduction of lipo-sulfonium moieties for extensive structure-activity relationship analysis. The first incorporation of a sulfonium moiety into the norvancomycin structure gave rise to compounds that exhibited 4- to 2048-fold higher activity against vancomycin-resistant bacteria VISA and VRE. This N-terminal modification for norvancomycin provides an alternatively useful and promising strategy to restore the antibacterial activity of glycopeptide antibiotics against resistant bacteria, highlighting the same importance of the N-terminal site as well as the vancosamine position, which is worth further study and development.
Collapse
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yanta, Shandong, 264117, P. R. China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| |
Collapse
|
30
|
Rao KU, Li P, Welinder C, Tenland E, Gourdon P, Sturegård E, Ho JCS, Godaly G. Mechanisms of a Mycobacterium tuberculosis Active Peptide. Pharmaceutics 2023; 15:pharmaceutics15020540. [PMID: 36839864 PMCID: PMC9958537 DOI: 10.3390/pharmaceutics15020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Multidrug-resistant tuberculosis (MDR) continues to pose a threat to public health. Previously, we identified a cationic host defense peptide with activity against Mycobacterium tuberculosis in vivo and with a bactericidal effect against MDR M. tuberculosis at therapeutic concentrations. To understand the mechanisms of this peptide, we investigated its interactions with live M. tuberculosis and liposomes as a model. Peptide interactions with M. tuberculosis inner membranes induced tube-shaped membranous structures and massive vesicle formation, thus leading to bubbling cell death and ghost cell formation. Liposomal studies revealed that peptide insertion into inner membranes induced changes in the peptides' secondary structure and that the membranes were pulled such that they aggregated without permeabilization, suggesting that the peptide has a strong inner membrane affinity. Finally, the peptide targeted essential proteins in M. tuberculosis, such as 60 kDa chaperonins and elongation factor Tu, that are involved in mycolic acid synthesis and protein folding, which had an impact on bacterial proliferation. The observed multifaceted targeting provides additional support for the therapeutic potential of this peptide.
Collapse
Affiliation(s)
- Komal Umashankar Rao
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, SE-22362 Lund, Sweden
| | - Ping Li
- Department of Experimental Medical Science, Lund University, SE-22362 Lund, Sweden
| | - Charlotte Welinder
- Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, SE-22362 Lund, Sweden
| | - Erik Tenland
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, SE-22362 Lund, Sweden
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, SE-22362 Lund, Sweden
- Department of Biomedical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Erik Sturegård
- Department of Clinical Microbiology, Institution of Translational Medicine, Lund University, SE-21428 Malmö, Sweden
| | - James C. S. Ho
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637553, Singapore
| | - Gabriela Godaly
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, SE-22362 Lund, Sweden
- Correspondence:
| |
Collapse
|
31
|
Self-association of the glycopeptide antibiotic teicoplanin A2 in aqueous solution studied by molecular hydrodynamics. Sci Rep 2023; 13:1969. [PMID: 36737502 PMCID: PMC9895975 DOI: 10.1038/s41598-023-28740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The natural glycopeptide antibiotic teicoplanin is used for the treatment of serious Gram-positive related bacterial infections and can be administered intravenously, intramuscularly, topically (ocular infections), or orally. It has also been considered for targeting viral infection by SARS-CoV-2. The hydrodynamic properties of teicoplanin A2 (M1 = 1880 g/mol) were examined in phosphate chloride buffer (pH 6.8, I = 0.10 M) using sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge together with capillary (rolling ball) viscometry. In the concentration range, 0-10 mg/mL teicoplanin A2 was found to self-associate plateauing > 1 mg/mL to give a molar mass of (35,400 ± 1000) g/mol corresponding to ~ (19 ± 1) mers, with a sedimentation coefficient s20, w = ~ 4.65 S. The intrinsic viscosity [[Formula: see text]] was found to be (3.2 ± 0.1) mL/g: both this, the value for s20,w and the hydrodynamic radius from dynamic light scattering are consistent with a globular macromolecular assembly, with a swelling ratio through dynamic hydration processes of ~ 2.
Collapse
|
32
|
Mahara G, Tian C, Xu X, Zhu J. Breakthrough of glycobiology in the 21st century. Front Immunol 2023. [DOI: doi 10.3389/fimmu.2022.1071360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As modern medicine began to emerge at the turn of the 20th century, glycan-based therapies advanced. DNA- and protein-centered therapies became widely available. The research and development of structurally defined carbohydrates have led to new tools and methods that have sparked interest in the therapeutic applications of glycans. One of the latest omics disciplines to emerge in the contemporary post-genomics age is glycomics. In addition, to providing hope for patients and people with different health conditions through a deeper understanding of the mechanisms of common complex diseases, this new specialty in system sciences has much to offer to communities involved in the development of diagnostics and therapeutics in medicine and life sciences.This review focuses on recent developments that have pushed glycan-based therapies into the spotlight in medicine and the technologies powering these initiatives, which we can take as the most significant success of the 21st century.
Collapse
|
33
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
34
|
Tian L, Shi S, Zhang X, Han F, Dong H. Newest perspectives of glycopeptide antibiotics: biosynthetic cascades, novel derivatives, and new appealing antimicrobial applications. World J Microbiol Biotechnol 2023; 39:67. [PMID: 36593427 PMCID: PMC9807434 DOI: 10.1007/s11274-022-03512-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Glycopeptide antibiotics (GPAs) are a family of non-ribosomal peptide natural products with polypeptide skeleton characteristics, which are considered the last resort for treating severe infections caused by multidrug-resistant Gram-positive pathogens. Over the past few years, an increasing prevalence of Gram-positive resistant strain "superbugs" has emerged. Therefore, more efforts are needed to study and modify the GPAs to overcome the challenge of superbugs. In this mini-review, we provide an overview of the complex biosynthetic gene clusters (BGCs), the ingenious crosslinking and tailoring modifications, the new GPA derivatives, the discoveries of new natural GPAs, and the new applications of GPAs in antivirus and anti-Gram-negative bacteria. With the development and interdisciplinary integration of synthetic biology, next-generation sequencing (NGS), and artificial intelligence (AI), more GPAs with new chemical structures and action mechanisms will constantly be emerging.
Collapse
Affiliation(s)
- Li Tian
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Shi Shi
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Xiangmei Zhang
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Fubo Han
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Huijun Dong
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| |
Collapse
|
35
|
Heterologous Expression Reveals Ancient Properties of Tei3—A VanS Ortholog from the Teicoplanin Producer Actinoplanes teichomyceticus. Int J Mol Sci 2022; 23:ijms232415713. [PMID: 36555354 PMCID: PMC9779433 DOI: 10.3390/ijms232415713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Glycopeptide antibiotics (GPAs) are among the most clinically successful antimicrobials. GPAs inhibit cell-wall biosynthesis in Gram-positive bacteria via binding to lipid II. Natural GPAs are produced by various actinobacteria. Being themselves Gram-positives, the GPA producers evolved sophisticated mechanisms of self-resistance to avoid suicide during antibiotic production. These self-resistance genes are considered the primary source of GPA resistance genes actually spreading among pathogenic enterococci and staphylococci. The GPA-resistance mechanism in Actinoplanes teichomyceticus—the producer of the last-resort-drug teicoplanin—has been intensively studied in recent years, posing relevant questions about the role of Tei3 sensor histidine kinase. In the current work, the molecular properties of Tei3 were investigated. The setup of a GPA-responsive assay system in the model Streptomyces coelicolor allowed us to demonstrate that Tei3 functions as a non-inducible kinase, conferring high levels of GPA resistance in A. teichomyceticus. The expression of different truncated versions of tei3 in S. coelicolor indicated that both the transmembrane helices of Tei3 are crucial for proper functioning. Finally, a hybrid gene was constructed, coding for a chimera protein combining the Tei3 sensor domain with the kinase domain of VanS, with the latter being the inducible Tei3 ortholog from S. coelicolor. Surprisingly, such a chimera did not respond to teicoplanin, but indeed to the related GPA A40926. Coupling these experimental results with a further in silico analysis, a novel scenario on GPA-resistance and biosynthetic genes co-evolution in A. teichomyceticus was hereby proposed.
Collapse
|
36
|
Maione A, Pietra AL, Salvatore MM, Guida M, Galdiero E, de Alteriis E. Undesired Effect of Vancomycin Prolonged Treatment: Enhanced Biofilm Production of the Nosocomial Pathogen Candida auris. Antibiotics (Basel) 2022; 11:antibiotics11121771. [PMID: 36551428 PMCID: PMC9774269 DOI: 10.3390/antibiotics11121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Fungal infections are often consequent to prolonged antibiotic treatments. Vancomycin (Van) is the first-choice antibiotic in the treatment of Staphylococcus aureus infections associated with colonization of catheter surfaces. We demonstrate the direct effect of Van in promoting the formation of the biofilm of the emergent yeast pathogen Candida auris, developed in the conventional polystyrene microwell plate model, as well as on silicone surfaces (22 and 28% increase in total biomass, respectively) and on an S. aures biofilm, residual after vancomycin treatment, where C. auris achieved 99% of the mixed biofilm population. The effect of Van was assessed also in vivo, in the Galleria mellonella infection model, which showed higher mortality when infected with the yeast pathogen in the presence of the antibiotic. This evidence enhances awareness of the potential risk associated with prolonged antibiotic use in promoting fungal infections.
Collapse
Affiliation(s)
- Angela Maione
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: ; Tel.: +39-081-679182
| | | |
Collapse
|
37
|
Aerts R, Bogaerts J, Johannessen C, Herrebout WA. Vibrational Optical Activity Study of Four Antibiotic (Lipo)glycopeptides: Vancomycin, Oritavancin, Dalbavancin, and Teicoplanin. ACS OMEGA 2022; 7:43657-43664. [PMID: 36506196 PMCID: PMC9730478 DOI: 10.1021/acsomega.2c04584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The antibiotic glycopeptide class, of which vancomycin is the original compound, has received due attention over the past few decades in search of antibiotics to overcome resistances developed by bacteria. Crucial for the understanding and further development of glycopeptides that possess desired antibacterial effects is the determination of their conformational behavior, as this sheds light on the mechanism of action of the compound. Among others, vibrational optical activity (VOA) techniques (vibrational circular dichroism and Raman optical activity) can be deployed for this, but the question remains to what extent these spectroscopic techniques can provide information concerning the molecular class under investigation. This contribution takes the last hurdle in the search for the capabilities of the VOA techniques in the conformational analysis of the antibiotic glycopeptide class by extending research that was previously conducted for vancomycin toward its three derivatives: oritavancin, dalbavancin, and teicoplanin. The principal information that can be drawn from VOA spectra is the conformation of the rigid cyclic parts of the glycopeptides and the aromatic rings that are part hereof. The addition or removal of carbohydrates does not induce noticeable VOA spectral responses, preventing the determination of the conformation they adopt.
Collapse
|
38
|
Synthesis of an amphiphilic vancomycin aglycone derivative inspired by polymyxins: overcoming glycopeptide resistance in Gram-positive and Gram-negative bacteria in synergy with teicoplanin in vitro. Sci Rep 2022; 12:20921. [PMID: 36463278 PMCID: PMC9719540 DOI: 10.1038/s41598-022-24807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Gram-negative bacteria possess intrinsic resistance to glycopeptide antibiotics so these important antibacterial medications are only suitable for the treatment of Gram-positive bacterial infections. At the same time, polymyxins are peptide antibiotics, structurally related to glycopeptides, with remarkable activity against Gram-negative bacteria. With the aim of breaking the intrinsic resistance of Gram-negative bacteria against glycopeptides, a polycationic vancomycin aglycone derivative carrying an n-decanoyl side chain and five aminoethyl groups, which resembles the structure of polymyxins, was prepared. Although the compound by itself was not active against the Gram-negative bacteria tested, it synergized with teicoplanin against Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii, and it was able to potentiate vancomycin against these Gram-negative strains. Moreover, it proved to be active against vancomycin- and teicoplanin-resistant Gram-positive bacteria.
Collapse
|
39
|
Belakhov VV. Polyfunctional Drugs: Search, Development, Use in Medical Practice, and Environmental Aspects of Preparation and Application (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
40
|
A Modified Vancomycin Molecule Confers Potent Inhibitory Efficacy against Resistant Bacteria Mediated by Metallo-β-Lactamases. Molecules 2022; 27:molecules27227685. [PMID: 36431786 PMCID: PMC9693118 DOI: 10.3390/molecules27227685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Multidrug-resistant bacterial infections mediated by metallo-β-lactamases (MβLs) have grown into an emergent health threat, and development of novel antimicrobials is an ideal strategy to combat the infections. Herein, a novel vancomycin derivative Vb was constructed by conjugation of triazolylthioacetamide and vancomycin molecules, characterized by reverse-phase high performance liquid chromatography (HPLC) and confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The biological assays revealed that Vb effectively inhibited S. aureus and methicillin-resistant S. aureus (MRSA), gradually increased the antimicrobial effect of β-lactam antibiotics (cefazolin, meropenem and penicillin G) and exhibited a dose-dependent synergistic antibacterial effect against eight resistant strains tested, which was confirmed by the time-kill curves determination. Most importantly, Vb increased the antimicrobial effect of meropenem against the clinical isolates EC08 and EC10 and E. coli producing ImiS and CcrA, resulting in a 4- and 8-fold reduction in MIC values, respectively, at a dose up to 32 μg/mL. This work offers a promising scaffold for the development of MβLs inhibitors, specifically antimicrobials for clinically drug-resistant isolates.
Collapse
|
41
|
Flint AJ, Davis AP. Vancomycin mimicry: towards new supramolecular antibiotics. Org Biomol Chem 2022; 20:7694-7712. [PMID: 36165239 DOI: 10.1039/d2ob01381a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vancomycin is the best-known of the glycopeptide group antibiotics (GPAs), a family of agents which operate by binding the C-terminal deptide D-Ala-D-Ala. This anionic epitope is an interesting target because it plays a central role in bacterial cell wall synthesis, and is not readily modified by evolution. Accordingly, vancomycin has been in use for >60 years but has only provoked limited resistance. Agents which mimic vancomycin but are easier to synthesise and modify could serve as valuable weapons against pathogenic bacteria, broadening the scope of the GPAs and addressing the resistance that does exist. This article gives an overview of vancomycin's structure and action, surveys past work on vancomycin mimicry, and makes the case for renewed effort in the future.
Collapse
Affiliation(s)
- Alister J Flint
- University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Anthony P Davis
- University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
42
|
Abdelaziz M, Hefnawy A, Anter A, Abdellatif MM, Khalil MAF, Khalil IA. Silica-Coated Magnetic Nanoparticles for Vancomycin Conjugation. ACS OMEGA 2022; 7:30161-30170. [PMID: 36061717 PMCID: PMC9434613 DOI: 10.1021/acsomega.2c03226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Drug resistance is a global health challenge with thousands of deaths annually caused by bacterial multidrug resistance (MDR). Efforts to develop new antibacterial molecules do not meet the mounting needs imposed by the evolution of MDR. An alternative approach to overcome this challenge is developing targeted formulations that can enhance the therapeutic efficiency and limit side effects. In this aspect, vancomycin is a potent antibacterial agent that has inherent bacterial targeting properties by binding to the D-Ala-D-Ala moiety of the bacterial peptidoglycan. However, the use of vancomycin is associated with serious side effects that limit its clinical use. Herein, we report the development of vancomycin-conjugated magnetic nanoparticles using a simple conjugation method for targeted antibacterial activity. The nanoparticles were synthesized using a multistep process that starts by coating the nanoparticles with a silica layer, followed by binding an amide linker and then binding the vancomycin glycopeptide. The developed vancomycin-conjugated magnetic nanoparticles were observed to exhibit a spherical morphology and a particle size of 16.3 ± 2.6 nm, with a silica coating thickness of 5 nm and a total coating thickness of 8 nm. The vancomycin conjugation efficiency on the nanoparticles was measured spectrophotometrically to be 25.1%. Additionally, the developed formulation retained the magnetic activity of the nanoparticles, where it showed a saturation magnetization value of 51 emu/g, compared to 60 emu/g for bare magnetic nanoparticles. The in vitro cell biocompatibility demonstrated improved safety where vancomycin-conjugated nanoparticles showed IC50 of 183.43 μg/mL, compared to a much lower value of 54.11 μg/mL for free vancomycin. While the antibacterial studies showed a comparable activity of the developed formulation, the minimum inhibitory concentration was 25 μg/mL, compared to 20 μg/mL for free vancomycin. Accordingly, the reported formulation can be used as a platform for the targeted and efficient delivery of other drugs.
Collapse
Affiliation(s)
- Moustafa
M. Abdelaziz
- Department
of Bioengineering, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Amr Hefnawy
- Smyth
Laboratory, College of Pharmacy, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Asem Anter
- Microbiology
Unit, Drug Factory, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University of Science and Technology (MUST),
6th of October, Giza 12582, Egypt
| | - Menna M. Abdellatif
- Department
of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug
Manufacturing, Misr University for Science
and Technology, Giza 12582, Egypt
| | - Mahmoud A. F. Khalil
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Islam A. Khalil
- Department
of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt
| |
Collapse
|
43
|
Aslan AT, Akova M. Piperacillin–Tazobactam Plus Vancomycin-Associated Acute Kidney Injury in Adults: Can Teicoplanin or Other Antipseudomonal Beta-Lactams Be Remedies? Healthcare (Basel) 2022; 10:healthcare10081582. [PMID: 36011239 PMCID: PMC9407917 DOI: 10.3390/healthcare10081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous observational studies and meta-analyses have suggested that combination therapy consisting of piperacillin–tazobactam (TZP) and vancomycin (VAN) augments acute kidney injury (AKI) risk when compared to viable alternatives, such as cefepime–vancomycin (FEP–VAN) and meropenem–VAN. However, the exact pathophysiological mechanisms of this phenomenon are still unclear. One major limitation of the existing studies is the utilization of serum creatinine to quantify AKI since serum creatinine is not a sufficiently sensitive and specific biomarker to truly define the causal relationship between TZP–VAN exposure and nephrotoxicity. Even so, some preventive measures can be taken to reduce the risk of AKI when TZP–VAN is preferred. These measures include limiting the administration of TZP–VAN to 72 h, choosing FEP–VAN in place of TZP–VAN in appropriate cases, monitoring the VAN area under the curve level rather than the VAN trough level, avoiding exposure to other nephrotoxic agents, and minimizing the prescription of TZP–VAN for patients with a high risk of AKI. More data are needed to comment on the beneficial impact of the extended-infusion regimen of TZP on nephrotoxicity. Additionally, TZP and teicoplanin can be reasonable alternatives to TZP–VAN for the purpose of lowering AKI risk. However, the data are scarce to advocate this practice convincingly.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Department of Internal Medicine, Gölhisar State Hospital, Gölhisar, 15100 Burdur, Turkey
- Correspondence: ; Tel.: +90-312-305-1296
| | - Murat Akova
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University, Sihhiye, 06100 Ankara, Turkey
| |
Collapse
|
44
|
Hansen MH, Stegmann E, Cryle MJ. Beyond vancomycin: recent advances in the modification, reengineering, production and discovery of improved glycopeptide antibiotics to tackle multidrug-resistant bacteria. Curr Opin Biotechnol 2022; 77:102767. [PMID: 35933924 DOI: 10.1016/j.copbio.2022.102767] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Glycopeptide antibiotics (GPAs), which include vancomycin and teicoplanin, are important last-resort antibiotics used to treat multidrug-resistant Gram-positive bacterial infections. Whilst second-generation GPAs - generated through chemical modification of natural GPAs - have proven successful, the emergence of GPA resistance has underlined the need to develop new members of this compound class. Significant recent advances have been made in GPA research, including gaining an in-depth understanding of their biosynthesis, improving titre in production strains, developing new derivatives via novel chemical modifications and identifying a new mode of action for structurally diverse type-V GPAs. Taken together, these advances demonstrate significant untapped potential for the further development of GPAs to tackle the growing threat of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mathias H Hansen
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; EMBL Australia, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; EMBL Australia, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| |
Collapse
|
45
|
Vacariu CM, Tanner ME. Recent Advances in the Synthesis and Biological Applications of Peptidoglycan Fragments. Chemistry 2022; 28:e202200788. [PMID: 35560956 DOI: 10.1002/chem.202200788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/09/2022]
Abstract
The biosynthesis, breakdown, and modification of peptidoglycan (PG) play vital roles in both bacterial viability and in the response of human physiology to bacterial infection. Studies on PG biochemistry are hampered by the fact that PG is an inhomogeneous insoluble macromolecule. Chemical synthesis is therefore an important means to obtain PG fragments that may serve as enzyme substrates and elicitors of the human immune response. This review outlines the recent advances in the synthesis and biochemical studies of PG fragments, PG biosynthetic intermediates (such as Park's nucleotides and PG lipids), and PG breakdown products (such as muramyl dipeptides and anhydro-muramic acid-containing fragments). A rich variety of synthetic approaches has been applied to preparing such compounds since carbohydrate, peptide, and phospholipid chemical methodologies must all be applied.
Collapse
Affiliation(s)
- Condurache M Vacariu
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
47
|
Freitas S, Castelo-Branco R, Wenzel-Storjohann A, Vasconcelos VM, Tasdemir D, Leão PN. Structure and Biosynthesis of Desmamides A-C, Lipoglycopeptides from the Endophytic Cyanobacterium Desmonostoc muscorum LEGE 12446. JOURNAL OF NATURAL PRODUCTS 2022; 85:1704-1714. [PMID: 35793792 PMCID: PMC9315949 DOI: 10.1021/acs.jnatprod.2c00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Certain cyanobacteria of the secondary metabolite-rich order Nostocales can establish permanent symbioses with a large number of cycads, by accumulating in their coralloid roots and shifting their metabolism to dinitrogen fixation. Here, we report the discovery of two new lipoglycopeptides, desmamides A (1) and B (2), together with their aglycone desmamide C (3), from the nostocalean cyanobacterium Desmonostoc muscorum LEGE 12446 isolated from a cycad (Cycas revoluta) coralloid root. The chemical structures of the compounds were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The desmamides are decapeptides featuring O-glycosylation of tyrosine (in 1 and 2) and an unusual 3,5-dihydroxy-2-methyldecanoic acid residue. The biosynthesis of the desmamides was studied by substrate incubation experiments and bioinformatics. We describe herein the dsm biosynthetic gene cluster and propose it to be associated with desmamide production. The discovery of this class of very abundant (>1.5% d.w.) bacterial lipoglycopeptides paves the way for exploration of their potential role in root endosymbiosis.
Collapse
Affiliation(s)
- Sara Freitas
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department
of Biology, Faculty of Sciences, University
of Porto Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Raquel Castelo-Branco
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Arlette Wenzel-Storjohann
- GEOMAR
Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz
Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106 Kiel, Germany
| | - Vitor M. Vasconcelos
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department
of Biology, Faculty of Sciences, University
of Porto Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Deniz Tasdemir
- GEOMAR
Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz
Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106 Kiel, Germany
- Kiel
University, Christian-Albrechts-Platz
4, 24118 Kiel, Germany
| | - Pedro N. Leão
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
48
|
Costa M, Meirinhos C, Cunha E, Gomes D, Pereira M, Dias R, Tavares L, Oliveira M. Nisin Mutant Prevention Concentration and the Role of Subinhibitory Concentrations on Resistance Development by Diabetic Foot Staphylococci. Antibiotics (Basel) 2022; 11:antibiotics11070972. [PMID: 35884226 PMCID: PMC9311964 DOI: 10.3390/antibiotics11070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
The most prevalent microorganism in diabetic foot infections (DFI) is Staphylococcus aureus, an important multidrug-resistant pathogen. The antimicrobial peptide nisin is a promising compound for DFI treatment, being effective against S. aureus. However, to avoid the selection of resistant mutants, correct drug therapeutic doses must be established, being also important to understand if nisin subinhibitory concentrations (subMIC) can potentiate resistant genes transfer between clinical isolates or mutations in genes associated with nisin resistance. The mutant selection window (MSW) of nisin was determined for 23 DFI S. aureus isolates; a protocol aiming to prompt vanA horizontal transfer between enterococci to clinical S. aureus was performed; and nisin subMIC effect on resistance evolution was assessed through whole-genome sequencing (WGS) applied to isolates subjected to a MEGA-plate assay. MSW ranged from 5–360 μg/mL for two isolates, from 5–540 μg/mL for three isolates, and from 5–720 μg/mL for one isolate. In the presence of nisin subMIC values, no transconjugants were obtained, indicating that nisin does not seem to promote vanA transfer. Finally, WGS analysis showed that incubation in the presence of nisin subMIC did not promote the occurrence of significant mutations in genes related to nisin resistance, supporting nisin application to DFI treatment.
Collapse
Affiliation(s)
- Margarida Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Cláudia Meirinhos
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Eva Cunha
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
- Correspondence:
| | - Diana Gomes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Marcelo Pereira
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.P.); (R.D.)
| | - Ricardo Dias
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.P.); (R.D.)
| | - Luís Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
49
|
Zhou H, Chen Q, Song X, He L, Liu R. Surface molecularly imprinted solid-phase extraction for the determination of vancomycin in plasma samples using HPLC-MS/MS. ANAL SCI 2022; 38:1171-1179. [PMID: 35841522 DOI: 10.1007/s44211-022-00143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Vancomycin is a glycopeptide antibiotic used to treat infections caused by Gram-positive bacteria. Due to the narrow therapeutic index of vancomycin, it is necessary to develop a sensitive and reliable analytical method to monitor the drug concentration in plasma. A novel method based on surface molecularly imprinted solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for the determination of vancomycin in plasma sample was developed. The plasma sample was cleaned up through the solid-phase extraction process before the analysis. The calibration standard of vancomycin in plasma ranged between 1 and 100 ng/mL, and the correlation coefficient (r) was 0.9993. The average recoveries were from 94.3 to 104.0%, and the precision was less than 10.5%. The limit of detection and limit of quantification were 0.5 ng/mL and 1 ng/mL, respectively. The method validated was successfully used for the detection of vancomycin in mice after oral administration.
Collapse
Affiliation(s)
- Hao Zhou
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, 510380, China
| | - Qianqian Chen
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuqin Song
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Limin He
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rong Liu
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
50
|
Lee JH, Choi MG, Park HJ, Kim HC, Choi CM. Comparison of mortality and clinical failure rates between vancomycin and teicoplanin in patients with methicillin-resistant Staphylococcus aureus pneumonia. BMC Infect Dis 2022; 22:600. [PMID: 35799129 PMCID: PMC9264637 DOI: 10.1186/s12879-022-07549-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background Very few studies have compared the effects and side effects of vancomycin and teicoplanin in patients with methicillin-resistant Staphylococcus aureus pneumonia. This study aimed to compare the efficacy and safety of vancomycin and teicoplanin in patients with methicillin-resistant Staphylococcus aureus pneumonia. Methods This study examined 116 patients with methicillin-resistant Staphylococcus aureus pneumonia who met the inclusion criteria and were treated with either vancomycin (n = 54) or teicoplanin (n = 62). The primary (i.e., clinical failure during treatment) and secondary outcomes (i.e., mortality rates, discontinuation of study drugs due to treatment failure, side effects, and clinical cure) were evaluated. Results The vancomycin group presented lower clinical failure rates (25.9% vs. 61.3%, p < 0.001), discontinuation due to treatment failure (22.2% vs. 41.9%, p = 0.024), and mortality rates (3.7% vs 19.4%, p = 0.010). The Cox proportional hazard model revealed that teicoplanin was a significant clinical failure predictor compared with vancomycin (adjusted odds ratio, 2.198; 95% confidence interval 1.163–4.154). The rates of drug change due to side effects were higher in the vancomycin group than in the teicoplanin group (24.1% vs. 1.6%, p < 0.001). Conclusions Vancomycin presented favorable treatment outcomes and more side effects compared with teicoplanin, which suggests that clinicians would need to consider the efficacy and potential side effects of these drugs before prescription. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07549-2.
Collapse
Affiliation(s)
- Jang Ho Lee
- Department of Pulmonology and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Myeong Geun Choi
- Department of Pulmonology and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyung Jun Park
- Department of Pulmonology and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho Cheol Kim
- Department of Pulmonology and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Min Choi
- Department of Pulmonology and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Centre, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|