1
|
Liu F, Lin X, Wu X, Sui X, Ren W, Wang Q, Wang Y, Luo Y, Cao J. The role of TRAP1 in regulating mitochondrial dynamics during acute hypoxia-induced brain injury. J Transl Med 2024; 22:974. [PMID: 39468583 PMCID: PMC11514808 DOI: 10.1186/s12967-024-05780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Brain damage caused by acute hypoxia is associated with the physiological activities of mitochondria. Although mitochondria being dynamically regulated, our comprehensive understanding of the response of specific brain cell types to acute hypoxia remains ambiguous. Tumor necrosis factor receptor-associated protein 1 (TRAP1), a mitochondrial-based molecular chaperone, plays a role in controlling mitochondrial movements. Herein, we demonstrated that acute hypoxia significantly alters mitochondria morphology and functionality in both in vivo and in vitro brain injury experiments. Summary-data-based Mendelian Randomization (SMR) analyses revealed possible causative links between mitochondria-related genes and hypoxia injury. Advancing the protein-protein interaction network and molecular docking further elucidated the associations between TRAP1 and mitochondrial dynamics. Furthermore, it was shown that TRAP1 knockdown levels variably affected the expression of key mitochondrial dynamics proteins (DRP1, FIS1, and MFN1/2) in primary hippocampal neurons, astrocytes, and BV-2 cell, leading to changes in mitochondrial structure and function. Understanding the function of TRAP1 in altering mitochondrial physiological activity during hypoxia-induced acute brain injury could help serve as a potential therapeutic target to mitigate neurological damage.
Collapse
Affiliation(s)
- Fengying Liu
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, No.28, Fuxing road, Beijing, 100853, China
| | - Xueyang Lin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, No. 27 Taiping Road, Beijing, 100850, China
| | - Xiaodong Wu
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, No.28, Fuxing road, Beijing, 100853, China
| | - Xi Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, No. 27 Taiping Road, Beijing, 100850, China
| | - Wenwen Ren
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, No.28, Fuxing road, Beijing, 100853, China
| | - Qian Wang
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, No.28, Fuxing road, Beijing, 100853, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, No. 27 Taiping Road, Beijing, 100850, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, No. 27 Taiping Road, Beijing, 100850, China.
| | - Jiangbei Cao
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, No.28, Fuxing road, Beijing, 100853, China.
| |
Collapse
|
2
|
Kaushal S, Gupta S, Shefrin S, Vora DS, Kaul SC, Sundar D, Wadhwa R, Dhanjal JK. Synthetic and Natural Inhibitors of Mortalin for Cancer Therapy. Cancers (Basel) 2024; 16:3470. [PMID: 39456564 PMCID: PMC11506508 DOI: 10.3390/cancers16203470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Upregulation of stress chaperone Mortalin has been closely linked to the malignant transformation of cells, tumorigenesis, the progression of tumors to highly aggressive stages, metastasis, drug resistance, and relapse. Various in vitro and in vivo assays have provided evidence of the critical role of Mortalin upregulation in promoting cancer cell characteristics, including proliferation, migration, invasion, and the inhibition of apoptosis, a consistent feature of most cancers. Given its critical role in several steps in oncogenesis and multi-modes of action, Mortalin presents a promising target for cancer therapy. Consequently, Mortalin inhibitors are emerging as potential anti-cancer drugs. In this review, we discuss various inhibitors of Mortalin (peptides, small RNAs, natural and synthetic compounds, and antibodies), elucidating their anti-cancer potentials.
Collapse
Affiliation(s)
- Shruti Kaushal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Samriddhi Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Seyad Shefrin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
| | - Dhvani Sandip Vora
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| |
Collapse
|
3
|
Li JJ, Xin N, Yang C, Tavizon LA, Hong R, Park J, Moore TI, Tharyan RG, Antebi A, Kim HE. Unveiling the Intercompartmental Signaling Axis: Mitochondrial to ER Stress Response (MERSR) and its Impact on Proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556674. [PMID: 38187690 PMCID: PMC10769184 DOI: 10.1101/2023.09.07.556674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Maintaining protein homeostasis is essential for cellular health. Our previous research uncovered a cross-compartmental Mitochondrial to Cytosolic Stress Response, activated by the perturbation of mitochondrial proteostasis, which ultimately results in the improvement of proteostasis in the cytosol. Here, we found that this signaling axis also influences the unfolded protein response of the endoplasmic reticulum (UPR ER ), suggesting the presence of a Mitochondria to ER Stress Response (MERSR). During MERSR, the IRE1 branch of UPR ER is inhibited, introducing a previously unknown regulatory component of MCSR. Moreover, proteostasis is enhanced through the upregulation of the PERK-eIF2α signaling pathway, increasing phosphorylation of eIF2α and improving the ER's ability to handle proteostasis. MERSR activation in both polyglutamine and amyloid-beta peptide-expressing C. elegans disease models also led to improvement in both aggregate burden and overall disease outcome. These findings shed light on the coordination between the mitochondria and the ER in maintaining cellular proteostasis and provide further evidence for the importance of intercompartmental signaling.
Collapse
|
4
|
Ragab EM, Khamis AA, Gamal DME, Mohamed TM. Comprehensive overview of how to fade into succinate dehydrogenase dysregulation in cancer cells by naringenin-loaded chitosan nanoparticles. GENES & NUTRITION 2024; 19:10. [PMID: 38802732 PMCID: PMC11131324 DOI: 10.1186/s12263-024-00740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/10/2024] [Indexed: 05/29/2024]
Abstract
Mitochondrial respiration complexes play a crucial function. As a result, dysfunction or change is intimately associated with many different diseases, among them cancer. The epigenetic, evolutionary, and metabolic effects of mitochondrial complex IΙ are the primary concerns of our review. Provides novel insight into the vital role of naringenin (NAR) as an intriguing flavonoid phytochemical in cancer treatment. NAR is a significant phytochemical that is a member of the flavanone group of polyphenols and is mostly present in citrus fruits, such as grapefruits, as well as other fruits and vegetables, like tomatoes and cherries, as well as foods produced from medicinal herbs. The evidence that is now available indicates that NAR, an herbal remedy, has significant pharmacological qualities and anti-cancer effects. Through a variety of mechanisms, including the induction of apoptosis, cell cycle arrest, restriction of angiogenesis, and modulation of several signaling pathways, NAR prevents the growth of cancer. However, the hydrophobic and crystalline structure of NAR is primarily responsible for its instability, limited oral bioavailability, and water solubility. Furthermore, there is no targeting and a high rate of breakdown in an acidic environment. These shortcomings are barriers to its efficient medical application. Improvement targeting NAR to mitochondrial complex ΙΙ by loading it on chitosan nanoparticles is a promising strategy.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Zhou H, Wu Y, Cai J, Zhang D, Lan D, Dai X, Liu S, Song T, Wang X, Kong Q, He Z, Tan J, Zhang J. Micropeptides: potential treatment strategies for cancer. Cancer Cell Int 2024; 24:134. [PMID: 38622617 PMCID: PMC11020647 DOI: 10.1186/s12935-024-03281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 04/17/2024] Open
Abstract
Some noncoding RNAs (ncRNAs) carry open reading frames (ORFs) that can be translated into micropeptides, although noncoding RNAs (ncRNAs) have been previously assumed to constitute a class of RNA transcripts without coding capacity. Furthermore, recent studies have revealed that ncRNA-derived micropeptides exhibit regulatory functions in the development of many tumours. Although some of these micropeptides inhibit tumour growth, others promote it. Understanding the role of ncRNA-encoded micropeptides in cancer poses new challenges for cancer research, but also offers promising prospects for cancer therapy. In this review, we summarize the types of ncRNAs that can encode micropeptides, highlighting recent technical developments that have made it easier to research micropeptides, such as ribosome analysis, mass spectrometry, bioinformatics methods, and CRISPR/Cas9. Furthermore, based on the distribution of micropeptides in different subcellular locations, we explain the biological functions of micropeptides in different human cancers and discuss their underestimated potential as diagnostic biomarkers and anticancer therapeutic targets in clinical applications, information that may contribute to the discovery and development of new micropeptide-based tools for early diagnosis and anticancer drug development.
Collapse
Affiliation(s)
- He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Yan Wu
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi, 563000, China
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China.
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
6
|
Alghusen IM, Carman MS, Wilkins H, Ephrame SJ, Qiang A, Dias WB, Fedosyuk H, Denson AR, Swerdlow RH, Slawson C. O-GlcNAc regulates the mitochondrial integrated stress response by regulating ATF4. Front Aging Neurosci 2023; 15:1326127. [PMID: 38192280 PMCID: PMC10773771 DOI: 10.3389/fnagi.2023.1326127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Background Accumulation of mitochondrial dysfunctional is a hallmark of age-related neurodegeneration including Alzheimer's disease (AD). Impairment of mitochondrial quality control mechanisms leading to the accumulation of damaged mitochondria and increasing neuronal stress. Therefore, investigating the basic mechanisms of how mitochondrial homeostasis is regulated is essential. Herein, we investigate the role of O-GlcNAcylation, a single sugar post-translational modification, in controlling mitochondrial stress-induced transcription factor Activating Transcription Factor 4 (ATF4). Mitochondrial dysfunction triggers the integrated stress response (ISRmt), in which the phosphorylation of eukaryotic translation initiation factor 2α results in the translation of ATF4. Methods We used patient-derived induced pluripotent stem cells, a transgenic mouse model of AD, SH-SY5Y neuroblastoma and HeLa cell-lines to examine the effect of sustained O-GlcNAcase inhibition by Thiamet-G (TMG) on ISRmt using biochemical analyses. Results We show that TMG elevates ATF4 protein levels upon mitochondrial stress in SH-SY5Y neuroblastoma and HeLa cell-lines. An indirect downstream target of ATF4 mitochondrial chaperone glucose-regulated protein 75 (GRP75) is significantly elevated. Interestingly, knock-down of O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc, in SH-SY5Y increases ATF4 protein and mRNA expression. Additionally, ATF4 target gene Activating Transcription Factor 5 (ATF5) is significantly elevated at both the protein and mRNA level. Brains isolated from TMG treated mice show elevated levels of ATF4 and GRP75. Importantly, ATF4 occupancy increases at the ATF5 promoter site in brains isolated from TMG treated mice suggesting that O-GlcNAc is regulating ATF4 targeted gene expression. Interestingly, ATF4 and GRP75 are not induced in TMG treated familial Alzheimer's Disease mice model. The same results are seen in a human in vitro model of AD. Conclusion Together, these results indicate that in healthy conditions, O-GlcNAc regulates the ISRmt through regulating ATF4, while manipulating O-GlcNAc in AD has no effect on ISRmt.
Collapse
Affiliation(s)
- Ibtihal M. Alghusen
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marisa S. Carman
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Heather Wilkins
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sophiya John Ephrame
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Amy Qiang
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wagner B. Dias
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Halyna Fedosyuk
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aspin R. Denson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Chad Slawson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
7
|
Cisterna B, Lofaro FD, Lacavalla MA, Boschi F, Malatesta M, Quaglino D, Zancanaro C, Boraldi F. Aged gastrocnemius muscle of mice positively responds to a late onset adapted physical training. Front Cell Dev Biol 2023; 11:1273309. [PMID: 38020923 PMCID: PMC10679468 DOI: 10.3389/fcell.2023.1273309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: A regular physical training is known to contribute to preserve muscle mass and strength, maintaining structure and function of neural and vascular compartments and preventing muscle insulin resistance and inflammation. However, physical activity is progressively reduced during aging causing mobility limitations and poor quality of life. Although physical exercise for rehabilitation purposes (e.g., after fractures or cardiovascular events) or simply aiming to counteract the development of sarcopenia is frequently advised by physicians, nevertheless few data are available on the targets and the global effects on the muscle organ of adapted exercise especially if started at old age. Methods: To contribute answering this question for medical translational purposes, the proteomic profile of the gastrocnemius muscle was analyzed in 24-month-old mice undergoing adapted physical training on a treadmill for 12 weeks or kept under a sedentary lifestyle condition. Proteomic data were implemented by morphological and morphometrical ultrastructural evaluations. Results and Discussion: Data demonstrate that muscles can respond to adapted physical training started at old age, positively modulating their morphology and the proteomic profile fostering protective and saving mechanisms either involving the extracellular compartment as well as muscle cell components and pathways (i.e., mitochondrial processes, cytoplasmic translation pathways, chaperone-dependent protein refolding, regulation of skeletal muscle contraction). Therefore, this study provides important insights on the targets of adapted physical training, which can be regarded as suitable benchmarks for future in vivo studies further exploring the effects of this type of physical activity by functional/metabolic approaches.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Maria Assunta Lacavalla
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Manuela Malatesta
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Zancanaro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Zhang Y, Miao Y, Tan J, Chen F, Lei P, Zhang Q. Identification of mitochondrial related signature associated with immune microenvironment in Alzheimer's disease. J Transl Med 2023; 21:458. [PMID: 37434203 DOI: 10.1186/s12967-023-04254-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease. Mitochondrial dysfunction and immune responses are important factors in the pathogenesis of AD, but their crosstalk in AD has not been studied. In this study, the independent role and interaction of mitochondria-related genes and immune cell infiltration in AD were investigated using bioinformatics methods. METHODS The datasets of AD were obtained from NCBI Gene Expression Omnibus (GEO), and the data of mitochondrial genes was from MitoCarta3.0 database. Subsequently, differential expression genes (DEGs) screening and GSEA functional enrichment analysis were performed. The intersection of DEGs and mitochondrial related genes was used to obtain MitoDEGs. The MitoDEGs most relevant to AD were determined by Least absolute shrinkage and selection operator and multiple support vector machine recursive feature elimination, as well as protein-protein interactions (PPI) network and random forest. The infiltration of 28 kinds of immune cells in AD was analyzed by ssGSEA, and the relationship between hub MitoDEGs and the proportion of immune infiltration was studied. The expression levels of hub MitoDEGs were verified in cell models and AD mice, and the role of OPA1 in mitochondrial damage and neuronal apoptosis was investigated. RESULTS The functions and pathways of DEGs were significantly enriched in AD, including immune response activation, IL1R pathway, mitochondrial metabolism, oxidative damage response and electron transport chain-oxphos system in mitochondria. Hub MitoDEGs closely related to AD were obtained based on PPI network, random forest and two machine learning algorithms. Five hub MitoDEGs associated with neurological disorders were identified by biological function examination. The hub MitoDEGs were found to be correlated with memory B cell, effector memory CD8 T cell, activated dendritic cell, natural killer T cell, type 17 T helper cell, Neutrophil, MDSC, plasmacytoid dendritic cell. These genes can also be used to predict the risk of AD and have good diagnostic efficacy. In addition, the mRNA expression levels of BDH1, TRAP1, OPA1, DLD in cell models and AD mice were consistent with the results of bioinformatics analysis, and expression levels of SPG7 showed a downward trend. Meanwhile, OPA1 overexpression alleviated mitochondrial damage and neuronal apoptosis induced by Aβ1-42. CONCLUSIONS Five potential hub MitoDEGs most associated with AD were identified. Their interaction with immune microenvironment may play a crucial role in the occurrence and prognosis of AD, which provides a new insight for studying the potential pathogenesis of AD and exploring new targets.
Collapse
Affiliation(s)
- Yaodan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Tianjin Geriatrics Institute, Anshan Road No. 154, Tianjin, 300052, China
| | - Yuyang Miao
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Tianjin Geriatrics Institute, Anshan Road No. 154, Tianjin, 300052, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Tianjin Geriatrics Institute, Anshan Road No. 154, Tianjin, 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
- Tianjin Geriatrics Institute, Anshan Road No. 154, Tianjin, 300052, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
- Tianjin Geriatrics Institute, Anshan Road No. 154, Tianjin, 300052, China.
| |
Collapse
|
9
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
10
|
Jiang RQ, Li QQ, Sheng R. Mitochondria associated ER membrane and cerebral ischemia: molecular mechanisms and therapeutic strategies. Pharmacol Res 2023; 191:106761. [PMID: 37028777 DOI: 10.1016/j.phrs.2023.106761] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria are two important organelles that are highly dynamic in mammalian cells. The physical connection between them is mitochondria associated ER membranes (MAM). In recent years, studies on endoplasmic reticulum and mitochondria have shifted from independent division to association and comparison, especially MAM has gradually become a research hotspot. MAM connects the two organelles, not only to maintain their independent structure and function, but also to promote metabolism and signal transduction between them. This paper reviews the morphological structure and protein localization of MAM, and briefly analyzes the functions of MAM in regulating Ca2+ transport, lipid synthesis, mitochondrial fusion and fission, endoplasmic reticulum stress and oxidative stress, autophagy and inflammation. Since ER stress and mitochondrial dysfunction are important pathological events in neurological diseases including ischemic stroke, MAM is likely to play an important role in cerebral ischemia by regulating the signaling of the two organelles and the crosstalk of the two pathological events.
Collapse
Affiliation(s)
- Rui-Qi Jiang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Szelechowski M, Texier B, Prime M, Atamena D, Belenguer P. Mortalin/Hspa9 involvement and therapeutic perspective in Parkinson’s disease. Neural Regen Res 2023; 18:293-298. [PMID: 35900406 PMCID: PMC9396523 DOI: 10.4103/1673-5374.346487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intracellular calcium fluxes, Mortalin is a chaperone protein that plays crucial roles in neuronal homeostasis and activity. However, its expression and stability are strongly modified in response to cellular stresses, in particular upon altered oxidative conditions during neurodegeneration. Here, we report and discuss the abundant literature that has highlighted its contribution to the pathophysiology of Parkinson’s disease, as well as its therapeutic and prognostic potential in this still incurable pathology.
Collapse
|
12
|
Seth P. Insights Into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front Cell Dev Biol 2022; 10:903031. [PMID: 35859895 PMCID: PMC9292388 DOI: 10.3389/fcell.2022.903031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin is a chaperone protein that regulates physiological functions of cells. Its multifactorial role allows cells to survive pathological conditions. Pharmacological, chemical, and siRNA-mediated downregulation of mortalin increases oxidative stress, mitochondrial dysfunction leading to unregulated inflammation. In addition to its well-characterized function in controlling oxidative stress, mitochondrial health, and maintaining physiological balance, recent evidence from human brain autopsies and cell culture–based studies suggests a critical role of mortalin in attenuating the damage seen in several neurodegenerative diseases. Overexpression of mortalin provides an important line of defense against accumulated proteins, inflammation, and neuronal loss, a key characteristic feature observed in neurodegeneration. Neurodegenerative diseases are a group of progressive disorders, sharing pathological features in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and HIV-associated neurocognitive disorder. Aggregation of insoluble amyloid beta-proteins and neurofibrillary tangles in Alzheimer’s disease are among the leading cause of neuropathology in the brain. Parkinson’s disease is characterized by the degeneration of dopamine neurons in substantia nigra pars compacta. A substantial synaptic loss leading to cognitive decline is the hallmark of HIV-associated neurocognitive disorder (HAND). Brain autopsies and cell culture studies showed reduced expression of mortalin in Alzheimer’s, Parkinson’s, and HAND cases and deciphered the important role of mortalin in brain cells. Here, we discuss mortalin and its regulation and describe how neurotoxic conditions alter the expression of mortalin and modulate its functions. In addition, we also review the neuroprotective role of mortalin under neuropathological conditions. This knowledge showcases the importance of mortalin in diverse brain functions and offers new opportunities for the development of therapeutic targets that can modulate the expression of mortalin using chemical compounds.
Collapse
Affiliation(s)
- Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
13
|
Joshi A, Ito T, Picard D, Neckers L. The Mitochondrial HSP90 Paralog TRAP1: Structural Dynamics, Interactome, Role in Metabolic Regulation, and Inhibitors. Biomolecules 2022; 12:biom12070880. [PMID: 35883436 PMCID: PMC9312948 DOI: 10.3390/biom12070880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
The HSP90 paralog TRAP1 was discovered more than 20 years ago; yet, a detailed understanding of the function of this mitochondrial molecular chaperone remains elusive. The dispensable nature of TRAP1 in vitro and in vivo further complicates an understanding of its role in mitochondrial biology. TRAP1 is more homologous to the bacterial HSP90, HtpG, than to eukaryotic HSP90. Lacking co-chaperones, the unique structural features of TRAP1 likely regulate its temperature-sensitive ATPase activity and shed light on the alternative mechanisms driving the chaperone’s nucleotide-dependent cycle in a defined environment whose physiological temperature approaches 50 °C. TRAP1 appears to be an important bioregulator of mitochondrial respiration, mediating the balance between oxidative phosphorylation and glycolysis, while at the same time promoting mitochondrial homeostasis and displaying cytoprotective activity. Inactivation/loss of TRAP1 has been observed in several neurodegenerative diseases while TRAP1 expression is reported to be elevated in multiple cancers and, as with HSP90, evidence of addiction to TRAP1 has been observed. In this review, we summarize what is currently known about this unique HSP90 paralog and why a better understanding of TRAP1 structure, function, and regulation is likely to enhance our understanding of the mechanistic basis of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Abhinav Joshi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Takeshi Ito
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Didier Picard
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland;
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
- Correspondence: ; Tel.: +1-240-858-3918
| |
Collapse
|
14
|
Evaluation of aminopyrrolidine amide to improve chloride transport in CFTR-defective cells. Bioorg Med Chem Lett 2022; 72:128866. [PMID: 35752380 DOI: 10.1016/j.bmcl.2022.128866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
The aminopyrrolidine amide PF-429242 is a specific inhibitor of the Site-1 Protease which is responsible for the cleavage, and thus the activation of the Activating Transcription Factor6 that down regulates many genes, during the Unfolded Protein Response. We hypothesized that PF-429242 could be used to prevent the ATF6-dependent down regulation of some genes. We chose the CFTR gene encoding the CFTR chloride channel as a model because it is down-regulated by ATF6 in Cystic Fibrosis. We evaluated the action of PF-429242 in human bronchial cells expressing the most frequent mutation of CFTR (p.Phe508del) found in patients. We observed that PF-429242 increases the synthesis of the mRNA and the protein encoded by the CFTR gene harbouring the mutation. We also observed that PF-429242 alleviates the defects of the p.Phe508del-CFTR channel in human Cystic Fibrosis cells. Our results suggest that aminopyrrolidine amide is a potential therapeutic target for Cystic Fibrosis that could also have beneficial effects in other diseases involving CFTR, such as the Chronic Obstructive Pulmonary Disease.
Collapse
|
15
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
16
|
Mastroiacovo F, Biagioni F, Lenzi P, Lazzeri G, Ferrucci M, Puglisi-Allegra S, Frati A, Nicoletti F, Fornai F. Within the Ischemic Penumbra, Sub-Cellular Compartmentalization of Heat Shock Protein 70 Overlaps with Autophagy Proteins and Fails to Merge with Lysosomes. Molecules 2022; 27:molecules27103122. [PMID: 35630599 PMCID: PMC9144499 DOI: 10.3390/molecules27103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
The brain area which surrounds the frankly ischemic region is named the area penumbra. In this area, most cells are spared although their oxidative metabolism is impaired. area penumbra is routinely detected by immunostaining of a molecule named Heat Shock Protein 70 (HSP70). Within the area penumbra, autophagy-related proteins also increase. Therefore, in the present study, the autophagy-related microtubule-associated protein I/II-Light Chain 3 (LC3) was investigated within the area penumbra along with HSP70. In C57 black mice, ischemia was induced by permanent occlusion of the distal part of the middle cerebral artery. Immunofluorescence and electron microscopy show that LC3 and HSP70 are overexpressed and co-localize within the area penumbra in the same cells and within similar subcellular compartments. In the area penumbra, marked loss of co-localization of HSP70 and LC3-positive autophagy vacuoles, with lysosomal-associated membrane protein 1 (LAMP1) or cathepsin-D-positive lysosome vacuoles occurs. This study indicates that, within the area penumbra, a failure of autophagolysosomes depends on defective compartmentalization of LC3, LAMP1 and cathepsin-D and a defect in merging between autophagosomes and lysosomes. Such a deleterious effect is likely to induce a depletion of autophagolysosomes and cell clearing systems, which needs to be rescued in the process of improving neuronal survival.
Collapse
Affiliation(s)
- Federica Mastroiacovo
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.)
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.)
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.)
| | - Stefano Puglisi-Allegra
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
- Neurosurgery Division, Department of Human Neurosciences, Sapienza University, 00135 Rome, Italy
| | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
- Department of Physiology and Pharmacology, University Sapienza of Rome, 00135 Rome, Italy
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.)
- Correspondence: or ; Tel.: +39-050-2218601
| |
Collapse
|
17
|
Wang Q, Xie L, Wang Y, Jin B, Ren J, Dong Z, Chen G, Liu D. Djhsp70s, especially Djhsp70c, play a key role in planarian regeneration and tissue homeostasis by regulating cell proliferation and apoptosis. Gene 2022; 820:146215. [PMID: 35122923 DOI: 10.1016/j.gene.2022.146215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Heat shock protein 70 family (HSP70s) is one of the most conserved and important group of HSPs as molecular chaperones, which plays an important role in cytoprotection, anti-apoptosis and so on. However, the molecular mechanism of HSP70s in animal regeneration remains to be delineated. In this study, we investigate the roles of HSP70s in regeneration of planarian. The four genes, Djhsp70a, Djhsp70b, Djhsp70c, and Djhsp70d of the HSP70s, are selected from the transcriptome database, because of their high expression levels in planarians. We then study the biological roles of each gene by conducting various experimental techniques, including RNAi, RT-PCR, WISH, Whole-mount immunostaining and TUNEL. The results show: (1) External stressors, such as temperature, tissue damage and ionic liquid upregulate the expression of Djhsp70s significantly. (2) The gene expression of Djhsp70s in planarians exhibits dynamic patterns. According to the result of WISH, the Djhsp70s are mainly expressed in parenchymal tissues on both sides of the body as well as blastema. It is consistent with the data of qRT-PCR. (3) After RNA interference of Djhsp70s, the worms experience cephalic regression and lysis, body curling, stagnant regeneration and death. (4) Knockdown of Djhsp70s affect the cell proliferation and apoptosis. These results suggest that Djhsp70s are not only conserved in cytoprotection, but involved in homeostasis maintenance and regeneration process by regulating coordination of cell proliferation and apoptosis in planarians.
Collapse
Affiliation(s)
- Qinghua Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Lijuan Xie
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Yixuan Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Jing Ren
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
18
|
Abstract
Stroke remains a leading cause of death and disability, with limited therapeutic options and suboptimal tools for diagnosis and prognosis. High throughput technologies such as proteomics generate large volumes of experimental data at once, thus providing an advanced opportunity to improve the status quo by facilitating identification of novel therapeutic targets and molecular biomarkers. Proteomics studies in animals are largely designed to decipher molecular pathways and targets altered in brain tissue after stroke, whereas studies in human patients primarily focus on biomarker discovery in biofluids and, more recently, in thrombi and extracellular vesicles. Here, we offer a comprehensive review of stroke proteomics studies conducted in both animal and human specimen and present our view on limitations, challenges, and future perspectives in the field. In addition, as a unique resource for the scientific community, we provide extensive lists of all proteins identified in proteomic studies as altered by stroke and perform postanalysis of animal data to reveal stroke-related cellular processes and pathways.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (K.H.)
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University School of Medicine, Durham, NC (W.Y.)
| |
Collapse
|
19
|
Abstract
Cellular redox homeostasis is precisely balanced by generation and elimination of reactive oxygen species (ROS). ROS are not only capable of causing oxidation of proteins, lipids and DNA to damage cells but can also act as signaling molecules to modulate transcription factors and epigenetic pathways that determine cell survival and death. Hsp70 proteins are central hubs for proteostasis and are important factors to ameliorate damage from different kinds of stress including oxidative stress. Hsp70 members often participate in different cellular signaling pathways via their clients and cochaperones. ROS can directly cause oxidative cysteine modifications of Hsp70 members to alter their structure and chaperone activity, resulting in changes in the interactions between Hsp70 and their clients or cochaperones, which can then transfer redox signals to Hsp70-related signaling pathways. On the other hand, ROS also activate some redox-related signaling pathways to indirectly modulate Hsp70 activity and expression. Post-translational modifications including phosphorylation together with elevated Hsp70 expression can expand the capacity of Hsp70 to deal with ROS-damaged proteins and support antioxidant enzymes. Knowledge about the response and role of Hsp70 in redox homeostasis will facilitate our understanding of the cellular knock-on effects of inhibitors targeting Hsp70 and the mechanisms of redox-related diseases and aging.
Collapse
|
20
|
Zhao Q, Luo T, Gao F, Fu Y, Li B, Shao X, Chen H, Zhou Z, Guo S, Shen L, Jin L, Cen D, Zhou H, Lyu J, Fang H. GRP75 Regulates Mitochondrial-Supercomplex Turnover to Modulate Insulin Sensitivity. Diabetes 2022; 71:233-248. [PMID: 34810178 DOI: 10.2337/db21-0173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022]
Abstract
GRP75 (75-kDA glucose-regulated protein), defined as a major component of both the mitochondrial quality control system and mitochondria-associated membrane, plays a key role in mitochondrial homeostasis. In this study, we assessed the roles of GRP75, other than as a component, in insulin action in both in vitro and in vivo models with insulin resistance. We found that GRP75 was downregulated in mice fed a high-fat diet (HFD) and that induction of Grp75 in mice could prevent HFD-induced obesity and insulin resistance. Mechanistically, GRP75 influenced insulin sensitivity by regulating mitochondrial function through its modulation of mitochondrial-supercomplex turnover rather than mitochondria-associated membrane communication: GRP75 was negatively associated with respiratory chain complex activity and was essential for mitochondrial-supercomplex assembly and stabilization. Moreover, mitochondrial dysfunction in Grp75-knockdown cells might further increase mitochondrial fragmentation, thus triggering cytosolic mtDNA release and activating the cGAS/STING-dependent proinflammatory response. Therefore, GRP75 can serve as a potential therapeutic target of insulin resistant-related diabetes or other metabolic diseases.
Collapse
Affiliation(s)
- Qiongya Zhao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ting Luo
- Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Feng Gao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinxu Fu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoli Shao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haifeng Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuohua Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sihan Guo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqin Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dong Cen
- Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
21
|
Bahr T, Katuri J, Liang T, Bai Y. Mitochondrial chaperones in human health and disease. Free Radic Biol Med 2022; 179:363-374. [PMID: 34780988 PMCID: PMC8893670 DOI: 10.1016/j.freeradbiomed.2021.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
Molecular chaperones are a family of proteins that maintain cellular protein homeostasis through non-covalent peptide folding and quality control mechanisms. The chaperone proteins found within mitochondria play significant protective roles in mitochondrial biogenesis, quality control, and stress response mechanisms. Defective mitochondrial chaperones have been implicated in aging, neurodegeneration, and cancer. In this review, we focus on the two most prominent mitochondrial chaperones: mtHsp60 and mtHsp70. These proteins demonstrate different cellular localization patterns, interact with different targets, and have different functional activities. We discuss the structure and function of these prominent mitochondrial chaperone proteins and give an update on newly discovered regulatory mechanisms and disease implications.
Collapse
Affiliation(s)
- Tyler Bahr
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Joshua Katuri
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Ting Liang
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Yidong Bai
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
22
|
TRAP1 in Oxidative Stress and Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10111829. [PMID: 34829705 PMCID: PMC8614808 DOI: 10.3390/antiox10111829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1), also known as heat shock protein 75 (HSP75), is a member of the heat shock protein 90 (HSP90) chaperone family that resides mainly in the mitochondria. As a mitochondrial molecular chaperone, TRAP1 supports protein folding and contributes to the maintenance of mitochondrial integrity even under cellular stress. TRAP1 is a cellular regulator of mitochondrial bioenergetics, redox homeostasis, oxidative stress-induced cell death, apoptosis, and unfolded protein response (UPR) in the endoplasmic reticulum (ER). TRAP1 has attracted increasing interest as a therapeutical target, with a special focus on the design of TRAP1 specific inhibitors. Although TRAP1 was extensively studied in the oncology field, its role in central nervous system cells, under physiological and pathological conditions, remains largely unknown. In this review, we will start by summarizing the biology of TRAP1, including its structure and related pathways. Thereafter, we will continue by debating the role of TRAP1 in the maintenance of redox homeostasis and protection against oxidative stress and apoptosis. The role of TRAP1 in neurodegenerative disorders will also be discussed. Finally, we will review the potential of TRAP1 inhibitors as neuroprotective drugs.
Collapse
|
23
|
Carrer A, Laquatra C, Tommasin L, Carraro M. Modulation and Pharmacology of the Mitochondrial Permeability Transition: A Journey from F-ATP Synthase to ANT. Molecules 2021; 26:molecules26216463. [PMID: 34770872 PMCID: PMC8587538 DOI: 10.3390/molecules26216463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The permeability transition (PT) is an increased permeation of the inner mitochondrial membrane due to the opening of the PT pore (PTP), a Ca2+-activated high conductance channel involved in Ca2+ homeostasis and cell death. Alterations of the PTP have been associated with many pathological conditions and its targeting represents an incessant challenge in the field. Although the modulation of the PTP has been extensively explored, the lack of a clear picture of its molecular nature increases the degree of complexity for any target-based approach. Recent advances suggest the existence of at least two mitochondrial permeability pathways mediated by the F-ATP synthase and the ANT, although the exact molecular mechanism leading to channel formation remains elusive for both. A full comprehension of this to-pore conversion will help to assist in drug design and to develop pharmacological treatments for a fine-tuned PT regulation. Here, we will focus on regulatory mechanisms that impinge on the PTP and discuss the relevant literature of PTP targeting compounds with particular attention to F-ATP synthase and ANT.
Collapse
|
24
|
HSPA9/Mortalin mediates axo-protection and modulates mitochondrial dynamics in neurons. Sci Rep 2021; 11:17705. [PMID: 34489498 PMCID: PMC8421332 DOI: 10.1038/s41598-021-97162-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mortalin is a mitochondrial chaperone protein involved in quality control of proteins imported into the mitochondrial matrix, which was recently described as a sensor of neuronal stress. Mortalin is down-regulated in neurons of patients with neurodegenerative diseases and levels of Mortalin expression are correlated with neuronal fate in animal models of Alzheimer's disease or cerebral ischemia. To date, however, the links between Mortalin levels, its impact on mitochondrial function and morphology and, ultimately, the initiation of neurodegeneration, are still unclear. In the present study, we used lentiviral vectors to over- or under-express Mortalin in primary neuronal cultures. We first analyzed the early events of neurodegeneration in the axonal compartment, using oriented neuronal cultures grown in microfluidic-based devices. We observed that Mortalin down-regulation induced mitochondrial fragmentation and axonal damage, whereas its over-expression conferred protection against axonal degeneration mediated by rotenone exposure. We next demonstrated that Mortalin levels modulated mitochondrial morphology by acting on DRP1 phosphorylation, thereby further illustrating the crucial implication of mitochondrial dynamics on neuronal fate in degenerative diseases.
Collapse
|
25
|
Critical Role of Mortalin/GRP75 in Endothelial Cell Dysfunction Associated with Acute Lung Injury. Shock 2021; 54:245-255. [PMID: 31490354 DOI: 10.1097/shk.0000000000001445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mortalin/GRP75 (glucose regulated protein 75), a member of heat shock protein 70 family of chaperones, is involved in several cellular processes including proliferation and signaling, and plays a pivotal role in cancer and neurodegenerative disorders. In this study, we sought to determine the role of mortalin/GRP75 in mediating vascular inflammation and permeability linked to the pathogenesis of acute lung injury (ALI). In an aerosolized bacterial lipopolysaccharide inhalation mouse model of ALI, we found that administration of mortalin/GRP75 inhibitor mean kinetic temperature-077, both prophylactically and therapeutically, protected against polymorphonuclear leukocytes influx into alveolar airspaces, microvascular leakage, and expression of pro-inflammatory mediators such as interleukin-1β, E-selectin, and tumor necrosis factor TNFα. Consistent with this, thrombin-induced inflammation in cultured human endothelial cells (EC) was also protected upon before and after treatment with mean kinetic temperature-077. Similar to pharmacological inhibition of mortalin/GRP75, siRNA-mediated depletion of mortalin/GRP75 also blocked thrombin-induced expression of proinflammatory mediators such as intercellular adhesion molecule-1 and vascular adhesion molecule-1. Mechanistic analysis in EC revealed that inactivation of mortalin/GRP75 interfered with the binding of the liberated NF-κB to the DNA, thereby leading to inhibition of downstream expression of adhesion molecules, cytokines, and chemokines. Importantly, thrombin-induced Ca signaling and EC permeability were also prevented upon mortalin/GRP75 inactivation/depletion. Thus, this study provides evidence for a novel role of mortalin/GRP75 in mediating EC inflammation and permeability associated with ALI.
Collapse
|
26
|
Agnihotri V, Gupta A, Bajpai S, Singhal S, Dey AB, Dey S. Serum Proteomic Approach for Differentiation of Frail and Non-Frail Elderly. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Masgras I, Laquatra C, Cannino G, Serapian SA, Colombo G, Rasola A. The molecular chaperone TRAP1 in cancer: From the basics of biology to pharmacological targeting. Semin Cancer Biol 2021; 76:45-53. [PMID: 34242740 DOI: 10.1016/j.semcancer.2021.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
TRAP1, the mitochondrial component of the Hsp90 family of molecular chaperones, displays important bioenergetic and proteostatic functions. In tumor cells, TRAP1 contributes to shape metabolism, dynamically tuning it with the changing environmental conditions, and to shield from noxious insults. Hence, TRAP1 activity has profound effects on the capability of neoplastic cells to evolve towards more malignant phenotypes. Here, we discuss our knowledge on the biochemical functions of TRAP1 in the context of a growing tumor mass, and we analyze the possibility of targeting its chaperone functions for developing novel anti-neoplastic approaches.
Collapse
Affiliation(s)
- Ionica Masgras
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy; Istituto di Neuroscienze, Consiglio Nazionale Delle Ricerche (CNR), Padova, Italy
| | - Claudio Laquatra
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | - Giuseppe Cannino
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | | | | | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy.
| |
Collapse
|
28
|
Dekker FA, Rüdiger SGD. The Mitochondrial Hsp90 TRAP1 and Alzheimer's Disease. Front Mol Biosci 2021; 8:697913. [PMID: 34222342 PMCID: PMC8249562 DOI: 10.3389/fmolb.2021.697913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s Disease (AD) is the most common form of dementia, characterised by intra- and extracellular protein aggregation. In AD, the cellular protein quality control (PQC) system is derailed and fails to prevent the formation of these aggregates. Especially the mitochondrial paralogue of the conserved Hsp90 chaperone class, tumour necrosis factor receptor-associated protein 1 (TRAP1), is strongly downregulated in AD, more than other major PQC factors. Here, we review molecular mechanism and cellular function of TRAP1 and subsequently discuss possible links to AD. TRAP1 is an interesting paradigm for the Hsp90 family, as it chaperones proteins with vital cellular function, despite not being regulated by any of the co-chaperones that drive its cytosolic paralogues. TRAP1 encloses late folding intermediates in a non-active state. Thereby, it is involved in the assembly of the electron transport chain, and it favours the switch from oxidative phosphorylation to glycolysis. Another key function is that it ensures mitochondrial integrity by regulating the mitochondrial pore opening through Cyclophilin D. While it is still unclear whether TRAP1 itself is a driver or a passenger in AD, it might be a guide to identify key factors initiating neurodegeneration.
Collapse
Affiliation(s)
- Françoise A Dekker
- Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
29
|
Abolhasanpour N, Alihosseini S, Golipourkhalili S, Badalzadeh R, Mahmoudi J, Hosseini L. Insight into the effects of melatonin on endoplasmic reticulum, mitochondrial function, and their cross-talk in the stroke. Arch Med Res 2021; 52:673-682. [PMID: 33926763 DOI: 10.1016/j.arcmed.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Ischemic stroke has remained a principal cause of mortality and neurological disabilities worldwide. Blood flow resumption, reperfusion, in the cerebral ischemia prompts a cascade in the brain characterized by various cellular mechanisms like mitochondrial dysfunction, oxidative stresses, endoplasmic reticulum (ER) stress, and excitotoxicity, finally resulting in programmed cell death. Any changes in the ER-mitochondria axis are probably responsible for both the onset and progression of central nervous system diseases. Melatonin, a neurohormone secreted by the pineal gland, has antioxidative, anti-inflammatory, and anti-apoptotic properties. Most studies have shown that it exerts neuroprotective effects against ischemic stroke. It was observed that melatonin therapy after the stroke not only leads to reduce mitochondrial dysfunction but also cause to alleviate ER stress and inflammation. This review discusses the impact of melatonin on mitochondrial, ER function, and on the crosstalk between two organelles as a therapeutic target for stroke. Given that the influences of melatonin on each organelle separately, its effects on mechanisms of crosstalk between ER and mitochondria are discussed.
Collapse
Affiliation(s)
- Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences
| | - Samin Alihosseini
- Student research center, Tabriz university of medical sciences, Tabriz, Iran
| | - Sevda Golipourkhalili
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Yeo AJ, Chong KL, Gatei M, Zou D, Stewart R, Withey S, Wolvetang E, Parton RG, Brown AD, Kastan MB, Coman D, Lavin MF. Impaired endoplasmic reticulum-mitochondrial signaling in ataxia-telangiectasia. iScience 2021; 24:101972. [PMID: 33437944 PMCID: PMC7788243 DOI: 10.1016/j.isci.2020.101972] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
There is evidence that ATM mutated in ataxia-telangiectasia (A-T) plays a key role in protecting against mitochondrial dysfunction, the mechanism for which remains unresolved. We demonstrate here that ATM-deficient cells are exquisitely sensitive to nutrient deprivation, which can be explained by defective cross talk between the endoplasmic reticulum (ER) and the mitochondrion. Tethering between these two organelles in response to stress was reduced in cells lacking ATM, and consistent with this, Ca2+ release and transfer between ER and mitochondria was reduced dramatically when compared with control cells. The impact of this on mitochondrial function was evident from an increase in oxygen consumption rates and a defect in mitophagy in ATM-deficient cells. Our findings reveal that ER-mitochondrial connectivity through IP3R1-GRP75-VDAC1, to maintain Ca2+ homeostasis, as well as an abnormality in mitochondrial fusion defective in response to nutrient stress, can account for at least part of the mitochondrial dysfunction observed in A-T cells.
Collapse
Affiliation(s)
- Abrey J. Yeo
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Kok L. Chong
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Magtouf Gatei
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Dongxiu Zou
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | | | - Sarah Withey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Brisbane, Australia
| | | | | | - David Coman
- Queensland Children's Hospital, Brisbane, Australia
| | - Martin F. Lavin
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| |
Collapse
|
31
|
Kang M, Tang B, Li J, Zhou Z, Liu K, Wang R, Jiang Z, Bi F, Patrick D, Kim D, Mitra AK, Yang-Hartwich Y. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol Cancer 2020; 19:143. [PMID: 32928232 PMCID: PMC7489042 DOI: 10.1186/s12943-020-01248-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Very few proteins encoded by the presumed non-coding RNA transcripts have been identified. Their cellular functions remain largely unknown. This study identifies the tumor-suppressor function of a novel microprotein encoded by the precursor of miR-34a. It consists of 133 amino acid residues, thereby named as miPEP133 (pri-microRNA encoded peptide 133). METHODS We overexpressed miPEP133 in nasopharyngeal carcinoma (NPC), ovarian cancer and cervical cancer cell lines to determine its effects on cell growth, apoptosis, migration, or invasion. Its impact on tumor growth was evaluated in a xenograft NPC model. Its prognostic value was analyzed using NPC clinical samples. We also conducted western blot, immunoprecipitation, mass spectrometry, confocal microscopy and flow cytometry to determine the underlying mechanisms of miPEP133 function and regulation. RESULTS miPEP133 was expressed in normal human colon, stomach, ovary, uterus and pharynx. It was downregulated in cancer cell lines and tumors. miPEP133 overexpression induced apoptosis in cancer cells and inhibited their migration and invasion. miPEP133 inhibited tumor growth in vivo. Low miPEP133 expression was an unfavorable prognostic marker associated with advanced metastatic NPC. Wild-type p53 but not mutant p53 induced miPEP133 expression. miPEP133 enhanced p53 transcriptional activation and miR-34a expression. miPEP133 localized in the mitochondria to interact with mitochondrial heat shock protein 70kD (HSPA9) and prevent HSPA9 from interacting with its binding partners, leading to the decrease of mitochondrial membrane potential and mitochondrial mass. CONCLUSION miPEP133 is a tumor suppressor localized in the mitochondria. It is a potential prognostic marker and therapeutic target for multiple types of cancers.
Collapse
Affiliation(s)
- Min Kang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Bo Tang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Jixi Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Ziyan Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Kang Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ziyan Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
- The first affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangfang Bi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
- Sheng Jing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - David Patrick
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences College of Pharmacy, University of Oklahoma, Oklahoma City, OK, 73117, USA
| | - Anirban K Mitra
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Indiana University School of Medicine-Bloomington, Bloomington, IN, 47405, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
- Yale Cancer Center, New Haven, CT, 06510, USA.
| |
Collapse
|
32
|
Zhang L, Liu L, Li X, Zhang X, Zhao J, Luo Y, Guo X, Zhao T. TRAP1 attenuates H9C2 myocardial cell injury induced by extracellular acidification via the inhibition of MPTP opening. Int J Mol Med 2020; 46:663-674. [PMID: 32626957 PMCID: PMC7307819 DOI: 10.3892/ijmm.2020.4631] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular acidification leads to cardiac dysfunction in numerous diseases. Mitochondrial dysfunction plays an important role in this process. However, the mechanisms through which extracellular acidification induces mitochondrial dysfunction remain unclear. Tumor necrosis factor receptor-associated protein 1 (TRAP1) maintains mitochondrial function and cell viability in tumor and non-tumor cells. In the present study, extracellular acidification was found to induce H9C2 cell apoptosis, mitochondrial dysfunction and TRAP1 expression. The overexpression of TRAP1 attenuated H9C2 cell injury, while the silencing of TRAP1 exacerbated it. Moreover, mitochondrial permeability transition pore (MPTP) opening, which is associated with the mitochondrial apoptotic pathway and cell death, was also increased in acidic medium. The overexpression of TRAP1 inhibited MPTP opening, while the silencing of TRAP1 promoted it. The protective effect of TRAP1 on cardiomyocytes was abolished by the addition of a specific MPTP opening promoter. Similarly, a specific MPTP opening inhibitor reversed cell injury by silencing TRAP1. Taken together, the findings of the present study demonstrate that TRAP1 attenuates H9C2 cell injury induced by extracellular acidification by inhibiting MPTP opening.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Lerong Liu
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xia Li
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xing Zhang
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jiangpei Zhao
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yuanyuan Luo
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiangyu Guo
- Guangdong‑Hongkong‑Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Tongfeng Zhao
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
33
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
34
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
35
|
Ramalingam M, Huh YJ, Lee YI. The Impairments of α-Synuclein and Mechanistic Target of Rapamycin in Rotenone-Induced SH-SY5Y Cells and Mice Model of Parkinson's Disease. Front Neurosci 2019; 13:1028. [PMID: 31611767 PMCID: PMC6769080 DOI: 10.3389/fnins.2019.01028] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). α-synuclein (α-syn) is known to regulate mitochondrial function and both PINK1 and Parkin have been shown to eliminate damaged mitochondria in PD. Mechanistic target of rapamycin (mTOR) is expressed in several distinct subcellular compartments and mediates the effects of nutrients, growth factors, and stress on cell growth. However, the contributions of these various regulators to DAergic cell death have been demonstrated mainly in culture with serum, which is known to dramatically influence endogenous growth rate and toxin susceptibility through nutrient and growth factor signaling. Therefore, we compared neurotoxicity induced by the mitochondrial inhibitor rotenone (ROT, 5 or 10 μM for 24 h) in SH-SY5Y cells cultured with 10% fetal bovine serum (FBS), 1% FBS, or 1% bovine serum albumin (BSA, serum-free). In addition, C57BL/6J mice were injected with 12 μg ROT into the right striatum, and brains examined by histology and Western blotting 2 weeks later for evidence of DAergic cell death and the underlying signaling mechanisms. ROT dose-dependently reduced SH-SY5Y cell viability in all serum groups without a significant effect of serum concentration. ROT injection also significantly reduced immunoreactivity for the DAergic cell marker tyrosine hydroxylase (TH) in both the mouse striatum and SNpc. Western blotting revealed that ROT inhibited TH and Parkin expression while increasing α-syn and PINK1 expression in both SH-SY5Y cells and injected mice, consistent with disruption of mitochondrial function. Moreover, expression levels of the mTOR signaling pathway components mTORC, AMP-activated protein kinase (AMPK), ULK1, and ATG13 were altered in ROT-induced PD. Further, serum level influenced mTOR signaling in the absence of ROT and the changes in response to ROT. Signs of endoplasmic reticulum (ER) stress and altered expression of tethering proteins mediating mitochondria-associated ER contacts (MAMs) were also altered concomitant with ROT-induced neurodegeneration. Taken together, this study demonstrates that complex mechanism involving mitochondrial dysfunction, altered mTOR nutrient-sensing pathways, ER stress, and disrupted MAM protein dynamics are involved in DAergic neurodegeneration in response to ROT.
Collapse
Affiliation(s)
| | | | - Yun-Il Lee
- Well Aging Research Center, DGIST, Daegu, South Korea
| |
Collapse
|
36
|
Liu H, Zhao M, Wang Z, Han Q, Wu H, Mao X, Wang Y. Involvement of d-amino acid oxidase in cerebral ischaemia induced by transient occlusion of the middle cerebral artery in mice. Br J Pharmacol 2019; 176:3336-3349. [PMID: 31309542 PMCID: PMC6692583 DOI: 10.1111/bph.14764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/03/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE d-Amino acid oxidase (DAAO) is a flavine adenine dinucleotide-containing flavoenzyme and specifically catalyses oxidative deamination of d-amino acids. This study aimed to explore the association between increased cerebral DAAO expression or enzymic activity and the development of cerebral ischaemia. EXPERIMENTAL APPROACH A mouse model of transient (90 min) middle cerebral artery occlusion (MCAO) was established, and western blotting, enzymic activity assay, and fluorescent immunostaining techniques were used. KEY RESULTS The expression and enzymic activity of DAAO increased over time in the cortical peri-infarct area of the mice subjected to transient MCAO. The DAAO was specifically expressed in astrocytes, and its double immunostaining with the astrocytic intracellular marker, glial fibrillary acidic protein, in the cortical peri-infarct area was up-regulated following ischaemic insult, with peak increase on Day 5 after MCAO. Single intravenous injection of the specific and potent DAAO inhibitor Compound SUN reduced the cerebral DAAO enzymic activity and attenuated neuronal infarction and neurobehavioural deficits with optimal improvement apparent immediately after the MCAO procedure. The neuroprotective effect was dose dependent, with ED50 values of 3.9-4.5 mg·kg-1 . Intracerebroventricular injection of the DAAO gene silencer siRNA/DAAO significantly reduced cerebral DAAO expression and attenuated MCAO-induced neuronal infarction and behavioural deficits. CONCLUSIONS AND IMPLICATIONS Our results, for the first time, demonstrated that increased cerebral astrocytic DAAO expression and enzymic activity were causally associated with the development of neuronal destruction following ischaemic insults, suggesting that targeting cerebral DAAO could be a potential approach for treatment of neurological conditions following cerebral ischaemia.
Collapse
Affiliation(s)
- Hao Liu
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Meng‐Jing Zhao
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Zi‐Ying Wang
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Qiao‐Qiao Han
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Hai‐Yun Wu
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Xiao‐fang Mao
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Yong‐Xiang Wang
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| |
Collapse
|
37
|
Increased ER-mitochondria tethering promotes axon regeneration. Proc Natl Acad Sci U S A 2019; 116:16074-16079. [PMID: 31332012 DOI: 10.1073/pnas.1818830116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translocation of the endoplasmic reticulum (ER) and mitochondria to the site of axon injury has been shown to facilitate axonal regeneration; however, the existence and physiological importance of ER-mitochondria tethering in the injured axons are unknown. Here, we show that a protein linking ER to mitochondria, the glucose regulated protein 75 (Grp75), is locally translated at axon injury site following axotomy, and that overexpression of Grp75 in primary neurons increases ER-mitochondria tethering to promote regrowth of injured axons. We find that increased ER-mitochondria tethering elevates mitochondrial Ca2+ and enhances ATP generation, thereby promoting regrowth of injured axons. Furthermore, intrathecal delivery of lentiviral vector encoding Grp75 to an animal with sciatic nerve crush injury enhances axonal regeneration and functional recovery. Together, our findings suggest that increased ER-mitochondria tethering at axonal injury sites may provide a therapeutic strategy for axon regeneration.
Collapse
|
38
|
Chen JF, He Q, Dai MH, Kong W. HSP75 inhibits TGF-β1-induced apoptosis by targeting mitochondria in human renal proximal tubular epithelial cells. Biochem Biophys Res Commun 2019; 515:64-71. [DOI: 10.1016/j.bbrc.2019.05.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/18/2019] [Indexed: 11/29/2022]
|
39
|
Dong YN, McMillan E, Clark EM, Lin H, Lynch DR. GRP75 overexpression rescues frataxin deficiency and mitochondrial phenotypes in Friedreich ataxia cellular models. Hum Mol Genet 2019; 28:1594-1607. [PMID: 30590615 PMCID: PMC6494971 DOI: 10.1093/hmg/ddy448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/19/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein crucial for iron-sulfur cluster biogenesis and adenosine triphosphate (ATP) production. Currently, there is no therapy to slow down the progression of FRDA. Recent evidence indicates that posttranslational regulation of residual frataxin levels can rescue some of the functional deficit of FRDA, raising the possibility of enhancing levels of residual frataxin as a treatment for FRDA. Here, we present evidence that mitochondrial molecular chaperone GRP75, also known as mortalin/mthsp70/PBP74, directly interacts with frataxin both in vivo in mouse cortex and in vitro in cortical neurons. Overexpressing GRP75 increases the levels of both wild-type frataxin and clinically relevant missense frataxin variants in human embryonic kidney 293 cells, while clinical GRP75 variants such as R126W, A476T and P509S impair the binding of GRP75 with frataxin and the effect of GRP75 on frataxin levels. In addition, GRP75 overexpression rescues frataxin deficiency and abnormal cellular phenotypes such as the abnormal mitochondrial network and decreased ATP levels in FRDA patient-derived cells. The effect of GRP75 on frataxin might be in part mediated by the physical interaction between GRP75 and mitochondrial processing peptidase (MPP), which makes frataxin more accessible to MPP. As GRP75 levels are decreased in multiple cell types of FRDA patients, restoring GRP75 might be effective in treating both typical FRDA patients with two guanine-adenine-adenine repeat expansions and compound heterozygous patients with point mutations.
Collapse
Affiliation(s)
- Yi Na Dong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily McMillan
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisia M Clark
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hong Lin
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Lynch
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Jin L, Yu JP, Yang ZJ, Merilä J, Liao WB. Modulation of Gene Expression in Liver of Hibernating Asiatic Toads ( Bufo gargarizans). Int J Mol Sci 2018; 19:E2363. [PMID: 30103470 PMCID: PMC6121651 DOI: 10.3390/ijms19082363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Hibernation is an effective energy conservation strategy that has been widely adopted by animals to cope with unpredictable environmental conditions. The liver, in particular, plays an important role in adaptive metabolic adjustment during hibernation. Mammalian studies have revealed that many genes involved in metabolism are differentially expressed during the hibernation period. However, the differentiation in global gene expression between active and torpid states in amphibians remains largely unknown. We analyzed gene expression in the liver of active and torpid Asiatic toads (Bufo gargarizans) using RNA-sequencing. In addition, we evaluated the differential expression of genes between females and males. A total of 1399 genes were identified as differentially expressed between active and torpid females. Of these, the expressions of 395 genes were significantly elevated in torpid females and involved genes responding to stresses, as well as contractile proteins. The expression of 1004 genes were significantly down-regulated in torpid females, most which were involved in metabolic depression and shifts in the energy utilization. Of the 715 differentially expressed genes between active and torpid males, 337 were up-regulated and 378 down-regulated. A total of 695 genes were differentially expressed between active females and males, of which 655 genes were significantly down-regulated in males. Similarly, 374 differentially expressed genes were identified between torpid females and males, with the expression of 252 genes (mostly contractile proteins) being significantly down-regulated in males. Our findings suggest that expression of many genes in the liver of B. gargarizans are down-regulated during hibernation. Furthermore, there are marked sex differences in the levels of gene expression, with females showing elevated levels of gene expression as compared to males, as well as more marked down-regulation of gene-expression in torpid males than females.
Collapse
Affiliation(s)
- Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China.
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China.
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, China.
| | - Jian Ping Yu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China.
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China.
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, China.
| | - Zai Jun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China.
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014, 00100 Helsinki, Finland.
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China.
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China.
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, China.
| |
Collapse
|
41
|
Deng Y, Hu F, Ren L, Gao X, Wang Y. Effects of anoxia on survival and gene expression in Bactrocera dorsalis. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:186-196. [PMID: 29630918 DOI: 10.1016/j.jinsphys.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The oriental fruit fly (Bactrocera dorsalis) larvae may commonly experience a hypoxia microenvironment and have evolved the ability to survive in the low oxygen condition with some physiological and biochemical mechanisms. However, little is known about the response of B. dorsalis to hypoxia or anoxia. In this study, the effect of anoxia on the survival of B. dorsalis was investigated. The results showed that the B. dorsalis larvae were quite tolerant to anoxia conditions and can tolerate up to 24 h of anoxia exposure without a significant reduction in survival, 100% mortality was reached after 84 h of anoxia exposure. The cDNA of hypoxia inducible factor (HIF) 1α and HIF-1β is 2912 and 3618 bp in length, encoding 766 and 648 amino acid residues, respectively. Both HIF-1α and HIF-1β contain conserved basic helix-loop-helix (bHLH) domain and Per-Arnt-Sim (PAS) domain. HIF-1α can be induced by hypoxia, whereas HIF-1β expression was not significantly changed with the oxygen concentration. Three major heat shock proteins (Hsps) expression increased significantly during anoxia and recovery and Hsp70 was the most responsive to anoxia. Four superoxide dismutase (SOD) genes expression were also up-regulated during anoxia exposure. These data suggest that B. dorsalis has a strategy to induce HIF-1α and HIF-1-responsive genes to survive in the low oxygen condition.
Collapse
Affiliation(s)
- Yufang Deng
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Hu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lili Ren
- Chinese Academy of Inspection and Quarantine, Beijing 100029, China
| | - Xiwu Gao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuejin Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Chinese Academy of Inspection and Quarantine, Beijing 100029, China.
| |
Collapse
|
42
|
Rajasekaran R, Felser A, Nuoffer JM, Dufour JF, St-Pierre MV. The histidine triad nucleotide-binding protein 2 (HINT-2) positively regulates hepatocellular energy metabolism. FASEB J 2018; 32:5143-5161. [PMID: 29913563 DOI: 10.1096/fj.201701429r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The histidine triad nucleotide-binding protein 2 (HINT-2) is a mitochondrial adenosine phosphoramidase expressed in hepatocytes. The phenotype of Hint2 knockout ( Hint2-/-) mice includes progressive hepatic steatosis and lysine hyperacetylation of mitochondrial proteins, which are features of respiratory chain malfunctions. We postulated that the absence of HINT-2 induces a defect in mitochondria bioenergetics. Isolated Hint2-/- hepatocytes produced less ATP and generated a lower mitochondrial membrane potential than did Hint2+/+ hepatocytes. In extracellular flux analyses with glucose, the basal, ATP-linked, and maximum oxygen consumption rates (OCRs) were decreased in Hint2-/- hepatocytes and in HepG2 cells lacking HINT-2. Conversely, in HINT-2 overexpressing SNU-449 and HepG2 cells, the basal, ATP-linked, and maximum OCRs were increased. Similarly, with palmitate, basal and maximum OCRs were decreased in Hint2-/- hepatocytes, but they were increased in HINT-2 overexpressing HepG2 cells. When assayed with radiolabeled substrate, palmitate oxidation was reduced by 25% in Hint2-/- mitochondria. In respirometry assays, complex I- and II-driven, coupled and uncoupled respirations and complex IV KCN-sensitive respiration were reduced in Hint2-/- mitochondria. Furthermore, HINT-2 associated with cardiolipin and glucose-regulated protein 75 kDa. Our study shows decreased electron transfer and oxidative phosphorylation capacity in the absence of HINT-2. The bioenergetics deficit accumulated over time in hepatocytes lacking HINT-2 likely leads to the secondary outcome of steatosis.-Rajasekaran, R., Felser, A., Nuoffer, J.-M., Dufour, J.-F., St-Pierre, M. V. The histidine triad nucleotide-binding protein 2 (HINT-2) positively regulates hepatocellular energy metabolism.
Collapse
Affiliation(s)
| | - Andrea Felser
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland; and
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland; and
| | - Jean-François Dufour
- Department of Biomedical Research, University of Bern, Bern, Switzerland.,University Clinic of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - Marie V St-Pierre
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Herrera-Marschitz M, Perez-Lobos R, Lespay-Rebolledo C, Tapia-Bustos A, Casanova-Ortiz E, Morales P, Valdes JL, Bustamante D, Cassels BK. Targeting Sentinel Proteins and Extrasynaptic Glutamate Receptors: a Therapeutic Strategy for Preventing the Effects Elicited by Perinatal Asphyxia? Neurotox Res 2018; 33:461-473. [PMID: 28844085 PMCID: PMC5766721 DOI: 10.1007/s12640-017-9795-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022]
Abstract
Perinatal asphyxia (PA) is a relevant cause of death at the time of labour, and when survival is stabilised, associated with short- and long-term developmental disabilities, requiring inordinate care by health systems and families. Its prevalence is high (1 to 10/1000 live births) worldwide. At present, there are few therapeutic options, apart from hypothermia, that regrettably provides only limited protection if applied shortly after the insult.PA implies a primary and a secondary insult. The primary insult relates to the lack of oxygen, and the secondary one to the oxidative stress triggered by re-oxygenation, formation of reactive oxygen (ROS) and reactive nitrogen (RNS) species, and overactivation of glutamate receptors and mitochondrial deficiencies. PA induces overactivation of a number of sentinel proteins, including hypoxia-induced factor-1α (HIF-1α) and the genome-protecting poly(ADP-ribose) polymerase-1 (PARP-1). Upon activation, PARP-1 consumes high amounts of ATP at a time when this metabolite is scarce, worsening in turn the energy crisis elicited by asphyxia. The energy crisis also impairs ATP-dependent transport, including glutamate re-uptake by astroglia. Nicotinamide, a PARP-1 inhibitor, protects against the metabolic cascade elicited by the primary stage, avoiding NAD+ exhaustion and the energetic crisis. Upon re-oxygenation, however, oxidative stress leads to nuclear translocation of the NF-κB subunit p65, overexpression of the pro-inflammatory cytokines IL-1β and TNF-α, and glutamate-excitotoxicity, due to impairment of glial-glutamate transport, extracellular glutamate overflow, and overactivation of NMDA receptors, mainly of the extrasynaptic type. This leads to calcium influx, mitochondrial impairment, and inactivation of antioxidant enzymes, increasing further the activity of pro-oxidant enzymes, thereby making the surviving neonate vulnerable to recurrent metabolic insults whenever oxidative stress is involved. Here, we discuss evidence showing that (i) inhibition of PARP-1 overactivation by nicotinamide and (ii) inhibition of extrasynaptic NMDA receptor overactivation by memantine can prevent the short- and long-term consequences of PA. These hypotheses have been evaluated in a rat preclinical model of PA, aiming to identify the metabolic cascades responsible for the long-term consequences induced by the insult, also assessing postnatal vulnerability to recurrent oxidative insults. Thus, we present and discuss evidence demonstrating that PA induces long-term changes in metabolic pathways related to energy and oxidative stress, priming vulnerability of cells with both the neuronal and the glial phenotype. The effects induced by PA are region dependent, the substantia nigra being particularly prone to cell death. The issue of short- and long-term consequences of PA provides a framework for addressing a fundamental issue referred to plasticity of the CNS, since the perinatal insult triggers a domino-like sequence of events making the developing individual vulnerable to recurrent adverse conditions, decreasing his/her coping repertoire because of a relevant insult occurring at birth.
Collapse
Affiliation(s)
- Mario Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
| | - Ronald Perez-Lobos
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
- Escuela de Tecnologia Medica, Facultad de Medicina, Universidad Andres Bello, PO Box 8370146, Santiago, Chile
| | - Carolyne Lespay-Rebolledo
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
| | - Andrea Tapia-Bustos
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
| | - Emmanuel Casanova-Ortiz
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
| | - Paola Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
- Faculty of Sciences, University of Chile, Santiago, Chile
| | | | - Diego Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
| | - Bruce K. Cassels
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
44
|
Khan MS, Ahmed A, Tabrez S, Islam BU, Rabbani N, Malik A, Ismael MA, Alsenaidy MA, Alsenaidy AM. Optimization of expression and purification of human mortalin (Hsp70): Folding/unfolding analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 187:98-103. [PMID: 28666159 DOI: 10.1016/j.saa.2017.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Human mortalin is a Hsp70 mitochondrial protein that plays an essential role in the biogenesis of mitochondria. The deregulation of mortalin expression and its functions could lead to several age-associated disorders and some types of cancers. In the present study, we optimized the expression and purification of recombinant human mortalin by the use of two-step chromatography. Low temperature (18°C) and 0.5mM (IPTG) was required for optimum mortalin expression. Chaperone activity of mortalin was assessed by the citrate synthase and insulin protection assay, which suggested their protective role in mitochondria. Folding and unfolding assessments of mortalin were carried out in the presence of guanidine hydrochloride (GdnHCl) by intrinsic fluorescence measurement, ANS (8-analino 1-nephthlene sulfonic acid) binding and CD (circular dichroism) analysis. Under denaturing conditions, mortalin showed decrease in tryptophan fluorescence intensity along with a red shift of 11nm. Moreover, ANS binding studies illustrated decrease in hydrophobicity. CD measurement of mortalin showed a predominant helical structure. However, the secondary structure was lost at low concentration of GdnHCl (1M). We present a simple and robust method to produce soluble mortalin and warranted that chaperones are also susceptible to unfolding and futile to maintain protein homeostasis.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Anwar Ahmed
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badar Ul Islam
- Department of Biochemistry, J. N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Nayyar Rabbani
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamad A Ismael
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
45
|
Honrath B, Metz I, Bendridi N, Rieusset J, Culmsee C, Dolga AM. Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov 2017; 3:17076. [PMID: 29367884 PMCID: PMC5672593 DOI: 10.1038/cddiscovery.2017.76] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/20/2023] Open
Abstract
The crosstalk between different organelles allows for the exchange of proteins, lipids and ions. Endoplasmic reticulum (ER) and mitochondria are physically linked and signal through the mitochondria-associated membrane (MAM) to regulate the transfer of Ca2+ from ER stores into the mitochondrial matrix, thereby affecting mitochondrial function and intracellular Ca2+ homeostasis. The chaperone glucose-regulated protein 75 (GRP75) is a key protein expressed at the MAM interface which regulates ER–mitochondrial Ca2+ transfer. Previous studies revealed that modulation of GRP75 expression largely affected mitochondrial integrity and vulnerability to cell death. In the present study, we show that genetic ablation of GRP75, by weakening ER–mitochondrial junctions, provided protection against mitochondrial dysfunction and cell death in a model of glutamate-induced oxidative stress. Interestingly, GRP75 silencing attenuated both cytosolic and mitochondrial Ca2+ overload in conditions of oxidative stress, blocked the formation of reactive oxygen species and preserved mitochondrial respiration. These data revealed a major role for GRP75 in regulating mitochondrial function, Ca2+ and redox homeostasis. In line, GRP75 overexpression enhanced oxidative cell death induced by glutamate. Overall, our findings suggest weakening ER–mitochondrial connectivity by GRP75 inhibition as a novel protective approach in paradigms of oxidative stress in neuronal cells.
Collapse
Affiliation(s)
- Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Isabell Metz
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Nadia Bendridi
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, Oullins, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, Oullins, France
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
46
|
Chen JF, Wu QS, Xie YX, Si BL, Yang PP, Wang WY, Hua Q, He Q. TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria. FASEB J 2017; 31:4503-4514. [PMID: 28710113 DOI: 10.1096/fj.201700283r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction causes renal tubular epithelial cell injury and promotes cell apoptosis and renal tubulointerstitial fibrosis (TIF) progression. TNF receptor-associated protein 1 (TRAP1) is a molecular chaperone protein that is localized in mitochondria. It plays an important role in cell apoptosis; however, its functional mechanism in TIF remains unclear. In this study, we observed the effects of TRAP1 in renal tubular epithelial cell mitochondria in mice with unilateral ureteral obstruction and its function in cell apoptosis and TIF. Results show that TRAP1 could protect the mitochondrial structure in renal tubular epithelial cells; maintain the levels of mitochondrial membrane potential, ATP, and mitochondrial DNA copy number; inhibit reactive oxygen species production; stabilize the expression of the mitochondrial inner membrane protein mitofilin; reduce renal tubular epithelial cell apoptosis; and inhibit TIF. These results provide new theoretical foundations for additional understanding of the antifibrotic mechanism of TRAP1 in the kidney.-Chen, J.-F., Wu, Q.-S., Xie, Y.-X., Si, B.-L., Yang, P.-P., Wang, W.-Y., Hua, Q., He, Q. TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria.
Collapse
Affiliation(s)
- Jun-Feng Chen
- Division of Hemodialysis, Nanjing First Hospital, Nanjing Medical University, Nanjing, China;
| | - Qi-Shun Wu
- Division of Nephrology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yu-Xian Xie
- Division of Nephrology, People's Hospital of Suzhou High-Tech District, Jiangsu University, Suzhou, China
| | - Bo-Lin Si
- Division of Nephrology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Ping-Ping Yang
- Division of Nephrology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Wen-Yan Wang
- Division of Nephrology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Qin Hua
- Division of Nephrology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Qing He
- Division of Hemodialysis, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Vulnerability to a Metabolic Challenge Following Perinatal Asphyxia Evaluated by Organotypic Cultures: Neonatal Nicotinamide Treatment. Neurotox Res 2017. [PMID: 28631256 DOI: 10.1007/s12640-017-9755-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypothesis of enhanced vulnerability following perinatal asphyxia was investigated with a protocol combining in vivo and in vitro experiments. Asphyxia-exposed (AS) (by 21 min water immersion of foetuses containing uterine horns) and caesarean-delivered control (CS) rat neonates were used at P2-3 for preparing triple organotypic cultures (substantia nigra, neostriatum and neocortex). At DIV 18, cultures were exposed to different concentrations of H2O2 (0.25-45 mM), added to the culture medium for 18 h. After a 48-h recovery period, the cultures were either assessed for cell viability or for neurochemical phenotype by confocal microscopy. Energy metabolism (ADP/ATP ratio), oxidative stress (GSH/GSSG) and a modified ferric reducing/antioxidant power assay were applied to homogenates of parallel culture series. In CS cultures, the number of dying cells was similar in substantia nigra, neostriatum and neocortex, but it was several times increased in AS cultures evaluated under the same conditions. A H2O2 challenge led to a concentration-dependent increase in cell death (>fourfold after 0.25 mM of H2O2) in CS cultures. In AS cultures, a significant increase in cell death was only observed after 0.5 mM of H2O2. At higher than 1 mM of H2O2 (up to 45 mM), cell death increased several times in all cultures, but the effect was still more prominent in CS than in AS cultures. The cell phenotype of dying/alive cells was investigated in formalin-fixed cultures exposed to 0 or 1 mM of H2O2, co-labelling for TUNEL (apoptosis), MAP-2 (neuronal phenotype), GFAP (astroglial phenotype) and TH (tyrosine hydroxylase; for dopamine phenotype), counterstaining for DAPI (nuclear staining), also evaluating the effect of a single dose of nicotinamide (0.8 nmol/kg, i.p. injected in 100 μL, 60 min after delivery). Perinatal asphyxia produced a significant increase in the number of DAPI/TUNEL cells/mm3, in substantia nigra and neostriatum. One millimolar of H202 increased the number of DAPI/TUNEL cells/mm3 by ≈twofold in all regions of CS and AS cultures, an effect that was prevented by neonatal nicotinamide treatment. In substantia nigra, the number of MAP-2/TH-positive cells/mm3 was decreased in AS compared to CS cultures, also by 1 mM of H202, both in CS and AS cultures, prevented by nicotinamide. In agreement, the number of MAP-2/TUNEL-positive cells/mm3 was increased by 1 mM H2O2, both in CS (twofold) and AS (threefold) cultures, prevented by nicotinamide. The number of MAP-2/TH/TUNEL-positive cells/mm3 was only increased in CS (>threefold), but not in AS (1.3-fold) cultures. No TH labelling was observed in neostriatum, but 1 mM of H2O2 produced a strong increase in the number of MAP-2/TUNEL-positive cells/mm3, both in CS (>2.9-fold) and AS (>fourfold), decreased by nicotinamide. In neocortex, H2O2 increased the number of MAP-2/TUNEL-positive cells/mm3, both in CS and AS cultures (≈threefold), decreased by nicotinamide. The ADP/ATP ratio was increased in AS culture homogenates (>sixfold), compared to CS homogenates, increased by 1 mM of H202, both in CS and AS homogenates. The GSH/GSSG ratio was significantly decreased in AS, compared to CS cultures. One millimolar of H2O2 decreased that ratio in CS and AS homogenates. The present results demonstrate that perinatal asphyxia induces long-term changes in metabolic pathways related to energy and oxidative stress, priming cell vulnerability with both neuronal and glial phenotype. The observed effects were region dependent, being the substantia nigra particularly prone to cell death. Nicotinamide administration in vivo prevented the deleterious effects observed after perinatal asphyxia in vitro, a suitable pharmacological strategy against the deleterious consequences of perinatal asphyxia.
Collapse
|
48
|
Hoffman WH, Artlett CM, Boodhoo D, Gilliland MGF, Ortiz L, Mulder D, Tjan DHT, Martin A, Tatomir A, Rus H. Markers of immune-mediated inflammation in the brains of young adults and adolescents with type 1 diabetes and fatal diabetic ketoacidosis. Is there a difference? Exp Mol Pathol 2017; 102:505-514. [PMID: 28533125 DOI: 10.1016/j.yexmp.2017.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022]
Abstract
Due to the limited data on diabetic ketoacidosis and brain edema (DKA/BE) in children/adolescents and the lack of recent data on adults with type 1 diabetes (T1D), we addressed the question of whether neuroinflammation was present in the fatal DKA of adults. We performed immunohistochemistry (IHC) studies on the brains of two young adults with T1D and fatal DKA and compared them with two teenagers with poorly controlled diabetes and fatal DKA. C5b-9, the membrane attack complex (MAC) had significantly greater deposits in the grey and white matter of the teenagers than the young adults (p=0.03). CD59, a MAC assembly inhibitory protein was absent, possibly suppressed by the hyperglycemia in the teenagers but was expressed in the young adults despite comparable average levels of hyperglycemia. The receptor for advanced glycation end products (RAGE) had an average expression in the young adults significantly greater than in the teenagers (p=0.02). The autophagy marker Light Chain 3 (LC3) A/B was the predominant form of programmed cell death (PCD) in the teenage brains. The young adults had high expressions of both LC3A/B and TUNEL, an apoptotic cell marker for DNA fragmentation. BE was present in the newly diagnosed young adult with hyperglycemic hyperosmolar DKA and also in the two teenagers. Our data indicate that significant differences in neuroinflammatory components, initiated by the dysregulation of DKA and interrelated metabolic and immunologic milieu, are likely present in the brains of fatal DKA of teenagers when compared with young adults.
Collapse
Affiliation(s)
- William H Hoffman
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| | - Carol M Artlett
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Mary G F Gilliland
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Luis Ortiz
- Department of Pediatrics, Nephrology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Dries Mulder
- Department of Pathology, Rijnstate Hospital, Arnhem, The Netherlands
| | - David H T Tjan
- Department of Intensive Care, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Alvaro Martin
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Research Service, Veterans Administration Maryland Health Care System, MD 21201, United States.
| |
Collapse
|
49
|
Krech J, Tong G, Wowro S, Walker C, Rosenthal LM, Berger F, Schmitt KRL. Moderate therapeutic hypothermia induces multimodal protective effects in oxygen-glucose deprivation/reperfusion injured cardiomyocytes. Mitochondrion 2017; 35:1-10. [PMID: 28396253 DOI: 10.1016/j.mito.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/01/2017] [Accepted: 04/04/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Therapeutic hypothermia has been shown to attenuate myocardial cell death due to ischemia/reperfusion injury. However, cellular mechanisms of cooling remain to be elucidated. Especially during reperfusion, mitochondrial dysfunction contributes to cell death by releasing apoptosis inductors. The aim of the present study was to investigate the effects of moderate therapeutic hypothermia (33.5°C) on mitochondrial mediated apoptosis in ischemia/reperfusion-injured cardiomyocytes. METHODS Ischemic injury was simulated by oxygen-glucose deprivation for 6h in glucose/serum-free medium at 0.2% O2 in mouse atrial HL-1 cardiomyocytes. Simulation of reperfusion was achieved by restoration of nutrients in complete supplemented medium and incubation at 21% O2. Early application of therapeutic hypothermia, cooling during the oxygen-glucose deprivation phase, was initiated after 3h of oxygen-glucose deprivation and maintained for 24h. Mitochondrial membrane integrity was assessed by cytochrome c and AIF protein releases. Furthermore, mitochondria were stained with MitoTracker Red and intra-cellular cytochrome c localization was visualized by immunofluorescence staining. Moreover, anti-apoptotic Bcl-2 and Hsp70 as well as phagophore promoting LC3-II protein expressions were analyzed by Western-blot analysis. RESULTS Therapeutic hypothermia initiated during oxygen-glucose deprivation significantly reduced mitochondrial release of cytochrome c and AIF in cardiomyocytes during reperfusion. Secondly, anti-apoptotic Bcl-2/Bax ratio and Hsp70 protein expressions were significantly upregulated due to hypothermia, indicating an inhibition of both caspase-dependent and -independent apoptosis. Furthermore, cardiomyocytes treated with therapeutic hypothermia showed increased LC3-II protein levels associated with the mitochondria during the first 3h of reperfusion, indicating the initiation of phagophores formation and sequestration of presumably damaged mitochondrion. CONCLUSION Early application of therapeutic hypothermia effectively inhibited cardiomyocyte cell death due to oxygen-glucose deprivation/reperfusion-induced injury via multiple pathways. As hypothermia preserved mitochondrial membrane integrity, which resulted in reduced cytochrome c and AIF releases, induction of both caspase-dependent and -independent apoptosis was minimized. Secondly, cooling attenuated intrinsic apoptosis via Hsp70 upregulation and increasing anti-apoptotic Bcl-2/Bax ratio. Moreover, therapeutic hypothermia promoted mitochondrial associated LC3-II during the early phase of reperfusion, possibly leading to the sequestration and degradation of damaged mitochondrion to attenuate the activation of cell death.
Collapse
Affiliation(s)
- Jana Krech
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Giang Tong
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Sylvia Wowro
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christoph Walker
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lisa-Maria Rosenthal
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Pediatric Cardiology, Charité - University Medical Center, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katharina Rose Luise Schmitt
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
50
|
Masgras I, Sanchez-Martin C, Colombo G, Rasola A. The Chaperone TRAP1 As a Modulator of the Mitochondrial Adaptations in Cancer Cells. Front Oncol 2017; 7:58. [PMID: 28405578 PMCID: PMC5370238 DOI: 10.3389/fonc.2017.00058] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondria can receive, integrate, and transmit a variety of signals to shape many biochemical activities of the cell. In the process of tumor onset and growth, mitochondria contribute to the capability of cells of escaping death insults, handling changes in ROS levels, rewiring metabolism, and reprograming gene expression. Therefore, mitochondria can tune the bioenergetic and anabolic needs of neoplastic cells in a rapid and flexible way, and these adaptations are required for cell survival and proliferation in the fluctuating environment of a rapidly growing tumor mass. The molecular bases of pro-neoplastic mitochondrial adaptations are complex and only partially understood. Recently, the mitochondrial molecular chaperone TRAP1 (tumor necrosis factor receptor associated protein 1) was identified as a key regulator of mitochondrial bioenergetics in tumor cells, with a profound impact on neoplastic growth. In this review, we analyze these findings and discuss the possibility that targeting TRAP1 constitutes a new antitumor approach.
Collapse
Affiliation(s)
- Ionica Masgras
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| | - Carlos Sanchez-Martin
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche (CNR) , Milano , Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| |
Collapse
|