1
|
Carretero VJ, Álvarez-Merz I, Hernández-Campano J, Kirov SA, Hernández-Guijo JM. Targeting harmful effects of non-excitatory amino acids as an alternative therapeutic strategy to reduce ischemic damage. Neural Regen Res 2025; 20:2454-2463. [PMID: 39314160 DOI: 10.4103/nrr.nrr-d-24-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
The involvement of the excitatory amino acids glutamate and aspartate in cerebral ischemia and excitotoxicity is well-documented. Nevertheless, the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied. The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra. Our findings indicated that the reversible loss of field excitatory postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids (L-alanine, glycine, L-glutamine, and L-serine) at their plasma concentrations. These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia, along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors. Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia. It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels, leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation. Thus, previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury. Understanding these pathways could highlight new therapeutic targets to mitigate brain injury.
Collapse
Affiliation(s)
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Neurobiology-Research Service, Hospital Ramón y Cajal, Madrid, Spain
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jorge Hernández-Campano
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
| | - Sergei A Kirov
- Department of Neuroscience and Regenerative Medicine & Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Neurobiology-Research Service, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
2
|
Lindquist BE. Spreading depolarizations pose critical energy challenges in acute brain injury. J Neurochem 2024; 168:868-887. [PMID: 37787065 PMCID: PMC10987398 DOI: 10.1111/jnc.15966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/08/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
Spreading depolarization (SD) is an electrochemical wave of neuronal depolarization mediated by extracellular K+ and glutamate, interacting with voltage-gated and ligand-gated ion channels. SD is increasingly recognized as a major cause of injury progression in stroke and brain trauma, where the mechanisms of SD-induced neuronal injury are intimately linked to energetic status and metabolic impairment. Here, I review the established working model of SD initiation and propagation. Then, I summarize the historical and recent evidence for the metabolic impact of SD, transitioning from a descriptive to a mechanistic working model of metabolic signaling and its potential to promote neuronal survival and resilience. I quantify the energetic cost of restoring ionic gradients eroded during SD, and the extent to which ion pumping impacts high-energy phosphate pools and the energy charge of affected tissue. I link energy deficits to adaptive increases in the utilization of glucose and O2, and the resulting accumulation of lactic acid and CO2 downstream of catabolic metabolic activity. Finally, I discuss the neuromodulatory and vasoactive paracrine signaling mediated by adenosine and acidosis, highlighting these metabolites' potential to protect vulnerable tissue in the context of high-frequency SD clusters.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurology, University of California, San Francisco, California, USA
- Gladstone Institute of Neurological Diseases, San Francisco, California, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| |
Collapse
|
3
|
Álvarez-Merz I, Fomitcheva IV, Sword J, Hernández-Guijo JM, Solís JM, Kirov SA. Novel mechanism of hypoxic neuronal injury mediated by non-excitatory amino acids and astroglial swelling. Glia 2022; 70:2108-2130. [PMID: 35802030 PMCID: PMC9474671 DOI: 10.1002/glia.24241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
In ischemic stroke and post-traumatic brain injury (TBI), blood-brain barrier disruption leads to leaking plasma amino acids (AA) into cerebral parenchyma. Bleeding in hemorrhagic stroke and TBI also release plasma AA. Although excitotoxic AA were extensively studied, little is known about non-excitatory AA during hypoxic injury. Hypoxia-induced synaptic depression in hippocampal slices becomes irreversible with non-excitatory AA, alongside their intracellular accumulation and increased tissue electrical resistance. Four non-excitatory AA (l-alanine, glycine, l-glutamine, l-serine: AGQS) at plasmatic concentrations were applied to slices from mice expressing EGFP in pyramidal neurons or astrocytes during normoxia or hypoxia. Two-photon imaging, light transmittance (LT) changes, and electrophysiological field recordings followed by electron microscopy in hippocampal CA1 st. radiatum were used to monitor synaptic function concurrently with cellular swelling and injury. During normoxia, AGQS-induced increase in LT was due to astroglial but not neuronal swelling. LT raise during hypoxia and AGQS manifested astroglial and neuronal swelling accompanied by a permanent loss of synaptic transmission and irreversible dendritic beading, signifying acute damage. Neuronal injury was not triggered by spreading depolarization which did not occur in our experiments. Hypoxia without AGQS did not cause cell swelling, leaving dendrites intact. Inhibition of NMDA receptors prevented neuronal damage and irreversible loss of synaptic function. Deleterious effects of AGQS during hypoxia were prevented by alanine-serine-cysteine transporters (ASCT2) and volume-regulated anion channels (VRAC) blockers. Our findings suggest that astroglial swelling induced by accumulation of non-excitatory AA and release of excitotoxins through antiporters and VRAC may exacerbate the hypoxia-induced neuronal injury.
Collapse
Affiliation(s)
- Iris Álvarez-Merz
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Ioulia V. Fomitcheva
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jeremy Sword
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jesús M. Hernández-Guijo
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
| | - José M. Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Sergei A. Kirov
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| |
Collapse
|
4
|
Lemale CL, Lückl J, Horst V, Reiffurth C, Major S, Hecht N, Woitzik J, Dreier JP. Migraine Aura, Transient Ischemic Attacks, Stroke, and Dying of the Brain Share the Same Key Pathophysiological Process in Neurons Driven by Gibbs–Donnan Forces, Namely Spreading Depolarization. Front Cell Neurosci 2022; 16:837650. [PMID: 35237133 PMCID: PMC8884062 DOI: 10.3389/fncel.2022.837650] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs–Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.
Collapse
Affiliation(s)
- Coline L. Lemale
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janos Lückl
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Viktor Horst
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jens P. Dreier,
| |
Collapse
|
5
|
Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Aß pathology. Nat Commun 2022; 13:135. [PMID: 35013236 PMCID: PMC8748982 DOI: 10.1038/s41467-021-27702-w] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) alters astrocytes, but the effect of Aß and Tau pathology is poorly understood. TRAP-seq translatome analysis of astrocytes in APP/PS1 ß-amyloidopathy and MAPTP301S tauopathy mice revealed that only Aß influenced expression of AD risk genes, but both pathologies precociously induced age-dependent changes, and had distinct but overlapping signatures found in human post-mortem AD astrocytes. Both Aß and Tau pathology induced an astrocyte signature involving repression of bioenergetic and translation machinery, and induction of inflammation pathways plus protein degradation/proteostasis genes, the latter enriched in targets of inflammatory mediator Spi1 and stress-activated cytoprotective Nrf2. Astrocyte-specific Nrf2 expression induced a reactive phenotype which recapitulated elements of this proteostasis signature, reduced Aß deposition and phospho-tau accumulation in their respective models, and rescued brain-wide transcriptional deregulation, cellular pathology, neurodegeneration and behavioural/cognitive deficits. Thus, Aß and Tau induce overlapping astrocyte profiles associated with both deleterious and adaptive-protective signals, the latter of which can slow patho-progression.
Collapse
|
6
|
Preeti K, Sood A, Fernandes V. Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer's Disease. Cell Mol Neurobiol 2021; 42:2527-2551. [PMID: 34515874 DOI: 10.1007/s10571-021-01147-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder. It is characterized clinically by progressive memory loss and impaired cognitive function. Its progression occurs from neuronal synapse loss to amyloid pathology and Tau deposit which eventually leads to the compromised neuronal function. Neurons in central nervous tissue work in a composite and intricate network with the glia and vascular cells. Microglia and astrocytes are becoming the prime focus due to their involvement in various aspects of neurophysiology, such as trophic support to neurons, synaptic modulation, and brain surveillance. AD is also often considered as the sequela of prolonged metabolic dyshomeostasis. The neuron and glia have different metabolic profiles as cytosolic glycolysis and mitochondrial-dependent oxidative phosphorylation (OXPHOS), especially under dyshomeostasis or with aging pertaining to their unique genetic built-up. Various efforts are being put in to decipher the role of mitochondrial dynamics regarding their trafficking, fission/fusion imbalance, and mitophagy spanning over both neurons and glia to improve aging-related brain health. The mitochondrial dysfunction may lead to activation in various signaling mechanisms causing metabolic reprogramming in glia cells, further accelerating AD-related pathogenic events. The glycolytic-dominant astrocytes switch to the neurotoxic phenotype, i.e., disease-associated astrocyte under metabolic stress. The microglia also transform from resting to reactive phenotype, i.e., disease-associated microglia. It may also exist in otherwise a misconception an M1, glycolytic, or M2, an OXPHOS-dependent phenotype. Further, glial transformation plays a vital role in regulating hallmarks of AD pathologies like synapse maintenance, amyloid, and Tau clearance. In this updated review, we have tried to emphasize the metabolic regulation of glial reactivity, mitochondrial quality control mechanisms, and their neuroinflammatory response in Alzheimer's progression.
Collapse
Affiliation(s)
- Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
7
|
Zhao J, Blaeser AS, Levy D. Astrocytes mediate migraine-related intracranial meningeal mechanical hypersensitivity. Pain 2021; 162:2386-2396. [PMID: 34448752 PMCID: PMC8406410 DOI: 10.1097/j.pain.0000000000002229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT The genesis of the headache phase in migraine with aura is thought to be mediated by cortical spreading depression (CSD) and the subsequent activation and sensitization of primary afferent neurons that innervate the intracranial meninges and their related large vessels. Yet, the exact mechanisms underlying this peripheral meningeal nociceptive response remain poorly understood. We investigated the relative contribution of cortical astrocytes to CSD-evoked meningeal nociception using extracellular single-unit recording of meningeal afferent activity and 2-photon imaging of cortical astrocyte calcium activity, in combination with 2 pharmacological approaches to inhibit astrocytic function. We found that fluoroacetate and l-α-aminoadipate, which inhibit astrocytes through distinct mechanisms, suppressed CSD-evoked afferent mechanical sensitization, but did not affect afferent activation. Pharmacological inhibition of astrocytic function, which ameliorated meningeal afferents' sensitization, reduced basal astrocyte calcium activity but had a minimal effect on the astrocytic calcium wave during CSD. We propose that calcium-independent signaling in cortical astrocytes plays an important role in driving the sensitization of meningeal afferents and the ensuing intracranial mechanical hypersensitivity in migraine with aura.
Collapse
Affiliation(s)
- Jun Zhao
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Andrew S. Blaeser
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Dan Levy
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Modrau B, Winder A, Hjort N, Nygård Johansen M, Andersen G, Fiehler J, Vorum H, Forkert ND. Perfusion Changes in Acute Stroke Treated with Theophylline as an Add-on to Thrombolysis : A Randomized Clinical Trial Subgroup Analysis. Clin Neuroradiol 2021; 32:345-352. [PMID: 34259904 PMCID: PMC9187573 DOI: 10.1007/s00062-021-01029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/28/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Theophylline has been suggested to have a neuroprotective effect in ischemic stroke; however, results from animal stroke models and clinical trials in humans are controversial. The aim of this study was to assess the effect of theophylline on the cerebral perfusion with multiparametric magnetic resonance imaging (MRI). METHODS The relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and relative mean transit time (rMTT) in the infarct core, penumbra, and unaffected tissue were measured using multi-parametric MRI at baseline and 3‑h follow-up in patients treated with theophylline or placebo as an add-on to thrombolytic therapy. RESULTS No significant differences in mean rCBF, rCBV, and rMTT was found in the penumbra and unaffected tissue between the theophylline group and the control group between baseline and 3‑h follow-up. In the infarct core, mean rCBV increased on average by 0.05 in the theophylline group and decreased by 0.14 in the control group (p < 0.04). Mean rCBF and mean rMTT in the infarct core were similar between the two treatment groups. CONCLUSION The results indicate that theophylline does not change the perfusion in potentially salvageable penumbral tissue but only affects the rCBV in the infarct core. In contrast to the penumbra, the infarct core is unlikely to be salvageable, which might explain why theophylline failed in clinical trials.
Collapse
Affiliation(s)
- Boris Modrau
- Department of Neurology, Aalborg University Hospital, Postbox 561, 9100, Aalborg, Denmark.
| | - Anthony Winder
- Departments of Radiology & Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Niels Hjort
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Grethe Andersen
- Department of Neurology and Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Nils D Forkert
- Departments of Radiology & Clinical Neurosciences, University of Calgary, Calgary, Canada
| |
Collapse
|
9
|
Purnell B, Murugan M, Jani R, Boison D. The Good, the Bad, and the Deadly: Adenosinergic Mechanisms Underlying Sudden Unexpected Death in Epilepsy. Front Neurosci 2021; 15:708304. [PMID: 34321997 PMCID: PMC8311182 DOI: 10.3389/fnins.2021.708304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Adenosine is an inhibitory modulator of neuronal excitability. Neuronal activity results in increased adenosine release, thereby constraining excessive excitation. The exceptionally high neuronal activity of a seizure results in a surge in extracellular adenosine to concentrations many-fold higher than would be observed under normal conditions. In this review, we discuss the multifarious effects of adenosine signaling in the context of epilepsy, with emphasis on sudden unexpected death in epilepsy (SUDEP). We describe and categorize the beneficial, detrimental, and potentially deadly aspects of adenosine signaling. The good or beneficial characteristics of adenosine signaling in the context of seizures include: (1) its direct effect on seizure termination and the prevention of status epilepticus; (2) the vasodilatory effect of adenosine, potentially counteracting postictal vasoconstriction; (3) its neuroprotective effects under hypoxic conditions; and (4) its disease modifying antiepileptogenic effect. The bad or detrimental effects of adenosine signaling include: (1) its capacity to suppress breathing and contribute to peri-ictal respiratory dysfunction; (2) its contribution to postictal generalized EEG suppression (PGES); (3) the prolonged increase in extracellular adenosine following spreading depolarization waves may contribute to postictal neuronal dysfunction; (4) the excitatory effects of A2A receptor activation is thought to exacerbate seizures in some instances; and (5) its potential contributions to sleep alterations in epilepsy. Finally, the adverse effects of adenosine signaling may potentiate a deadly outcome in the form of SUDEP by suppressing breathing and arousal in the postictal period. Evidence from animal models suggests that excessive postictal adenosine signaling contributes to the pathophysiology of SUDEP. The goal of this review is to discuss the beneficial, harmful, and potentially deadly roles that adenosine plays in the context of epilepsy and to identify crucial gaps in knowledge where further investigation is necessary. By better understanding adenosine dynamics, we may gain insights into the treatment of epilepsy and the prevention of SUDEP.
Collapse
Affiliation(s)
- Benton Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Raja Jani
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
10
|
Heit BS, Dykas P, Chu A, Sane A, Larson J. Synaptic and Network Contributions to Anoxic Depolarization in Mouse Hippocampal Slices. Neuroscience 2021; 461:102-117. [PMID: 33636244 DOI: 10.1016/j.neuroscience.2021.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023]
Abstract
Ischemic stroke remains the third leading cause of death and leading cause of adult disability worldwide. A key event in the pathophysiology of stroke is the anoxic depolarization (AD) of neurons in the ischemic core. Previous studies have established that both the latency to AD and the time spent in AD prior to re-oxygenation are predictors of neuronal death. The present studies used hippocampal slices from male and female mice to investigate the electrophysiological events that affect latency to AD after oxygen deprivation. The results confirm that the epoch between AD and re-oxygenation largely determines the magnitude of synaptic recovery after anoxic challenge. Using a selective antagonist of adenosine A1 receptors, we also confirmed that adenosine released during anoxia (ANOX) suppresses synaptic glutamate release; however, this action has no effect on AD latency or the potential for post-anoxic recovery of synaptic transmission. In contrast, antagonism of AMPA- and NMDA-type glutamate receptors significantly prolongs the latency to AD and alters the speed and synchrony of associated depolarizing waves. Experiments using slices with fields Cornu ammonis 3 (CA3) and Cornu ammonis 1 (CA1) disconnected showed that AD latency is longer in CA1 than in CA3; however, the early AD in CA3 is propagated to CA1 in intact slices. Finally, AD latency in CA1 was found to be longer in slices from female mice than in those from age-matched male mice. The results have implications for stroke prevention and for understanding brain adaptations in hypoxia-tolerant animals.
Collapse
Affiliation(s)
- Bradley S Heit
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60612, United States; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Patricia Dykas
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Alex Chu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Abhay Sane
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - John Larson
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
11
|
Flavin Adenine Dinucleotide Fluorescence as an Early Marker of Mitochondrial Impairment During Brain Hypoxia. Int J Mol Sci 2020; 21:ijms21113977. [PMID: 32492921 PMCID: PMC7312830 DOI: 10.3390/ijms21113977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/31/2022] Open
Abstract
Multimodal continuous bedside monitoring is increasingly recognized as a promising option for early treatment stratification in patients at risk for ischemia during neurocritical care. Modalities used at present are, for example, oxygen availability and subdural electrocorticography. The assessment of mitochondrial function could be an interesting complement to these modalities. For instance, flavin adenine dinucleotide (FAD) fluorescence permits direct insight into the mitochondrial redox state. Therefore, we explored the possibility of using FAD fluorometry to monitor consequences of hypoxia in brain tissue in vitro and in vivo. By combining experimental results with computational modeling, we identified the potential source responsible for the fluorescence signal and gained insight into the hypoxia-associated metabolic changes in neuronal energy metabolism. In vitro, hypoxia was characterized by a reductive shift of FAD, impairment of synaptic transmission and increasing interstitial potassium [K+]o. Computer simulations predicted FAD changes to originate from the citric acid cycle enzyme α-ketoglutarate dehydrogenase and pyruvate dehydrogenase. In vivo, the FAD signal during early hypoxia displayed a reductive shift followed by a short oxidation associated with terminal spreading depolarization. In silico, initial tissue hypoxia followed by a transient re-oxygenation phase due to glucose depletion might explain FAD dynamics in vivo. Our work suggests that FAD fluorescence could be readily used to monitor mitochondrial function during hypoxia and represents a potential diagnostic tool to differentiate underlying metabolic processes for complementation of multimodal brain monitoring.
Collapse
|
12
|
Kim DK, Mook-Jung I. The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimer's disease. BMB Rep 2020. [PMID: 31722781 PMCID: PMC6941758 DOI: 10.5483/bmbrep.2019.52.12.282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The decrease of metabolism in the brain has been observed as the important lesions of Alzheimer’s disease (AD) from the early stages of diagnosis. The cumulative evidence has reported that the failure of mitochondria, an organelle involved in diverse biological processes as well as energy production, maybe the cause or effect of the pathogenesis of AD. Both amyloid and tau pathologies have an impact upon mitochondria through physical interaction or indirect signaling pathways, resulting in the disruption of mitochondrial function and dynamics which can trigger AD. In addition, mitochondria are involved in different biological processes depending on the specific functions of each cell type in the brain. Thus, it is necessary to understand mitochondrial dysfunction as part of the pathological phenotypes of AD according to each cell type. In this review, we summarize that 1) the effects of AD pathology inducing mitochondrial dysfunction and 2) the contribution of mitochondrial dysfunction in each cell type to AD pathogenesis.
Collapse
Affiliation(s)
- Dong Kyu Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
13
|
Reduction in murine acute GVHD severity by human gingival tissue-derived mesenchymal stem cells via the CD39 pathways. Cell Death Dis 2019; 10:13. [PMID: 30622237 PMCID: PMC6325106 DOI: 10.1038/s41419-018-1273-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/18/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023]
Abstract
Human gingival tissue-derived mesenchymal stem cells (GMSCs) present an accessible source of mesenchymal stem cells (MSCs) for treating autoimmune diseases. Here we show that human GMSCs can prevent and treat acute graft-versus-host disease (GVHD) in two different mouse models. Our results indicate that besides exhibiting suppressive function in vitro and in vivo, GMSCs may also regulate the conversion of Tregs to Th1 and/or Th17-like cells, as well as stabilize Foxp3 expression. Furthermore, GMSC-mediated prevention of acute GVHD was dependent on CD39 signaling that play an important role in the function and stability of Tregs. Finally, we also observed stronger protective ability of GMSCs with greater expansion ability compared with BMSCs or ASCs. These results indicate that human GMSCs have the potential to be used to treat GVHD.
Collapse
|
14
|
Kuter K, Olech Ł, Głowacka U, Paleczna M. Astrocyte support is important for the compensatory potential of the nigrostriatal system neurons during early neurodegeneration. J Neurochem 2018; 148:63-79. [PMID: 30295916 DOI: 10.1111/jnc.14605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/25/2022]
Abstract
Glial pathology precedes symptoms of Parkinson's disease and multiple other neurodegenerative diseases. Prolonged impairment of astrocytic functions could increase the vulnerability of dopaminergic neurons in the substantia nigra (SN), accelerate their degeneration and affect ability to compensate for partial degeneration at the presymptomatic stages of the disease. The aim of this study was to investigate the astrocyte depletion in the SN, its impact on the dopaminergic system functioning and multiple markers of energy metabolism during the early stages of neurodegeneration and compensation. We induced death of 30% of astrocytes by chronic infusion of fluorocitrate (FC) into the SN, simultaneously activating microglia response but sparing the dopaminergic neurons. The FC effect was reversible after toxin withdrawal. Dopaminergic neurons were killed by 6-hydroxydopamine causing transient locomotor disability, reversed with time showing compensatory potential. Death of astrocytes diminished the capability of the dopaminergic system to compensate for the degeneration of neurons and caused a local energy deprivation by decreasing lactate and glycogen amount. Studied markers suggest a shift in the usage of energy substrates, via increased glycogenolysis and glycolysis markers, ketone bodies availability and fatty acid transport in remaining cells. Peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1alpha) and AMP-activated protein kinase (AMPK), the energy sensors, showed different regulation between the cell-types. Increased neuronal expression of carnitine palmitoyltransferase 1c could play a role in the adaptation to metabolic stress in response to glia dysfunction. Astrocyte energetic support is one of the essential factors for neuronal compensatory mechanisms of dopaminergic system and might have a leading role in the presymptomatic Parkinson's disease stages. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Katarzyna Kuter
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Łukasz Olech
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Urszula Głowacka
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Martyna Paleczna
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
15
|
Fusco I, Ugolini F, Lana D, Coppi E, Dettori I, Gaviano L, Nosi D, Cherchi F, Pedata F, Giovannini MG, Pugliese AM. The Selective Antagonism of Adenosine A 2B Receptors Reduces the Synaptic Failure and Neuronal Death Induced by Oxygen and Glucose Deprivation in Rat CA1 Hippocampus in Vitro. Front Pharmacol 2018; 9:399. [PMID: 29740323 PMCID: PMC5928446 DOI: 10.3389/fphar.2018.00399] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/06/2018] [Indexed: 01/02/2023] Open
Abstract
Ischemia is a multifactorial pathology characterized by different events evolving in time. Immediately after the ischemic insult, primary brain damage is due to the massive increase of extracellular glutamate. Adenosine in the brain increases dramatically during ischemia in concentrations able to stimulate all its receptors, A1, A2A, A2B, and A3. Although adenosine exerts clear neuroprotective effects through A1 receptors during ischemia, the use of selective A1 receptor agonists is hampered by their undesirable peripheral side effects. So far, no evidence is available on the involvement of adenosine A2B receptors in cerebral ischemia. This study explored the role of adenosine A2B receptors on synaptic and cellular responses during oxygen and glucose deprivation (OGD) in the CA1 region of rat hippocampus in vitro. We conducted extracellular recordings of CA1 field excitatory post-synaptic potentials (fEPSPs); the extent of damage on neurons and glia was assessed by immunohistochemistry. Seven min OGD induced anoxic depolarization (AD) in all hippocampal slices tested and completely abolished fEPSPs that did not recover after return to normoxic condition. Seven minutes OGD was applied in the presence of the selective adenosine A2B receptor antagonists MRS1754 (500 nM) or PSB603 (50 nM), separately administered 15 min before, during and 5 min after OGD. Both antagonists were able to prevent or delay the appearance of AD and to modify synaptic responses after OGD, allowing significant recovery of neurotransmission. Adenosine A2B receptor antagonism also counteracted the reduction of neuronal density in CA1 stratum pyramidale, decreased apoptosis at least up to 3 h after the end of OGD, and maintained activated mTOR levels similar to those of controls, thus sparing neurons from the degenerative effects caused by the simil-ischemic conditions. Astrocytes significantly proliferated in CA1 stratum radiatum already 3 h after the end of OGD, possibly due to increased glutamate release. A2Breceptor antagonism significantly prevented astrocyte modifications. Both A2B receptor antagonists did not protect CA1 neurons from the neurodegeneration induced by glutamate application, indicating that the antagonistic effect is upstream of glutamate release. The selective antagonists of the adenosine A2B receptor subtype may thus represent a new class of neuroprotective drugs in ischemia.
Collapse
Affiliation(s)
- Irene Fusco
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria G Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Anna M Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
16
|
Kuter K, Olech Ł, Głowacka U. Prolonged Dysfunction of Astrocytes and Activation of Microglia Accelerate Degeneration of Dopaminergic Neurons in the Rat Substantia Nigra and Block Compensation of Early Motor Dysfunction Induced by 6-OHDA. Mol Neurobiol 2017; 55:3049-3066. [PMID: 28466266 PMCID: PMC5842510 DOI: 10.1007/s12035-017-0529-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023]
Abstract
Progressive degeneration of dopaminergic neurons in the substantia nigra (SN) is the underlying cause of Parkinson’s disease (PD). The disease in early stages is difficult to diagnose, because behavioral deficits are masked by compensatory processes. Astrocytic and microglial pathology precedes motor symptoms. Besides supportive functions of astrocytes in the brain, their role in PD is unrecognized. Prolonged dysfunction of astrocytes could increase the vulnerability of dopaminergic neurons and advance their degeneration during aging. The aim of our studies was to find out whether prolonged dysfunction of astrocytes in the SN is deleterious for neuronal functioning and if it influences their survival after toxic insult or changes the compensatory potential of the remaining neurons. In Wistar rat model, we induced activation, prolonged dysfunction, and death of astrocytes by chronic infusion of fluorocitrate (FC) into the SN, without causing dopaminergic neuron degeneration. Strongly enhanced dopamine turnover in the SN after 7 days of FC infusion was induced probably by microglia activated in response to astrocyte stress. The FC effect was reversible, and astrocyte pool was replenished 3 weeks after the end of infusion. Importantly, the prolonged astrocyte dysfunction and microglia activation accelerated degeneration of dopaminergic neurons induced by 6-hydroxydopamine and blocked the behavioral compensation normally observed after moderate neurodegeneration. Impaired astrocyte functioning, activation of microglia, diminishing compensatory capability of the dopaminergic system, and increasing neuronal vulnerability to external insults could be the underlying causes of PD. This animal model of prolonged astrocyte dysfunction can be useful for in vivo studies of glia–microglia–neuron interaction.
Collapse
Affiliation(s)
- Katarzyna Kuter
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland.
| | - Łukasz Olech
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland
| | - Urszula Głowacka
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland
| |
Collapse
|
17
|
Lindquist BE, Shuttleworth CW. Evidence that adenosine contributes to Leao's spreading depression in vivo. J Cereb Blood Flow Metab 2017; 37:1656-1669. [PMID: 27217381 PMCID: PMC5435284 DOI: 10.1177/0271678x16650696] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Leao's spreading depression of cortical activity is a propagating silencing of neuronal activity resulting from spreading depolarization (SD). We evaluated the contributions of action potential (AP) failure and adenosine A1 receptor (A1R) activation to the depression of evoked and spontaneous electrocorticographic (ECoG) activity after SD in vivo, in anesthetized mice. We compared depression with SD-induced effects on AP-dependent transmission, and synaptic potentials in the transcallosal and thalamocortical pathways. After SD, APs recovered rapidly, within 1-2 min, as demonstrated by evoked activity in distant projection targets. Evoked corticocortical postsynaptic potentials recovered next, within ∼5 min. Spontaneous ECoG and evoked thalamocortical postsynaptic potentials recovered together, after ∼10-15 min. The duration of ECoG depression was shortened 20% by systemic (10 mg/kg) or focal (30 µM) administration of A1R competitive antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). ECoG depression was also shortened by focal application of exogenous adenosine deaminase (ADA; 100 U/mL), and conversely, was prolonged 50% by the non-competitive ADA inhibitor deoxycoformycin (DCF; 100 µM). We concluded that while initial depolarization block is brief, adenosine A1R activation, in part, contributes to the persistent secondary phase of Leao's cortical spreading depression.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
18
|
Hartings JA, Shuttleworth CW, Kirov SA, Ayata C, Hinzman JM, Foreman B, Andrew RD, Boutelle MG, Brennan KC, Carlson AP, Dahlem MA, Drenckhahn C, Dohmen C, Fabricius M, Farkas E, Feuerstein D, Graf R, Helbok R, Lauritzen M, Major S, Oliveira-Ferreira AI, Richter F, Rosenthal ES, Sakowitz OW, Sánchez-Porras R, Santos E, Schöll M, Strong AJ, Urbach A, Westover MB, Winkler MK, Witte OW, Woitzik J, Dreier JP. The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão's legacy. J Cereb Blood Flow Metab 2017; 37:1571-1594. [PMID: 27328690 PMCID: PMC5435288 DOI: 10.1177/0271678x16654495] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage.
Collapse
Affiliation(s)
- Jed A Hartings
- 1 Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,2 Mayfield Clinic, Cincinnati, OH, USA
| | - C William Shuttleworth
- 3 Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sergei A Kirov
- 4 Department of Neurosurgery and Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Cenk Ayata
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason M Hinzman
- 1 Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brandon Foreman
- 6 Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R David Andrew
- 7 Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Martyn G Boutelle
- 8 Department of Bioengineering, Imperial College London, London, United Kingdom
| | - K C Brennan
- 9 Department of Neurology, University of Utah, Salt Lake City, UT, USA.,10 Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Andrew P Carlson
- 11 Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Markus A Dahlem
- 12 Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | | | - Christian Dohmen
- 14 Department of Neurology, University of Cologne, Cologne, Germany
| | - Martin Fabricius
- 15 Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Eszter Farkas
- 16 Department of Medical Physics and Informatics, Faculty of Medicine, and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Delphine Feuerstein
- 17 Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Rudolf Graf
- 17 Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Raimund Helbok
- 18 Medical University of Innsbruck, Department of Neurology, Neurocritical Care Unit, Innsbruck, Austria
| | - Martin Lauritzen
- 15 Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.,19 Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Major
- 13 Department of Neurology, Charité University Medicine, Berlin, Germany.,20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| | - Frank Richter
- 22 Institute of Physiology/Neurophysiology, Jena University Hospital, Jena, Germany
| | - Eric S Rosenthal
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver W Sakowitz
- 23 Department of Neurosurgery, Klinikum Ludwigsburg, Ludwigsburg, Germany.,24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Renán Sánchez-Porras
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Edgar Santos
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Schöll
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Anthony J Strong
- 25 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London
| | - Anja Urbach
- 26 Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - M Brandon Westover
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maren Kl Winkler
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany
| | - Otto W Witte
- 26 Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,27 Brain Imaging Center, Jena University Hospital, Jena, Germany
| | - Johannes Woitzik
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,28 Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Jens P Dreier
- 13 Department of Neurology, Charité University Medicine, Berlin, Germany.,20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
19
|
Jackson EK, Kotermanski SE, Menshikova EV, Dubey RK, Jackson TC, Kochanek PM. Adenosine production by brain cells. J Neurochem 2017; 141:676-693. [PMID: 28294336 DOI: 10.1111/jnc.14018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/06/2023]
Abstract
The early release of adenosine following traumatic brain injury (TBI) suppresses seizures and brain inflammation; thus, it is important to elucidate the cellular sources of adenosine following injurious stimuli triggered by TBI so that therapeutics for enhancing the early adenosine-release response can be optimized. Using mass spectrometry with 13 C-labeled standards, we investigated in cultured rat neurons, astrocytes, and microglia the effects of oxygen-glucose deprivation (OGD; models energy failure), H2 O2 (produces oxidative stress), and glutamate (induces excitotoxicity) on intracellular and extracellular levels of 5'-AMP (adenosine precursor), adenosine, and inosine and hypoxanthine (adenosine metabolites). In neurons, OGD triggered increases in intracellular 5'-AMP (2.8-fold), adenosine (2.6-fold), inosine (2.2-fold), and hypoxanthine (5.3-fold) and extracellular 5'-AMP (2.2-fold), adenosine (2.4-fold), and hypoxanthine (2.5-fold). In neurons, H2 O2 did not affect intracellular or extracellular purines; yet, glutamate increased intracellular adenosine, inosine, and hypoxanthine (1.7-fold, 1.7-fold, and 1.6-fold, respectively) and extracellular adenosine, inosine, and hypoxanthine (2.9-fold, 2.1-fold, and 1.6-fold, respectively). In astrocytes, neither H2 O2 nor glutamate affected intracellular or extracellular purines, and OGD only slightly increased intracellular and extracellular hypoxanthine. Microglia were unresponsive to OGD and glutamate, but were remarkably responsive to H2 O2 , which increased intracellular 5'-AMP (1.6-fold), adenosine (1.6-fold), inosine (2.1-fold), and hypoxanthine (1.6-fold) and extracellular 5'-AMP (5.9-fold), adenosine (4.0-fold), inosine (4.3-fold), and hypoxanthine (1.9-fold). CONCLUSION Under these particular experimental conditions, cultured neurons are the main contributors to adenosine production/release in response to OGD and glutamate, whereas cultured microglia are the main contributors upon oxidative stress. Developing therapeutics that recruit astrocytes to produce/release adenosine could have beneficial effects in TBI.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shawn E Kotermanski
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Raghvendra K Dubey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Reproductive Endocrinology, University Hospital Zurich and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Travis C Jackson
- Department of Critical Care Medicine and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Yamashiro K, Fujii Y, Maekawa S, Morita M. Multiple pathways for elevating extracellular adenosine in the rat hippocampal CA1 region characterized by adenosine sensor cells. J Neurochem 2016; 140:24-36. [PMID: 27896810 DOI: 10.1111/jnc.13888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
Extracellular adenosine in the brain, which modulates various physiological and pathological processes, fluctuates in a complicated manner that reflects the circadian cycle, neuronal activity, metabolism, and disease states. The dynamics of extracellular adenosine in the brain are not fully understood, largely because of the lack of simple and reliable methods of measuring time-dependent changes in tissue adenosine distribution. This study describes the development of a biosensor, designated an adenosine sensor cell, expressing adenosine A1 receptor, and a genetically modified G protein. This biosensor was used to characterize extracellular adenosine elevation in brain tissue by measuring intracellular calcium elevation in response to adenosine. Placement of adenosine sensor cells below hippocampal slices successfully detected adenosine releases from these slices in response to neuronal activity and astrocyte swelling by conventional calcium imaging. Pharmacological analyses indicated that high-frequency electrical stimulation-induced post-synaptic adenosine release in a manner dependent on L-type calcium channels and calcium-induced calcium release. Adenosine release following treatments that cause astrocyte swelling is independent of calcium channels, but dependent on aquaporin 4, an astrocyte-specific water channel subtype. The ability of ectonucleotidase inhibitors to inhibit adenosine release following astrocyte swelling, but not electrical stimulation, suggests that the former reflects astrocytic ATP release and subsequent enzymatic breakdown, whereas the latter reflects direct adenosine release from neurons. These results suggest that distinct mechanisms are responsible for extracellular adenosine elevations by neurons and astrocytes, allowing exquisite regulation of extracellular adenosine in the brain.
Collapse
Affiliation(s)
- Kunihiko Yamashiro
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Yuki Fujii
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Shohei Maekawa
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Mitsuhiro Morita
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
21
|
Spong KE, Andrew RD, Robertson RM. Mechanisms of spreading depolarization in vertebrate and insect central nervous systems. J Neurophysiol 2016; 116:1117-27. [PMID: 27334953 PMCID: PMC5013167 DOI: 10.1152/jn.00352.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022] Open
Abstract
Spreading depolarization (SD) is generated in the central nervous systems of both vertebrates and invertebrates. SD manifests as a propagating wave of electrical depression caused by a massive redistribution of ions. Mammalian SD underlies a continuum of human pathologies from migraine to stroke damage, whereas insect SD is associated with environmental stress-induced neural shutdown. The general cellular mechanisms underlying SD seem to be evolutionarily conserved throughout the animal kingdom. In particular, SD in the central nervous system of Locusta migratoria and Drosophila melanogaster has all the hallmarks of mammalian SD. Locust SD is easily induced and monitored within the metathoracic ganglion (MTG) and can be modulated both pharmacologically and by preconditioning treatments. The finding that the fly brain supports repetitive waves of SD is relatively recent but noteworthy, since it provides a genetically tractable model system. Due to the human suffering caused by SD manifestations, elucidating control mechanisms that could ultimately attenuate brain susceptibility is essential. Here we review mechanisms of SD focusing on the similarities between mammalian and insect systems. Additionally we discuss advantages of using invertebrate model systems and propose insect SD as a valuable model for providing new insights to mammalian SD.
Collapse
Affiliation(s)
- Kristin E Spong
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - R David Andrew
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - R Meldrum Robertson
- Department of Biology, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
22
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Peña-Ortega F, Rivera-Angulo AJ, Lorea-Hernández JJ. Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:47-66. [DOI: 10.1007/978-3-319-40764-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Kubik LL, Philbert MA. The role of astrocyte mitochondria in differential regional susceptibility to environmental neurotoxicants: tools for understanding neurodegeneration. Toxicol Sci 2015; 144:7-16. [PMID: 25740792 DOI: 10.1093/toxsci/kfu254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In recent decades, there has been a significant expansion in our understanding of the role of astrocytes in neuroprotection, including spatial buffering of extracellular ions, secretion of metabolic coenzymes, and synaptic regulation. Astrocytic neuroprotective functions require energy, and therefore require a network of functional mitochondria. Disturbances to astrocytic mitochondrial homeostasis and their ability to produce ATP can negatively impact neural function. Perturbations in astrocyte mitochondrial function may accrue as the result of physiological aging processes or as a consequence of neurotoxicant exposure. Hydrophobic environmental neurotoxicants, such as 1,3-dinitrobenzene and α-chlorohydrin, cause regionally specific spongiform lesions mimicking energy deprivation syndromes. Astrocyte involvement includes mitochondrial damage that either precedes or is accompanied by neuronal damage. Similarly, environmental neurotoxicants that are implicated in the etiology of age-related neurodegenerative conditions cause regionally specific damage in the brain. Based on the regioselective nature of age-related neurodegenerative lesions, chemically induced models of regioselective lesions targeting astrocyte mitochondria can provide insight into age-related susceptibilities in astrocyte mitochondria. Most of the available research to date focuses on neuronal damage in cases of age-related neurodegeneration; however, there is a body of evidence that supports a central mechanistic role for astrocyte mitochondria in the expression of neural injury. Regional susceptibility to neuronal damage induced by aging by exposure to neurotoxicants may be a reflection of highly variable regional energy requirements. This review identifies region-specific vulnerabilities in astrocyte mitochondria in examples of exposure to neurotoxicants and in age-related neurodegeneration.
Collapse
Affiliation(s)
- Laura L Kubik
- Toxicology Program, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109
| | - Martin A Philbert
- Toxicology Program, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
25
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
26
|
Seidel JL, Escartin C, Ayata C, Bonvento G, Shuttleworth CW. Multifaceted roles for astrocytes in spreading depolarization: A target for limiting spreading depolarization in acute brain injury? Glia 2015; 64:5-20. [PMID: 26301517 DOI: 10.1002/glia.22824] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/31/2015] [Accepted: 03/02/2015] [Indexed: 12/17/2022]
Abstract
Spreading depolarizations (SDs) are coordinated waves of synchronous depolarization, involving large numbers of neurons and astrocytes as they spread slowly through brain tissue. The recent identification of SDs as likely contributors to pathophysiology in human subjects has led to a significant increase in interest in SD mechanisms, and possible approaches to limit the numbers of SDs or their deleterious consequences in injured brain. Astrocytes regulate many events associated with SD. SD initiation and propagation is dependent on extracellular accumulation of K(+) and glutamate, both of which involve astrocytic clearance. SDs are extremely metabolically demanding events, and signaling through astrocyte networks is likely central to the dramatic increase in regional blood flow that accompanies SD in otherwise healthy tissues. Astrocytes may provide metabolic support to neurons following SD, and may provide a source of adenosine that inhibits neuronal activity following SD. It is also possible that astrocytes contribute to the pathophysiology of SD, as a consequence of excessive glutamate release, facilitation of NMDA receptor activation, brain edema due to astrocyte swelling, or disrupted coupling to appropriate vascular responses after SD. Direct or indirect evidence has accumulated implicating astrocytes in many of these responses, but much remains unknown about their specific contributions, especially in the context of injury. Conversion of astrocytes to a reactive phenotype is a prominent feature of injured brain, and recent work suggests that the different functional properties of reactive astrocytes could be targeted to limit SDs in pathophysiological conditions.
Collapse
Affiliation(s)
- Jessica L Seidel
- Stroke and Neurovascular Regulation Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, F-92260 Fontenay-aux-Roses, France
| | - Cenk Ayata
- Stroke and Neurovascular Regulation Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Gilles Bonvento
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, F-92260 Fontenay-aux-Roses, France
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
27
|
Abstract
The term spreading depolarization (SD) refers to waves of abrupt, sustained mass depolarization in gray matter of the CNS. SD, which spreads from neuron to neuron in affected tissue, is characterized by a rapid near-breakdown of the neuronal transmembrane ion gradients. SD can be induced by hypoxic conditions--such as from ischemia--and facilitates neuronal death in energy-compromised tissue. SD has also been implicated in migraine aura, where SD is assumed to ascend in well-nourished tissue and is typically benign. In addition to these two ends of the "SD continuum," an SD wave can propagate from an energy-depleted tissue into surrounding, well-nourished tissue, as is often the case in stroke and brain trauma. This review presents the neurobiology of SD--its triggers and propagation mechanisms--as well as clinical manifestations of SD, including overlaps and differences between migraine aura and stroke, and recent developments in neuromonitoring aimed at better diagnosis and more targeted treatments.
Collapse
Affiliation(s)
- Jens P Dreier
- Department of Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany.
| | - Clemens Reiffurth
- Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany
| |
Collapse
|
28
|
Hinzman JM, DiNapoli VA, Mahoney EJ, Gerhardt GA, Hartings JA. Spreading depolarizations mediate excitotoxicity in the development of acute cortical lesions. Exp Neurol 2015; 267:243-53. [PMID: 25819105 DOI: 10.1016/j.expneurol.2015.03.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 11/19/2022]
Abstract
Spreading depolarizations (SD) are mass depolarizations of neurons and astrocytes that occur spontaneously in acute brain injury and mediate time-dependent lesion growth. Glutamate excitotoxicity has also been extensively studied as a mechanism of neuronal injury, although its relevance to in vivo pathology remains unclear. Here we hypothesized that excitotoxicity in acute lesion development occurs only as a consequence of SD. Using glutamate-sensitive microelectrodes, we found that SD induced by KCl in normal rat cortex elicits increases in extracellular glutamate (11.6±1.3μM) that are synchronous with the onset, sustainment, and resolution of the extracellular direct-current shift of SD. Inhibition of glutamate uptake with d,l-threo-β-benzyloxyaspartate (TBOA, 0.5 and 1mM) significantly prolonged the duration of the direct-current shift (148% and 426%, respectively) and the glutamate increase (167% and 374%, respectively) in a dose-dependent manner (P<0.05). These prolonged events produced significant cortical lesions as indicated by Fluoro-Jade staining (P<0.05), while no lesions were observed after SD in control conditions or after cortical injection of 1mM glutamate (extracellular increase: 243±50.8μM) or 0.5mM TBOA (glutamate increase: 8.5±1.6μM) without SD. We then used an embolic focal ischemia model to determine whether glutamate elevations occur independent of SD in the natural evolution of a cortical lesion. In both the ischemic core and penumbra, glutamate increased only in synchrony with anoxic terminal SD (6.1±1.1μM) and transient SDs (11.8±2.4μM), and not otherwise. Delayed terminal SDs were also observed in two animals at 98 and 150min after ischemic onset and induced similar glutamate elevations. Durations of SDs and glutamate increases were significantly correlated in both normal and ischemic animals (P<0.05). These data suggest that pathologically prolonged SDs are a required mechanism of acute cortical lesion development and that glutamate elevations and the mass electrochemical changes of SD and are merely different facets of the same pathophysiologic process.
Collapse
Affiliation(s)
- Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati (UC) College of Medicine and Neurotrauma Center at UC Neuroscience Institute, Cincinnati, OH, USA.
| | - Vince A DiNapoli
- Department of Neurosurgery, University of Cincinnati (UC) College of Medicine and Neurotrauma Center at UC Neuroscience Institute, Cincinnati, OH, USA; Mayfield Clinic, Cincinnati, OH, USA
| | - Eric J Mahoney
- Department of Neurosurgery, University of Cincinnati (UC) College of Medicine and Neurotrauma Center at UC Neuroscience Institute, Cincinnati, OH, USA
| | - Greg A Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Morris K. Udall Parkinson's Disease Research Center of Excellence, Center for Microelectrode Technology, Spinal Cord and Brain Injury Research Center, Lexington, KY, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati (UC) College of Medicine and Neurotrauma Center at UC Neuroscience Institute, Cincinnati, OH, USA; Mayfield Clinic, Cincinnati, OH, USA
| |
Collapse
|
29
|
Karus C, Mondragão MA, Ziemens D, Rose CR. Astrocytes restrict discharge duration and neuronal sodium loads during recurrent network activity. Glia 2015; 63:936-57. [PMID: 25639699 DOI: 10.1002/glia.22793] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022]
Abstract
Influx of sodium ions into active neurons is a highly energy-expensive process which must be strictly limited. Astrocytes could play an important role herein because they take up glutamate and potassium from the extracellular space, thereby dampening neuronal excitation. Here, we performed sodium imaging in mouse hippocampal slices combined with field potential and whole-cell patch-clamp recordings and measurement of extracellular potassium ([K(+)]o). Network activity was induced by Mg(2+)-free, bicuculline-containing saline, during which neurons showed recurring epileptiform bursting, accompanied by transient increases in [K(+)]o and astrocyte depolarizations. During bursts, neurons displayed sodium increases by up to 22 mM. Astrocyte sodium concentration increased by up to 8.5 mM, which could be followed by an undershoot below baseline. Network sodium oscillations were dependent on action potentials and activation of ionotropic glutamate receptors. Inhibition of glutamate uptake caused acceleration, followed by cessation of electrical activity, irreversible sodium increases, and swelling of neurons. The gliotoxin NaFAc (sodium-fluoroacetate) resulted in elevation of astrocyte sodium concentration and reduced glial uptake of glutamate and potassium uptake through Na(+) /K(+)-ATPase. Moreover, NaFAc extended epileptiform bursts, caused elevation of neuronal sodium, and dramatically prolonged accompanying sodium signals, most likely because of the decreased clearance of glutamate and potassium by astrocytes. Our experiments establish that recurrent neuronal bursting evokes sodium transients in neurons and astrocytes and confirm the essential role of glutamate transporters for network activity. They suggest that astrocytes restrict discharge duration and show that an intact astrocyte metabolism is critical for the neurons' capacity to recover from sodium loads during synchronized activity.
Collapse
Affiliation(s)
- Claudia Karus
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | | | | | | |
Collapse
|
30
|
Seidel JL, Faideau M, Aiba I, Pannasch U, Escartin C, Rouach N, Bonvento G, Shuttleworth CW. Ciliary neurotrophic factor (CNTF) activation of astrocytes decreases spreading depolarization susceptibility and increases potassium clearance. Glia 2015; 63:91-103. [PMID: 25092804 PMCID: PMC5141616 DOI: 10.1002/glia.22735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/17/2014] [Indexed: 11/08/2022]
Abstract
Waves of spreading depolarization (SD) have been implicated in the progressive expansion of acute brain injuries. SD can persist over several days, coincident with the time course of astrocyte activation, but little is known about how astrocyte activation may influence SD susceptibility. We examined whether activation of astrocytes modified SD threshold in hippocampal slices. Injection of a lentiviral vector encoding Ciliary neurotrophic factor (CNTF) into the hippocampus in vivo, led to sustained astrocyte activation, verified by up-regulation of glial fibrillary acidic protein (GFAP) at the mRNA and protein levels, as compared to controls injected with vector encoding LacZ. In acute brain slices from LacZ controls, localized 1M KCl microinjections invariably generated SD in CA1 hippocampus, but SD was never induced with this stimulus in CNTF tissues. No significant change in intrinsic excitability was observed in CA1 neurons, but excitatory synaptic transmission was significantly reduced in CNTF samples. mRNA levels of the predominantly astrocytic Na(+) /K(+) -ATPase pump α2 subunit were higher in CNTF samples, and the kinetics of extracellular K(+) transients during matched synaptic activation were consistent with increased K(+) uptake in CNTF tissues. Supporting a role for the Na(+) /K(+) -ATPase pump in increased SD threshold, ouabain, an inhibitor of the pump, was able to generate SD in CNTF tissues. These data support the hypothesis that activated astrocytes can limit SD onset via increased K(+) clearance and suggest that therapeutic strategies targeting these glial cells could improve the outcome following acute brain injuries associated with SD.
Collapse
Affiliation(s)
- Jessica L Seidel
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lindquist BE, Shuttleworth CW. Spreading depolarization-induced adenosine accumulation reflects metabolic status in vitro and in vivo. J Cereb Blood Flow Metab 2014; 34:1779-90. [PMID: 25160669 PMCID: PMC4269755 DOI: 10.1038/jcbfm.2014.146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/09/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Spreading depolarization (SD), a pathologic feature of migraine, stroke and traumatic brain injury, is a propagating depolarization of neurons and glia causing profound metabolic demand. Adenosine, the low-energy metabolite of ATP, has been shown to be elevated after SD in brain slices and under conditions likely to trigger SD in vivo. The relationship between metabolic status and adenosine accumulation after SD was tested here, in brain slices and in vivo. In brain slices, metabolic impairment (assessed by nicotinamide adenine dinucleotide (phosphate) autofluorescence and O2 availability) was associated with prolonged extracellular direct current (DC) shifts indicating delayed repolarization, and increased adenosine accumulation. In vivo, adenosine accumulation was observed after SD even in otherwise healthy mice. As in brain slices, in vivo adenosine accumulation correlated with DC shift duration and increased when DC shifts were prolonged by metabolic impairment (i.e., hypoglycemia or middle cerebral artery occlusion). A striking pattern of adenosine dynamics was observed during focal ischemic stroke, with nearly all the observed adenosine signals in the periinfarct region occurring in association with SDs. These findings suggest that adenosine accumulation could serve as a biomarker of SD incidence and severity, in a range of clinical conditions.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, New Mexico, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
32
|
Spong KE, Rochon-Terry G, Money TGA, Robertson RM. Disruption of the blood-brain barrier exacerbates spreading depression in the locust CNS. JOURNAL OF INSECT PHYSIOLOGY 2014; 66:1-9. [PMID: 24837786 DOI: 10.1016/j.jinsphys.2014.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
In response to cellular stress in the nervous system of the locust (Locusta migratoria) neural function is interrupted in association with ionic disturbances propagating throughout nervous tissue (Spreading depression; SD). The insect blood-brain barrier (BBB) plays a critical role in the regulation of ion levels within the CNS. We investigated how a disruption in barrier function by transient exposure to 3M urea affects locusts' vulnerability to disturbances in ion levels. Repetitive SD was induced by bath application of ouabain and the extracellular potassium concentration ([K(+)]o) within the metathoracic ganglion (MTG) was monitored. Urea treatment increased the susceptibility to ouabain and caused a progressive impairment in the ability to maintain baseline [K(+)]o levels during episodes of repetitive SD. Additionally, using a within animal protocol we demonstrate that waves of SD, induced by high K(+), propagate throughout the MTG faster following disruption of the BBB. Lastly, we show that targeting the BBB of intact animals reduces their ability to sustain neural function during anoxic conditions. Our findings indicate that locust's ability to withstand stress is diminished following a reduction in barrier function likely due to an impairment of the ability of neural tissue to maintain ionic gradients.
Collapse
Affiliation(s)
- Kristin E Spong
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | - Tomas G A Money
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R Meldrum Robertson
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
33
|
Masino SA, Kawamura M, Ruskin DN. Adenosine receptors and epilepsy: current evidence and future potential. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:233-55. [PMID: 25175969 PMCID: PMC6026023 DOI: 10.1016/b978-0-12-801022-8.00011-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine receptors are a powerful therapeutic target for regulating epileptic seizures. As a homeostatic bioenergetic network regulator, adenosine is perfectly suited to establish or restore an ongoing balance between excitation and inhibition, and its anticonvulsant efficacy is well established. There is evidence for the involvement of multiple adenosine receptor subtypes in epilepsy, but in particular the adenosine A1 receptor subtype can powerfully and bidirectionally regulate seizure activity. Mechanisms that regulate adenosine itself are increasingly appreciated as targets to thus influence receptor activity and seizure propensity. Taken together, established evidence for the powerful potential of adenosine-based epilepsy therapies and new strategies to influence receptor activity can combine to capitalize on this endogenous homeostatic neuromodulator.
Collapse
Affiliation(s)
- Susan A Masino
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, Connecticut, USA.
| | - Masahito Kawamura
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, Connecticut, USA
| |
Collapse
|
34
|
Cuomo O, Rispoli V, Leo A, Politi GB, Vinciguerra A, di Renzo G, Cataldi M. The antiepileptic drug levetiracetam suppresses non-convulsive seizure activity and reduces ischemic brain damage in rats subjected to permanent middle cerebral artery occlusion. PLoS One 2013; 8:e80852. [PMID: 24236205 PMCID: PMC3827478 DOI: 10.1371/journal.pone.0080852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/11/2013] [Indexed: 02/06/2023] Open
Abstract
The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug.
Collapse
Affiliation(s)
- Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Vincenzo Rispoli
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giovanni Bosco Politi
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Gianfranco di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
- * E-mail:
| |
Collapse
|
35
|
Spong KE, Robertson RM. Pharmacological blockade of gap junctions induces repetitive surging of extracellular potassium within the locust CNS. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1031-1040. [PMID: 23916994 DOI: 10.1016/j.jinsphys.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
The maintenance of cellular ion homeostasis is crucial for optimal neural function and thus it is of great importance to understand its regulation. Glial cells are extensively coupled by gap junctions forming a network that is suggested to serve as a spatial buffer for potassium (K(+)) ions. We have investigated the role of glial spatial buffering in the regulation of extracellular K(+) concentration ([K(+)]o) within the locust metathoracic ganglion by pharmacologically inhibiting gap junctions. Using K(+)-sensitive microelectrodes, we measured [K(+)]o near the ventilatory neuropile while simultaneously recording the ventilatory rhythm as a model of neural circuit function. We found that blockade of gap junctions with either carbenoxolone (CBX), 18β-glycyrrhetinic acid (18β-GA) or meclofenamic acid (MFA) reliably induced repetitive [K(+)]o surges and caused a progressive impairment in the ability to maintain baseline [K(+)]o levels throughout the treatment period. We also show that a low dose of CBX that did not induce surging activity increased the vulnerability of locust neural tissue to spreading depression (SD) induced by Na(+)/K(+)-ATPase inhibition with ouabain. CBX pre-treatment increased the number of SD events induced by ouabain and hindered the recovery of [K(+)]o back to baseline levels between events. Our results suggest that glial spatial buffering through gap junctions plays an essential role in the regulation of [K(+)]o under normal conditions and also contributes to a component of [K(+)]o clearance following physiologically elevated levels of [K(+)]o.
Collapse
Affiliation(s)
- Kristin E Spong
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
36
|
Wall MJ, Dale N. Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus. J Physiol 2013; 591:3853-71. [PMID: 23713028 DOI: 10.1113/jphysiol.2013.253450] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The neuromodulator adenosine plays an important role in many physiological and pathological processes within the mammalian CNS. However, the precise mechanisms of how the concentration of extracellular adenosine increases following neural activity remain contentious. Here we have used microelectrode biosensors to directly measure adenosine release induced by focal stimulation in stratum radiatum of area CA1 in mouse hippocampal slices. Adenosine release was both action potential and Ca²⁺ dependent and could be evoked with low stimulation frequencies and small numbers of stimuli. Adenosine release required the activation of ionotropic glutamate receptors and could be evoked by local application of glutamate receptor agonists. Approximately 40% of stimulated-adenosine release occurred by translocation of adenosine via equilibrative nucleoside transporters (ENTs). This component of release persisted in the presence of the gliotoxin fluoroacetate and thus results from the direct release of adenosine from neurons. A reduction of adenosine release in the presence of NTPDase blockers, in slices from CD73(-/-) and dn-SNARE mice, provides evidence that a component of adenosine release arises from the extracellular metabolism of ATP released from astrocytes. This component of release appeared to have slower kinetics than the direct ENT-mediated release of adenosine. These data suggest that activity-dependent adenosine release is surprisingly complex and, in the hippocampus, arises from at least two distinct mechanisms with different cellular sources.
Collapse
Affiliation(s)
- Mark J Wall
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
37
|
Heinrich A, Andó RD, Túri G, Rózsa B, Sperlágh B. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study. Br J Pharmacol 2013; 167:1003-20. [PMID: 22394324 DOI: 10.1111/j.1476-5381.2012.01932.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K(+) concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K(+) , with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca(2+) -free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K(+) -evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels.
Collapse
Affiliation(s)
- A Heinrich
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary Femtonics Ltd, Budapest, Hungary
| | | | | | | | | |
Collapse
|
38
|
Lapilover EG, Lippman K, Salar S, Maslarova A, Dreier JP, Heinemann U, Friedman A. Peri-infarct blood-brain barrier dysfunction facilitates induction of spreading depolarization associated with epileptiform discharges. Neurobiol Dis 2012; 48:495-506. [PMID: 22782081 PMCID: PMC3588590 DOI: 10.1016/j.nbd.2012.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 11/17/2022] Open
Abstract
Recent studies showed that spreading depolarizations (SDs) occurs abundantly in patients following ischemic stroke and experimental evidence suggests that SDs recruit tissue at risk into necrosis. We hypothesized that BBB opening with consequent alterations of the extracellular electrolyte composition and extravasation of albumin facilitates generation of SDs since albumin mediates an astrocyte transcriptional response with consequent disturbance of potassium and glutamate homeostasis. Here we show extravasation of Evans blue-albumin complex into the hippocampus following cortical photothrombotic stroke in the neighboring neocortex. Using extracellular field potential recordings and exposure to serum electrolytes we observed spontaneous SDs in 80% of hippocampal slices obtained from rats 24 h after cortical photothrombosis. Hippocampal exposure to albumin for 24 h through intraventricular application together with serum electrolytes lowered the threshold for the induction of SDs in most slices irrespective of the pathway of stimulation. Exposing acute slices from naive animals to albumin led also to a reduced SD threshold. In albumin-exposed slices the onset of SDs was usually associated with larger stimulus-induced accumulation of extracellular potassium, and preceded by epileptiform activity, which was also observed during the recovery phase of SDs. Application of ifenprodil (3 μM), an NMDA-receptor type 2 B antagonist, blocked stimulus dependent epileptiform discharges and generation of SDs in slices from animals treated with albumin in-vivo. We suggest that BBB opening facilitates the induction of peri-infarct SDs through impaired homeostasis of K+.
Collapse
Affiliation(s)
- EG Lapilover
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - K. Lippman
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - S. Salar
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - A. Maslarova
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - JP Dreier
- Center for Stroke Research Berlin, Charité Universitätsmedizin, 10117 Berlin, Germany
- Department of Experimental Neurology, Charité Universitätsmedizin, 10117 Berlin, Germany
- Department of Neurology, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - U. Heinemann
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
- Neurocure Research Center, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - A. Friedman
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
- Department of Physiology and Neurobiology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
39
|
López-Hidalgo M, Salgado-Puga K, Alvarado-Martínez R, Medina AC, Prado-Alcalá RA, García-Colunga J. Nicotine uses neuron-glia communication to enhance hippocampal synaptic transmission and long-term memory. PLoS One 2012; 7:e49998. [PMID: 23185511 PMCID: PMC3503711 DOI: 10.1371/journal.pone.0049998] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/19/2012] [Indexed: 01/08/2023] Open
Abstract
Nicotine enhances synaptic transmission and facilitates long-term memory. Now it is known that bi-directional glia-neuron interactions play important roles in the physiology of the brain. However, the involvement of glial cells in the effects of nicotine has not been considered until now. In particular, the gliotransmitter D-serine, an endogenous co-agonist of NMDA receptors, enables different types of synaptic plasticity and memory in the hippocampus. Here, we report that hippocampal long-term synaptic plasticity induced by nicotine was annulled by an enzyme that degrades endogenous D-serine, or by an NMDA receptor antagonist that acts at the D-serine binding site. Accordingly, both effects of nicotine: the enhancement of synaptic transmission and facilitation of long-term memory were eliminated by impairing glial cells with fluoroacetate, and were restored with exogenous D-serine. Together, these results show that glial D-serine is essential for the long-term effects of nicotine on synaptic plasticity and memory, and they highlight the roles of glial cells as key participants in brain functions.
Collapse
Affiliation(s)
- Mónica López-Hidalgo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Reynaldo Alvarado-Martínez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Andrea Cristina Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Roberto A. Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| |
Collapse
|
40
|
Risher WC, Croom D, Kirov SA. Persistent astroglial swelling accompanies rapid reversible dendritic injury during stroke-induced spreading depolarizations. Glia 2012; 60:1709-20. [PMID: 22821441 PMCID: PMC3435464 DOI: 10.1002/glia.22390] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/20/2012] [Indexed: 11/10/2022]
Abstract
Spreading depolarizations are a key event in the pathophysiology of stroke, resulting in rapid dendritic beading, which represents acute damage to synaptic circuitry. The impact of spreading depolarizations on the real-time injury of astrocytes during ischemia is less clear. We used simultaneous in vivo 2-photon imaging and electrophysiological recordings in adult mouse somatosensory cortex to examine spreading depolarization-induced astroglial structural changes concurrently with signs of neuronal injury in the early periods of focal and global ischemia. Astrocytes in the metabolically compromised ischemic penumbra-like area showed a long lasting swelling response to spontaneous spreading depolarizations despite rapid dendritic recovery in a photothrombotic occlusion model of focal stroke. Astroglial swelling was often facilitated by recurrent depolarizations and the magnitude of swelling strongly correlated with the total duration of depolarization. In contrast, spreading depolarization-induced astroglial swelling was transient in normoxic healthy tissue. In a model of transient global ischemia, the occurrence of a single spreading depolarization elicited by a bilateral common carotid artery occlusion coincided with astroglial swelling alongside dendritic beading. With immediate reperfusion, dendritic beading subsides. Astroglial swelling was either transient during short ischemic periods distinguished by a short-lasting spreading depolarization, or persistent during severe ischemia characterized by a long-lasting depolarization with the ultraslow negative voltage component. We propose that persistent astroglial swelling is initiated and exacerbated during spreading depolarization in brain tissue with moderate to severe energy deficits, disrupting astroglial maintenance of normal homeostatic function thus contributing to the negative outcome of ischemic stroke as astrocytes fail to provide neuronal support.
Collapse
Affiliation(s)
- W. Christopher Risher
- Graduate Program in Neuroscience, Georgia Health Sciences University, Augusta, Georgia 30912
- Brain and Behavior Discovery Institute, Georgia Health Sciences University, Augusta, Georgia 30912
| | - Deborah Croom
- Department of Neurosurgery, Georgia Health Sciences University, Augusta, Georgia 30912
- Brain and Behavior Discovery Institute, Georgia Health Sciences University, Augusta, Georgia 30912
| | - Sergei A. Kirov
- Department of Neurosurgery, Georgia Health Sciences University, Augusta, Georgia 30912
- Brain and Behavior Discovery Institute, Georgia Health Sciences University, Augusta, Georgia 30912
| |
Collapse
|
41
|
Lindquist BE, Shuttleworth CW. Adenosine receptor activation is responsible for prolonged depression of synaptic transmission after spreading depolarization in brain slices. Neuroscience 2012; 223:365-76. [PMID: 22864185 PMCID: PMC3489063 DOI: 10.1016/j.neuroscience.2012.07.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 01/03/2023]
Abstract
Spreading depolarization (SD) is a slowly propagating, coordinated depolarization of brain tissue, which is followed by a transient (5-10min) depression of synaptic activity. The mechanisms for synaptic depression after SD are incompletely understood. We examined the relative contributions of action potential failure and adenosine receptor activation to the suppression of evoked synaptic activity in murine brain slices. Focal micro-injection of potassium chloride (KCl) was used to induce SD and synaptic potentials were evoked by electrical stimulation of Schaffer collateral inputs to hippocampal area Cornu Ammonis area 1 (CA1). SD was accompanied by loss of both presynaptic action potentials (as assessed from fiber volleys) and field excitatory postsynaptic potentials (fEPSPs). Fiber volleys recovered rapidly upon neutralization of the extracellular direct current (DC) potential, whereas fEPSPs underwent a secondary suppression phase lasting several minutes. Paired-pulse ratio was elevated during the secondary suppression period, consistent with a presynaptic mechanism of synaptic depression. A transient increase in extracellular adenosine concentration was detected during the period of secondary suppression. Antagonists of adenosine A1 receptors (8-cyclopentyl-1,3-dipropylxanthine [DPCPX] or 8-cyclopentyl-1,3-dimethylxanthine [8-CPT]) greatly accelerated fEPSP recovery and abolished increases in paired-pulse ratio normally observed after SD. The duration of fEPSP suppression was correlated with both the duration of the DC shift and the area of tissue depolarized, consistent with the model that adenosine accumulates in proportion to the metabolic burden of SD. These results suggest that in brain slices, the duration of the DC shift approximately defined the period of action potential failure, but the secondary depression of evoked responses was in large part due to endogenous adenosine accumulation after SD.
Collapse
Affiliation(s)
- Britta E. Lindquist
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque NM 87131, USA, ;
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque NM 87131, USA, ;
| |
Collapse
|
42
|
Cortical spreading depression shifts cell fate determination of progenitor cells in the adult cortex. J Cereb Blood Flow Metab 2012; 32:1879-87. [PMID: 22781335 PMCID: PMC3463886 DOI: 10.1038/jcbfm.2012.98] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cortical spreading depression (SD) is propagating neuronal and glial depolarization and is thought to underly the pathophysiology of migraine. We have reported that cortical SD facilitates the proliferative activity of NG2-containing progenitor cells (NG2 cells) that give rise to oligodendrocytes and immature neurons under the physiological conditions in the adult mammalian cortex. Astrocytes have an important role in the maintenance of neuronal functions and alleviate neuronal damage after intense neuronal excitation, including SD and seizures. We here investigated whether SD promotes astrocyte generation from NG2 cells following SD stimuli. Spreading depression was induced by epidural application of 1 mol/L KCl solution in adult rats. We investigated the cell fate of NG2 cells following SD-induced proliferation using 5'-bromodeoxyuridine labeling and immunohistochemical analysis. Newly generated astrocytes were observed only in the SD-stimulated cortex, but not in the contralateral cortex or in normal cortex. The astrocytes were generated from proliferating NG2 cells. Astrogenesis depended on the number of SD stimuli, and was accompanied by suppression of oligodendrogenesis. These observations indicate that the cell fate of NG2 cells was shifted from oligodendrocytes to astrocytes depending on SD stimuli, suggesting activity-dependent tissue remodeling for maintenance of brain functions.
Collapse
|
43
|
Nuritova F, Frenguelli BG. Putative depolarisation-induced retrograde signalling accelerates the repeated hypoxic depression of excitatory synaptic transmission in area CA1 of rat hippocampus via group I metabotropic glutamate receptors. Neuroscience 2012; 222:159-72. [PMID: 22842516 DOI: 10.1016/j.neuroscience.2012.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 02/08/2023]
Abstract
Excitatory synaptic transmission in area CA1 of the mammalian hippocampus is rapidly depressed during hypoxia. The depression is largely attributable to an increase in extracellular adenosine and activation of inhibitory adenosine A(1) receptors on presynaptic glutamatergic terminals. However, sequential exposure to hypoxia results in a slower subsequent hypoxic depression of excitatory synaptic transmission, a phenomenon we have previously ascribed to a reduction in the release of extracellular adenosine. In the present study we show that this delayed depression of excitatory postsynaptic currents (EPSCs) to repeated hypoxia can be reversed by a period of postsynaptic depolarisation delivered to an individual CA1 neuron, under whole-cell voltage clamp, between two periods of hypoxia. The depolarisation-induced acceleration of the hypoxic depression of the EPSC is dependent upon postsynaptic Ca(2+) influx, the activation of PKC and is blocked by intracellular application of GDP-β-S and N-ethylmaleimide (NEM), inhibitors of membrane fusion events. In addition, the acceleration of the hypoxic depression of the EPSC was prevented by the GI mGluR antagonist AIDA, but not by the CB1 cannabinoid receptor antagonist AM251. Our results suggest a process initiated in the postsynaptic cell that can influence glutamate release during subsequent metabolic stress. This may reflect a novel neuroprotective strategy potentially involving retrograde release of adenosine and/or glutamate.
Collapse
Affiliation(s)
- F Nuritova
- Neurosciences Institute, Division of Pathology & Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
| | | |
Collapse
|
44
|
Oliveira-Ferreira AI, Winkler MKL, Reiffurth C, Milakara D, Woitzik J, Dreier JP. Spreading depolarization, a pathophysiological mechanism of stroke and migraine aura. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.11.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spreading depolarization is a mechanism of abrupt, massive ion translocation between intraneuronal and extracellular space that entails cytotoxic edema in the brain’s gray matter. It is observed in patients as a large change of the slow electrical potential. Dependent on the energy status of the tissue, spreading depolarization is either preceded by nonspreading silencing due to neuronal hyperpolarization or accompanied by spreading silencing of electrical brain activity due to a depolarization block. Nonspreading silencing seems to translate into the initial clinical symptoms of ischemic stroke and spreading silencing translates into migraine aura. Direct electrophysiological evidence exists that spreading depolarization occurs in abundance in aneurysmal subarachnoid hemorrhage, delayed ischemic stroke after subarachnoid hemorrhage, malignant hemispheric stroke, spontaneous intracerebral hemorrhage and traumatic brain injury. Indirect evidence suggests its occurrence during migraine aura. In animals, spreading depolarizations facilitate neuronal death when they invade metabolically compromised tissue, whereas they are relatively innocuous in healthy tissue. Therapies targeting spreading depolarization may potentially treat these neurological conditions.
Collapse
Affiliation(s)
- Ana I Oliveira-Ferreira
- Department of Experimental Neurology, Charité University Medicine Berlin, Germany
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Maren KL Winkler
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Clemens Reiffurth
- Department of Experimental Neurology, Charité University Medicine Berlin, Germany
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Denny Milakara
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Charité University Medicine Berlin, Germany
| | - Jens P Dreier
- Department of Neurology, Charité University Medicine Berlin, Germany
| |
Collapse
|
45
|
Dreier JP, Major S, Pannek HW, Woitzik J, Scheel M, Wiesenthal D, Martus P, Winkler MKL, Hartings JA, Fabricius M, Speckmann EJ, Gorji A. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain 2011; 135:259-75. [PMID: 22120143 PMCID: PMC3267981 DOI: 10.1093/brain/awr303] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating channels initiates spreading depression of brain activity. In contrast, epileptic seizures show modest ion translocation and sustained depolarization below the inactivation threshold for action potential generating channels. Such modest sustained depolarization allows synchronous, highly frequent neuronal firing; ictal epileptic field potentials being its electrocorticographic and epileptic seizure its clinical correlate. Nevertheless, Leão in 1944 and Van Harreveld and Stamm in 1953 described in animals that silencing of brain activity induced by spreading depolarization changed during minimal electrical stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We here report on such spreading convulsions in monopolar subdural recordings in 2 of 25 consecutive aneurismal subarachnoid haemorrhage patients in vivo and neocortical slices from 12 patients with intractable temporal lobe epilepsy in vitro. The in vitro results suggest that γ-aminobutyric acid-mediated inhibition protects from spreading convulsions. Moreover, we describe arterial pulse artefacts mimicking epileptic field potentials in three patients with subarachnoid haemorrhage that ride on the slow potential peak. Twenty-one of the 25 subarachnoid haemorrhage patients (84%) had 656 spreading depolarizations in contrast to only three patients (12%) with 55 ictal epileptic events isolated from spreading depolarizations. Spreading depolarization frequency and depression periods per 24 h recording episodes showed an early and a delayed peak on Day 7. Patients surviving subarachnoid haemorrhage with poor outcome at 6 months showed significantly higher total and peak numbers of spreading depolarizations and significantly longer total and peak depression periods during the electrocorticographic monitoring than patients with good outcome. In a semi-structured telephone interview 3 years after the initial haemorrhage, 44% of the subarachnoid haemorrhage survivors had developed late post-haemorrhagic seizures requiring anti-convulsant medication. In those patients, peak spreading depolarization number had been significantly higher [15.1 (11.4–30.8) versus 7.0 (0.8–11.2) events per day, P = 0.045]. In summary, monopolar recordings here provided unequivocal evidence of spreading convulsions in patients. Hence, practically all major pathological cortical network events in animals have now been observed in people. Early spreading depolarizations may indicate a risk for late post-haemorrhagic seizures.
Collapse
Affiliation(s)
- Jens P Dreier
- Centre for Stroke Research Berlin, Charité University Medicine Berlin, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sukhotinsky I, Dilekoz E, Wang Y, Qin T, Eikermann-Haerter K, Waeber C, Ayata C. Chronic daily cortical spreading depressions suppress spreading depression susceptibility. Cephalalgia 2011; 31:1601-8. [PMID: 22013142 DOI: 10.1177/0333102411425865] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Migraine is a disabling chronic episodic disorder. Attack frequency progressively increases in some patients. Incremental cortical excitability has been implicated as a mechanism underlying progression. Cortical spreading depression (CSD) is the electrophysiological event underlying migraine aura, and a headache trigger. We hypothesized that CSD events during frequent migraine attacks condition the cortex to increase the susceptibility to further attacks. METHODS A single daily CSD was induced for 1 or 2 weeks in mouse frontal cortex; contralateral hemisphere served as sham control. At the end of CSD conditioning, occipital CSD susceptibility was determined by measuring the frequency of CSDs evoked by topical KCl application. RESULTS Sham hemispheres developed 8.4 ± 0.3 CSDs/hour, and did not significantly differ from naïve controls without prior cranial surgery (9.3 ± 0.4 CSDs/hour). After 2 but not 1 week of daily CSD conditioning, CSD frequency (4.9 ± 0.3 CSDs/hour) as well as the duration and propagation speed were reduced significantly in the conditioned hemispheres. Histopathological examination revealed marked reactive astrocytosis without neuronal injury throughout the conditioned cortex after 2 weeks, temporally associated with CSD susceptibility. CONCLUSIONS These data do not support the hypothesis that frequent migraine attacks predispose the brain to further attacks by enhancing tissue susceptibility to CSD.
Collapse
|
47
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
48
|
Contribution of astrocyte glycogen stores to progression of spreading depression and related events in hippocampal slices. Neuroscience 2011; 192:295-303. [PMID: 21600270 DOI: 10.1016/j.neuroscience.2011.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 11/23/2022]
Abstract
Spreading depression (SD) is a wave of coordinated cellular depolarization that propagates slowly throughout brain tissue. SD has been associated with migraine aura, and related events have been implicated in the enlargement of some brain injuries. Selective disruption of astrocyte oxidative metabolism has previously been shown to increase the propagation rate of SD in vivo, but it is currently unknown whether astrocyte glycogen stores make significant contributions to the onset or propagation of SD. We examined SD in acutely-prepared murine hippocampal slices, using either localized microinjections of KCl or oxygen and glucose deprivation (OGD) as stimuli. A combination of glycogenolysis inhibitors 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) and 1-deoxynojirimycin (DNJ) increased the propagation rates of both high K(+)-SD and OGD-SD. Consistent with these observations, exposure to l-methionine-dl-sulfoximine (MSO) increased slice glycogen levels and decreased OGD-SD propagation rates. Effects of glycogen depletion were matched by selective inhibition of astrocyte tricarboxylic acid (TCA) cycle activity by fluoroacetate (FA). Prolonged exposure to reduced extracellular glucose (2 mM) has been suggested to deplete slice glycogen stores, but significant modification SD of propagation rate was not observed with this treatment. Furthermore, decreases in OGD-SD latency with this preexposure paradigm appeared to be due to depletion of glucose, rather than glycogen availability. These results suggest that astrocyte glycogen stores contribute to delaying the advancing wavefront of SD, including during the severe metabolic challenge of OGD. Approaches to enhance astrocyte glycogen reserves could be beneficial for delaying or preventing SD in some pathologic conditions.
Collapse
|
49
|
Takahashi T, Otsuguro K, Ohta T, Ito S. Adenosine and inosine release during hypoxia in the isolated spinal cord of neonatal rats. Br J Pharmacol 2011; 161:1806-16. [PMID: 20735412 DOI: 10.1111/j.1476-5381.2010.01002.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Adenosine and inosine accumulate extracellularly during hypoxia/ischaemia in the brain and may act as neuroprotectants. In spinal cord, there is pharmacological evidence for increases in extracellular adenosine during hypoxia, but no direct measurements of purine release. Furthermore, the efflux pathways and origin of extracellular purines are not defined. To characterize hypoxia-evoked purine accumulation, we examined the effect of acute hypoxia on the extracellular levels of adenosine and inosine in isolated spinal cords from rats. EXPERIMENTAL APPROACH Extracellular adenosine and inosine concentrations were assayed in an in vitro preparation of the isolated spinal cord of the neonatal rat by HPLC. KEY RESULTS The extracellular level of inosine was about 10-fold higher than that of adenosine. Acute hypoxia (10 min) caused a temperature-dependent increase in these two purines, which were inhibited by an increase in external Ca(2+), but not by several inhibitors of efflux pathways or metabolic enzymes of adenine nucleotides. Inhibitors of adenosine deaminase or the equilibrative nucleoside transporter (ENT) abolished the hypoxia-evoked increase in inosine but not adenosine. The inhibition of glial metabolism abolished the increase of both purines evoked by hypoxia but not by oxygen-glucose deprivation, hypercapnia or an adenosine kinase inhibitor. CONCLUSIONS AND IMPLICATIONS Our data suggest that hypoxia releases adenosine itself from intracellular sources. Inosine formed intracellularly may be released through ENTs. During hypoxia, astrocytes appear to play a key role in purine release from neonatal rat spinal cord.
Collapse
Affiliation(s)
- T Takahashi
- Laboratory of Pharmacology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
50
|
Batinga H, Barbosa PPDP, Ximenes-da-Silva A. Daytime modulation of cortical spreading depression according to blood glucose levels. Neurosci Lett 2011; 491:58-62. [DOI: 10.1016/j.neulet.2011.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/24/2010] [Accepted: 01/02/2011] [Indexed: 10/18/2022]
|