1
|
Poon MLS, Ko E, Park E, Shin JH. Hypoxic postconditioning modulates neuroprotective glial reactivity in a 3D cortical ischemic-hypoxic injury model. Sci Rep 2024; 14:27032. [PMID: 39506138 PMCID: PMC11541704 DOI: 10.1038/s41598-024-78522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Stroke remains one of the major health challenges due to its high rates of mortality and long-term disability, necessitating the development of effective therapeutic treatment. This study aims to explore the neuroprotective effects of hypoxic postconditioning (HPC) using a cell-based 3D cortical ischemic-hypoxic injury model. Our model employs murine cells to investigate HPC-induced modulation of glial cell reactivity and intercommunication post-oxygen-glucose deprivation-reoxygenation (OGD-R) injury. We found that a single HPC session (1HPC) provided the most significant neuroprotection post-OGD-R compared to multiple intermittent hypoxic treatments, evidenced by improved spheroidal structure, enhanced cell survival and reduced apoptosis, optimal modulation of neuronal phenotypes, dampened ischemic responses, and augmented neurite outgrowth of spheroids. Furthermore, 1HPC suppressed both pro-inflammatory A1 and anti-inflammatory A2 astrocyte phenotypes despite the induction of astrocyte activation while reducing microglial activation with inhibited M1 and M2 reactive states. This was accompanied by a decrease in gene expression of the pro-inflammatory cytokines essential to microglia-astrocyte signaling, collectively suggesting a shift of glial cells away from their traditional reactive states for neuroprotection. This study highlights the potential of 1HPC as a novel therapeutic intervention for ischemic injury via the modulation of neuroprotective glial reactivity. Moreover, the 3D cortical ischemic-hypoxic injury model employed here holds enormous potential serving as a disease model to further elucidate the underlying mechanism of HPC, which can also extend to the applications in brain regeneration, drug development, and the modeling of neural diseases.
Collapse
Affiliation(s)
- Mong Lung Steve Poon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Eunmin Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Eunyoung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Zhou H, Wang J, Zhu Z, Hu L, An E, Lu J, Zhao H. A New Perspective on Stroke Research: Unraveling the Role of Brain Oxygen Dynamics in Stroke Pathophysiology. Aging Dis 2024:AD.2024.0548. [PMID: 39226161 DOI: 10.14336/ad.2024.0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Stroke, a leading cause of death and disability, often results from ischemic events that cut off the brain blood flow, leading to neuron death. Despite treatment advancements, survivors frequently endure lasting impairments. A key focus is the ischemic penumbra, the area around the stroke that could potentially recover with prompt oxygenation; yet its monitoring is complex. Recent progress in bioluminescence-based oxygen sensing, particularly through the Green enhanced Nano-lantern (GeNL), offers unprecedented views of oxygen fluctuations in vivo. Utilized in awake mice, GeNL has uncovered hypoxic pockets within the cerebral cortex, revealing the brain's oxygen environment as a dynamic landscape influenced by physiological states and behaviors like locomotion and wakefulness. These findings illuminate the complexity of oxygen dynamics and suggest the potential impact of hypoxic pockets on ischemic injury and recovery, challenging existing paradigms and highlighting the importance of microenvironmental oxygen control in stroke resilience. This review examines the implications of these novel findings for stroke research, emphasizing the criticality of understanding pre-existing oxygen dynamics for addressing brain ischemia. The presence of hypoxic pockets in non-stroke conditions indicates a more intricate hypoxic scenario in ischemic brains, suggesting strategies to alleviate hypoxia could lead to more effective treatments and rehabilitation. By bridging gaps in our knowledge, especially concerning microenvironmental changes post-stroke, and leveraging new technologies like GeNL, we can pave the way for therapeutic innovations that significantly enhance outcomes for stroke survivors, promising a future where an understanding of cerebral oxygenation dynamics profoundly informs stroke therapy.
Collapse
Affiliation(s)
- Hongmei Zhou
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jialing Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Zhipeng Zhu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Li Hu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Erdan An
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jian Lu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Heng Zhao
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Li Y, Chen R, Shen G, Yin J, Li Y, Zhao J, Nan F, Zhang S, Zhang H, Yang C, Wu M, Fan Y. Delayed CO 2 postconditioning promotes neurological recovery after cryogenic traumatic brain injury by downregulating IRF7 expression. CNS Neurosci Ther 2023; 29:3378-3390. [PMID: 37208955 PMCID: PMC10580333 DOI: 10.1111/cns.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
AIMS Few treatments are available in the subacute phase of traumatic brain injury (TBI) except rehabilitation training. We previously reported that transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects against cerebral ischemia/reperfusion injury. In this study, it was hypothesized that delayed CO2 postconditioning (DCPC) starting at the subacute phase may promote neurological recovery of TBI. METHODS Using a cryogenic TBI (cTBI) model, mice received DCPC daily by inhaling 5%/10%/20% CO2 for various time-courses (one/two/three cycles of 10-min inhalation/10-min break) at Days 3-7, 3-14 or 7-18 after cTBI. Beam walking and gait tests were used to assess the effect of DCPC. Lesion size, expression of GAP-43 and synaptophysin, amoeboid microglia number and glia scar area were detected. Transcriptome and recombinant interferon regulatory factor 7 (Irf7) adeno-associated virus were applied to investigate the molecular mechanisms. RESULTS DCPC significantly promoted recovery of motor function in a concentration and time-course dependent manner with a wide therapeutic time window of at least 7 days after cTBI. The beneficial effects of DCPC were blocked by intracerebroventricular injection of NaHCO3 . DCPC also increased puncta density of GAP-43 and synaptophysin, and reduced amoeboid microglia number and glial scar formation in the cortex surrounding the lesion. Transcriptome analysis showed many inflammation-related genes and pathways were altered by DCPC, and Irf7 was a hub gene, while overexpression of IRF7 blocked the motor function improvement of DCPC. CONCLUSIONS We first showed that DCPC promoted functional recovery and brain tissue repair, which opens a new therapeutic time window of postconditioning for TBI. Inhibition of IRF7 is a key molecular mechanism for the beneficial effects of DCPC, and IRF7 may be a potential therapeutic target for rehabilitation after TBI.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Ru Chen
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Gui‐Ping Shen
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Jing Yin
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Yu Li
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Jing Zhao
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Fang Nan
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Shu‐Han Zhang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Hui‐Feng Zhang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Cai‐Hong Yang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Mei‐Na Wu
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Yan‐Ying Fan
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
4
|
Ishizuka K, Hoshino T, Toi S, Mizuno T, Hosoya M, Saito M, Sato Y, Yagita Y, Todo K, Sakaguchi M, Ohashi T, Maruyama K, Hino S, Honma Y, Doijiri R, Yamagami H, Iguchi Y, Hirano T, Kimura K, Kitazono T, Kitagawa K. Remote ischemic conditioning for acute ischemic stroke part 2: Study protocol for a randomized controlled trial. Front Neurol 2022; 13:946431. [PMID: 36003294 PMCID: PMC9393485 DOI: 10.3389/fneur.2022.946431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Remote ischemic conditioning (RIC) refers to the application of repeated short periods of ischemia intended to protect remote areas against tissue damage during and after prolonged ischemia. Aim We aim to evaluate the efficacy of RIC, determined by the modified Rankin Scale (mRS) score at 90 days after stroke onset. Design and methods This study is an investigator-initiated, multicenter, prospective, randomized, open-label, parallel-group clinical trial. The sample size is 400, comprising 200 patients who will receive RIC and 200 controls. The patients will be divided into three groups according to their National Institutes of Health Stroke Scale score at enrollment: 5–9, mild; 10–14, moderate; 15–20, severe. The RIC protocol will be comprised of four cycles, each consisting of 5 min of blood pressure cuff inflation (at 200 mmHg or 50 mmHg above the systolic blood pressure) followed by 5 min of reperfusion, with the cuff placed on the thigh on the unaffected side. The control group will only undergo blood pressure measurements before and after the intervention period. This trial is registered with the UMIN Clinical Trial Registry (https://www.umin.ac.jp/: UMIN000046225). Study outcome The primary outcome will be a good functional outcome as determined by the mRS score at 90 days after stroke onset, with a target mRS score of 0–1 in the mild group, 0–2 in the moderate group, and 0–3 in the severe group. Discussion This trial may help determine whether RIC should be recommended as a routine clinical strategy for patients with ischemic stroke.
Collapse
Affiliation(s)
- Kentaro Ishizuka
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- *Correspondence: Kentaro Ishizuka
| | - Takao Hoshino
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sono Toi
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Takafumi Mizuno
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Megumi Hosoya
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Moeko Saito
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yasuto Sato
- Department of Public Health, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yoshiki Yagita
- Department of Stroke Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kenichi Todo
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manabu Sakaguchi
- Department of Neurology, Osaka General Medical Center, Osaka, Japan
| | - Takashi Ohashi
- Department of Neurology, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Kenji Maruyama
- Department of Neurology, Toda Chuo General Hospital, Saitama, Japan
| | - Shuji Hino
- Department of Neurology, Saitama Red Cross Hospital, Saitama, Japan
| | - Yutaka Honma
- Department of Neurology, Showa General Hospital, Tokyo, Japan
| | - Ryosuke Doijiri
- Department of Neurology, Iwate Prefectural Central Hospital, Iwate, Japan
| | - Hiroshi Yamagami
- Department of Stroke Neurology, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Teruyuki Hirano
- Department of Stroke and Cerebrovascular Medicine, Kyorin University, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurology, Nippon Medical School, Tokyo, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Kazuo Kitagawa
| |
Collapse
|
5
|
K+-Dependent Na+/Ca2+ Exchanger Isoform 2, Nckx2, Takes Part in the Neuroprotection Elicited by Ischemic Preconditioning in Brain Ischemia. Int J Mol Sci 2022; 23:ijms23137128. [PMID: 35806133 PMCID: PMC9266362 DOI: 10.3390/ijms23137128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Sodium/Calcium exchangers are neuronal plasma membrane antiporters which, by coupling Ca2+ and Na+ fluxes across neuronal membranes, play a relevant role in brain ischemia. The most brain-expressed isoform among the members of the K+-dependent Na+/Ca2+ exchanger family, NCKX2, is involved in the progression of the ischemic lesion, since both its knocking-down and its knocking-out worsens ischemic damage. The aim of this study was to elucidate whether NCKX2 functions as an effector in the neuroprotection evoked by ischemic preconditioning. For this purpose, we investigated: (1) brain NCKX2 expression after preconditioning and preconditioning + ischemia; (2) the contribution of AKT and calpain to modulating NCKX2 expression during preconditioning; and (3) the effect of NCKX2 knocking-out on the neuroprotection mediated by ischemic preconditioning. Our results showed that NCKX2 expression increased in those brain regions protected by ischemic preconditioning. These changes were p-AKT-mediated since its inhibition prevented NCKX2 up-regulation. More interestingly, NCKX2 knocking-out significantly prevented the protection exerted by ischemic preconditioning. Overall, our results suggest that NCKX2 plays a fundamental role in the neuroprotective effect mediated by ischemic preconditioning and support the idea that the enhancement of its expression and activity might represent a reasonable strategy to reduce infarct extension after stroke.
Collapse
|
6
|
Ma W, Li CY, Zhang SJ, Zang CH, Yang JW, Wu Z, Wang GD, Liu J, Liu W, Liu KP, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. Neuroprotective effects of long noncoding RNAs involved in ischemic postconditioning after ischemic stroke. Neural Regen Res 2021; 17:1299-1309. [PMID: 34782575 PMCID: PMC8643058 DOI: 10.4103/1673-5374.327346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
During acute reperfusion, the expression profiles of long noncoding RNAs in adult rats with focal cerebral ischemia undergo broad changes. However, whether long noncoding RNAs are involved in neuroprotective effects following focal ischemic stroke in rats remains unclear. In this study, RNA isolation and library preparation was performed for long noncoding RNA sequencing, followed by determining the coding potential of identified long noncoding RNAs and target gene prediction. Differential expression analysis, long noncoding RNA functional enrichment analysis, and co-expression network analysis were performed comparing ischemic rats with and without ischemic postconditioning rats. Rats were subjected to ischemic postconditioning via the brief and repeated occlusion of the middle cerebral artery or femoral artery. Quantitative real-time reverse transcription-polymerase chain reaction was used to detect the expression levels of differentially expressed long noncoding RNAs after ischemic postconditioning in a rat model of ischemic stroke. The results showed that ischemic postconditioning greatly affected the expression profile of long noncoding RNAs and mRNAs in the brains of rats that underwent ischemic stroke. The predicted target genes of some of the identified long noncoding RNAs (cis targets) were related to the cellular response to ischemia and stress, cytokine signal transduction, inflammation, and apoptosis signal transduction pathways. In addition, 15 significantly differentially expressed long noncoding RNAs were identified in the brains of rats subjected to ischemic postconditioning. Nine candidate long noncoding RNAs that may be related to ischemic postconditioning were identified by a long noncoding RNA expression profile and long noncoding RNA-mRNA co-expression network analysis. Expression levels were verified by quantitative real-time reverse transcription-polymerase chain reaction. These results suggested that the identified long noncoding RNAs may be involved in the neuroprotective effects associated with ischemic postconditioning following ischemic stroke. The experimental animal procedures were approved by the Animal Experiment Ethics Committee of Kunming Medical University (approval No. KMMU2018018) in January 2018.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Si-Jia Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Guo-Dong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
7
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
8
|
Yao Y, Li Y, Ni W, Li Z, Feng L, Wang Y, Meng J, Zhao H. Systematic Study of Immune Cell Diversity in ischemic postconditioning Using High-Dimensional Single-Cell Analysis with Mass Cytometry. Aging Dis 2021; 12:812-825. [PMID: 34094644 PMCID: PMC8139206 DOI: 10.14336/ad.2020.1115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/15/2020] [Indexed: 11/21/2022] Open
Abstract
Ischemic postconditioning (IPostC) is a concept of ischemic stroke treatment, in which several cycles of brief reocclusion after reperfusion are repeated. It is essential to have an accurate understanding of the immune response in IPostC. By using high parametric single-cell mass cytometry, immune cell subsets and characterize their unique functions from ischemic brain and peripheral blood were identified after IPostC. This study enabled us to better understand the immune cell phenotypical and functional characteristics in ischemic brain and peripheral blood at the single-cell and protein levels. Since some cell surface markers can serve as functional markers, reflecting the degree of inflammation, the cell surface marker intensity among different groups was analyzed. The results showed that downregulation of 4E-BP1 and p38 of Microglia and MoDM in the ischemic brain was involved in IPostC-induced protection. In the peripheral blood, downregulation of P38 of CD4 T cell and Treg has also participated in IPostC-induced protection.
Collapse
Affiliation(s)
- Yang Yao
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yaning Li
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weihua Ni
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhijun Li
- 2Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liangshu Feng
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yan Wang
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jihong Meng
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heng Zhao
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Kyng KJ, Kerrn-Jespersen S, Bennedsgaard K, Skajaa T, Pedersen M, Holm IE, Henriksen TB. Short-term outcomes of remote ischemic postconditioning 1 h after perinatal hypoxia-ischemia in term piglets. Pediatr Res 2021; 89:150-156. [PMID: 32294662 DOI: 10.1038/s41390-020-0878-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND We aimed to assess remote ischemic postconditioning (RIPC) as a neuroprotective strategy after perinatal hypoxia-ischemia (HI) in a piglet model. METHODS Fifty-four newborn piglets were subjected to global HI for 45 min. One hour after HI, piglets were randomized to four cycles of 5 min of RIPC or supportive treatment only. The primary outcome was brain lactate/N-acetylaspartate (Lac/NAA) ratios measured by magnetic resonance spectroscopy at 72 h. Secondary outcomes included diffusion-weighted imaging and neuropathology. RESULTS RIPC was associated with a reduction in overall and basal ganglia Lac/NAA ratios at 72 h after HI, but no effect on diffusion-weighted imaging, neuropathology scores, neurological recovery, or mortality. CONCLUSIONS The selective effect of RIPC on Lac/NAA ratios may suggest that the metabolic effect is greater than the structural and functional improvement at 72 h after HI. Further studies are needed to address whether there is an add-on effect of RIPC to hypothermia, together with the optimal timing, number of cycles, and duration of RIPC. IMPACT RIPC after HI was associated with a reduction in overall and basal ganglia Lac/NAA ratios at 72 h, but had no effect on diffusion-weighted imaging, neuropathology scores, neurological recovery, or mortality. RIPC may have a selective metabolic effect, ameliorating lactate accumulation without improving other short-term outcomes assessed at 72 h after HI. We applied four cycles of 5 min RIPC, complementing existing data on other durations of RIPC. This study adds to the limited data on RIPC after perinatal HI and highlights that knowledge gaps, including timing and duration of RIPC, must be addressed together with exploring the combined effects with hypothermia.
Collapse
Affiliation(s)
- Kasper J Kyng
- Department of Paediatrics, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Sigrid Kerrn-Jespersen
- Department of Paediatrics, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Bennedsgaard
- Department of Paediatrics, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Torjus Skajaa
- Department of Paediatrics, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ida E Holm
- Department of Pathology, Randers Hospital and Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tine B Henriksen
- Department of Paediatrics, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Morisaki Y, Nakagawa I, Ogawa Y, Yokoyama S, Furuta T, Saito Y, Nakase H. Ischemic Postconditioning Reduces NMDA Receptor Currents Through the Opening of the Mitochondrial Permeability Transition Pore and K ATP Channel in Mouse Neurons. Cell Mol Neurobiol 2020; 42:1079-1089. [PMID: 33159622 DOI: 10.1007/s10571-020-00996-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022]
Abstract
Ischemic postconditioning (PostC) is known to reduce cerebral ischemia/reperfusion (I/R) injury; however, whether the opening of mitochondrial ATP-dependent potassium (mito-KATP) channels and mitochondrial permeability transition pore (mPTP) cause the depolarization of the mitochondrial membrane that remains unknown. We examined the involvement of the mito-KATP channel and the mPTP in the PostC mechanism. Ischemic PostC consisted of three cycles of 15 s reperfusion and 15 s re-ischemia, and was started 30 s after the 7.5 min ischemic load. We recorded N-methyl-D-aspartate receptors (NMDAR)-mediated currents and measured cytosolic Ca2+ concentrations, and mitochondrial membrane potentials in mouse hippocampal pyramidal neurons. Both ischemic PostC and the application of a mito-KATP channel opener, diazoxide, reduced NMDAR-mediated currents, and suppressed cytosolic Ca2+ elevations during the early reperfusion period. An mPTP blocker, cyclosporine A, abolished the reducing effect of PostC on NMDAR currents. Furthermore, both ischemic PostC and the application of diazoxide potentiated the depolarization of the mitochondrial membrane potential. These results indicate that ischemic PostC suppresses Ca2+ influx into the cytoplasm by reducing NMDAR-mediated currents through mPTP opening. The present study suggests that depolarization of the mitochondrial membrane potential by opening of the mito-KATP channel is essential to the mechanism of PostC in neuroprotection against anoxic injury.
Collapse
Affiliation(s)
- Yudai Morisaki
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan.
| | - Yoichi Ogawa
- Department of Neurophysiology, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Shohei Yokoyama
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Takanori Furuta
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| |
Collapse
|
11
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
12
|
Chen H, Shen J, Zhao H. Ischemic postconditioning for stroke treatment: current experimental advances and future directions. CONDITIONING MEDICINE 2020; 3:104-115. [PMID: 34396060 PMCID: PMC8360401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ischemic postconditioning (IPostC) protects against brain injury induced by stroke and is a potential strategy for ischemic stroke treatment. Understanding its underlying mechanisms and potential hurdles is essential for clinical translation. In this review article, we will summarize the current advances in IPostC for stroke treatment and the underlying protective mechanisms. Strong evidence suggests that IPostC reduces brain infarct size, attenuates blood-brain barrier (BBB) damage and brain edema, and improves neurological outcomes. IPostC also promotes neurogenesis and angiogenesis at the recovery phase of ischemic stroke. The protective mechanisms involve its effects on anti-oxidative stress, anti-inflammation, and anti-apoptosis. In addition, it regulates neurotransmitter receptors, ion channels, heat shock proteins (HSP) 40/70, as well as growth factors such as BDNF and VEGF. Furthermore, IPostC modulates several cell signaling pathways, including the PI3K/Akt, MAPK, NF-κB, and the Gluk2/PSD95/MLK3/MKK7/JNK3 pathways. We also discuss the potential hurdles for IPostC's clinical translation, including insufficient IPostC algorithm studies, such as therapeutic time windows and ischemia-reperfusion periods and cycles, as well as its long-term protection. In addition, future studies should address confounding factors such as age, sex, and pre-existing conditions such as hypertension and hyperglycemia before stroke onset. At last, the combination of IPostC with other treatments, such as tissue plasminogen activator (t-PA), merits further exploration.
Collapse
Affiliation(s)
- Hansen Chen
- Department of Neurosurgery, School of Medicine, Stanford University, CA, 94305 USA
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R, P. R China
| | - Heng Zhao
- Department of Neurosurgery, School of Medicine, Stanford University, CA, 94305 USA
| |
Collapse
|
13
|
Liu C, Yang J, Zhang C, Geng X, Zhao H. Remote ischemic conditioning reduced cerebral ischemic injury by modulating inflammatory responses and ERK activity in type 2 diabetic mice. Neurochem Int 2020; 135:104690. [PMID: 31981607 DOI: 10.1016/j.neuint.2020.104690] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/25/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Remote ischemic preconditioning (RIPreC) and postconditioning (RIPostC) have been demonstrated to attenuate brain injury after ischemic stroke in healthy animals. This study investigated whether RIPreC and RIPostC exerted neuroprotection against cerebral ischemic injury in type 2 diabetic mice. RIPreC (24 h before ischemia) and RIPostC (immediately after reperfusion) were performed in an ischemia/reperfusion induced stroke model with type 2 diabetes. Ischemic outcomes, flow cytometry, multiplex cytokine assay, and western blotting were analyzed after 45 min of ischemia followed by 48 h of reperfusion. Our data indicated that RIPreC and RIPostC attenuated cerebral injuries and neurological deficits. RIPreC significantly reduced CD4 T cell and CD8 T cell infiltration and increased B cell infiltration into the ischemic brain. It also upregulated CD4 and CD8 T cell levels in the peripheral blood. However, RIPostC significantly decreased CD8 T cells infiltration and increased B cell infiltration into the ischemic brain. RIPreC inhibited IL-6 level in both the brain and blood, while RIPostC treatment attenuated IL-6 level upregulation in the peripheral blood. In addition, both RIPreC and RIPostC significantly increased p-ERK expression in the ipsilateral hemisphere in diabetic mice. This study indicated that RIPreC and RIPostC neuroprotection is present in type 2 diabetic mice via the modulation of brain ERK activity and inflammatory responses in both the peripheral blood and ischemic brain. However, the benefit was lower in RIPostC.
Collapse
Affiliation(s)
- Cuiying Liu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Jian Yang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chencheng Zhang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Therapeutic Hypothermia After Cardiac Arrest: Involvement of the Risk Pathway in Mitochondrial PTP-Mediated Neuroprotection. Shock 2019; 52:224-229. [DOI: 10.1097/shk.0000000000001234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Sarne Y. Beneficial and deleterious effects of cannabinoids in the brain: the case of ultra-low dose THC. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:551-562. [PMID: 30864864 DOI: 10.1080/00952990.2019.1578366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article reviews the neurocognitive advantages and drawbacks of cannabinoid substances, and discusses the possible physiological mechanisms that underlie their dual activity. The article further reviews the neurocognitive effects of ultra-low doses of ∆9-tetrahydrocannabinol (THC; 3-4 orders of magnitude lower than the conventional doses) in mice, and proposes such low doses of THC as a possible remedy for various brain injuries and for the treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Yosef Sarne
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Grewal AK, Singh N, Singh TG. Neuroprotective effect of pharmacological postconditioning on cerebral ischaemia-reperfusion-induced injury in mice. ACTA ACUST UNITED AC 2019; 71:956-970. [PMID: 30809806 DOI: 10.1111/jphp.13073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/01/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To investigate the mechanism of neuroprotection rendered via pharmacological postconditioning in cerebral ischaemia-reperfusion-induced injury in mice. METHODS Pharmacological postconditioning is strategy which either involves hindering deleterious pathway or inducing modest stress level which triggers intracellular defence pathway to sustain more vigorous insult leading to conditioning. Hence, in current research we explored the potentiality of CGS21680 (0.5 mg/kg; i.p), an adenosine A2 A receptor agonist and PTEN inhibitor, SF1670 (3 mg/kg; i.p.) to trigger postconditioning after inducing cerebral global ischaemia (17 min) and reperfusion (24 h)-induced injury via occlusion of both carotid arteries. Mice were also given treatment with LY294002 (1.5 mg/kg; i.p.), a PI3K inhibitor and adenosine A2 A receptor antagonist, Istradefylline (2 mg/kg; i.p.), to establish the precise mechanism of postconditioning. Various biochemical and behavioural parameters were assessed to examine the effect of pharmacological postconditioning. KEY FINDINGS Pharmacological postconditioning induced with CGS21680 and SF1670 attenuated the infarction along with improved behavioural and biochemical parameters in comparison with ischaemia-reperfusion control group. The outcome of postconditioning with CGS21680 and SF1670 was significantly reversed by LY294002 and Istradefylline, respectively. CONCLUSIONS The neuroprotective effects of CGS21680 and SF1670 postconditioning on cerebral ischaemia-reperfusion injury may be due to PI3K/Akt pathway activation.
Collapse
Affiliation(s)
- Amarjot Kaur Grewal
- Department of Pharmacology, Chitkara college of Pharmacy, Chitkara University, Patiala, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara college of Pharmacy, Chitkara University, Patiala, India
| |
Collapse
|
17
|
Neuroprotective Mechanism of Hypoxic Post-conditioning Involves HIF1-Associated Regulation of the Pentose Phosphate Pathway in Rat Brain. Neurochem Res 2018; 44:1425-1436. [PMID: 30448928 DOI: 10.1007/s11064-018-2681-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 11/11/2018] [Indexed: 01/19/2023]
Abstract
Post-conditioning is exposure of an injured organism to the same harmful factors but of milder intensity which mobilizes endogenous protective mechanisms. Recently, we have developed a novel noninvasive post-conditioning (PostC) protocol involving three sequential episodes of mild hypobaric hypoxia which exerts pronounced neuroprotective action. In particular, it prevents development of pathological cascades caused by severe hypobaric hypoxia (SH) such as cellular loss, lipid peroxidation, abnormal neuroendocrine responses and behavioural deficit in experimental animals. Development of these post-hypoxic pathological effects has been associated with the delayed reduction of hypoxia-inducible factor 1 (HIF1) regulatory α-subunit levels in rat hippocampus, whereas PostC up-regulated it. The present study has been aimed at experimental examination of the hypothesis that intrinsic mechanisms underlying the neuroprotective and antioxidant effects of PostC involves HIF1-dependent stimulation of the pentose phosphate pathway (PPP). We have observed that SH leads to a decrease of glucose-6-phosphate dehydrogenase (G6PD) activity in the hippocampus and neocortex of rats as well as to a reduction in NADPH and total glutathione levels. This depletion of the antioxidant defense system together with excessive lipid peroxidation during the reoxygenation phase resulted in increased oxidative stress and massive cellular death observed after SH. In contrast, PostC led to normalization of G6PD activity, stabilization of the NADPH and total glutathione levels and thereby resulted in recovery of the cellular redox state and prevention of neuronal death. Our data suggest that stabilization of the antioxidant system via HIF1-associated PPP regulation represents an important neuroprotective mechanism enabled by PostC.
Collapse
|
18
|
Lee JS, Song DJ, Hong JH, Kim TS, Joo SP. Diverse Ischemic Postconditioning Protocols Affect the Infarction Size in Focal Ischemic Stroke. J Cerebrovasc Endovasc Neurosurg 2018; 20:159-167. [PMID: 30397587 PMCID: PMC6199403 DOI: 10.7461/jcen.2018.20.3.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022] Open
Abstract
Objective Ischemic postconditioning (IPostC), consisted of transient brain ischemia/reperfusion cycles, is considered to have neuroprotective effect. However, there is no best single protocol of IPostC, because varied factors like species tested and characteristics of the tissue may affect the efficacy of IPostC. Thus, we investgated whether different protocols of IPostC affect neuroprotective effects in experimental animal models. Materials and Methods Through occlusion of middle cerebral artery (MCA) with intraluminal suture, stroke was induced in a transient focal ischemia model in mice. We conducted IPostC via brief and repeated MCA occlusion, 2 minutes after reperfusion, followed by different ischemia and reperfusion protocols. After procedure, functional neurological score and histological examination were evaluated. Results IPostC with different protocols resulted in diverse effects. Among them, a protocol that consists of 3 cycle of IPostC significantly reduced the infarction size 3 days after stroke. Conclusion IPostC was confirmed to reduce infarction size. The effects of IPostC are definitely affected by differences in the protocol used, including the number of cycles, the duration of individual ischemia/reperfusion episode and the entire duration of the IPostC stimuli.
Collapse
Affiliation(s)
- Joo-Seok Lee
- Department of Neurosurgery, Gwangju Christian Hospital, Gwangju, Korea
| | - Dong-Jun Song
- Department of Neurosurgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Jong-Hwan Hong
- Department of Neurosurgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Tae-Sun Kim
- Department of Neurosurgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Pil Joo
- Department of Neurosurgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
19
|
Liu XF, Zhou DD, Xie T, Hao JL, Malik TH, Lu CB, Qi J, Pant OP, Lu CW. The Nrf2 Signaling in Retinal Ganglion Cells under Oxidative Stress in Ocular Neurodegenerative Diseases. Int J Biol Sci 2018; 14:1090-1098. [PMID: 29989056 PMCID: PMC6036726 DOI: 10.7150/ijbs.25996] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022] Open
Abstract
Retinal ganglion cells (RGCs) are one of the important cell types affected in many ocular neurodegenerative diseases. Oxidative stress is considered to be involved in retinal RGCs death in ocular neurodegenerative diseases. More and more attention has been focused on studying the agents that may have neuroprotective effects. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key nuclear transcription factor for the systemic antioxidant defense system. This review elucidates the underlying mechanism of the Nrf2-mediated neuroprotective effects on RGCs in ocular neurodegenerative diseases, such as diabetic retinopathy and retinal ischemia-reperfusion injury. Several Nrf2 inducers that shield RGCs from oxidative stress-induced neurodegeneration via regulating Nrf2 signaling are discussed.
Collapse
Affiliation(s)
- Xiu-Fen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, Jilin, China
| | - Tian Xie
- Department of . Neurosurgery, The People's Hospital of Jilin Province, Jilin, China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Tayyab Hamid Malik
- Department of Gastroenterology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Bo Lu
- Department of Cardiology, The First Hospital of Jiamusi University, Heilongjiang, China
| | - Jing Qi
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Om Prakash Pant
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
20
|
Agoston DV. Modeling the Long-Term Consequences of Repeated Blast-Induced Mild Traumatic Brain Injuries. J Neurotrauma 2018; 34:S44-S52. [PMID: 28937952 DOI: 10.1089/neu.2017.5317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Repeated mild traumatic brain injury (rmTBI) caused by playing collision sports or by exposure to blasts during military operations can lead to late onset, chronic diseases such as chronic traumatic encephalopathy (CTE), a progressive neurodegenerative condition that manifests in increasingly severe neuropsychiatric abnormalities years after the last injury. Currently, because of the heterogeneity of the clinical presentation, confirmation of a CTE diagnosis requires post-mortem examination of the brain. The hallmarks of CTE are abnormal accumulation of phosphorylated tau protein, TDP-43 immunoreactive neuronal cytoplasmic inclusions, and astroglial abnormalities, but the pathomechanism leading to these terminal findings remains unknown. Animal modeling can play an important role in the identification of CTE pathomechanisms, the development of early stage diagnostic and prognostic biomarkers, and pharmacological interventions. Modeling the long-term consequences of blast rmTBI in animals is especially challenging because of the complexities of blast physics and animal-to-human scaling issues. This review summarizes current knowledge about the pathobiologies of CTE and rmbTBI and discusses problems as well as potential solutions related to high-fidelity modeling of rmbTBI and determining its long-term consequences.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University , Bethesda, Maryland; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
21
|
Esposito E, Hayakawa K, Ahn BJ, Chan SJ, Xing C, Liang AC, Kim KW, Arai K, Lo EH. Effects of ischemic post-conditioning on neuronal VEGF regulation and microglial polarization in a rat model of focal cerebral ischemia. J Neurochem 2018; 146:160-172. [PMID: 29570780 DOI: 10.1111/jnc.14337] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/12/2018] [Accepted: 03/08/2018] [Indexed: 01/14/2023]
Abstract
Ischemic postconditioning is increasingly being investigated as a therapeutic approach for cerebral ischemia. However, the majority of studies are focused on the acute protection of neurons per se. Whether and how postconditioning affects multiple cells in the recovering neurovascular unit remains to be fully elucidated. Here, we asked whether postconditioning may modulate help-me signaling between injured neurons and reactive microglia. Rats were subjected to 100 min of focal cerebral ischemia, then randomized into a control versus postconditioning group. After 3 days of reperfusion, infarct volumes were significantly reduced in animals treated with postconditioning, along with better neurologic outcomes. Immunostaining revealed that ischemic postconditioning increased expression of vascular endothelial growth factor (VEGF) in neurons within peri-infarct regions. Correspondingly, we confirmed that VEGFR2 was expressed on Iba1-positive microglia/macrophages, and confocal microscopy showed that in postconditioned rats, these cells were polarized to a ramified morphology with higher expression of M2-like markers. Treating rats with a VEGF receptor 2 kinase inhibitor negated these effects of postconditioning on microglia/macrophage polarization. In vitro, postconditoning after oxygen-glucose deprivation up-regulated VEGF release in primary neuron cultures, and adding VEGF to microglial cultures partly shifted their M2-like markers. Altogether, our findings support the idea that after postconditioning, injured neurons may release VEGF as a 'help-me' signal that promotes microglia/macrophage polarization into potentially beneficial phenotypes.
Collapse
Affiliation(s)
- Elga Esposito
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kazuhide Hayakawa
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bum Ju Ahn
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Su Jing Chan
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Institute of Medical Biology, Glycotherapeutics Group, Immunos, Singapore
| | - Changhong Xing
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Anna C Liang
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kyu-Won Kim
- NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ken Arai
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eng H Lo
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
22
|
Zhou G, Li MH, Tudor G, Lu HT, Kadirvel R, Kallmes D. Remote Ischemic Conditioning in Cerebral Diseases and Neurointerventional Procedures: Recent Research Progress. Front Neurol 2018; 9:339. [PMID: 29867745 PMCID: PMC5964135 DOI: 10.3389/fneur.2018.00339] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia and stroke are increasing in prevalence and are among the leading causes of morbidity and mortality in both developed and developing countries. Despite the progress in endovascular treatment, ischemia/reperfusion (IR) injury is an important contributor to post-surgical mortality and morbidity affecting a wide range of neurointerventional procedures. However, pharmacological recruitment of effective cerebral protective signaling has been largely disappointing to date. In remote ischemic conditioning (RIC), repetitive transient mechanical obstruction of vessels at a limb remote from the IR injury site protects vital organs from IR injury and confers infarction size reduction following prolonged arterial occlusion. Results of pharmacologic agents appear to be species specific, while RIC is based on the neuroprotective influences of phosphorylated protein kinase B, signaling proteins, nitric oxide, and transcriptional activators, the benefits of which have been confirmed in many species. Inducing RIC protection in patients undergoing cerebral vascular surgery or those who are at high risk of brain injury has been the subject of research and has been enacted in clinical settings. Its simplicity and non-invasive nature, as well as the flexibility of the timing of RIC stimulus, also makes it feasible to apply alongside neurointerventional procedures. Furthermore, despite nonuniform RIC protocols, emerging literature demonstrates improved clinical outcomes. The aims of this article are to summarize the potential mechanisms underlying different forms of conditioning, to explore the current translation of this paradigm from laboratory to neurovascular diseases, and to outline applications for patient care.
Collapse
Affiliation(s)
- Geng Zhou
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Mayo Clinic, Rochester, MN, United States
| | - Ming Hua Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | - Hai Tao Lu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | |
Collapse
|
23
|
Rehni AK, Dave KR. Ameliorative potential of conditioning on ischemia-reperfusion injury in diabetes. CONDITIONING MEDICINE 2018; 1:105-115. [PMID: 29795806 PMCID: PMC5962288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diabetes is a serious metabolic disease characterized by hyperglycemia. Diabetes also leads to several long-term secondary complications. Cardiovascular disease is an important complication of diabetes and is a major contributor to morbidity and mortality in diabetic subjects. The discovery of conditioning-induced ischemic or anoxic tolerance has led to the demonstration of the protective potential of conditioning as a treatment strategy to mitigate ischemia-reperfusion injury. Diabetes modulates multiple metabolic pathways and signal transduction cascades. Some of these pathways may overlap with mechanisms that mediate the beneficial effects of conditioning from the body's reaction to a sublethal insult, indicating the possibility of a potential interaction between diabetes and conditioning. Studies demonstrate that diabetes abrogates the ameliorative effect of various forms of conditioning, such as ischemic preconditioning, ischemic postconditioning, remote ischemic conditioning and pharmacological conditioning, on ischemia-reperfusion injury in various animal models. Moreover, drugs used to treat diabetes may have a potential impact on protection afforded by conditioning from ischemic injury. Studies also indicate a potential impact of various anti-diabetic drugs on conditioning-induced protection. Overall, the literature suggests that a better understanding of the overlap among pathways activated by diabetes and those involved in induction of ischemia tolerance may help identify ideal conditioning paradigms to protect diabetic subjects from ischemic injury.
Collapse
Affiliation(s)
- Ashish K. Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Kunjan R. Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
24
|
Kadzielawa K, Mathew B, Stelman CR, Lei AZ, Torres L, Roth S. Gene expression in retinal ischemic post-conditioning. Graefes Arch Clin Exp Ophthalmol 2018; 256:935-949. [PMID: 29504043 DOI: 10.1007/s00417-018-3905-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/30/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The pathophysiology of retinal ischemia involves mechanisms including inflammation and apoptosis. Ischemic post-conditioning (Post-C), a brief non-lethal ischemia, induces a long-term ischemic tolerance, but the mechanisms of ischemic post-conditioning in the retina have only been described on a limited basis. Accordingly, we conducted this study to determine the molecular events in retinal ischemic post-conditioning and to identify targets for therapeutic strategies for retinal ischemia. METHODS To determine global molecular events in ischemic post-conditioning, a comprehensive study of the transcriptome of whole retina was performed. We utilized RNA sequencing (RNA-Seq), a recently developed, deep sequencing technique enabling quantitative gene expression, with low background noise, dynamic detection range, and discovery of novel genes. Rat retina was subjected to ischemia in vivo by elevation of intraocular pressure above systolic blood pressure. At 24 h after ischemia, Post-C or sham Post-C was performed by another, briefer period of ischemia, and 24 h later, retinas were collected and RNA processed. RESULTS There were 71 significantly affected pathways in post-conditioned/ischemic vs. normals and 43 in sham post conditioned/ischemic vs. normals. Of these, 28 were unique to Post-C and ischemia. Seven biological pathways relevant to ischemic injury, in Post-C as opposed to sham Post-C, were examined in detail. Apoptosis, p53, cell cycle, JAK-STAT, HIF-1, MAPK and PI3K-Akt pathways significantly differed in the number as well as degree of fold change in genes between conditions. CONCLUSION Post-C is a complex molecular signaling process with a multitude of altered molecular pathways. We identified potential gene candidates in Post-C. Studying the impact of altering expression of these factors may yield insight into new methods for treating or preventing damage from retinal ischemic disorders.
Collapse
Affiliation(s)
- Konrad Kadzielawa
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Biji Mathew
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Clara R Stelman
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Arden Zhengdeng Lei
- Center for Research Bioinformatics, University of Illinois at Chicago, Chicago, IL, USA
| | - Leianne Torres
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Anesthesiology, MC 515, University of Illinois Medical Center, 1740 West Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
25
|
Li JH, Jia JJ, Shen W, Chen SS, Jiang L, Xie HY, Zhou L, Zheng SS. Optimized postconditioning algorithm protects liver graft after liver transplantation in rats. Hepatobiliary Pancreat Dis Int 2018; 17:32-38. [PMID: 29428101 DOI: 10.1016/j.hbpd.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/13/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ischemia reperfusion injury (IRI) causes postoperative complications and influences the outcome of the patients undergoing liver surgery and transplantation. Postconditioning (PostC) is a known manual conditioning to decrease the hepatic IRI. Here we aimed to optimize the applicable PostC protocols and investigate the potential protective mechanism. METHODS Thirty Sprague-Dawley rats were randomly divided into 3 groups: the sham group (n = 5), standard orthotopic liver transplantation group (OLT, n = 5), PostC group (OLT followed by clamping and re-opening the portal vein for different time intervals, n = 20). PostC group was then subdivided into 4 groups according to the different time intervals: (10 s × 3, 10 s × 6, 30 s × 3, 60 s × 3, n = 5 in each subgroup). Liver function, histopathology, malondialdehyde (MDA), myeloperoxidase (MPO), expressions of p-Akt and endoplasmic reticulum stress (ERS) related genes were evaluated. RESULTS Compared to the OLT group, the grafts subjected to PostC algorithm (without significant prolonging the total ischemic time) especially with short stimulus and more cycles (10 s × 6) showed significant alleviation of morphological damage and graft function. Besides, the production of reactive oxidative agents (MDA) and neutrophil infiltration (MPO) were significantly depressed by PostC algorithm. Most of ERS related genes were down-regulated by PostC (10 s × 6), especially ATF4, Casp12, hspa4, ATF6 and ELF2, while p-Akt was up-regulated. CONCLUSIONS PostC algorithm, especially 10 s × 6 algorithm, showed to be effective against rat liver graft IRI. These protective effects may be associated with its antioxidant, inhibition of ERS and activation of p-Akt expression of reperfusion injury salvage kinase pathway.
Collapse
Affiliation(s)
- Jian-Hui Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun-Jun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wen Shen
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sha-Sha Chen
- Department of Anesthesia, First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China
| | - Li Jiang
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hai-Yang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
26
|
Schläpfer M. [Is Oxygen Deficiency Always Harmful?]. PRAXIS 2018; 107:1155-1159. [PMID: 30326811 DOI: 10.1024/1661-8157/a003070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Is Oxygen Deficiency Always Harmful? Abstract. The role of the cardiovascular circulation is to supply tissue with oxygen and nutrients. Oxygen deficiency (hypoxia) is considered life-threatening, since cells die, either through apoptotic or necrotic processes. Tissue tries to counteract this by means of evolutionary signalling pathways, such as the nuclear hypoxia-inducible factor, which protects the tissue by promoting cell survival strategies and simultaneously intervening in angiogenesis, haematogenesis and metabolic processes. Recent findings indicate that these conserved signalling pathways can also function as therapeutic approaches in wound healing of bones and skin, as well as in the regeneration of tissues, e.g. in the liver, and in the hematopoietic system.
Collapse
Affiliation(s)
- Martin Schläpfer
- 1 Institut für Anästhesiologie und Physiologie, Universitätsspital und Universität Zürich
| |
Collapse
|
27
|
Chang JY, Park H, Jang SY, Jung S, Bae HJ, Kwon OK, Han MK. Early partial recanalization after intravenous thrombolysis leads to prediction of favorable outcome in cases of acute ischemic stroke with major vessel occlusion. J Clin Neurosci 2017; 46:30-36. [DOI: 10.1016/j.jocn.2017.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022]
|
28
|
Matsuura TR, Bartos JA, Tsangaris A, Shekar KC, Olson MD, Riess ML, Bienengraeber M, Aufderheide TP, Neumar RW, Rees JN, McKnite SH, Dikalova AE, Dikalov SI, Douglas HF, Yannopoulos D. Early Effects of Prolonged Cardiac Arrest and Ischemic Postconditioning during Cardiopulmonary Resuscitation on Cardiac and Brain Mitochondrial Function in Pigs. Resuscitation 2017; 116:8-15. [PMID: 28408349 PMCID: PMC5552370 DOI: 10.1016/j.resuscitation.2017.03.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Out-of-hospital cardiac arrest (CA) is a prevalent medical crisis resulting in severe injury to the heart and brain and an overall survival of less than 10%. Mitochondrial dysfunction is predicted to be a key determinant of poor outcomes following prolonged CA. However, the onset and severity of mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) is not fully understood. Ischemic postconditioning (IPC), controlled pauses during the initiation of CPR, has been shown to improve cardiac function and neurologically favorable outcomes after 15min of CA. We tested the hypothesis that mitochondrial dysfunction develops during prolonged CA and can be rescued with IPC during CPR (IPC-CPR). METHODS A total of 63 swine were randomized to no ischemia (Naïve), 19min of ventricular fibrillation (VF) CA without CPR (Untreated VF), or 15min of CA with 4min of reperfusion with either standard CPR (S-CPR) or IPC-CPR. Mitochondria were isolated from the heart and brain to quantify respiration, rate of ATP synthesis, and calcium retention capacity (CRC). Reactive oxygen species (ROS) production was quantified from fresh frozen heart and brain tissue. RESULTS Compared to Naïve, Untreated VF induced cardiac and brain ROS overproduction concurrent with decreased mitochondrial respiratory coupling and CRC, as well as decreased cardiac ATP synthesis. Compared to Untreated VF, S-CPR attenuated brain ROS overproduction but had no other effect on mitochondrial function in the heart or brain. Compared to Untreated VF, IPC-CPR improved cardiac mitochondrial respiratory coupling and rate of ATP synthesis, and decreased ROS overproduction in the heart and brain. CONCLUSIONS Fifteen minutes of VF CA results in diminished mitochondrial respiration, ATP synthesis, CRC, and increased ROS production in the heart and brain. IPC-CPR attenuates cardiac mitochondrial dysfunction caused by prolonged VF CA after only 4min of reperfusion, suggesting that IPC-CPR is an effective intervention to reduce cardiac injury. However, reperfusion with both CPR methods had limited effect on mitochondrial function in the brain, emphasizing an important physiological divergence in post-arrest recovery between those two vital organs.
Collapse
Affiliation(s)
- Timothy R Matsuura
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jason A Bartos
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Adamantios Tsangaris
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | | | - Matthew D Olson
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Matthias L Riess
- Department of Anesthesiology, TVHS VA Medical Center, Nashville, TN, USA; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Martin Bienengraeber
- Departments of Anesthesiology and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tom P Aufderheide
- Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Neumar
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer N Rees
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Scott H McKnite
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Anna E Dikalova
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergey I Dikalov
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hunter F Douglas
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Demetris Yannopoulos
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Li Z, Chen H, Lv J, Zhao R. The application and neuroprotective mechanisms of cerebral ischemic post-conditioning: A review. Brain Res Bull 2017; 131:39-46. [DOI: 10.1016/j.brainresbull.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/06/2017] [Indexed: 01/17/2023]
|
30
|
Overview of Experimental and Clinical Findings regarding the Neuroprotective Effects of Cerebral Ischemic Postconditioning. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6891645. [PMID: 28473987 PMCID: PMC5394355 DOI: 10.1155/2017/6891645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/07/2017] [Accepted: 01/16/2017] [Indexed: 12/15/2022]
Abstract
Research on attenuating the structural and functional deficits observed following ischemia-reperfusion has become increasingly focused on the therapeutic potential of ischemic postconditioning. In recent years, various methods and animal models of ischemic postconditioning have been utilized. The results of these numerous studies have indicated that the mechanisms underlying the neuroprotective effects of ischemic postconditioning may involve reductions in the generation of free radicals and inhibition of calcium overload, as well as the release of endogenous active substances, alterations in membrane channel function, and activation of protein kinases. Here we review the novel discovery, mechanism, key factors, and clinical application of ischemic postconditioning and discuss its implications for future research and problem of clinical practice.
Collapse
|
31
|
Vetrovoy OV, Rybnikova EA, Samoilov MO. Cerebral mechanisms of hypoxic/ischemic postconditioning. BIOCHEMISTRY (MOSCOW) 2017; 82:392-400. [DOI: 10.1134/s000629791703018x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Zhan L, Liu L, Li K, Wu B, Liu D, Liang D, Wen H, Wang Y, Sun W, Liao W, Xu E. Neuroprotection of hypoxic postconditioning against global cerebral ischemia through influencing posttranslational regulations of heat shock protein 27 in adult rats. Brain Pathol 2017; 27:822-838. [PMID: 27936516 DOI: 10.1111/bpa.12472] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
We previously reported that hypoxic postconditioning (HPC) ameliorated hippocampal neuronal death induced by transient global cerebral ischemia (tGCI) in adult rats. However, the mechanism of HPC-induced neuroprotection is still elusive. Notably, heat shock protein 27 (Hsp27) has recently emerged as a potent neuroprotectant in cerebral ischemia. Although its robust protective effect on stroke has been recognized, the mechanism of Hsp27-mediated neuroprotection is largely unknown. Here, we investigated the potential molecular mechanism by which HPC modulates the posttranslational regulations of Hsp27 after tGCI. We found that HPC increased expression of Hsp27 in CA1 subregion after tGCI. Inhibition of Hsp27 expression with lentivirus-mediated short hairpin RNA (shRNA) abolished the neuroprotection induced by HPC in vivo. Furthermore, pretreatment with cycloheximide, a protein synthesis inhibitor, resulted in a significant decrease in the degradation rate of Hsp27 protein in postconditioned rats, suggesting that the increase in the expression of Hsp27 after HPC might result from its decreased degradation. Next, pretreatment with leupeptin, a lysosomal inhibitor, resulted in an accumulation of Hsp27 after tGCI, indicating that autophagic pathway may be responsible for the degradation of Hsp27. We further showed that the formation of LC3-II and autophagosomes increased after tGCI. Meanwhile, the degradation of Hsp27 was suppressed and neuronal damage was reduced when blocking autophagy with 3-Methyladenine, whereas activating autophagy with rapamycin showed an opposite tendency. Lastly, we confirmed that HPC increased the expression of phosphorylated MAPKAP kinase 2 (MK2) and Hsp27 after tGCI. Also, administration of SB203580, a p38 mitogen-activated protein kinase inhibitor, decreased the expressions of phosphorylated MK2 and Hsp27. Our results suggested that inhibition of Hsp27 degradation mediated by down-regulation of autophagy may induce ischemic tolerance after HPC. Additionally, phosphorylation of Hsp27 induced by MK2 might be associated with the neuroprotection of HPC.
Collapse
Affiliation(s)
- Lixuan Zhan
- Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, 510260, China
| | - Liu Liu
- Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, 510260, China
| | - Kongping Li
- Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, 510260, China
| | - Baoxing Wu
- Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, 510260, China
| | - Dandan Liu
- Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, 510260, China
| | - Donghai Liang
- Department of Environmental Health Sciences, Rollins School of Public Health, Emory University, 1518 Clifton Road, 2040K, Atlanta, GA, 30322
| | - Haixia Wen
- Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, 510260, China
| | - Yanmei Wang
- Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, 510260, China
| | - Weiwen Sun
- Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, 510260, China
| | - Weiping Liao
- Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, 510260, China
| | - En Xu
- Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, 510260, China
| |
Collapse
|
33
|
Tan Q, Chen Q, Niu Y, Feng Z, Li L, Tao Y, Tang J, Yang L, Guo J, Feng H, Zhu G, Chen Z. Urokinase, a promising candidate for fibrinolytic therapy for intracerebral hemorrhage. J Neurosurg 2017; 126:548-557. [PMID: 27104852 DOI: 10.3171/2016.1.jns152287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) is associated with a high rate of mortality and severe disability, while fibrinolysis for ICH evacuation is a possible treatment. However, reported adverse effects can counteract the benefits of fibrinolysis and limit the use of tissue-type plasminogen activator (tPA). Identifying appropriate fibrinolytics is still needed. Therefore, the authors here compared the use of urokinase-type plasminogen activator (uPA), an alternate thrombolytic, with that of tPA in a preclinical study. METHODS Intracerebral hemorrhage was induced in adult male Sprague-Dawley rats by injecting autologous blood into the caudate, followed by intraclot fibrinolysis without drainage. Rats were randomized to receive uPA, tPA, or saline within the clot. Hematoma and perihematomal edema, brain water content, Evans blue fluorescence and neurological scores, matrix metalloproteinases (MMPs), MMP mRNA, blood-brain barrier (BBB) tight junction proteins, and nuclear factor-κB (NF-κB) activation were measured to evaluate the effects of these 2 drugs in ICH. RESULTS In comparison with tPA, uPA better ameliorated brain edema and promoted an improved outcome after ICH. In addition, uPA therapy more effectively upregulated BBB tight junction protein expression, which was partly attributed to the different effects of uPA and tPA on the regulation of MMPs and its related mRNA expression following ICH. CONCLUSIONS This study provided evidence supporting the use of uPA for fibrinolytic therapy after ICH. Large animal experiments and clinical trials are required to further explore the efficacy and safety of uPA in ICH fibrinolysis.
Collapse
Affiliation(s)
- Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and
| | - Yin Niu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and
| | - Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and
| | - Lin Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and
| | - Jing Guo
- Department of Neurosurgery, 211st Hospital of PLA, Harbin, People's Republic of China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and
| |
Collapse
|
34
|
Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou Y, Yuan Y, Lu S, Jiang L, Qin Z, Chen Z, Hu W, Zhang X. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy 2017; 13:473-485. [PMID: 28103118 PMCID: PMC5361599 DOI: 10.1080/15548627.2016.1274596] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prompt reperfusion after cerebral ischemia is critical for neuronal survival. Any strategies that extend the limited reperfusion window will be of great importance. Acidic postconditioning (APC) is a mild acidosis treatment that involves inhaling CO2 during reperfusion following ischemia. APC attenuates ischemic brain injury although the underlying mechanisms have not been elucidated. Here we report that APC reinforces ischemia-reperfusion-induced mitophagy in middle cortical artery occlusion (MCAO)-treated mice, and in oxygen-glucose deprivation (OGD)-treated brain slices and neurons. Inhibition of mitophagy compromises neuroprotection conferred by APC. Furthermore, mitophagy and neuroprotection are abolished in Park2 knockout mice, indicating that APC-induced mitophagy is facilitated by the recruitment of PARK2 to mitochondria. Importantly, in MCAO mice, APC treatment extended the effective reperfusion window from 2 to 4 h, and this window was further extended to 6 h by exogenously expressing PARK2. Taken together, we found that PARK2-dependent APC-induced mitophagy renders the brain resistant to ischemic injury. APC treatment could be a favorable strategy to extend the thrombolytic time window for stroke therapy.
Collapse
Affiliation(s)
- Zhe Shen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Yanrong Zheng
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Jiaying Wu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Ying Chen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Xiaoli Wu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Yiting Zhou
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Yang Yuan
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Shousheng Lu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Lei Jiang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Zhenghong Qin
- b Department of Pharmacology and Laboratory of Aging and Nervous Diseases , Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Science, Soochow University , Suzhou , China
| | - Zhong Chen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Weiwei Hu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Xiangnan Zhang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| |
Collapse
|
35
|
|
36
|
Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7190943. [PMID: 28116037 PMCID: PMC5225393 DOI: 10.1155/2016/7190943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.
Collapse
|
37
|
Wang J, Han D, Sun M, Feng J. Cerebral ischemic post‑conditioning induces autophagy inhibition and a HMGB1 secretion attenuation feedback loop to protect against ischemia reperfusion injury in an oxygen glucose deprivation cellular model. Mol Med Rep 2016; 14:4162-4172. [PMID: 27666823 PMCID: PMC5101915 DOI: 10.3892/mmr.2016.5747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 08/05/2016] [Indexed: 12/12/2022] Open
Abstract
Cerebral ischemic postconditioning (IPOC) has been demonstrated to be neuroprotective against cerebral ischemia reperfusion injury. The present study aimed to determine whether IPOC could inhibit autophagy and high mobility group box 1 (HMGB1) release in a PC12 cell oxygen glucose deprivation/reperfusion (OGD/R) model. An 8 h OGD and 24 h reperfusion cellular model was developed to mimic cerebral ischemia reperfusion injury, with 3 cycles of 10 min OGD/5 min reperfusion treatment to imitate IPOC. Cell viability was determined to demonstrate the efficiency of OGD/R, IPOC and autophagy activator, rapamycin (RAP), treatment. Transmission electron microscopy was performed to observe the formation of autophagosomes, and immunofluorescence, western blot and co‑immunoprecipitation were used to examine the expression of autophagy‑associated proteins and HMGB1. Enzyme‑linked immunosorbent assay analysis was conducted to examine the level of HMGB1 in cell supernatants. Additionally, PC12 cells were treated with RAP to examine the effect of autophagy on HMGB1 release, and the effect of recombinant human HMGB1 and Beclin1 small interfering RNA on autophagy was investigated. The present study confirmed that IPOC inhibited autophagy and HMGB1 secretion, autophagy inhibition induced a decrease in HMGB1 secretion, and HMGB1 secretion attenuation caused autophagy inhibition in return, as demonstrated by immunofluorescence and western blot analyses. Autophagy inhibition and HMGB1 secretion attenuation were, therefore, demonstrated to form a feedback loop under IPOC. These mechanisms illustrated the protective effects of IPOC and may accelerate the clinical use of IPOC.
Collapse
Affiliation(s)
- Jue Wang
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dong Han
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Miao Sun
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
38
|
Wei S, Tong J, Xue Q, Liu Y, Xu X. Pathways Involved in Oxygen Glucose Deprivation Damage of Astrocytes. J Mol Neurosci 2016; 61:115-122. [DOI: 10.1007/s12031-016-0832-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/30/2016] [Indexed: 01/10/2023]
|
39
|
Frumkin K, Bloom AS. Ischemic Conditioning: Implications for Emergency Medicine. Ann Emerg Med 2016; 68:268-74. [DOI: 10.1016/j.annemergmed.2016.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
40
|
Debaty G, Lurie K, Metzger A, Lick M, Bartos JA, Rees JN, McKnite S, Puertas L, Pepe P, Fowler R, Yannopoulos D. Reperfusion injury protection during Basic Life Support improves circulation and survival outcomes in a porcine model of prolonged cardiac arrest. Resuscitation 2016; 105:29-35. [DOI: 10.1016/j.resuscitation.2016.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/03/2016] [Accepted: 05/02/2016] [Indexed: 11/16/2022]
|
41
|
Miao W, Bao TH, Han JH, Yin M, Zhang J, Yan Y, Zhu YH. Neuroprotection induced by post-conditioning following ischemia/reperfusion in mice is associated with altered microRNA expression. Mol Med Rep 2016; 14:2582-8. [PMID: 27485299 PMCID: PMC4991681 DOI: 10.3892/mmr.2016.5576] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 06/24/2016] [Indexed: 12/05/2022] Open
Abstract
Ischemic preconditioning and ischemic postconditioning (IPostC) represent promising strategies to reduce ischemia-reperfusion (I/R) injury and attenuate the lethal ischemic damage following stroke. However, the mechanism underlying this attenuation remains to be elucidated. It was hypothesized that alterations in microRNA (miRNA) expression in the cerebral cortex and hippocampus of mice following I/R is associated with the functional improvement induced by IPostC. Behavioral changes were assessed in a mouse model of I/R in the absence or presence of IPostC, followed by microarray analyses to investigate the expressional alterations of miRNAs in the cerebral cortex and hippocampus of mice. The results of the present study revealed that IPostC abrogated the neurological impairment and hippocampus-associated cognitive deficits induced by I/R, and upregulated or downregulated the expression levels of numerous miRNAs. Furthermore, the upregulation of miR-19a, and the downregulation of miR-1, let-7f and miR-124 expression levels following IPostC was confirmed utilizing reverse transcription-quantitative polymerase chain reaction. The results of the present study demonstrated that alterations in miRNA expression in the cerebral cortex and hippocampus of mice following I/R was associated with the neuroprotection induced by IPostC.
Collapse
Affiliation(s)
- Wei Miao
- Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Tian-Hao Bao
- Department of Geratology, Psychiatric Hospital of Yunnan Kunming, Yunnan 650224, P.R. China
| | - Jian-Hong Han
- Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Mei Yin
- Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Jie Zhang
- Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Yong Yan
- Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Yu-Hong Zhu
- Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| |
Collapse
|
42
|
Ren X, Orlova EV, Maevsky EI, Bonicalzi V, Canavero S. Brain protection during cephalosomatic anastomosis. Surgery 2016; 160:5-10. [DOI: 10.1016/j.surg.2016.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 01/09/2023]
|
43
|
Ren C, Wang P, Wang B, Li N, Li W, Zhang C, Jin K, Ji X. Limb remote ischemic per-conditioning in combination with post-conditioning reduces brain damage and promotes neuroglobin expression in the rat brain after ischemic stroke. Restor Neurol Neurosci 2016; 33:369-79. [PMID: 25868435 PMCID: PMC4923706 DOI: 10.3233/rnn-140413] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Purpose: Limb remote ischemic per-conditioning or post-conditioning has been shown to be neuroprotective after cerebral ischemic stroke. However, the effect of combining remote per-conditioning with post-conditioning on ischemic/reperfusion injury as well as the underlying mechanisms are largely unexplored. Methods: Here, adult male Sprague Dawley rats were subjected to middle cerebral artery occlusion (MCAO). The limb ischemic stimulus was immediately applied after onset of focal ischemia (per-conditioning), followed by repeated short episodes of remote ischemia 24 hr after reperfusion (post-conditioning). The infarct volume, motor function, and the expression of neuroglobin (Ngb) were measured at different durations after reperfusion. Results: We found that a single episode of limb remote per-conditioning afforded short-term protection, but combining repeated remote post-conditioning during the 14 days after reperfusion significantly ameliorated cerebral ischemia/reperfusion injury. Interestingly, we also found that ischemic per- and post-conditioning significantly increased expression of Ngb, an oxygen-binding globin protein that has been demonstrated to be neuroprotective against stroke, at peri-infarct regions from day 1 to day 14 following ischemia/reperfusion. Conclusion: Our results suggest that the conventional per-conditioning combined with post-conditioning may be used as a novel neuroprotective strategy against ischemia-reperfusion injury, and Ngb seems to be one of the important players in limb remote ischemia-mediated neuroprotection.
Collapse
Affiliation(s)
- Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas, USA.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Pengcheng Wang
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas, USA
| | - Ning Li
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Weiguang Li
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, China
| | - Kunlin Jin
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas, USA
| | - Xunming Ji
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| |
Collapse
|
44
|
Abstract
OPINION STATEMENT New neuroprotective treatments aimed at preventing or minimizing "delayed brain injury" are attractive areas of investigation and hold the potential to have substantial beneficial effects on aneurysmal subarachnoid hemorrhage (aSAH) survivors. The underlying mechanisms for this "delayed brain injury" are multi-factorial and not fully understood. The most ideal treatment strategies would have the potential for a pleotropic effect positively modulating multiple implicated pathophysiological mechanisms at once. My personal management (RFJ) of patients with aneurysmal subarachnoid hemorrhage closely follows those treatment recommendations contained in modern published guidelines. However, over the last 5 years, I have also utilized a novel treatment strategy, originally developed at the University of Maryland, which consists of a 14-day continuous low-dose intravenous heparin infusion (LDIVH) beginning 12 h after securing the ruptured aneurysm. In addition to its well-known anti-coagulant properties, unfractionated heparin has potent anti-inflammatory effects and through multiple mechanisms may favorably modulate the neurotoxic and neuroinflammatory processes prominent in aneurysmal subarachnoid hemorrhage. In my personal series of patients treated with LDIVH, I have found significant preservation of neurocognitive function as measured by the Montreal Cognitive Assessment (MoCA) compared to a control cohort of my patients treated without LDIVH (RFJ unpublished data presented at the 2015 AHA/ASA International Stroke Conference symposium on neuroinflammation in aSAH and in abstract format at the 2015 AANS/CNS Joint Cerebrovascular Section Annual Meeting). It is important for academic physicians involved in the management of these complex patients to continue to explore new treatment options that may be protective against the potentially devastating "delayed brain injury" following cerebral aneurysm rupture. Several of the treatment options included in this review show promise and could be carefully adopted as the level of evidence for each improves. Other proposed neuroprotective treatments like statins and magnesium sulfate were previously thought to be very promising and to varying degrees were adopted at numerous institutions based on somewhat limited human evidence. Recent clinical trials and meta-analysis have shown no benefit for these treatments, and I currently no longer utilize either treatment as prophylaxis in my practice.
Collapse
|
45
|
Busija DW, Rutkai I, Dutta S, Katakam PV. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone. Compr Physiol 2016; 6:1529-48. [PMID: 27347901 DOI: 10.1002/cphy.c150051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016.
Collapse
Affiliation(s)
- David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
46
|
Ong Q, Guo S, Duan L, Zhang K, Collier EA, Cui B. The Timing of Raf/ERK and AKT Activation in Protecting PC12 Cells against Oxidative Stress. PLoS One 2016; 11:e0153487. [PMID: 27082641 PMCID: PMC4833326 DOI: 10.1371/journal.pone.0153487] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
Acute brain injuries such as ischemic stroke or traumatic brain injury often cause massive neural death and irreversible brain damage with grave consequences. Previous studies have established that a key participant in the events leading to neural death is the excessive production of reactive oxygen species. Protecting neuronal cells by activating their endogenous defense mechanisms is an attractive treatment strategy for acute brain injuries. In this work, we investigate how the precise timing of the Raf/ERK and the AKT pathway activation affects their protective effects against oxidative stress. For this purpose, we employed optogenetic systems that use light to precisely and reversibly activate either the Raf/ERK or the AKT pathway. We find that preconditioning activation of the Raf/ERK or the AKT pathway immediately before oxidant exposure provides significant protection to cells. Notably, a 15-minute transient activation of the Raf/ERK pathway is able to protect PC12 cells against oxidant strike that is applied 12 hours later, while the transient activation of the AKT pathway fails to protect PC12 cells in such a scenario. On the other hand, if the pathways are activated after the oxidative insult, i.e. postconditioning, the AKT pathway conveys greater protective effect than the Raf/ERK pathway. We find that postconditioning AKT activation has an optimal delay period of 2 hours. When the AKT pathway is activated 30min after the oxidative insult, it exhibits very little protective effect. Therefore, the precise timing of the pathway activation is crucial in determining its protective effect against oxidative injury. The optogenetic platform, with its precise temporal control and its ability to activate specific pathways, is ideal for the mechanistic dissection of intracellular pathways in protection against oxidative stress.
Collapse
Affiliation(s)
- Qunxiang Ong
- Department of Chemistry, Stanford University, Stanford, California, 94305, United States of America
| | - Shunling Guo
- Department of Chemistry, Stanford University, Stanford, California, 94305, United States of America
| | - Liting Duan
- Department of Chemistry, Stanford University, Stanford, California, 94305, United States of America
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Eleanor Ann Collier
- Department of Chemistry, Stanford University, Stanford, California, 94305, United States of America
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California, 94305, United States of America
- * E-mail:
| |
Collapse
|
47
|
Jin Z, Wu J, Yan LJ. Chemical Conditioning as an Approach to Ischemic Stroke Tolerance: Mitochondria as the Target. Int J Mol Sci 2016; 17:351. [PMID: 27005615 PMCID: PMC4813212 DOI: 10.3390/ijms17030351] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022] Open
Abstract
It is well established that the brain can be prepared to resist or tolerate ischemic stroke injury, and mitochondrion is a major target for this tolerance. The preparation of ischemic stroke tolerance can be achieved by three major approaches: ischemic conditioning, hypoxic conditioning and chemical conditioning. In each conditioning approach, there are often two strategies that can be used to achieve the conditioning effects, namely preconditioning (Pre-C) and postconditioning (Post-C). In this review, we focus on chemical conditioning of mitochondrial proteins as targets for neuroprotection against ischemic stroke injury. Mitochondrial targets covered include complexes I, II, IV, the ATP-sensitive potassium channel (mitoKATP), adenine dinucleotide translocase (ANT) and the mitochondrial permeability transition pore (mPTP). While numerous mitochondrial proteins have not been evaluated in the context of chemical conditioning and ischemic stroke tolerance, the paradigms and approaches reviewed in this article should provide general guidelines on testing those mitochondrial components that have not been investigated. A deep understanding of mitochondria as the target of chemical conditioning for ischemic stroke tolerance should provide valuable insights into strategies for fighting ischemic stroke, a leading cause of death in the world.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
48
|
A Combination of Remote Ischemic Perconditioning and Cerebral Ischemic Postconditioning Inhibits Autophagy to Attenuate Plasma HMGB1 and Induce Neuroprotection Against Stroke in Rat. J Mol Neurosci 2016; 58:424-31. [PMID: 26852332 DOI: 10.1007/s12031-016-0724-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022]
Abstract
Remote ischemic perconditioning (RIPerC) and ischemic postconditioning (IPOC) are well-acknowledged neuroprotective procedures during ischemic injury. The present study established a combined RIPerC and IPOC (RIPerC + IPOC) model in rats and studied how it would regulate the autophagy process and affect HMGB1 levels in a rat model of middle cerebral artery occlusion (MCAO). Rats with MCAO were treated with RIPerC by fastening and release of the left hind limb to achieve 4 cycles of 5 min remote ischemia reperfusion, 40 min prior to cerebral reperfusion, and then treated with IPOC by exposing the cerebral middle artery to 3 cycles of 30 s reperfusion/30 s occlusion at the onset of cerebral reperfusion. Infarction volumes, neurological deficits, and pathological changes were assessed 24 h after ischemia. The autophagy activator rapamycin (RAP) and the autophagy inhibitor 3-methyladenine (3-MA) were administrated for further mechanism. The expression and location of HMGB1 and the autophagy-related proteins like LC3, Beclin1, and P62 as well as plasma HMGB1 levels were measured. Our results suggested that RIPerC + IPOC attenuated plasma HMGB1 levels to intensify its neuroprotective effect against cerebral ischemic reperfusion injury via inhibiting the autophagy process.
Collapse
|
49
|
Jiang S, Deng C, Lv J, Fan C, Hu W, Di S, Yan X, Ma Z, Liang Z, Yang Y. Nrf2 Weaves an Elaborate Network of Neuroprotection Against Stroke. Mol Neurobiol 2016; 54:1440-1455. [PMID: 26846360 DOI: 10.1007/s12035-016-9707-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/05/2016] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a neuroprotective transcription factor that has recently attracted increased attention. Stroke, a common and serious neurological disease, is currently a leading cause of death in the USA so far. It is therefore of vital importance to explore how Nrf2 behaves in stroke. In this review, we first introduce the structural features of Nrf2 and Kelch-like ECH-associated protein 1 (Keap1) and briefly depict the activation, inactivation, and regulation processes of the Nrf2 pathway. Next, we discuss the physiopathological mechanisms, upstream modulators, and downstream targets of the Nrf2 pathway. Following this background, we expand our discussion to the roles of Nrf2 in ischemic and hemorrhagic stroke and provide several potential future directions. The information presented here may be useful in the design of future experimental research and increase the likelihood of using Nrf2 as a therapeutic target for stroke in the future.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China.,Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Shouyin Di
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Xiaolong Yan
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhiqiang Ma
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China.
| | - Yang Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China. .,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
50
|
Qi ZF, Luo YM, Liu XR, Wang RL, Zhao HP, Yan F, Song ZJ, Luo M, Ji XM. AKT/GSK3β-dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model. CNS Neurosci Ther 2015. [PMID: 23191937 DOI: 10.1111/cns.12016] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Limb remote ischemic postconditioning (RIPostC) has been recognized as an applicable strategy in protecting against cerebral ischemic injury. However, the time window for application of limb RIPostC and the mechanisms behind RIPostC are still unclear. AIMS In this study, we investigated the protective efficacy and the role of autophagy in limb RIPostC using a transient middle cerebral artery occlusion rat model. RESULTS Limb RIPostC applied in the early phase of reperfusion reduced infarct size and improved neurological function. Autophagy levels in penumbral tissues were elevated in neurons of limb RIPostC rats, with an increase in the phosphorylation of AKT and glycogen synthase kinase 3β (GSK3β). Blocking the AKT/GSK3β pathway via the AKT inhibitor LY294002 prior to limb RIPostC suppressed the RIPostC-induced autophagy and resulted in the activation of caspase-3 in RIPostC rats, suggesting a critical role for AKT/GSK3β-dependent autophagy in reducing cell death after cerebral ischemia. CONCLUSIONS These results aid optimization of the time window for RIPostC use and offer novel insight into, and a better understanding of, the protective mechanism of autophagy in limb RIPostC.
Collapse
Affiliation(s)
- Zhi-Feng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|