1
|
Taylor JL, Baudel MMA, Nieves-Cintron M, Navedo MF. Vascular Function and Ion Channels in Alzheimer's Disease. Microcirculation 2024; 31:e12881. [PMID: 39190776 PMCID: PMC11498901 DOI: 10.1111/micc.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
This review paper explores the critical role of vascular ion channels in the regulation of cerebral artery function and examines the impact of Alzheimer's disease (AD) on these processes. Vascular ion channels are fundamental in controlling vascular tone, blood flow, and endothelial function in cerebral arteries. Dysfunction of these channels can lead to impaired cerebral autoregulation, contributing to cerebrovascular pathologies. AD, characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles, has been increasingly linked to vascular abnormalities, including altered vascular ion channel activity. Here, we briefly review the role of vascular ion channels in cerebral blood flow control and neurovascular coupling. We then examine the vascular defects in AD, the current understanding of how AD pathology affects vascular ion channel function, and how these changes may lead to compromised cerebral blood flow and neurodegenerative processes. Finally, we provide future perspectives and conclusions. Understanding this topic is important as ion channels may be potential therapeutic targets for improving cerebrovascular health and mitigating AD progression.
Collapse
Affiliation(s)
- Jade L. Taylor
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| | | | | | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| |
Collapse
|
2
|
Zhou TD, Zhang Z, Balachandrasekaran A, Raji CA, Becker JT, Kuller LH, Ge Y, Lopez OL, Dai W, Gach HM. Prospective Longitudinal Perfusion in Probable Alzheimer's Disease Correlated with Atrophy in Temporal Lobe. Aging Dis 2024; 15:1855-1871. [PMID: 37196135 PMCID: PMC11272196 DOI: 10.14336/ad.2023.0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
Reduced cerebral blood flow (CBF) in the temporoparietal region and gray matter volumes (GMVs) in the temporal lobe were previously reported in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the temporal relationship between reductions in CBF and GMVs requires further investigation. This study sought to determine if reduced CBF is associated with reduced GMVs, or vice versa. Data came from 148 volunteers of the Cardiovascular Health Study Cognition Study (CHS-CS), including 58 normal controls (NC), 50 MCI, and 40 AD who had perfusion and structural MRIs during 2002-2003 (Time 2). Sixty-three of the 148 volunteers had follow-up perfusion and structural MRIs (Time 3). Forty out of the 63 volunteers received prior structural MRIs during 1997-1999 (Time 1). The relationships between GMVs and subsequent CBF changes, and between CBF and subsequent GMV changes were investigated. At Time 2, we observed smaller GMVs (p<0.05) in the temporal pole region in AD compared to NC and MCI. We also found associations between: (1) temporal pole GMVs at Time 2 and subsequent declines in CBF in this region (p=0.0014) and in the temporoparietal region (p=0.0032); (2) hippocampal GMVs at Time 2 and subsequent declines in CBF in the temporoparietal region (p=0.012); and (3) temporal pole CBF at Time 2 and subsequent changes in GMV in this region (p = 0.011). Therefore, hypoperfusion in the temporal pole may be an early event driving its atrophy. Perfusion declines in the temporoparietal and temporal pole follow atrophy in this temporal pole region.
Collapse
Affiliation(s)
- Tony D Zhou
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Zongpai Zhang
- Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | - Cyrus A Raji
- Departments of Radiology and Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - James T Becker
- Departments of Psychiatry, Psychology, and Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Yulin Ge
- Department of Radiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, PA 15260, USA.
| | - Weiying Dai
- Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | - H. Michael Gach
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
- Departments of Radiology and Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63110, USA.
| |
Collapse
|
3
|
Zhao P, Cheng P, Wang J, Zhu G, Wang X. Shenqi Yizhi prescription prevents AβO-induced memory impairment in mice by regulating the contractility of brain pericytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155639. [PMID: 38669966 DOI: 10.1016/j.phymed.2024.155639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Cerebral microcirculation disturbance manifested by decrease of cerebral blood flow (CBF) is one of early features of Alzheimer's disease (AD). Shenqi Yizhi prescription (SQYZ) is widely used in the treatment of AD. However, the effect of SQYZ on the early feature of AD is not clarified. PURPOSE To explore the effect and mechanism of SQYZ on AD-like behavior from the perspective of early pathological features of AD. METHODS The fingerprint of SQYZ was established by ultra-high-performance liquid chromatograph. The improvement effect of SQYZ on Aβ1-42 Oligomer (AβO)-induced AD-like behavior of mice was evaluated by behavioral test. The changes of CBF were detected by laser doppler meter and laser speckle imaging. The pathological changes of the hippocampus were observed by HE staining and transmission electron microscope. The expressions of intercellular communication molecules were detected by western blotting or immunofluorescence staining. The content of platelet-derived growth factor-BB (PDGF-BB) was detected by ELISA. Finally, the core components of SQYZ were docked with platelet-derived growth factor receptor beta (PDGFRβ) using AutoDock Vina software. RESULTS The similarity of the components in SQYZ extracted from different batches of medicinal materials was higher than 0.9. SQYZ administration could improve AβO-induced memory impairment and CBF reduction. Compared with the sham group, the number of neurons in the hippocampi of AβO group was significantly reduced, and the microvessels were shrunken and deformed. By contrary, SQYZ administration mitigated those pathological changes. Compared with the sham mice, the expressions of CD31, N-cadherin, PDGFRβ, glial fibrillary acidic protein, phosphorylation of focal adhesion kinase, integrin β1, and integrin α5 in the hippocampi of AβO mice were significantly increased. However, SQYZ administration significantly reduced AβO-induced expression of those proteins. Interestingly, the effect of PDGFRβ inhibitor, sunitinib demonstrated a consistent modulating effect as SQYZ. Finally, the brain-entering components of SQYZ, including ginsenoside Rg5, coptisine, cryptotanshinone, dihydrotanshinone IIA, stigmasterol, and tanshinone IIA had high binding force with PDGFRβ, implicating PDGFRβ as a potential target for SQYZ. CONCLUSIONS Our data indicate that SQYZ improves CBF in AβO-triggered AD-like mice through inhibiting brain pericyte contractility, indicating the treatment potential of SQYZ for AD at the early stage.
Collapse
Affiliation(s)
- Panpan Zhao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei 230038, China
| | - Ping Cheng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei 230038, China
| | - Jingji Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230061, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei 230038, China.
| | - Xuncui Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
4
|
Dai X, Liang R, Dai M, Li X, Zhao W. Smoking Impacts Alzheimer's Disease Progression Through Oral Microbiota Modulation. Mol Neurobiol 2024:10.1007/s12035-024-04241-1. [PMID: 38795302 DOI: 10.1007/s12035-024-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Alzheimer's disease (AD) is an important public health challenge with a limited understanding of its pathogenesis. Smoking is a significant modifiable risk factor for AD progression, and its specific mechanism is often interpreted from a toxicological perspective. However, microbial infections also contribute to AD, with oral microbiota playing a crucial role in its progression. Notably, smoking alters the ecological structure and pathogenicity of the oral microbiota. Currently, there is no systematic review or summary of the relationship between these three factors; thus, understanding this association can help in the development of new treatments. This review summarizes the connections between smoking, AD, and oral microbiota from existing research. It also explores how smoking affects the occurrence and development of AD through oral microbiota, and examines treatments for oral microbiota that delay the progression of AD. Furthermore, this review emphasizes the potential of the oral microbiota to act as a biomarker for AD. Finally, it considers the feasibility of probiotics and oral antibacterial therapy to expand treatment methods for AD.
Collapse
Affiliation(s)
- Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manqiong Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Su Z, Zhang G, Li X, Zhang H. Inverse correlation between Alzheimer's disease and cancer from the perspective of hypoxia. Neurobiol Aging 2023; 131:59-73. [PMID: 37572528 DOI: 10.1016/j.neurobiolaging.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 08/14/2023]
Abstract
Sporadic Alzheimer's disease and cancer remain epidemiologically inversely related, and exploring the reverse pathogenesis is important for our understanding of both. Cognitive dysfunctions in Alzheimer's disease (AD) might result from the depletion of adaptive reserves in the brain. Energy storage in the brain is limited and is dynamically regulated by neurovascular and neurometabolic coupling. The research on neurodegenerative diseases has been dominated by the neurocentric view that neuronal defects cause the diseases. However, the proposal of the 2-hit vascular hypothesis in AD led us to focus on alterations in the vasculature, especially hypoperfusion. Chronic hypoxia is a feature shared by AD and cancer. It is interesting how contradicting chronic hypoxia's effects on both cancer and AD are. In this article, we discuss the potential links between the 2 diseases' etiology, from comparable upstream circumstances to diametrically opposed downstream effects. We suggest opposing potential mechanisms, including upregulation and downregulation of hypoxia-inducible factor-1α, the Warburg and reverse-Warburg effects, lactate-mediated intracellular acidic and alkaline conditions, and VDAC1-mediated apoptosis and antiapoptosis, and search for regulators that may be identified as the crossroads between cancer and AD.
Collapse
Affiliation(s)
- Zhan Su
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Xiangting Li
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Haining Zhang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Theodorakopoulou MP, Dipla K, Zafeiridis A, Faitatzidou D, Koutlas A, Doumas M, Papagianni A, Sarafidis P. Cerebral oxygenation during exercise deteriorates with advancing chronic kidney disease. Nephrol Dial Transplant 2023; 38:2379-2388. [PMID: 37096390 DOI: 10.1093/ndt/gfad076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Cognitive impairment and exercise intolerance are common in chronic kidney disease (CKD). Cerebral perfusion and oxygenation play a major role in both cognitive function and exercise execution. This study aimed to examine cerebral oxygenation during a mild physical stress in patients at different CKD stages and controls without CKD. METHODS Ninety participants (18 per CKD stage 2, 3a, 3b and 4 and 18 controls) underwent a 3-min intermittent handgrip exercise at 35% of their maximal voluntary contraction. During exercise, cerebral oxygenation [oxyhaemoglobin (O2Hb), deoxyhaemoglobin (HHb) and total haemoglobin (tHb)] was assessed by near-infrared spectroscopy. Indices of microvascular (muscle hyperaemic response) and macrovascular function (carotid intima-media thickness and pulse wave velocity (PWV)) and cognitive and physical activity status were also evaluated. RESULTS No differences in age, sex and body mass index were detected among groups. The mini-mental state examination score was significantly reduced with advancing CKD stages (controls: 29.2 ± 1.2, stage 2: 28.7 ± 1.0, stage 3a: 27.8 ± 1.9, stage 3b: 28.0 ± 1.8, stage 4: 27.6 ± 1.5; P = .019). Similar trends were observed for physical activity levels and handgrip strength. The average response in cerebral oxygenation (O2Hb) during exercise was lower with advancing CKD stages (controls: 2.50 ± 1.54, stage 2: 1.30 ± 1.05, stage 3a: 1.24 ± 0.93, stage 3b: 1.11 ± 0.89, stage 4: 0.97 ± 0.80 μmol/l; P < .001). The average tHb response (index of regional blood volume) showed a similar decreasing trend (P = .003); no differences in HHb among groups were detected. In univariate linear analysis, older age, lower estimated glomerular filtration rate (eGFR), Hb, microvascular hyperaemic response and increased PWV were associated with poor O2Hb response during exercise. In the multiple model, eGFR was the only parameter independently associated with the O2Hb response. CONCLUSIONS Brain activation during a mild physical task appears to decrease with advancing CKD as suggested by the smaller increase in cerebral oxygenation. This may contribute to impaired cognitive function and reduced exercise tolerance with advancing CKD.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Andreas Zafeiridis
- Exercise Physiology and Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Danai Faitatzidou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aggelos Koutlas
- Exercise Physiology and Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Wu Y, Yang Z, Liu M, Han Y. Application of fluorescence micro-optical sectioning tomography in the cerebrovasculature and applicable vascular labeling methods. Brain Struct Funct 2023; 228:1619-1627. [PMID: 37481741 DOI: 10.1007/s00429-023-02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
Fluorescence micro-optical sectioning tomography (fMOST) is a three-dimensional (3d) imaging method at the mesoscopic level. The whole-brain of mice can be imaged at a high resolution of 0.32 × 0.32 × 1.00 μm3. It is useful for revealing the fine morphology of intact organ tissue, even for positioning the single vessel connected with a complicated vascular network across different brain regions in the whole mouse brain. Featuring its 3d visualization of whole-brain cross-scale connections, fMOST has a vast potential to decipher brain function and diseases. This article begins with the background of fMOST technology including a widespread 3D imaging methods comparison and the basic technical principal illustration, followed by the application of fMOST in cerebrovascular research and relevant vascular labeling techniques applicable to different scenarios.
Collapse
Affiliation(s)
- Yang Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Zidong Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 825 Zhangheng Road, Shanghai, 200127, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
| |
Collapse
|
8
|
Mahaparn I, Lepping RJ, Montgomery RN, Mukherjee R, Billinger SA, Brooks WM, Gupta A. The Association of Tacrolimus Formulation on Cerebral Blood Flow and Cognitive Function. Transplant Direct 2023; 9:e1511. [PMID: 37456588 PMCID: PMC10348734 DOI: 10.1097/txd.0000000000001511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
Calcineurin inhibitors are inherent vasoconstrictors. Cerebral vasoconstriction can reduce cerebral blood flow (CBF), and negatively impact cerebrovascular response (CVR) to exercise, and cognitive function. The once-daily extended-release (LCP) tacrolimus has fewer side effects than the immediate-release (IR) tacrolimus. The role of calcineurin inhibitors on CBF and the impact of specific formulations of tacrolimus on CBF, CVR, and cognitive function are unknown. In this pilot study, we evaluated whether changing from IR tacrolimus to LCP tacrolimus modulates CBF, CVR, or cognitive function in kidney transplant (KT) recipients. Methods We randomized (2:1) 30 stable KT recipients on IR tacrolimus to intervention (switch to LCP tacrolimus) and control (continue IR tacrolimus) arms. We measured CBF, CVR, and cognitive function at baseline and at 12 wk. We used ANCOVA to evaluate changes in outcome variables, with baseline values and study arm as covariates. We used descriptive statistics with mean changes in outcome variables to compare the 2 groups. Results Participants were 51 ± 13 y old. There was no difference in plasma tacrolimus levels at baseline and at 12 wk in the 2 arms. The changes in CBF, resting middle cerebral artery velocity, CVR, and cognitive function were more favorable in the intervention arm than in the control group. Conclusions Changing IR tacrolimus to LCP tacrolimus may improve CBF, cerebrovascular dynamics, and cognitive function in KT recipients. Larger studies are needed to confirm these results.
Collapse
Affiliation(s)
- Irisa Mahaparn
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Rebecca J. Lepping
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS
| | - Robert N. Montgomery
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS
| | - Rishav Mukherjee
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS
| | - Sandra A. Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS
| | - William M. Brooks
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS
| | - Aditi Gupta
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
9
|
Fernández-Rodicio S, Ferro-Costas G, Sampedro-Viana A, Bazarra-Barreiros M, Ferreirós A, López-Arias E, Pérez-Mato M, Ouro A, Pumar JM, Mosqueira AJ, Alonso-Alonso ML, Castillo J, Hervella P, Iglesias-Rey R. Perfusion-weighted software written in Python for DSC-MRI analysis. Front Neuroinform 2023; 17:1202156. [PMID: 37593674 PMCID: PMC10431979 DOI: 10.3389/fninf.2023.1202156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/27/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion studies in magnetic resonance imaging (MRI) provide valuable data for studying vascular cerebral pathophysiology in different rodent models of brain diseases (stroke, tumor grading, and neurodegenerative models). The extraction of these hemodynamic parameters via DSC-MRI is based on tracer kinetic modeling, which can be solved using deconvolution-based methods, among others. Most of the post-processing software used in preclinical studies is home-built and custom-designed. Its use being, in most cases, limited to the institution responsible for the development. In this study, we designed a tool that performs the hemodynamic quantification process quickly and in a reliable way for research purposes. Methods The DSC-MRI quantification tool, developed as a Python project, performs the basic mathematical steps to generate the parametric maps: cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), signal recovery (SR), and percentage signal recovery (PSR). For the validation process, a data set composed of MRI rat brain scans was evaluated: i) healthy animals, ii) temporal blood-brain barrier (BBB) dysfunction, iii) cerebral chronic hypoperfusion (CCH), iv) ischemic stroke, and v) glioblastoma multiforme (GBM) models. The resulting perfusion parameters were then compared with data retrieved from the literature. Results A total of 30 animals were evaluated with our DSC-MRI quantification tool. In all the models, the hemodynamic parameters reported from the literature are reproduced and they are in the same range as our results. The Bland-Altman plot used to describe the agreement between our perfusion quantitative analyses and literature data regarding healthy rats, stroke, and GBM models, determined that the agreement for CBV and MTT is higher than for CBF. Conclusion An open-source, Python-based DSC post-processing software package that performs key quantitative perfusion parameters has been developed. Regarding the different animal models used, the results obtained are consistent and in good agreement with the physiological patterns and values reported in the literature. Our development has been built in a modular framework to allow code customization or the addition of alternative algorithms not yet implemented.
Collapse
Affiliation(s)
- Sabela Fernández-Rodicio
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Ana Sampedro-Viana
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Marcos Bazarra-Barreiros
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Esteban López-Arias
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Pérez-Mato
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Pumar
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antonio J. Mosqueira
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
10
|
Gao Z, Zhou S, Zhu W, Li H, Huang Z, Ji Y, Li X, Yu Y. Sex-dependent changes in emotional memory associated with cerebral blood flow alterations during Alzheimer's disease progression. Neuroradiology 2023; 65:751-763. [PMID: 36502439 DOI: 10.1007/s00234-022-03099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Sex differences in Alzheimer's disease (AD) progression provide clues to pathogenesis and better patient management. We examined sex differences in emotional memory among AD patients, amnestic mild cognitive impairment (aMCI) patients, and healthy controls (HCs) as well as potential associations with altered regional cerebral blood flow (rCBF). METHODS The recognition memory task with emotional pictures was applied to evaluate enhancement of emotional memory (EEM) and 3D pseudo-continuous arterial spin labeling MRI was performed to measure the rCBF in 74 AD patients (41 females), 74 aMCI patients (45 females), and 74 HCs (43 females). Group differences in EEM were tested by two-way analysis of covariance (ANCOVA) with repeated measures. The main effects of clinical group and sex as well as group × sex interactions on rCBF were assessed by two-way ANCOVA. Correlation analyses were conducted to investigate associations between EEM and rCBF. RESULTS With disease progression, EEM gradually disappeared. Among aMCI patients, females exhibited a greater index of recollection (Pr) for positive/high-arousal and negative/low-arousal pictures versus neutral pictures (P = 0.005, P = 0.003), while males exhibited a greater Pr for negative/high-arousal versus neutral pictures (P = 0.001). There were significant sex × group effects on rCBF in left inferior parietal, supramarginal, superior temporal and middle temporal gyri, and rCBF of left inferior parietal gyrus was correlated with Pr for positive/high-arousal pictures among female aMCI patients (r = 0.584, q = 0.005). CONCLUSION Males and females exhibit distinct changes in EEM associated with altered rCBF, which should be considered in future neuroimaging studies.
Collapse
Affiliation(s)
- Ziwen Gao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wanqiu Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hui Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ziang Huang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yang Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoshu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
11
|
Swinford CG, Risacher SL, Wu YC, Apostolova LG, Gao S, Bice PJ, Saykin AJ. Altered cerebral blood flow in older adults with Alzheimer's disease: a systematic review. Brain Imaging Behav 2023; 17:223-256. [PMID: 36484922 PMCID: PMC10117447 DOI: 10.1007/s11682-022-00750-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/26/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
The prevalence of Alzheimer's disease is projected to reach 13 million in the U.S. by 2050. Although major efforts have been made to avoid this outcome, so far there are no treatments that can stop or reverse the progressive cognitive decline that defines Alzheimer's disease. The utilization of preventative treatment before significant cognitive decline has occurred may ultimately be the solution, necessitating a reliable biomarker of preclinical/prodromal disease stages to determine which older adults are most at risk. Quantitative cerebral blood flow is a promising potential early biomarker for Alzheimer's disease, but the spatiotemporal patterns of altered cerebral blood flow in Alzheimer's disease are not fully understood. The current systematic review compiles the findings of 81 original studies that compared resting gray matter cerebral blood flow in older adults with mild cognitive impairment or Alzheimer's disease and that of cognitively normal older adults and/or assessed the relationship between cerebral blood flow and objective cognitive function. Individuals with Alzheimer's disease had relatively decreased cerebral blood flow in all brain regions investigated, especially the temporoparietal and posterior cingulate, while individuals with mild cognitive impairment had consistent results of decreased cerebral blood flow in the posterior cingulate but more mixed results in other regions, especially the frontal lobe. Most papers reported a positive correlation between regional cerebral blood flow and cognitive function. This review highlights the need for more studies assessing cerebral blood flow changes both spatially and temporally over the course of Alzheimer's disease, as well as the importance of including potential confounding factors in these analyses.
Collapse
Affiliation(s)
- Cecily G Swinford
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Li T, Bao X, Li L, Qin R, Li C, Wang X. Heart failure and cognitive impairment: A narrative review of neuroimaging mechanism from the perspective of brain MRI. Front Neurosci 2023; 17:1148400. [PMID: 37051150 PMCID: PMC10083289 DOI: 10.3389/fnins.2023.1148400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/01/2023] [Indexed: 03/28/2023] Open
Abstract
Both heart failure (HF) and cognitive impairment (CI) have a significant negative impact on the health of the elderly individuals. Magnetic resonance imaging (MRI) can non-invasively detect functional and structural variations in the heart and brain, making it easier to explore the connection between the heart and brain. According to neuroimaging studies, HF patients have a higher chance of developing CI because they have a variety of different types of brain injuries. To examine how HF and CI are influenced by one another, English-language literature was searched in the Web of Science, PubMed EMBASE (OVID), PsycInfo, and Scopus databases. The search terms included “high-frequency,” “brain function,” “brain injury,” “cognition,” “cognitive impairment,” and “magnetic resonance imaging.” Normal brain function is typically impaired by HF in the form of decreased cerebral perfusion pressure, inflammation, oxidative stress, and damage to the BBB, resulting in CI and subsequent HF. Early pathophysiological alterations in patients’ brains have been widely detected using a range of novel MRI techniques, opening up new avenues for investigating the connection between HF and CI. This review aims to describe the pathogenesis of HF with CI and the early diagnostic role of MRI in the heart-brain domain.
Collapse
Affiliation(s)
- Tong Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiangyuan Bao
- School of Radiology, Shandong First Medical University, Taian, China
| | - Lin Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rui Qin
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cuicui Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Cuicui Li,
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Ximing Wang,
| |
Collapse
|
13
|
Huang D, Guo Y, Guan X, Pan L, Zhu Z, Chen Z, Dijkhuizen RM, Duering M, Yu F, Boltze J, Li P. Recent advances in arterial spin labeling perfusion MRI in patients with vascular cognitive impairment. J Cereb Blood Flow Metab 2023; 43:173-184. [PMID: 36284489 PMCID: PMC9903225 DOI: 10.1177/0271678x221135353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Cognitive impairment (CI) is a major health concern in aging populations. It impairs patients' independent life and may progress to dementia. Vascular cognitive impairment (VCI) encompasses all cerebrovascular pathologies that contribute to cognitive impairment (CI). Moreover, the majority of CI subtypes involve various aspects of vascular dysfunction. Recent research highlights the critical role of reduced cerebral blood flow (CBF) in the progress of VCI, and the detection of altered CBF may help to detect or even predict the onset of VCI. Arterial spin labeling (ASL) is a non-invasive, non-ionizing perfusion MRI technique for assessing CBF qualitatively and quantitatively. Recent methodological advances enabling improved signal-to-noise ratio (SNR) and data acquisition have led to an increase in the use of ASL to assess CBF in VCI patients. Combined with other imaging modalities and biomarkers, ASL has great potential for identifying early VCI and guiding prediction and prevention strategies. This review focuses on recent advances in ASL-based perfusion MRI for identifying patients at high risk of VCI.
Collapse
Affiliation(s)
- Dan Huang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlu Guo
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Guan
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Pan
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyu Zhu
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeng’ai Chen
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Germany
- Medical Image Analysis Center (MIAC) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Fang Yu
- Department of Anesthesiology, Westchester Medical Center, New York Medical College, NY, USA
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Warpechowski M, Warpechowski J, Kulczyńska-Przybik A, Mroczko B. Biomarkers of Activity-Dependent Plasticity and Persistent Enhancement of Synaptic Transmission in Alzheimer Disease: A Review of the Current Status. Med Sci Monit 2023; 29:e938826. [PMID: 36600577 PMCID: PMC9832729 DOI: 10.12659/msm.938826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alzheimer disease (AD) is a chronic and heterogeneous neurodegenerative disorder characterized by complex pathological processes involving neuroinflammation, neurodegeneration, and synaptic dysfunction. Understanding the exact neurobiological mechanisms underlying AD pathology may help to provide a biomarker for early diagnosis or at least for assessment of vulnerability to dementia development. Neural plasticity is defined as a capability of the brain to respond to alterations including aging, injury, or learning, with a crucial role of synaptic elements. Long-term potentiation (LTP) and long-term depression (LTD) are important in regulating synaptic connections between neural cells in functional plasticity. Synaptic loss and impairment of the brain's plasticity in AD leads to cognitive impairment, and one of important roles of synaptic biomarkers is monitoring synaptic dysfunction, response to treatment, and predicting future development of AD. Synaptic biomarkers are undoubtedly very promising in developing novel approach to AD treatment and control, especially in the era of aging of societies, which is one of the most common risk factor of AD. Implementing a widespread measurement of synaptic biomarkers of AD will probably be crucial in early diagnosis of AD, early therapeutic intervention, monitoring progression of the disease, or response to treatment. One of the most important challenges is finding a biomarker whose blood concentration correlates with its level in the central nervous system (CNS). This review aims to present the current status of biomarkers of activity-dependent plasticity and persistent enhancement of synaptic transmission in Alzheimer disease.
Collapse
Affiliation(s)
- Marcin Warpechowski
- Department of Statistics and Medical Informatics, Medical University of Białystok, Białystok, Poland
| | | | | | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland,Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| |
Collapse
|
15
|
Liang X, Fa W, Wang N, Peng Y, Liu C, Zhu M, Tian N, Wang Y, Han X, Qiu C, Hou T, Du Y. Exosomal miR-532-5p induced by long-term exercise rescues blood-brain barrier function in 5XFAD mice via downregulation of EPHA4. Aging Cell 2022; 22:e13748. [PMID: 36494892 PMCID: PMC9835579 DOI: 10.1111/acel.13748] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
The breakdown of the blood-brain barrier, which develops early in Alzheimer's disease (AD), contributes to cognitive impairment. Exercise not only reduces the risk factors for AD but also confers direct protection against cognitive decline. However, the exact molecular mechanisms remain elusive, particularly whether exercise can liberate the function of the blood-brain barrier. Here, we demonstrate that long-term exercise promotes the clearance of brain amyloid-β by improving the function of the blood-brain barrier in 5XFAD mice. Significantly, treating primary brain pericytes or endothelial cells with exosomes isolated from the brain of exercised 5XFAD mice improves cell proliferation and upregulates PDGFRβ, ZO-1, and claudin-5. Moreover, exosomes isolated from exercised mice exhibit significant changes in miR-532-5p. Administration or transfection of miR-532-5p to sedentary mice or primary brain pericytes and endothelial cells reproduces the improvement of blood-brain barrier function. Exosomal miR-532-5p targets EPHA4, and accordingly, expression of EphA4 is decreased in exercised mice and miR-532-5p overexpressed mice. A specific siRNA targeting EPHA4 recapitulates the effects on blood-brain barrier-associated cells observed in exercised 5XFAD mice. Overall, our findings suggest that exosomes released by the brain contain a specific miRNA that is altered by exercise and has an impact on blood-brain barrier function in AD.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina
| | - Wenxin Fa
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Nan Wang
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina
| | - Yuanming Peng
- Department of Clinical LaboratoryThird Hospital of JinanShandongChina
| | - Cuicui Liu
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Min Zhu
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Na Tian
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Yongxiang Wang
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Xiaolei Han
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina
| | - Chengxuan Qiu
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska Institutet‐Stockholm UniversitySolnaSweden
| | - Tingting Hou
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Yifeng Du
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| |
Collapse
|
16
|
The Utility of Arterial Spin Labeling MRI in Medial Temporal Lobe as a Vascular Biomarker in Alzheimer's Disease Spectrum: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12122967. [PMID: 36552974 PMCID: PMC9776573 DOI: 10.3390/diagnostics12122967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
We sought to systematically review and meta-analy the role of cerebral blood flow (CBF) in the medial temporal lobe (MTL) using arterial spin labeling magnetic resonance imaging (ASL-MRI) and compare this in patients with Alzheimer's disease (AD), individuals with mild cognitive impairment (MCI), and cognitively normal adults (CN). The prevalence of AD is increasing and leading to high healthcare costs. A potential biomarker that can identify people at risk of developing AD, whilst cognition is normal or only mildly affected, will enable risk-stratification and potential therapeutic interventions in the future. All studies investigated the role of CBF in the MTL and compared this among AD, MCI, and CN participants. A total of 26 studies were included in the systematic review and 11 in the meta-analysis. Three separate meta-analyses were conducted. Four studies compared CBF in the hippocampus of AD compared with the CN group and showed that AD participants had 2.8 mL/min/100 g lower perfusion compared with the CN group. Eight studies compared perfusion in the hippocampus of MCI vs. CN group, which showed no difference. Three studies compared perfusion in the MTL of MCI vs. CN participants and showed no statistically significant differences. CBF measured via ASL-MRI showed impairment in AD compared with the CN group in subregions of the MTL. CBF difference was significant in hippocampus between the AD and CN groups. However, MCI and CN group showed no significant difference in subregions of MTL.
Collapse
|
17
|
Kang K, Jeong SY, Park K, Hahm MH, Kim J, Lee H, Kim C, Yun E, Han J, Yoon U, Lee S. Distinct cerebral cortical perfusion patterns in idiopathic normal-pressure hydrocephalus. Hum Brain Mapp 2022; 44:269-279. [PMID: 36102811 PMCID: PMC9783416 DOI: 10.1002/hbm.25974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
The aims of the study are to evaluate idiopathic normal-pressure hydrocephalus (INPH)-related cerebral blood flow (CBF) abnormalities and to investigate their relation to cortical thickness in INPH patients. We investigated cortical CBF utilizing surface-based early-phase 18 F-florbetaben (E-FBB) PET analysis in two groups: INPH patients and healthy controls. All 39 INPH patients and 20 healthy controls were imaged with MRI, including three-dimensional volumetric images, for automated surface-based cortical thickness analysis across the entire brain. A subgroup with 37 participants (22 INPH patients and 15 healthy controls) that also underwent 18 F-fluorodeoxyglucose (FDG) PET imaging was further analyzed. Compared with age- and gender-matched healthy controls, INPH patients showed statistically significant hyperperfusion in the high convexity of the frontal and parietal cortical regions. Importantly, within the INPH group, increased perfusion correlated with cortical thickening in these regions. Additionally, significant hypoperfusion mainly in the ventrolateral frontal cortex, supramarginal gyrus, and temporal cortical regions was observed in the INPH group relative to the control group. However, this hypoperfusion was not associated with cortical thinning. A subgroup analysis of participants that also underwent FDG PET imaging showed that increased (or decreased) cerebral perfusion was associated with increased (or decreased) glucose metabolism in INPH. A distinctive regional relationship between cerebral cortical perfusion and cortical thickness was shown in INPH patients. Our findings suggest distinct pathophysiologic mechanisms of hyperperfusion and hypoperfusion in INPH patients.
Collapse
Affiliation(s)
- Kyunghun Kang
- Department of Neurology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Ki‐Su Park
- Department of Neurosurgery, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Myong Hun Hahm
- Department of Radiology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Jaeil Kim
- School of Computer Science and EngineeringKyungpook National UniversityDaeguSouth Korea
| | - Ho‐Won Lee
- Department of Neurology, School of MedicineKyungpook National UniversityDaeguSouth Korea,Brain Science and Engineering InstituteKyungpook National UniversityDaeguSouth Korea
| | - Chi‐Hun Kim
- Department of NeurologyHallym University Sacred Heart HospitalAnyangSouth Korea
| | - Eunkyeong Yun
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Jaehwan Han
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Uicheul Yoon
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Sang‐Woo Lee
- Department of Nuclear Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
18
|
Renke MB, Marcinkowska AB, Kujach S, Winklewski PJ. A Systematic Review of the Impact of Physical Exercise-Induced Increased Resting Cerebral Blood Flow on Cognitive Functions. Front Aging Neurosci 2022; 14:803332. [PMID: 35237146 PMCID: PMC8882971 DOI: 10.3389/fnagi.2022.803332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Brain perfusion declines with aging. Physical exercise represents a low-cost accessible form of intervention to increase cerebral blood flow; however, it remains unclear if exercise-induced amelioration of brain perfusion has any impact on cognition. We aimed to provide a state-of-the art review on this subject. A comprehensive search of the PubMed (MEDLINE) database was performed. On the basis of the inclusion and exclusion criteria, 14 studies were included in the analysis. Eleven of the studies conducted well-controlled exercise programs that lasted 12–19 weeks for 10–40 participants and two studies were conducted in much larger groups of subjects for more than 5 years, but the exercise loads were indirectly measured, and three of them were focused on acute exercise. Literature review does not show a direct link between exercise-induced augmentation of brain perfusion and better cognitive functioning. However, in none of the reviewed studies was such an association the primary study endpoint. Carefully designed clinical studies with focus on cognitive and perfusion variables are needed to provide a response to the question whether exercise-induced cerebral perfusion augmentation is of clinical importance.
Collapse
Affiliation(s)
- Maria B. Renke
- Functional Near Infrared Spectroscopy Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gdańsk, Poland
- *Correspondence: Maria B. Renke
| | - Anna B. Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwester Kujach
- Functional Near Infrared Spectroscopy Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Physiology, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Paweł J. Winklewski
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
19
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
20
|
Nozdriukhin D, Kalva SK, Li W, Yashchenok A, Gorin D, Razansky D, Deán-Ben XL. Rapid Volumetric Optoacoustic Tracking of Individual Microparticles In Vivo Enabled by a NIR-Absorbing Gold-Carbon Shell. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48423-48432. [PMID: 34613688 DOI: 10.1021/acsami.1c15509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rapid volumetric in vivo visualization of circulating microparticles can facilitate new biomedical applications, such as blood flow characterization or targeted drug delivery. However, existing imaging modalities generally lack the sensitivity to detect the weak signals generated by individual micrometer-sized particles distributed across millimeter- to centimeter-scale depths in living mammalian tissues. Also, the temporal resolution is typically insufficient to track the particles in an entire three-dimensional region. Herein, we introduce a new type of monodisperse (4 μm) silica-core microparticle coated with a shell formed by a multilayered structure of carbon nanotubes (CNT) and gold nanoparticles (AuNP) to provide strong optoacoustic (OA) absorption-based contrast. We capitalize on the unique advantages of a state-of-the-art high-frame-rate OA tomography system to visualize and track the motion of these core-shell particles individually and volumetrically as they flow throughout the mouse brain vasculature. The feasibility of localizing individual solid particles smaller than red blood cells opens new opportunities for mapping the blood flow velocity, enhancing the resolution and visibility of OA images, and developing new biosensing assays.
Collapse
Affiliation(s)
- Daniil Nozdriukhin
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, 8057 Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Sandeep Kumar Kalva
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, 8057 Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Weiye Li
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, 8057 Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Alexey Yashchenok
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Dmitry Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, 8057 Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, 8057 Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
21
|
Li D, Liu Y, Zeng X, Xiong Z, Yao Y, Liang D, Qu H, Xiang H, Yang Z, Nie L, Wu PY, Wang R. Quantitative Study of the Changes in Cerebral Blood Flow and Iron Deposition During Progression of Alzheimer's Disease. J Alzheimers Dis 2021; 78:439-452. [PMID: 32986675 DOI: 10.3233/jad-200843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Advanced Alzheimer's disease (AD) has no effective treatment, and identifying early diagnosis markers can provide a time window for treatment. OBJECTIVE To quantify the changes in cerebral blood flow (CBF) and iron deposition during progression of AD. METHODS 94 subjects underwent brain imaging on a 3.0-T MRI scanner with techniques of three-dimensional arterial spin labeling (3D-ASL) and quantitative susceptibility mapping (QSM). The subjects included 22 patients with probable AD, 22 patients with mild cognitive impairment (MCI), 25 patients with subjective cognitive decline (SCD), and 25 normal controls (NC). The CBF and QSM values were obtained using a standardized brain region method based on the Brainnetome Atlas. The differences in CBF and QSM values were analyzed between and within groups using variance analysis and correlation analysis. RESULTS CBF and QSM identified several abnormal brain regions of interest (ROIs) at different stages of AD (p < 0.05). Regionally, the CBF values in several ROIs of the AD and MCI subjects were lower than for NC subjects (p < 0.001). Higher QSM values were observed in the globus pallidus. The CBF and QSM values in multiple ROI were negatively correlated, while the putamen was the common ROI of the three study groups (p < 0.05). The CBF and QSM values in hippocampus were cross-correlated with scale scores during the progression of AD (p < 0.05). CONCLUSION Iron deposition in the basal ganglia and reduction in blood perfusion in multiple regions existed during the progression of AD. The QSM values in putamen can be used as an imaging biomarker for early diagnosis of AD.
Collapse
Affiliation(s)
- Dongxue Li
- Department of Radiology, Guizhou Provincial People's Hospital, Key Laboratory of Intelligent Medical Imaging Analysis and Accurate Diagnosis of Guizhou Province, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guiyang, China
| | - Yuancheng Liu
- Department of Radiology, Guizhou Provincial People's Hospital, Key Laboratory of Intelligent Medical Imaging Analysis and Accurate Diagnosis of Guizhou Province, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guiyang, China
| | - Xianchun Zeng
- Department of Radiology, Guizhou Provincial People's Hospital, Key Laboratory of Intelligent Medical Imaging Analysis and Accurate Diagnosis of Guizhou Province, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guiyang, China
| | - Zhenliang Xiong
- Department of Radiology, Guizhou Provincial People's Hospital, Key Laboratory of Intelligent Medical Imaging Analysis and Accurate Diagnosis of Guizhou Province, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guiyang, China
| | - Yuanrong Yao
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Daiyi Liang
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hao Qu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hui Xiang
- Department of Psychology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhenggui Yang
- Department of Psychology, Guizhou Provincial People's Hospital, Guiyang, China
| | | | | | - Rongpin Wang
- Department of Radiology, Guizhou Provincial People's Hospital, Key Laboratory of Intelligent Medical Imaging Analysis and Accurate Diagnosis of Guizhou Province, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guiyang, China
| |
Collapse
|
22
|
Dietary and supplemental long-chain omega-3 fatty acids as moderators of cognitive impairment and Alzheimer's disease. Eur J Nutr 2021; 61:589-604. [PMID: 34392394 PMCID: PMC8854294 DOI: 10.1007/s00394-021-02655-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/04/2021] [Indexed: 12/06/2022]
Abstract
Purpose There is an ever-growing body of literature examining the relationship between dietary omega-3 polyunsaturated fatty acids (ω3 PUFAs) and cerebral structure and function throughout life. In light of this, the use of ω3 PUFAs, namely, long-chain (LC) ω3 PUFAs (i.e., eicosapentaenoic acid and docosahexaenoic acid), as a therapeutic strategy to mitigate cognitive impairment, and progression to Alzheimer’s disease is an attractive prospect. This review aims to summarise evidence reported by observational studies and clinical trials that investigated the role of LC ω3 PUFAs against cognition impairment and future risk of Alzheimer’s disease. Methods Studies were identified in PubMed and Scopus using the search terms “omega-3 fatty acids”, “Alzheimer’s disease” and “cognition”, along with common variants. Inclusion criteria included observational or randomised controlled trials (RCTs) with all participants aged ≥ 50 years that reported on the association between LC ω3 PUFAs and cognitive function or biological markers indicative of cognitive function linked to Alzheimer’s disease. Results Evidence from 33 studies suggests that dietary and supplemental LC ω3 PUFAs have a protective effect against cognitive impairment. Synaptic plasticity, neuronal membrane fluidity, neuroinflammation, and changes in expression of genes linked to cognitive decline have been identified as potential targets of LC ω3 PUFAs. The protective effects LC ω3 PUFAs on cognitive function and reduced risk of Alzheimer’s disease were supported by both observational studies and RCTs, with RCTs suggesting a more pronounced effect in individuals with early and mild cognitive impairment. Conclusion The findings of this review suggest that individuals consuming higher amounts of LC ω3 PUFAs are less likely to develop cognitive impairment and that, as a preventative strategy against Alzheimer’s disease, it is most effective when dietary LC ω3 PUFAs are consumed prior to or in the early stages of cognitive decline. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02655-4.
Collapse
|
23
|
Mokhber N, Shariatzadeh A, Avan A, Saber H, Babaei GS, Chaimowitz G, Azarpazhooh MR. Cerebral blood flow changes during aging process and in cognitive disorders: A review. Neuroradiol J 2021; 34:300-307. [PMID: 33749402 PMCID: PMC8447819 DOI: 10.1177/19714009211002778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We aimed to summarize the available evidence on cerebral blood flow (CBF) changes
in normal aging and common cognitive disorders. We searched PubMed for studies
on CBF changes in normal aging and cognitive disorders up to 1 January 2019. We
summarized the milestones in the history of CBF assessment and reviewed the
current evidence on the association between CBF and cognitive changes in normal
aging, vascular cognitive impairment (VCI) and Alzheimer’s disease (AD). There
is promising evidence regarding the utility of CBF studies in cognition
research. Age-related CBF changes could be related to a progressive neuronal
loss or diminished activity and synaptic density of neurons in the brain. While
a similar cause or outcome theory applies to VCI and AD, it is possible that CBF
reduction might precede cognitive decline. Despite the diversity of CBF research
findings, its measurement could help early detection of cognitive disorders and
also understanding their underlying etiology.
Collapse
Affiliation(s)
- Naghmeh Mokhber
- Department of Psychiatry, Western University, Canada.,Department of Psychiatry and Neuropsychiatry, Mashhad University of Medical Sciences, Iran
| | - Aidin Shariatzadeh
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Canada
| | - Abolfazl Avan
- Department of Public Health, Mashhad University of Medical Sciences, Iran
| | - Hamidreza Saber
- Department of Neurology, Wayne State University School of Medicine, USA
| | | | - Gary Chaimowitz
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada
| | - M Reza Azarpazhooh
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Canada.,Department of Clinical Neurological Sciences, Western University, Canada
| |
Collapse
|
24
|
García-Carpintero S, Domínguez-Bértalo J, Pedrero-Prieto C, Frontiñán-Rubio J, Amo-Salas M, Durán-Prado M, García-Pérez E, Vaamonde J, Alcain FJ. Ubiquinol Supplementation Improves Gender-Dependent Cerebral Vasoreactivity and Ameliorates Chronic Inflammation and Endothelial Dysfunction in Patients with Mild Cognitive Impairment. Antioxidants (Basel) 2021; 10:143. [PMID: 33498250 PMCID: PMC7909244 DOI: 10.3390/antiox10020143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Ubiquinol can protect endothelial cells from multiple mechanisms that cause endothelial damage and vascular dysfunction, thus contributing to dementia. A total of 69 participants diagnosed with mild cognitive impairment (MCI) received either 200 mg/day ubiquinol (Ub) or placebo for 1 year. Cognitive assessment of patients was performed at baseline and after 1 year of follow-up. Patients' cerebral vasoreactivity was examined using transcranial Doppler sonography, and levels of Ub and lipopolysaccharide (LPS) in plasma samples were quantified. Cell viability and necrotic cell death were determined using the microvascular endothelial cell line bEnd3. Coenzyme Q10 (CoQ) levels increased in patients supplemented for 1 year with ubiquinol versus baseline and the placebo group, although higher levels were observed in male patients. The higher cCoQ concentration in male patients improved cerebral vasoreactivity CRV and reduced inflammation, although the effect of Ub supplementation on neurological improvement was negligible in this study. Furthermore, plasma from Ub-supplemented patients improved the viability of endothelial cells, although only in T2DM and hypertensive patients. This suggests that ubiquinol supplementation could be recommended to reach a concentration of 5 μg/mL in plasma in MCI patients as a complement to conventional treatment.
Collapse
Affiliation(s)
- Sonia García-Carpintero
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (S.G.-C.); (C.P.-P.); (J.F.-R.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Javier Domínguez-Bértalo
- Neurology Department, Virgen de Altagracia Hospital—Manzanares, SESCAM, 13002 Manzanares, Spain;
| | - Cristina Pedrero-Prieto
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (S.G.-C.); (C.P.-P.); (J.F.-R.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (S.G.-C.); (C.P.-P.); (J.F.-R.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Mariano Amo-Salas
- Department of Mathematics, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mario Durán-Prado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (S.G.-C.); (C.P.-P.); (J.F.-R.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Eloy García-Pérez
- Neurology Department, General University Hospital—Ciudad Real, SESCAM, 13005 Ciudad Real, Spain;
| | - Julia Vaamonde
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (S.G.-C.); (C.P.-P.); (J.F.-R.)
- Neurology Department, General University Hospital—Ciudad Real, SESCAM, 13005 Ciudad Real, Spain;
| | - Francisco J. Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (S.G.-C.); (C.P.-P.); (J.F.-R.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
25
|
Steinman J, Sun HS, Feng ZP. Microvascular Alterations in Alzheimer's Disease. Front Cell Neurosci 2021; 14:618986. [PMID: 33536876 PMCID: PMC7849053 DOI: 10.3389/fncel.2020.618986] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with continual decline in cognition and ability to perform routine functions such as remembering familiar places or understanding speech. For decades, amyloid beta (Aβ) was viewed as the driver of AD, triggering neurodegenerative processes such as inflammation and formation of neurofibrillary tangles (NFTs). This approach has not yielded therapeutics that cure the disease or significant improvements in long-term cognition through removal of plaques and Aβ oligomers. Some researchers propose alternate mechanisms that drive AD or act in conjunction with amyloid to promote neurodegeneration. This review summarizes the status of AD research and examines research directions including and beyond Aβ, such as tau, inflammation, and protein clearance mechanisms. The effect of aging on microvasculature is highlighted, including its contribution to reduced blood flow that impairs cognition. Microvascular alterations observed in AD are outlined, emphasizing imaging studies of capillary malfunction. The review concludes with a discussion of two therapies to protect tissue without directly targeting Aβ for removal: (1) administration of growth factors to promote vascular recovery in AD; (2) inhibiting activity of a calcium-permeable ion channels to reduce microglial activation and restore cerebral vascular function.
Collapse
Affiliation(s)
- Joe Steinman
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Nielsen RB, Parbo P, Ismail R, Dalby R, Tietze A, Brændgaard H, Gottrup H, Brooks DJ, Østergaard L, Eskildsen SF. Impaired perfusion and capillary dysfunction in prodromal Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12032. [PMID: 32490139 PMCID: PMC7241262 DOI: 10.1002/dad2.12032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cardiovascular disease increases the risk of developing Alzheimer's disease (AD), and growing evidence suggests an involvement of cerebrovascular pathology in AD. Capillary dysfunction, a condition in which capillary flow disturbances rather than arterial blood supply limit brain oxygen extraction, could represent an overlooked vascular contributor to neurodegeneration. We examined whether cortical capillary transit-time heterogeneity (CTH), an index of capillary dysfunction, is elevated in amyloid-positive patients with mild cognitive impairment (prodromal AD [pAD]). METHODS We performed structural and perfusion weighted MRI in 22 pAD patients and 21 healthy controls. RESULTS We found hypoperfusion, reduced blood volume, and elevated CTH in the parietal and frontal cortices of pAD-patients compared to controls, while only the precuneus showed focal cortical atrophy. DISCUSSION We propose that microvascular flow disturbances antedate cortical atrophy and may limit local tissue oxygenation in pAD. We speculate that capillary dysfunction contributes to the development of neurodegeneration in AD.
Collapse
Affiliation(s)
- Rune B. Nielsen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| | - Peter Parbo
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Rola Ismail
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Rikke Dalby
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Department of NeuroradiologyAarhus University HospitalAarhusDenmark
| | - Anna Tietze
- Charité, UniversitätsmedizinInstitute of NeuroradiologyBerlinGermany
| | - Hans Brændgaard
- Dementia ClinicDepartment of NeurologyAarhus University HospitalAarhusDenmark
| | - Hanne Gottrup
- Dementia ClinicDepartment of NeurologyAarhus University HospitalAarhusDenmark
| | - David J. Brooks
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
- Division of NeuroscienceDepartment of MedicineImperial College LondonLondonUK
- Division of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Leif Østergaard
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Simon F. Eskildsen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| |
Collapse
|
27
|
Klohs J. An Integrated View on Vascular Dysfunction in Alzheimer's Disease. NEURODEGENER DIS 2020; 19:109-127. [PMID: 32062666 DOI: 10.1159/000505625] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebrovascular disease is a common comorbidity in patients with Alzheimer's disease (AD). It is believed to contribute additively to the cognitive impairment and to lower the threshold for the development of dementia. However, accumulating evidence suggests that dysfunction of the cerebral vasculature and AD neuropathology interact in multiple ways. Vascular processes even proceed AD neuropathology, implicating a causal role in the etiology of AD. Thus, the review aims to provide an integrated view on vascular dysfunction in AD. SUMMARY In AD, the cerebral vasculature undergoes pronounced cellular, morphological and structural changes, which alters regulation of blood flow, vascular fluid dynamics and vessel integrity. Stiffening of central blood vessels lead to transmission of excessive pulsatile energy to the brain microvasculature, causing end-organ damage. Moreover, a dysregulated hemostasis and chronic vascular inflammation further impede vascular function, where its mediators interact synergistically. Changes of the cerebral vasculature are triggered and driven by systemic vascular abnormalities that are part of aging, and which can be accelerated and aggravated by cardiovascular diseases. Key Messages: In AD, the cerebral vasculature is the locus where multiple pathogenic processes converge and contribute to cognitive impairment. Understanding the molecular mechanism and pathophysiology of vascular dysfunction in AD and use of vascular blood-based and imaging biomarker in clinical studies may hold promise for future prevention and therapy of the disease.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland, .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland,
| |
Collapse
|
28
|
Ding N, Jiang J, Tian H, Wang S, Li Z. Benign Regulation of the Astrocytic Phospholipase A 2-Arachidonic Acid Pathway: The Underlying Mechanism of the Beneficial Effects of Manual Acupuncture on CBF. Front Neurosci 2020; 13:1354. [PMID: 32174802 PMCID: PMC7054756 DOI: 10.3389/fnins.2019.01354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background The astrocytic phospholipase A2 (PLA2)-arachidonic acid (AA) pathway is crucial in understanding the reduction of cerebral blood flow (CBF) prior to cognitive deterioration. In complementary and alternative medicine, manual acupuncture (MA) is used as one of the most important therapies for Alzheimer’s disease (AD). The beneficial effects of MA on CBF were reported in our previous study. However, the underlying molecular mechanism remains largely elusive. Objective To investigate the effect of MA on the astrocytic PLA2-AA pathway in SAMP8 mice hippocampi. Methods SAMP8 mice were divided into the SAMP8 control (Pc) group, the SAMP8 MA (Pm) group and the SAMP8 donepezil (Pd) group. SAMR1 mice were used as the SAMRl control (Rc) group. Mice in the Pd group were treated with donepezil hydrochloride at 0.65 μg/g. In the Pm group, MA was applied at Baihui (GV20) and Yintang (GV29) for 20 min. The above treatments were administered once a day for 26 consecutive days. The Morris water maze was applied to assess spatial learning and memory. Immunofluorescence staining, western blot and liquid chromatography-tandem mass spectrometry were used to investigate the expression of related proteins and measure the contents of the metabolic intermediates of the PLA2-AA pathway. Results Compared with that in the Rc group, the escape latency in the Pc group significantly increased (p < 0.01); whereas, the platform crossover number and percentage of time and swimming distance in the platform quadrant decreased (p < 0.01). The hippocampal expression of PLA2, cyclooxygenase-1, cytochrome P450 proteins 2C23 and the levels of AA, prostaglandin E2 and epoxyeicosatrienoic acids of the Pc group was drastically higher than that in the Rc group (p < 0.01). These changes were reversed by MA and donepezil (p < 0.01 or p < 0.05). Conclusion MA can effectively improve the learning and memory abilities of SAMP8 mice and has a negative regulatory effect on the PLA2-AA pathway. We propose that the increase of the arterial tone, which is induced by the inhibition of vasodilatory pathway, may be a reason for the beneficial effect of MA on CBF.
Collapse
Affiliation(s)
- Ning Ding
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Jiang
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Huiling Tian
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shun Wang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Li
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Kleinloog JPD, Mensink RP, Ivanov D, Adam JJ, Uludağ K, Joris PJ. Aerobic Exercise Training Improves Cerebral Blood Flow and Executive Function: A Randomized, Controlled Cross-Over Trial in Sedentary Older Men. Front Aging Neurosci 2019; 11:333. [PMID: 31866855 PMCID: PMC6904365 DOI: 10.3389/fnagi.2019.00333] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Background Physical activity may attenuate age-related cognitive decline by improving cerebrovascular function. The aim of this study was therefore to investigate effects of aerobic exercise training on cerebral blood flow (CBF), which is a sensitive physiological marker of cerebrovascular function, in sedentary older men. Methods Seventeen apparently healthy men, aged 60–70 years and with a BMI between 25 and 35 kg/m2, were included in a randomized, controlled cross-over trial. Study participants were randomly allocated to a fully-supervised, progressive, aerobic exercise training or no-exercise control period for 8 weeks, separated by a 12-week wash-out period. Measurements at the end of each period included aerobic fitness evaluated using peak oxygen consumption during incremental exercise (VO2peak), CBF measured with pseudo-continuous arterial spin labeling magnetic resonance imaging, and post-load glucose responses determined using an oral glucose tolerance test (OGTT). Furthermore, cognitive performance was assessed in the domains of executive function, memory, and psychomotor speed. Results VO2peak significantly increased following aerobic exercise training compared to no-exercise control by 262 ± 236 mL (P < 0.001). CBF was increased by 27% bilaterally in the frontal lobe, particularly the subcallosal and anterior cingulate gyrus (cluster volume: 1008 mm3; P < 0.05), while CBF was reduced by 19% in the right medial temporal lobe, mainly temporal fusiform gyrus (cluster volume: 408 mm3; P < 0.05). Mean post-load glucose concentrations determined using an OGTT decreased by 0.33 ± 0.63 mmol/L (P = 0.049). Furthermore, executive function improved as the latency of response was reduced by 5% (P = 0.034), but no changes were observed in memory or psychomotor speed. Conclusion Aerobic exercise training improves regional CBF in sedentary older men. These changes in CBF may underlie exercise-induced beneficial effects on executive function, which could be partly mediated by improvements in glucose metabolism. This clinical trial is registered on ClinicalTrials.gov as NCT03272061.
Collapse
Affiliation(s)
- Jordi P D Kleinloog
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jos J Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Kamil Uludağ
- Department of Biomedical Engineering, N Center, Sungkyunkwan University, Suwon, South Korea.,Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, ON, Canada
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
30
|
Kim CM, Alvarado RL, Stephens K, Wey HY, Wang DJJ, Leritz EC, Salat DH. Associations between cerebral blood flow and structural and functional brain imaging measures in individuals with neuropsychologically defined mild cognitive impairment. Neurobiol Aging 2019; 86:64-74. [PMID: 31813626 DOI: 10.1016/j.neurobiolaging.2019.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023]
Abstract
Reduced cerebral blood flow (CBF), an indicator of neurovascular processes and metabolic demands, is a common finding in Alzheimer's disease. However, little is known about what contributes to CBF deficits in individuals with mild cognitive impairment (MCI). We examine regional CBF differences in 17 MCI compared with 21 age-matched cognitively healthy older adults. Next, we examined associations between CBF, white matter lesion (WML) volume, amplitude of low-frequency fluctuations, and cortical thickness to better understand whether altered CBF was detectable before other markers and the potential mechanistic underpinnings of CBF deficits in MCI. MCI had significantly reduced CBF, whereas cortical thickness and amplitude of low-frequency fluctuation were not affected. Reduced CBF was associated with the WML volume but not associated with other measures. Given the presumed vascular etiology of WML and relative worsening of vascular health in MCI, it may suggest CBF deficits result from early vascular as opposed to metabolic deficits in MCI. These findings may support vascular mechanisms as an underlying component of cognitive impairment.
Collapse
Affiliation(s)
- Chan-Mi Kim
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Rachel L Alvarado
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kimberly Stephens
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hsiao-Ying Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Dany J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, USA; Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth C Leritz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Geriatric Research, Education & Clinical Center & Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
| | - David H Salat
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
31
|
Croteau E, Castellano CA, Richard MA, Fortier M, Nugent S, Lepage M, Duchesne S, Whittingstall K, Turcotte ÉE, Bocti C, Fülöp T, Cunnane SC. Ketogenic Medium Chain Triglycerides Increase Brain Energy Metabolism in Alzheimer's Disease. J Alzheimers Dis 2019; 64:551-561. [PMID: 29914035 DOI: 10.3233/jad-180202] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), it is unknown whether the brain can utilize additional ketones as fuel when they are derived from a medium chain triglyceride (MCT) supplement. OBJECTIVE To assess whether brain ketone uptake in AD increases in response to MCT as it would in young healthy adults. METHODS Mild-moderate AD patients sequentially consumed 30 g/d of two different MCT supplements, both for one month: a mixture of caprylic (55%) and capric acids (35%) (n = 11), followed by a wash-out and then tricaprylin (95%; n = 6). Brain ketone (11C-acetoacetate) and glucose (FDG) uptake were quantified by PET before and after each MCT intervention. RESULTS Brain ketone consumption doubled on both types of MCT supplement. The slope of the relationship between plasma ketones and brain ketone uptake was the same as in healthy young adults. Both types of MCT increased total brain energy metabolism by increasing ketone supply without affecting brain glucose utilization. CONCLUSION Ketones from MCT compensate for the brain glucose deficit in AD in direct proportion to the level of plasma ketones achieved.
Collapse
Affiliation(s)
- Etienne Croteau
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Marie Anne Richard
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Fortier
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Scott Nugent
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, QC, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Duchesne
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, QC, Canada.,Department of Radiology, Université Laval, Québec, QC, Canada
| | | | - Éric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Bocti
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tamàs Fülöp
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
32
|
Huang Y, Guo B, Shi B, Gao Q, Zhou Q. Chinese Herbal Medicine Xueshuantong Enhances Cerebral Blood Flow and Improves Neural Functions in Alzheimer's Disease Mice. J Alzheimers Dis 2019; 63:1089-1107. [PMID: 29710701 PMCID: PMC6004915 DOI: 10.3233/jad-170763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduced cerebral blood flow in Alzheimer's disease (AD) may occur in early AD, which contributes to the pathogenesis and/or pathological progression of AD. Reversing this deficit may have therapeutic potential. Certain traditional Chinese herbal medicines (e.g., Saponin and its major component Xueshuantong [XST]) increase blood flow in humans, but whether they could be effective in treating AD patients has not been tested. We found that systemic XST injection elevated cerebral blood flow in APP/PS1 transgenic mice using two-photon time-lapse imaging in the same microvessels before and after injection. Subchronic XST treatment led to improved spatial learning and memory and motor performance in the APP/PS1 mice, suggesting improved neural plasticity and functions. Two-photon time lapse imaging of the same plaques revealed a reduction in plaque size after XST treatment. In addition, western blots experiments showed that XST treatment led to reduced processing of amyloid-β protein precursor (AβPP) and enhanced clearance of amyloid-β (Aβ) without altering the total level of AβPP. We also found increased synapse density in the immediate vicinity of amyloid plaques, suggesting enhanced synaptic function. We conclude that targeting cerebral blood flow can be an effective strategy in treating AD.
Collapse
Affiliation(s)
- Yangmei Huang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Baihong Guo
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Bihua Shi
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qingtao Gao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
33
|
Marra A, Naro A, Chillura A, Bramanti A, Maresca G, De Luca R, Manuli A, Bramanti P, Calabrò RS. Evaluating Peripersonal Space through the Functional Transcranial Doppler: Are We Paving the Way for Early Detecting Mild Cognitive Impairment to Dementia Conversion? J Alzheimers Dis 2019; 62:133-143. [PMID: 29439353 DOI: 10.3233/jad-170973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Identifying the patients with mild cognitive impairment (MCI) who may develop dementia (MDC) is challenging. The study of peripersonal space (PPS) by using functional transcranial Doppler (fTCD) could be used for this purpose. OBJECTIVE To identify changes in cerebral blood flow (CBF) during motor tasks targeting PPS, which can predict MDC. METHODS We evaluated the changes in CBF in 22 patients with MCI and 23 with dementia [Alzheimer's disease (AD) and vascular dementia (VaD)] during a motor task (passive mobilization, motor imagery, and movement observation) in which the hand of the subject moved forward and backward the face. RESULTS CBF increased when the hand approached the face and decreased when the hand moved from the face in the healthy controls (HCs). CBF changed were detectable only in patients with MCI but not in those with the AD and those who were MDC after 8-month follow-up. On the other hand, the patients with VaD presented a paradoxical response to the motor task (i.e., a decrease of CBF rather than an increase, as observed in HCs and MCI). Therefore, we found a modulation of PPS-related CBF only in HCs and patients with stable MCI (at the 8-month follow-up). CONCLUSIONS fTCD may allow preliminarily differentiating and following-up the patients with MCI and MDC, thus allowing the physician to plan beforehand more individualized cognitive rehabilitative training.
Collapse
Affiliation(s)
- Angela Marra
- IRCCS centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Antonino Naro
- IRCCS centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hua J, Liu P, Kim T, Donahue M, Rane S, Chen JJ, Qin Q, Kim SG. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage 2019; 187:17-31. [PMID: 29458187 PMCID: PMC6095829 DOI: 10.1016/j.neuroimage.2018.02.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The measurement of cerebral blood volume (CBV) has been the topic of numerous neuroimaging studies. To date, however, most in vivo imaging approaches can only measure CBV summed over all types of blood vessels, including arterial, capillary and venous vessels in the microvasculature (i.e. total CBV or CBVtot). As different types of blood vessels have intrinsically different anatomy, function and physiology, the ability to quantify CBV in different segments of the microvascular tree may furnish information that is not obtainable from CBVtot, and may provide a more sensitive and specific measure for the underlying physiology. This review attempts to summarize major efforts in the development of MRI techniques to measure arterial (CBVa) and venous CBV (CBVv) separately. Advantages and disadvantages of each type of method are discussed. Applications of some of the methods in the investigation of flow-volume coupling in healthy brains, and in the detection of pathophysiological abnormalities in brain diseases such as arterial steno-occlusive disease, brain tumors, schizophrenia, Huntington's disease, Alzheimer's disease, and hypertension are demonstrated. We believe that the continual development of MRI approaches for the measurement of compartment-specific CBV will likely provide essential imaging tools for the advancement and refinement of our knowledge on the exquisite details of the microvasculature in healthy and diseased brains.
Collapse
Affiliation(s)
- Jun Hua
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Peiying Liu
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manus Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Swati Rane
- Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - J Jean Chen
- Rotman Research Institute, Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Qin Qin
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
35
|
Ding N, Jiang J, Xu A, Tang Y, Li Z. Manual Acupuncture Regulates Behavior and Cerebral Blood Flow in the SAMP8 Mouse Model of Alzheimer's Disease. Front Neurosci 2019; 13:37. [PMID: 30766475 PMCID: PMC6365452 DOI: 10.3389/fnins.2019.00037] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
Background: A growing body of evidence has demonstrated that cerebrovascular function abnormality plays a key role in occurrence and worsening of Alzheimer’s disease (AD). Reduction of cerebral blood flow (CBF) is a sensitive marker to early perfusion deficiencies in AD. As one of the most important therapies in complementary and alternative medicine, manual acupuncture (MA) has been used in the treatment of AD. However, the moderating effect of MA on CBF remains largely unknown. Objective: To investigate the effect of MA on the behavior and CBF of SAMP8 mice. Methods: SAMP8 mice were randomly divided into the AD, MA, and medicine (M) groups, with SAMR1 mice used as the normal control (N) group. Mice in the M group were treated with donepezil hydrochloride at 0.65 μg/g. In the MA group, MA was applied at Baihui (GV20) and Yintang (GV29) for 20 min. The above treatments were administered once a day for 15 consecutive days. The Morris water maze and arterial spin labeling MRI were used to assess spatial learning and memory in behavior and CBF respectively. Results: Compared with the AD group, both MA and donepezil significantly decreased the escape latency (p < 0.01), while also elevating platform crossover number and the percentage of time and swimming distance in the platform quadrant (p < 0.01 or p < 0.05). The remarkable improvement in escape latency in the MA group appeared earlier than the M group, and no significant statistical significance was observed between the N and MA group with the exception of days 5 and 10. The CBF in the prefrontal lobe and hippocampus in the MA group was substantially higher than in the AD group (p < 0.05) with the exception of the right prefrontal lobe, with similar effects of donepezil. Conclusion: Manual acupuncture can effectively improve the spatial learning, relearning and memory abilities of SAMP8 mice. The increase in CBF in the prefrontal lobe and hippocampus could be an important mechanism for the beneficial cognitive effects of MA in AD.
Collapse
Affiliation(s)
- Ning Ding
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Jiang
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Anping Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yinshan Tang
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Hua J, Lee S, Blair NIS, Wyss M, van Bergen JMG, Schreiner SJ, Kagerer SM, Leh SE, Gietl AF, Treyer V, Buck A, Nitsch RM, Pruessmann KP, Lu H, Van Zijl PCM, Albert M, Hock C, Unschuld PG. Increased cerebral blood volume in small arterial vessels is a correlate of amyloid-β-related cognitive decline. Neurobiol Aging 2019; 76:181-193. [PMID: 30738323 DOI: 10.1016/j.neurobiolaging.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
The protracted accumulation of amyloid-β (Aβ) is a major pathologic hallmark of Alzheimer's disease and may trigger secondary pathological processes that include neurovascular damage. This study was aimed at investigating long-term effects of Aβ burden on cerebral blood volume of arterioles and pial arteries (CBVa), possibly present before manifestation of dementia. Aβ burden was assessed by 11C Pittsburgh compound-B positron emission tomography in 22 controls and 18 persons with mild cognitive impairment (MCI), [ages: 75(±6) years]. After 2 years, inflow-based vascular space occupancy at ultra-high field strength of 7-Tesla was administered for measuring CBVa, and neuropsychological testing for cognitive decline. Crushing gradients were incorporated during MR-imaging to suppress signals from fast-flowing blood in large arteries, and thereby sensitize inflow-based vascular space occupancy to CBVa in pial arteries and arterioles. CBVa was significantly elevated in MCI compared to cognitively normal controls and regional CBVa related to local Aβ deposition. For both MCI and controls, Aβ burden and follow-up CBVa in several brain regions synergistically predicted cognitive decline over 2 years. Orbitofrontal CBVa was positively associated with apolipoprotein E e4 carrier status. Increased CBVa may reflect long-term effects of region-specific pathology associated with Aβ deposition. Additional studies are needed to clarify the role of the arteriolar system and the potential of CBVa as a biomarker for Aβ-related vascular downstream pathology.
Collapse
Affiliation(s)
- Jun Hua
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - SeungWook Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas I S Blair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Wyss
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jiri M G van Bergen
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Simon J Schreiner
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland; Hospital for Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland
| | - Sonja M Kagerer
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland; Hospital for Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland
| | - Sandra E Leh
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Anton F Gietl
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland; Department of Nuclear Medicine, University Hospital Zurich, Switzerland
| | - Alfred Buck
- Department of Nuclear Medicine, University Hospital Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Hanzhang Lu
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter C M Van Zijl
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christoph Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Paul G Unschuld
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland; Hospital for Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.
| |
Collapse
|
37
|
Croteau E, Castellano C, Fortier M, Bocti C, Fulop T, Paquet N, Cunnane S. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer's disease. Exp Gerontol 2018; 107:18-26. [DOI: 10.1016/j.exger.2017.07.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/24/2022]
|
38
|
Frontiñán-Rubio J, Sancho-Bielsa FJ, Peinado JR, LaFerla FM, Giménez-Llort L, Durán-Prado M, Alcain FJ. Sex-dependent co-occurrence of hypoxia and β-amyloid plaques in hippocampus and entorhinal cortex is reversed by long-term treatment with ubiquinol and ascorbic acid in the 3 × Tg-AD mouse model of Alzheimer's disease. Mol Cell Neurosci 2018; 92:67-81. [PMID: 29953929 DOI: 10.1016/j.mcn.2018.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Structural and functional abnormalities in the cerebral microvasculature have been observed in Alzheimer's disease (AD) patients and animal models. One cause of hypoperfusion is the thickening of the cerebrovascular basement membrane (CVBM) due to increased collagen-IV deposition around capillaries. This study investigated whether these and other alterations in the cerebrovascular system associated with AD can be prevented by long-term dietary supplementation with the antioxidant ubiquinol (Ub) stabilized with Kaneka QH P30 powder containing ascorbic acid (ASC) in a mouse model of advanced AD (3 × Tg-AD mice, 12 months old). Animals were treated from prodromal stages of disease (3 months of age) with standard chow without or with Ub + ASC or ASC-containing vehicle and compared to wild-type (WT) mice. The number of β-amyloid (Aβ) plaques in the hippocampus and entorhinal cortex was higher in female than in male 3 × Tg-AD mice. Extensive regions of hypoxia were characterized by a higher plaque burden in females only. This was abolished by Ub + ASC and, to a lesser extent, by ASC treatment. Irrespective of Aβ burden, increased collagen-IV deposition in the CVBM was observed in both male and female 3 × Tg-AD mice relative to WT animals; this was also abrogated in Ub + ASC- and ASC-treated mice. The chronic inflammation in the hippocampus and oxidative stress in peripheral leukocytes of 3 × Tg-AD mice were likewise reversed by antioxidant treatment. These results provide strong evidence that long-term antioxidant treatment can mitigate plasma oxidative stress, amyloid burden, and hypoxia in the AD brain parenchyma.
Collapse
Affiliation(s)
- Javier Frontiñán-Rubio
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain
| | - Francisco J Sancho-Bielsa
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain
| | - Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Institut of Neuroscience, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mario Durán-Prado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain.
| | - Francisco J Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain.
| |
Collapse
|
39
|
Beishon L, Haunton VJ, Panerai RB, Robinson TG. Cerebral Hemodynamics in Mild Cognitive Impairment: A Systematic Review. J Alzheimers Dis 2018; 59:369-385. [PMID: 28671118 DOI: 10.3233/jad-170181] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The incidence of dementia is projected to rise over the coming decades, but with no sensitive diagnostic tests available. Vascular pathology precedes the deposition of amyloid and is an attractive early target. OBJECTIVE The aim of this review was to investigate the use of cerebral hemodynamics and oxygenation as a novel biomarker for mild cognitive impairment (MCI), focusing on transcranial Doppler ultrasonography (TCD) and near-infrared spectroscopy (NIRS). METHODS 2,698 articles were identified from Medline, Embase, PsychINFO, and Web of Science databases. 306 articles were screened and quality assessed independently by two reviewers; 26 met the inclusion criteria. Meta-analyses were performed for each marker with two or more studies and limited heterogeneity. RESULTS Eleven studies were TCD, 8 NIRS, 5 magnetic resonance imaging, and 2 positron/single photon emission tomography. Meta-analyses showed reduced tissue oxygenation index, cerebral blood flow and velocity, with higher pulsatility index, phase and cerebrovascular resistance in MCI compared to controls. The majority of studies found reduced CO2 reactivity in MCI, with mixed findings in neuroactivation studies. CONCLUSION Despite small sample sizes and heterogeneity, meta-analyses demonstrate clear abnormalities in cerebral hemodynamic and oxygenation parameters, even at an early stage of cognitive decline. Further work is required to investigate the use of cerebral hemodynamic and oxygenation parameters as a sensitive biomarker for dementia.
Collapse
Affiliation(s)
- Lucy Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Biomedical Research Unit in Cardiovascular Disease, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Biomedical Research Unit in Cardiovascular Disease, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Biomedical Research Unit in Cardiovascular Disease, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
40
|
Bright MG, Croal PL, Blockley NP, Bulte DP. Multiparametric measurement of cerebral physiology using calibrated fMRI. Neuroimage 2017; 187:128-144. [PMID: 29277404 DOI: 10.1016/j.neuroimage.2017.12.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
The ultimate goal of calibrated fMRI is the quantitative imaging of oxygen metabolism (CMRO2), and this has been the focus of numerous methods and approaches. However, one underappreciated aspect of this quest is that in the drive to measure CMRO2, many other physiological parameters of interest are often acquired along the way. This can significantly increase the value of the dataset, providing greater information that is clinically relevant, or detail that can disambiguate the cause of signal variations. This can also be somewhat of a double-edged sword: calibrated fMRI experiments combine multiple parameters into a physiological model that requires multiple steps, thereby providing more opportunity for error propagation and increasing the noise and error of the final derived values. As with all measurements, there is a trade-off between imaging time, spatial resolution, coverage, and accuracy. In this review, we provide a brief overview of the benefits and pitfalls of extracting multiparametric measurements of cerebral physiology through calibrated fMRI experiments.
Collapse
Affiliation(s)
- Molly G Bright
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Paula L Croal
- IBME, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Nicholas P Blockley
- FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel P Bulte
- IBME, Department of Engineering Science, University of Oxford, Oxford, UK; FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
41
|
Cai Z, Liu Z, Xiao M, Wang C, Tian F. Chronic Cerebral Hypoperfusion Promotes Amyloid-Beta Pathogenesis via Activating β/γ-Secretases. Neurochem Res 2017; 42:3446-3455. [DOI: 10.1007/s11064-017-2391-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
42
|
Thomas BP, Sheng M, Tseng BY, Tarumi T, Martin-Cook K, Womack KB, Cullum MC, Levine BD, Zhang R, Lu H. Reduced global brain metabolism but maintained vascular function in amnestic mild cognitive impairment. J Cereb Blood Flow Metab 2017; 37:1508-1516. [PMID: 27389176 PMCID: PMC5453471 DOI: 10.1177/0271678x16658662] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amnestic mild cognitive impairment represents an early stage of Alzheimer's disease, and characterization of physiological alterations in mild cognitive impairment is an important step toward accurate diagnosis and intervention of this condition. To investigate the extent of neurodegeneration in patients with mild cognitive impairment, whole-brain cerebral metabolic rate of oxygen in absolute units of µmol O2/min/100 g was quantified in 44 amnestic mild cognitive impairment and 28 elderly controls using a novel, non-invasive magnetic resonance imaging method. We found a 12.9% reduction ( p = 0.004) in cerebral metabolic rate of oxygen in mild cognitive impairment, which was primarily attributed to a reduction in the oxygen extraction fraction, by 10% ( p = 0.016). Global cerebral blood flow was not found to be different between groups. Another aspect of vascular function, cerebrovascular reactivity, was measured by CO2-inhalation magnetic resonance imaging and was found to be equivalent between groups. Therefore, there seems to be a global, diffuse diminishment in neural function in mild cognitive impairment, while their vascular function did not show a significant reduction.
Collapse
Affiliation(s)
- Binu P Thomas
- 1 Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Sheng
- 1 Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin Y Tseng
- 2 Institute of Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Takashi Tarumi
- 2 Institute of Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Kristen Martin-Cook
- 3 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyle B Womack
- 3 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Munro C Cullum
- 3 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,4 Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin D Levine
- 2 Institute of Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Rong Zhang
- 2 Institute of Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,3 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hanzhang Lu
- 1 Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,5 Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
43
|
Nielsen RB, Egefjord L, Angleys H, Mouridsen K, Gejl M, Møller A, Brock B, Brændgaard H, Gottrup H, Rungby J, Eskildsen SF, Østergaard L. Capillary dysfunction is associated with symptom severity and neurodegeneration in Alzheimer's disease. Alzheimers Dement 2017; 13:1143-1153. [PMID: 28343848 DOI: 10.1016/j.jalz.2017.02.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/13/2017] [Accepted: 02/13/2017] [Indexed: 01/18/2023]
Abstract
INTRODUCTION We examined whether cortical microvascular blood volume and hemodynamics in Alzheimer's disease (AD) are consistent with tissue hypoxia and whether they correlate with cognitive performance and the degree of cortical thinning. METHODS Thirty-two AD patients underwent cognitive testing, structural magnetic resonance imaging (MRI), and perfusion MRI at baseline and after 6 months. We measured cortical thickness, microvascular cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and capillary transit time heterogeneity (CTH) and estimated tissue oxygen tension (PtO2). RESULTS At baseline, poor cognitive performance and regional cortical thinning correlated with lower CBF and CBV, with higher MTT and CTH and with low PtO2 across the cortex. Cognitive decline over time was associated with increasing whole brain relative transit time heterogeneity (RTH = CTH/MTT). DISCUSSION Our results confirm the importance of microvascular pathology in AD. Deteriorating microvascular hemodynamics may cause hypoxia, which is known to precipitate amyloid retention.
Collapse
Affiliation(s)
- Rune B Nielsen
- Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark.
| | - Lærke Egefjord
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hugo Angleys
- Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| | - Kim Mouridsen
- Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| | - Michael Gejl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Arne Møller
- PET-Center, Department of Nuclear Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Brock
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Brændgaard
- Dementia Clinic, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Gottrup
- Dementia Clinic, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Rungby
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Simon F Eskildsen
- Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark; Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
44
|
Wirth M, Pichet Binette A, Brunecker P, Köbe T, Witte AV, Flöel A. Divergent regional patterns of cerebral hypoperfusion and gray matter atrophy in mild cognitive impairment patients. J Cereb Blood Flow Metab 2017; 37:814-824. [PMID: 27037094 PMCID: PMC5363461 DOI: 10.1177/0271678x16641128] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reductions of cerebral blood flow and gray matter structure have been implicated in early pathogenesis of Alzheimer's disease, potentially providing complementary information. The present study evaluated regional patterns of cerebral hypoperfusion and atrophy in patients with mild cognitive impairment and healthy older adults. In each participant, cerebral perfusion and gray matter structure were extracted within selected brain regions vulnerable to Alzheimer's disease using magnetic resonance imaging. Measures were compared between diagnostic groups with/without adjustment for covariates. In mild cognitive impairment patients, cerebral blood flow was significantly reduced in comparison with healthy controls in temporo-parietal regions and the basal ganglia in the absence of local gray matter atrophy. By contrast, gray matter structure was significantly reduced in the hippocampus in the absence of local hypoperfusion. Both, cerebral perfusion and gray matter structure were significantly reduced in the entorhinal and isthmus cingulate cortex in mild cognitive impairment patients compared with healthy older adults. Our results demonstrated partly divergent patterns of temporo-parietal hypoperfusion and medial-temporal atrophy in mild cognitive impairment patients, potentially indicating biomarker sensitivity to dissociable pathological mechanisms. The findings support applicability of cerebral perfusion and gray matter structure as complementary magnetic resonance imaging-based biomarkers in early Alzheimer's disease detection, a hypothesis to be further evaluated in longitudinal studies.
Collapse
Affiliation(s)
- Miranka Wirth
- 1 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Alexa Pichet Binette
- 1 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany.,2 Centre for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montreal, Canada
| | - Peter Brunecker
- 3 Center for Stroke Research, Charité - Universitätsmedizin Berlin, Germany
| | - Theresa Köbe
- 1 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - A Veronica Witte
- 1 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany.,4 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Agnes Flöel
- 1 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany.,3 Center for Stroke Research, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
45
|
Increased cortical capillary transit time heterogeneity in Alzheimer's disease: a DSC-MRI perfusion study. Neurobiol Aging 2017; 50:107-118. [DOI: 10.1016/j.neurobiolaging.2016.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/17/2016] [Accepted: 11/11/2016] [Indexed: 01/18/2023]
|
46
|
Kato K, Miyata S, Ando M, Matsuoka H, Yasuma F, Iwamoto K, Kawano N, Banno M, Ozaki N, Noda A. Influence of sleep duration on cortical oxygenation in elderly individuals. Psychiatry Clin Neurosci 2017; 71:44-51. [PMID: 27696589 DOI: 10.1111/pcn.12464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/30/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022]
Abstract
AIM Short sleep duration is a risk factor for cardiovascular diseases. Cerebral blood flow and its regulation are affected by pathological conditions commonly observed in the elderly population, such as dementia, atherosclerosis, diabetes mellitus (DM), stroke, and hypertension. The purpose of this study was to examine the influence of sleep duration on cortical oxygenated hemoglobin (OxyHb) using near-infrared spectroscopy (NIRS). METHODS Seventy-three individuals (age, 70.1 ± 3.9 years, 51 men and 22 women) participated in this study. Cortical OxyHb levels were measured with NIRS. We evaluated age, body mass index (BMI), smoking status, alcohol intake, sleep duration, hypertension, DM, and hyperlipidemia using a questionnaire. Blood pressure was measured using plethysmography. RESULTS Peak OxyHb and area under the NIRS curve significantly decreased in participants with sleep duration <7 h compared with those with sleep duration ≥7 h (0.136 ± 0.212 mM·mm vs 0.378 ± 0.342 mM·mm, P = 0.001; 112.0 ± 243.6 vs 331.7 ± 428.7, P = 0.012, respectively). Sleep duration was significantly correlated with peak OxyHb level and area under the NIRS curve (r = 0.378, P = 0.001; r = 0.285, P = 0.015, respectively). Multiple regression analysis, including age, BMI, sex, smoking status, alcohol intake, sleep duration, hypertension, DM, and hyperlipidemia revealed that sleep duration was the only significant independent factor associated with peak OxyHb and area under the NIRS curve (β = 0.343, P = 0.004; β = 0.244, P = 0.049, respectively), and smoking status was independently correlated with time to the peak OxyHb (β = -0.319, P = 0.009). CONCLUSION Sleep duration may be an important factor that influences cortical oxygenation in the elderly population.
Collapse
Affiliation(s)
- Kazuko Kato
- Chubu University Graduate School of Life and Health Sciences, Aichi, Japan
| | - Seiko Miyata
- Department of Sleep Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan.,Education and Training Center of Medical Technology, Chubu University, Aichi, Japan
| | - Motoo Ando
- Education and Training Center of Medical Technology, Chubu University, Aichi, Japan
| | - Hiroki Matsuoka
- Chubu University Graduate School of Life and Health Sciences, Aichi, Japan
| | - Fumihiko Yasuma
- Department of Internal Medicine, National Hospital Organization Suzuka Hospital, Mie, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Naoko Kawano
- Institutes of Innovation for Future Society, Nagoya University, Aichi, Japan
| | - Masahiro Banno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Japan.,Seichiryo Hospital, Aichi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Akiko Noda
- Chubu University Graduate School of Life and Health Sciences, Aichi, Japan.,Education and Training Center of Medical Technology, Chubu University, Aichi, Japan
| |
Collapse
|
47
|
Lacalle-Aurioles M, Navas-Sánchez FJ, Alemán-Gómez Y, Olazarán J, Guzmán-De-Villoria JA, Cruz-Orduña I, Mateos-Pérez JM, Desco M. The Disconnection Hypothesis in Alzheimer's Disease Studied Through Multimodal Magnetic Resonance Imaging: Structural, Perfusion, and Diffusion Tensor Imaging. J Alzheimers Dis 2016; 50:1051-64. [PMID: 26890735 DOI: 10.3233/jad-150288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
According to the so-called disconnection hypothesis, the loss of synaptic inputs from the medial temporal lobes (MTL) in Alzheimer's disease (AD) may lead to reduced activity of target neurons in cortical areas and, consequently, to decreased cerebral blood flow (CBF) in those areas. The aim of this study was to assess whether hypoperfusion in parietotemporal and frontal cortices of patients with mild cognitive impairment who converted to AD (MCI-c) and patients with mild AD is associated with atrophy in the MTL and/or microstructural changes in the white matter (WM) tracts connecting these areas. We assessed these relationships by investigating correlations between CBF in hypoperfused areas, mean cortical thickness in atrophied regions of the MTL, and fractional anisotropy (FA) in WM tracts. In the MCI-c group, a strong correlation was observed between CBF of the superior parietal gyri and FA in the parahippocampal tracts (left: r = 0.90, p < 0.0001; right: r = 0.597, p = 0.024), and between FA in the right parahippocampal tract and the right precuneus (r = 0.551, p = 0.041). No significant correlations between CBF in hypoperfused regions and FA in the WM tract were observed in the AD group. These results suggest an association between perfusion deficits and altered WM tracts in prodromal AD, while microvasculature impairments may have a greater influence in more advanced stages. We did not find correlations between cortical thinning in the medial temporal lobes and decreased FA in the WM tracts of the limbic system in either group.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Francisco Javier Navas-Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Yasser Alemán-Gómez
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Javier Olazarán
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Isabel Cruz-Orduña
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José María Mateos-Pérez
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| |
Collapse
|
48
|
Salami A, Wåhlin A, Kaboodvand N, Lundquist A, Nyberg L. Longitudinal Evidence for Dissociation of Anterior and Posterior MTL Resting-State Connectivity in Aging: Links to Perfusion and Memory. Cereb Cortex 2016; 26:3953-3963. [PMID: 27522073 PMCID: PMC5028008 DOI: 10.1093/cercor/bhw233] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Neuroimaging studies of spontaneous signal fluctuations as measured by resting-state functional magnetic resonance imaging have revealed age-related alterations in the functional architecture of brain networks. One such network is located in the medial temporal lobe (MTL), showing structural and functional variations along the anterior–posterior axis. Past cross-sectional studies of MTL functional connectivity (FC) have yielded discrepant findings, likely reflecting the fact that specific MTL subregions are differentially affected in aging. Here, using longitudinal resting-state data from 198 participants, we investigated 5-year changes in FC of the anterior and posterior MTL. We found an opposite pattern, such that the degree of FC within the anterior MTL declined after age 60, whereas elevated FC within the posterior MTL was observed along with attenuated posterior MTL-cortical connectivity. A significant negative change–change relation was observed between episodic-memory decline and elevated FC in the posterior MTL. Additional analyses revealed age-related cerebral blood flow (CBF) increases in posterior MTL at the follow-up session, along with a positive relation of elevated FC and CBF, suggesting that elevated FC is a metabolically demanding alteration. Collectively, our findings indicate that elevated FC in posterior MTL along with increased local perfusion is a sign of brain aging that underlie episodic-memory decline.
Collapse
Affiliation(s)
- Alireza Salami
- Umeå Center for Functional Brain Imaging, S-90187, Umeå, Sweden.,Department of Integrative Medical Biology, Physiology Section, Umeå University, S-901 87 Umeå, Sweden.,Aging Research Center, Karolinska Institutet and Stockholm University, SE-113 30, Stockholm, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging, S-90187, Umeå, Sweden.,Department of Radiation Sciences, Radiation Physics, Umeå University, S-901 87 Umeå, Sweden
| | - Neda Kaboodvand
- Umeå Center for Functional Brain Imaging, S-90187, Umeå, Sweden.,Aging Research Center, Karolinska Institutet and Stockholm University, SE-113 30, Stockholm, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging, S-90187, Umeå, Sweden.,Department of Integrative Medical Biology, Physiology Section, Umeå University, S-901 87 Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, S-90187, Umeå, Sweden.,Department of Integrative Medical Biology, Physiology Section, Umeå University, S-901 87 Umeå, Sweden.,Department of Radiation Sciences, Diagnostic Radiology, Umeå University, S-901 87 Umeå, Sweden
| |
Collapse
|
49
|
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2016; 95:943-972. [PMID: 27350397 DOI: 10.1002/jnr.23777] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
Abstract
Aging, hypertension, diabetes, hypoxia/obstructive sleep apnea (OSA), obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and glucose hypometabolism. These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in turn decrease nitric oxide and enhance endothelin, Amyloid-β deposition, cerebral amyloid angiopathy, and blood-brain barrier disruption. Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger several pathological feedforward and feedback loops. These upstream factors persist in the brain for decades, upregulating amyloid and tau, before the cognitive decline. These cascades lead to neuronal Ca2+ increase, neurodegeneration, cognitive/memory decline, and Alzheimer's disease (AD). However, strategies are available to attenuate cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. AD is the leading cause of dementia among the elderly. There is significant evidence that pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in promoting cognitive dysfunction. Aging and several comorbid conditions mentioned above promote diverse pathologies. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain. In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive decline. These comorbid disease conditions may share and synergistically activate these pathophysiological pathways. Inflammation upregulates cerebrovascular pathology through proinflammatory cytokines, endothelin-1, and nitric oxide (NO). Inflammation-triggered ONS promotes long-term damage involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feedforward and feedback pathological loops. The latter includes dysfunctional energy metabolism (compromised mitochondrial ATP production), amyloid-β generation, endothelial dysfunction, and blood-brain-barrier disruption. These lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic dysfunction and neurodegeneration. In essence, hypoperfusion deprives the brain from its two paramount trophic substances, viz., oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, leading to both gray and white matter atrophy, cognitive dysfunction, and AD. This Review underscores the importance of treating the above-mentioned comorbid disease conditions to attenuate inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism. Additionally, several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Dept/MSE, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
50
|
van de Haar HJ, Jansen JFA, van Osch MJP, van Buchem MA, Muller M, Wong SM, Hofman PAM, Burgmans S, Verhey FRJ, Backes WH. Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging. Neurobiol Aging 2016; 45:190-196. [PMID: 27459939 DOI: 10.1016/j.neurobiolaging.2016.06.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
Abstract
The neurovascular unit, which protects neuronal cells and supplies them with essential molecules, plays an important role in the pathophysiology of Alzheimer's Disease (AD). The aim of this study was to noninvasively investigate 2 linked functional elements of the neurovascular unit, blood-brain barrier (BBB) permeability and cerebral blood flow (CBF), in patients with early AD and healthy controls. Therefore, both dynamic contrast-enhanced magnetic resonance imaging and arterial spin labeling magnetic resonance imaging were applied to measure BBB permeability and CBF, respectively. The patients with early AD showed significantly lower CBF and local blood volume in the gray matter, compared with controls. In the patients, we also found that a reduction in CBF is correlated with an increase in leakage rate. This finding supports the hypothesis that neurovascular damage, and in particular impairment of the neurovascular unit constitutes the pathophysiological link between CBF reduction and BBB impairment in AD.
Collapse
Affiliation(s)
- Harm J van de Haar
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuropsychology and Psychiatry/Alzheimer Center Limburg, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Majon Muller
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sau May Wong
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Paul A M Hofman
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Saartje Burgmans
- Department of Neuropsychology and Psychiatry/Alzheimer Center Limburg, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Frans R J Verhey
- Department of Neuropsychology and Psychiatry/Alzheimer Center Limburg, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Walter H Backes
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|