1
|
Hren R, Brezar SK, Marhl U, Sersa G. Laser speckle contrast imaging of perfusion in oncological clinical applications: a literature review. Radiol Oncol 2024; 58:326-334. [PMID: 39287164 PMCID: PMC11406933 DOI: 10.2478/raon-2024-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Laser speckle coherence imaging (LSCI) is an emerging imaging modality that enables noninvasive visualization and assessment of tissue perfusion and microcirculation. In this article, we evaluated LSCI in imaging perfusion in clinical oncology through a systematic review of the literature. METHODS The inclusion criterion for the literature search in PubMed, Web of Science and Scopus electronic databases was the use of LSCI in clinical oncology, meaning that all animal, phantom, ex vivo, experimental, research and development, and purely methodological studies were excluded. RESULTS Thirty-six articles met the inclusion criteria. The anatomic locations of the neoplasms in the selected articles were brain (5 articles), breasts (2 articles), endocrine glands (4 articles), skin (12 articles), and the gastrointestinal tract (13 articles). CONCLUSIONS While LSCI is emerging as an appealing imaging modality, it is crucial for more clinical sites to initiate clinical trials. A lack of standardized protocols and interpretation guidelines are posing the most significant challenge.
Collapse
Affiliation(s)
- Rok Hren
- Faculty of Mathematics and Physics, Ljubljana, Slovenia
- Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia
- Syreon Research Institute, Budapest, Hungary
| | | | - Urban Marhl
- Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Tao T, Zhu W, Yu J, Li X, Wei W, Hu M, Luo M, Wan G, Li P, Chen J, Zhang J. Intraoperative evaluation of local cerebral hemodynamic change by laser speckle contrast imaging for predicting postoperative cerebral hyperperfusion during STA-MCA bypass in adult patients with moyamoya disease. J Cereb Blood Flow Metab 2024; 44:1163-1173. [PMID: 38233750 PMCID: PMC11179619 DOI: 10.1177/0271678x241226483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
Cerebral hyperperfusion (CHP) occurred frequently after direct superficial temporal artery-middle cerebral artery (STA-MCA) bypass surgery for moyamoya disease (MMD). We analyzed cortical microvascular density (CMD) and the change of cerebral blood flow (LΔCBF) using intraoperative laser speckle contrast imaging (LSCI) on 130 hemispheres of 95 consecutive adult patients with MMD. The demographic characteristics, cortical hemodynamic sources, bypass methods, intraoperative blood flow data, and relative CBF changes on single-photon emission computed tomography (SPECT) examination (SΔrCBF) were compared between the groups with and without CHP. The median values for CMD, LΔCBF, and SΔrCBF were significantly higher in the CHP group than in the non-CHP group (CMD 0.240 vs 0.206, P = 0.004; LΔCBF 2.285 vs 1.870, P < 0.001; SΔCBF 1.535 vs 1.260, P < 0.001). Multivariate analysis revealed that hemodynamic sources of recipient parasylvian cortical arteries from MCA (M-PSCAs), end-to-side (E-S) bypass method, CMD ≥ 0.217, and LΔCBF ≥ 1.985 were the risk factors for CHP. Intraoperative LSCI was useful for evaluating hemodynamics and predicting CHP in patients with MMD.
Collapse
Affiliation(s)
- Tianshu Tao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenting Zhu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Miao Hu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Mingrui Luo
- Department of Neurosurgery, WuHan Third Hospital, Wuhan, China
| | - Guiping Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Pengcheng Li
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Dimanche A, Goldberg J, Miller DR, Bervini D, Raabe A, Dunn AK. Laser speckle contrast imaging versus microvascular Doppler sonography in aneurysm surgery: A prospective study. World Neurosurg X 2024; 23:100377. [PMID: 38698836 PMCID: PMC11063637 DOI: 10.1016/j.wnsx.2024.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Objective This study aimed to compare microvascular Doppler sonography (MDS) and laser speckle contrast imaging (LSCI) for assessing vessel patency and aneurysm occlusion during microsurgical clipping of intracranial aneurysms. Methods MDS and LSCI were used after clip placement during six neurovascular procedures including six patients, and agreement between the two techniques was assessed. LSCI was performed in parallel or right after MDS evaluation. The Doppler response was assessed through listening while flow in the LSCI videos was evaluated by three blinded neurovascular surgeons after the surgery. Statistical analysis determined the agreement between the techniques in assessing flow in 18 regions of interest (ROIs). Results Agreement between MDS and LSCI in assessing vessel patency was observed in 87 % of the ROIs. LSCI accurately identified flow in 93.3 % of assessable ROIs, with no false positive or negative measurements. Three ROIs were not assessable with LSCI due to motion artifacts or poor image quality. No complications were observed. Conclusions LSCI demonstrated high agreement with MDS in assessing vessel patency during microsurgical clipping of intracranial aneurysms. It provided continuous, real-time, full-field imaging with high spatial resolution and temporal resolution. While MDS allowed evaluation of deep vascular regions, LSCI complemented it by offering unlimited assessment of surrounding vessels.
Collapse
Affiliation(s)
- Alexis Dimanche
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, United States
| | - Johannes Goldberg
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - David Bervini
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrew K. Dunn
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, United States
| |
Collapse
|
4
|
Zhu W, Tao T, Hong J, Li R, Ma M, Zhang J, Chen J, Lu J, Li P. Exploring the impact of pre-anastomosis cerebral microcirculation on cerebral hyperperfusion syndrome in superficial temporal artery-middle cerebral artery bypass surgery of moyamoya disease. NEUROPHOTONICS 2024; 11:035008. [PMID: 39234576 PMCID: PMC11372418 DOI: 10.1117/1.nph.11.3.035008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
Significance Cerebral hyperperfusion syndrome (CHS), characterized by neurologic deficits due to postoperative high cerebral perfusion, is a serious complication of superficial temporal artery-middle cerebral artery (STA-MCA) surgery for moyamoya disease (MMD). Aim We aim to clarify the importance of assessing pre-anastomosis cerebral microcirculation levels by linking the onset of CHS to pre- and post-anastomosis hemodynamics. Approach Intraoperative laser speckle contrast imaging (LSCI) measured changes in regional cerebral blood flow (rCBF) and regional blood flow structuring (rBFS) within the cerebral cortical microcirculation of 48 adults with MMD. Results Following anastomosis, all MMD patients exhibited a significant increase in rCBF ( 279.60 % ± 120.00 % , p < 0.001 ). Changes in rCBF and rBFS showed a negative correlation with their respective baseline levels (rCBF, p < 0.001 ; rBFS, p = 0.005 ). Baseline rCBF differed significantly between CHS and non-CHS groups ( p = 0.0049 ). The areas under the receiver operating characteristic (ROC) curve for baseline rCBF was 0.753. Hemorrhagic MMD patients showed higher baseline rCBF than ischemic patients ( p = 0.036 ), with a marked correlation between pre- and post-anastomosis rCBF in hemorrhagic cases ( p = 0.003 ), whereas ischemic MMD patients did not. Conclusion Patients with low levels of pre-anastomosis baseline CBF induce a dramatic increase in post-anastomosis and show a high risk of postoperative CHS.
Collapse
Affiliation(s)
- Wenting Zhu
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Tianshu Tao
- Zhongnan Hospital of Wuhan University, Wuhan University, Department of Neurosurgery, Wuhan, China
| | - Jiachi Hong
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Ruolan Li
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Minghui Ma
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Jianjian Zhang
- Zhongnan Hospital of Wuhan University, Wuhan University, Department of Neurosurgery, Wuhan, China
| | - Jincao Chen
- Zhongnan Hospital of Wuhan University, Wuhan University, Department of Neurosurgery, Wuhan, China
| | - Jinling Lu
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Pengcheng Li
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Hainan University, School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Sanya, China
- Huazhong University of Science and Technology, Advanced Biomedical Imaging Facility, Wuhan, China
| |
Collapse
|
5
|
Guzzi G, Ricciuti RA, Della Torre A, Lo Turco E, Lavano A, Longhini F, La Torre D. Intraoperative Neurophysiological Monitoring in Neurosurgery. J Clin Med 2024; 13:2966. [PMID: 38792507 PMCID: PMC11122101 DOI: 10.3390/jcm13102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Intraoperative neurophysiological monitoring (IONM) is a crucial advancement in neurosurgery, enhancing procedural safety and precision. This technique involves continuous real-time assessment of neurophysiological signals, aiding surgeons in timely interventions to protect neural structures. In addition to inherent limitations, IONM necessitates a detailed anesthetic plan for accurate signal recording. Given the growing importance of IONM in neurosurgery, we conducted a narrative review including the most relevant studies about the modalities and their application in different fields of neurosurgery. In particular, this review provides insights for all physicians and healthcare professionals unfamiliar with IONM, elucidating commonly used techniques in neurosurgery. In particular, it discusses the roles of IONM in various neurosurgical settings such as tumoral brain resection, neurovascular surgery, epilepsy surgery, spinal surgery, and peripheral nerve surgery. Furthermore, it offers an overview of the anesthesiologic strategies and limitations of techniques essential for the effective implementation of IONM.
Collapse
Affiliation(s)
- Giusy Guzzi
- Neurosurgery Department, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Attilio Della Torre
- Neurosurgery Department, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Erica Lo Turco
- Neurosurgery Department, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Angelo Lavano
- Neurosurgery Department, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Federico Longhini
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Anesthesia and Intensive Care Unit, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
| | - Domenico La Torre
- Neurosurgery Department, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Yun JH. A Brief Introduction to the Study of Cerebral Blood Flow Measurement in Traumatic Brain Injury Using Optical Imaging Approach. Korean J Neurotrauma 2024; 20:5-7. [PMID: 38576498 PMCID: PMC10990700 DOI: 10.13004/kjnt.2024.20.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Jung-Ho Yun
- Department of Neurological Surgery, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
7
|
Kandukuri J, Jain A, Karmarkar P, Gadagkar H, Aberman H, Wang Q, Rege A. Realtime assessment of vascular occlusion and reperfusion in animal models of intraoperative imaging - a pilot study. Innov Surg Sci 2024; 9:25-35. [PMID: 38826630 PMCID: PMC11138401 DOI: 10.1515/iss-2023-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/04/2023] [Indexed: 06/05/2024] Open
Abstract
Objectives Intraoperative monitoring of blood flow (BF) remains vital to guiding surgical decisions. Here, we report the use of SurgeON™ Blood Flow Monitor (BFM), a prototype system that attaches to surgical microscopes and implements laser speckle contrast imaging (LSCI) to noninvasively obtain and present vascular BF information in real-time within the microscope's eyepiece. Methods The ability of SurgeON BFM to monitor BF status during reversible vascular occlusion procedures was investigated in two large animal models: occlusion of saphenous veins in six NZW rabbit hindlimbs and clipping of middle cerebral artery (MCA) branches in four Dorset sheep brain hemispheres. SurgeON BFM acquired, presented, and stored LSCI-based blood flow velocity index (BFVi) data and performed indocyanine green video angiography (ICG-VA) for corroboration. Results Stored BFVi data were analyzed for each phase: pre-occlusion (baseline), with the vessel occluded (occlusion), and after reversal of occlusion (re-perfusion). In saphenous veins, BFVi relative to baseline reduced to 5.2±3.7 % during occlusion and returned to 102.9±14.9 % during re-perfusion. Unlike ICG-VA, SurgeON BFM was able to monitor reduced BFVi and characterize re-perfusion robustly during five serial occlusion procedures conducted 2-5 min apart on the same vessel. Across four sheep MCA vessels, BFVi reduced to 18.6±7.7 % and returned to 120.1±27.8 % of baseline during occlusion and re-perfusion phases, respectively. Conclusions SurgeON BFM can noninvasively monitor vascular occlusion status and provide intuitive visualization of BF information in real-time to an operating surgeon. This technology may find application in vascular, plastic, and neurovascular surgery.
Collapse
Affiliation(s)
| | - Aseem Jain
- Vasoptic Medical, Inc., Columbia, MD, USA
| | | | | | | | - Qihong Wang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
8
|
Dimanche A, Bervini D, Miller DR, Schär A, Goldberg J, Raabe A, Dunn AK. Cortical perfusion measurements with laser speckle contrast imaging during adenosine induced cardiac arrest for aneurysm clipping: a case report. Acta Neurochir (Wien) 2024; 166:27. [PMID: 38261093 DOI: 10.1007/s00701-024-05925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024]
Abstract
Adenosine induced cardiac arrest (AiCA) is one of the methods used to facilitate microsurgical aneurysm clipping by providing more visibility and less pressure in the aneurysmal sac and neighboring vessels. We report the use of laser speckle contrast imaging (LSCI) during AiCA to monitor the changes in pulsation and perfusion on the cortical surface during adenosine induced cardiac arrest for aneurysm clipping surgery. Application of this technology for perfusion monitoring may improve workflow and surgical guidance and provide valuable feedback continuously throughout the procedure. ClinicalTrials.gov identifier: NCT0502840.
Collapse
Affiliation(s)
- Alexis Dimanche
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - David Bervini
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Andreas Schär
- Department Anaesthesiology & Pain Therapy, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Johannes Goldberg
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Qureshi MM, Allam N, Im J, Kwon HS, Chung E, Vitkin IA. Advances in laser speckle imaging: From qualitative to quantitative hemodynamic assessment. JOURNAL OF BIOPHOTONICS 2024; 17:e202300126. [PMID: 37545037 DOI: 10.1002/jbio.202300126] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Laser speckle imaging (LSI) techniques have emerged as a promising method for visualizing functional blood vessels and tissue perfusion by analyzing the speckle patterns generated by coherent light interacting with living biological tissue. These patterns carry important biophysical tissue information including blood flow dynamics. The noninvasive, label-free, and wide-field attributes along with relatively simple instrumental schematics make it an appealing imaging modality in preclinical and clinical applications. The review outlines the fundamentals of speckle physics and the three categories of LSI techniques based on their degree of quantification: qualitative, semi-quantitative and quantitative. Qualitative LSI produces microvascular maps by capturing speckle contrast variations between blood vessels containing moving red blood cells and the surrounding static tissue. Semi-quantitative techniques provide a more accurate analysis of blood flow dynamics by accounting for the effect of static scattering on spatiotemporal parameters. Quantitative LSI such as optical speckle image velocimetry provides quantitative flow velocity measurements, which is inspired by the particle image velocimetry in fluid mechanics. Additionally, discussions regarding the prospects of future innovations in LSI techniques for optimizing the vascular flow quantification with associated clinical outlook are presented.
Collapse
Affiliation(s)
- Muhammad Mohsin Qureshi
- Division of Biophysics and Bioimaging, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Nader Allam
- Division of Biophysics and Bioimaging, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jeongmyo Im
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - I Alex Vitkin
- Division of Biophysics and Bioimaging, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Dimanche A, Miller DR, Goldberg J, Raabe A, Dunn AK, Bervini D. Continuous hemodynamics monitoring during arteriovenous malformation microsurgical resection with laser speckle contrast imaging: case report. Front Surg 2023; 10:1285758. [PMID: 38162090 PMCID: PMC10757834 DOI: 10.3389/fsurg.2023.1285758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
AVM surgery is challenging due to progressive and often unforeseeable flow changes during its resection which involve both the AVM and the surrounding brain tissue. Hence, accurate monitoring of blood flow is crucial to minimize complications and improve outcomes. The following case report illustrates the usefulness of complimentary non-invasive tools that can provide real time blood flow assessment. We present a case demonstrating the application of laser speckle contrast imaging (LSCI) in evaluating vessel flow dynamics during AVM surgery. A 30-year-old female presented with sudden headaches, nausea, vomiting, and vertigo. Emergency imaging revealed a ruptured cerebellar AVM necessitating surgical intervention. LSCI was integrated into the surgical workflow, providing continuous visualization of relative cerebral blood flow (rCBF) of vessels surrounding the AVM. Before AVM resection, LSCI measurements revealed the arterialized vasculature supplying the AVM nidus; measurements after AVM resection showed significant hemodynamic changes including normal flow in the initially arterialized AVM draining veins and adjacent arterial branches. LSCI also detected blood flow alterations during temporary occlusion, enabling assessment of downstream vascular regions. In conclusion, we provide an example supporting the utility of LSCI for real-time hemodynamic monitoring during AVM resection surgery. LSCI offers non-invasive, continuous, and immediate blood flow information, complementing conventional imaging methods like indocyanine green angiography. Additionally, our findings suggest that LSCI has the potential to provide a non-invasive means of identifying the specific superficial vessel branches or cortical areas that receive blood supply from a particular vessel.
Collapse
Affiliation(s)
- Alexis Dimanche
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | | | - Johannes Goldberg
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - David Bervini
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Goldberg J, Miller DR, Dimanche A, Kissling C, Müller T, Müller MD, Jesse CM, Murek M, Bervini D, Dunn AK, Raabe A. Intraoperative Laser Speckle Contrast Imaging to Assess Vessel Flow in Neurosurgery: A Pilot Study. Neurosurgery 2023:00006123-990000000-00974. [PMID: 38032222 DOI: 10.1227/neu.0000000000002776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Laser speckle contrast imaging (LSCI) has emerged as a promising tool for assessment of vessel flow during neurosurgery. We aimed to investigate the feasibility of visualizing vessel flow in the macrocirculation with a new fully microscope-integrated LSCI system and assess the validity and objectivity of findings compared with fluorescence angiography (FA). METHODS This is a single-center prospective observational study enrolling adult patients requiring microsurgical treatment for brain vascular pathologies or brain tumors. Three independent raters, blinded toward findings of FA, reviewed regions of interest (ROIs) placed in exposed vessels and target structures. The primary end point was the validity of LSCI for assessment of vessel flow as measured by the agreement with FA. The secondary end point was objectivity, measured as the inter-rater agreement of LSCI findings. RESULTS During 18 surgical procedures, 23 observations using FA and LSCI were captured simultaneously. Using LSCI, vessel flow was assessable in 62 (86.1%) and not assessable in 10 (13.9%) ROIs. The agreement between LSCI and FA was 86.1%, with an agreement coefficient of 0.85 (95% CI: 0.75-0.94). Disagreement between LSCI and FA was observed in the 10 ROIs that were not assessable. The agreement between ROIs that were assessable using LSCI and FA was 100%. The inter-rater agreement of LSCI findings was 87.9%, with an agreement coefficient of 0.86 (95% CI: 0.79-0.94). CONCLUSION Fully microscope-integrated LSCI is feasible and has a high potential for clinical utility. Because of its characteristics, LSCI can be viewed as a full-field visual micro-Doppler that can be used as a complementary method to FA for assessing vessel flow during neurosurgery. Despite technical limitations related to the early development phase of the fully microscope-integrated system, we demonstrated reasonable validity and objectivity of findings compared with FA. Further research and refinement of the system may enhance its value in neurosurgical applications.
Collapse
Affiliation(s)
- Johannes Goldberg
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Alexis Dimanche
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Cédric Kissling
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Timothy Müller
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mandy D Müller
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christopher Marvin Jesse
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Murek
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Bervini
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Andreas Raabe
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Gopal JP, Vaz O, Varley R, Spiers H, Goldsworthy MA, Siddagangaiah V, Lock B, Sharma V, Summers A, Moinuddin Z, van Dellen D, Augustine T. Using Laser Speckle Contrast Imaging to Quantify Perfusion Quality in Kidney and Pancreas Grafts on Vascular Reperfusion: A Proof-of-Principle Study. Transplant Direct 2023; 9:e1472. [PMID: 37090123 PMCID: PMC10118345 DOI: 10.1097/txd.0000000000001472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 04/25/2023] Open
Abstract
The accuracy of intraoperative graft perfusion assessment still remains subjective, with doppler examination being the only objective adjunct. Laser speckle contrast imaging (LSCI) has been used to assess intraoperative blood flow in neurosurgery and in various surgical specialties. Despite its ability to accurately quantify perfusion at the microvascular level, it has not been clinically evaluated in kidney/kidney-pancreas transplantation for perfusion characterization. We aimed to evaluate the utility of LSCI and identify objective parameters that can be quantified at reperfusion. Methods This study was registered in ClinicalTrials.gov (NCT04202237). The Moor FLPI-2 blood flow imager was used in 4 patients (1 Simultaneous Pancreas and Kidney, 2 deceased, and 1 living donor kidney transplants) during reperfusion to capture reperfusion data. The following parameters were measured: flux (average speed × concentration of moving red blood cells in the sample volume), doppler centroid, total and valid pixels, valid rate, and total and valid area. Flux data were analyzed with Moor FLPI analysis software. Results The perfusion characteristics and flux images correlated with initial graft function. Conclusions LSCI is a safe, noncontact imaging modality that provides real-time, accurate, high-resolution, full field blood flow images and a wide range of flux data to objectively quantify organ reperfusion intraoperatively in kidney/kidney-pancreas transplantation. This modality could be used to develop a robust numerical quantification system for the evaluation and reporting of intraoperative organ perfusion, and aid intraoperative decision-making. Perfusion data could be combined with biomarkers and immunological parameters to more accurately predict graft outcomes.
Collapse
Affiliation(s)
- Jeevan Prakash Gopal
- Department of Renal and Pancreas Transplantation, Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
- Department of General Surgery, The Queen Elizabeth Hospital King’s Lynn NHS Trust, King’s Lynn, United Kingdom
| | - Osborne Vaz
- Department of Renal and Pancreas Transplantation, Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Rebecca Varley
- Department of Renal and Pancreas Transplantation, Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Harry Spiers
- Department of Transplantation, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Matthew A. Goldsworthy
- Department of Renal and Pancreas Transplantation, Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Vishwanath Siddagangaiah
- Department of Renal and Pancreas Transplantation, Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Brian Lock
- Moor Instruments Ltd, Axminster, United Kingdom
| | - Videha Sharma
- Department of Renal and Pancreas Transplantation, Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Angela Summers
- Department of Renal and Pancreas Transplantation, Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
- University of Manchester-Faculty of Biology, Medicine and Health, Division of Diabetes, Endocrinology and Gastroenterology, Manchester, United Kingdom
| | - Zia Moinuddin
- Department of Renal and Pancreas Transplantation, Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - David van Dellen
- Department of Renal and Pancreas Transplantation, Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Titus Augustine
- Department of Renal and Pancreas Transplantation, Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
- University of Manchester-Faculty of Biology, Medicine and Health, Division of Diabetes, Endocrinology and Gastroenterology, Manchester, United Kingdom
| |
Collapse
|
13
|
Oi A, Hayashi H, Motoyama Y, Kawanishi H, Nakagawa I, Nakase H, Kawaguchi M. Application of laser speckle flowgraphy to evaluate cerebral perfusion after carotid endarterectomy. Heliyon 2023; 9:e14400. [PMID: 36925512 PMCID: PMC10010978 DOI: 10.1016/j.heliyon.2023.e14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
Cerebral hyperperfusion syndrome (CHS) after carotid endarterectomy (CEA) is devastating, and postoperative monitoring of cerebral perfusion is essential to prevent CHS. We report two cases of successful measurement of ocular blood flow using laser speckle flowgraphy (LSFG) for bedside assessment of the changes in cerebral perfusion after CEA. An 18.7% (case 1) and 47.7% (case 2) increase in ocular blood flow were measured postoperatively using LSFG compared with the baseline. LSFG might be applicable to evaluate cerebral perfusion after CEA.
Collapse
Affiliation(s)
- Ayako Oi
- Department of Anesthesiology, Nara Medical University, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Konovalov A, Gadzhiagaev V, Grebenev F, Stavtsev D, Piavchenko G, Gerasimenko A, Telyshev D, Meglinski I, Eliava S. Laser Speckle Contrast Imaging in Neurosurgery: A Systematic Review. World Neurosurg 2023; 171:35-40. [PMID: 36526222 DOI: 10.1016/j.wneu.2022.12.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intraoperative study of blood flow in the brain vessels is among the most critical topics of modern neurosurgery. One of the promising methods for intraoperative monitoring of blood flow is laser speckle contrast imaging (LSCI). This systematic review aims to analyze the experience of using intraoperative LSCI in neurosurgical interventions. METHODS The literature search was carried out in the PubMed and Web of Science databases using the keywords "Laser-Speckle," "Laser Speckle," "Laser speckle contrast imaging," and "LSCI." We allowed the search to include the following criteria: 1) publication in the English language, 2) full access to the article, 3) information about the method of treatment, and 4) the results presented for at least one patient. RESULTS The initial search resulted in the detection of 508 publications, of which 476 were eliminated during the initial assessment of titles and abstracts. Two more articles were excluded due to the lack of data in the English language. Twenty articles were found to be focused on nonhuman studies and therefore were excluded. In three more studies treatment of non-neurosurgical patients was reported. The final analysis included 8 articles with 102 patients overall. CONCLUSIONS LSCI is a promising intraoperative method for intraoperative cerebral blood flow assessing. This method offers several advantages over other modalities. The experience of use is limited to a small number of case series. Further investigation of the method and its implementation in clinical practice is needed.
Collapse
Affiliation(s)
- Anton Konovalov
- Department of Cerebrovascular Surgery, Burdenko Neurosurgical Center, Moscow, Russian Federation.
| | - Vadim Gadzhiagaev
- Department of Cerebrovascular Surgery, Burdenko Neurosurgical Center, Moscow, Russian Federation
| | - Fyodor Grebenev
- Department of Cerebrovascular Surgery, Burdenko Neurosurgical Center, Moscow, Russian Federation
| | - Dmitry Stavtsev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; National Research University of Electronic Technology, Institute of Biomedical Systems, Moscow, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Gerasimenko
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; National Research University of Electronic Technology, Institute of Biomedical Systems, Moscow, Russia
| | - Dmitry Telyshev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; National Research University of Electronic Technology, Institute of Biomedical Systems, Moscow, Russia
| | - Igor Meglinski
- Opto-Electronics and Measurement Techniques, Faculty of Information and Electrical Engineering, University of Oulu, Oulu, Finland; College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Shalva Eliava
- Department of Cerebrovascular Surgery, Burdenko Neurosurgical Center, Moscow, Russian Federation
| |
Collapse
|
15
|
Meyer S, Hummel R, Neulen A, Hirnet T, Thal SC. Influence of traumatic brain injury on ipsilateral and contralateral cortical perfusion in mice. Neurosci Lett 2023; 795:137047. [PMID: 36603737 DOI: 10.1016/j.neulet.2023.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Traumatic brain injury (TBI) is one of the most important causes of death in young adults. After brain injury cortical perfusion is impaired by cortical spreading depression, cerebral microvasospasm or microvascular thrombosis and contributes to secondary expansion of lesion into surrounding healthy brain tissue. The present study was designed to determine the regional cortical perfusion pattern after experimental TBI induced by controlled cortical impact (CCI) in male C57/BL6N mice. We performed a longitudinal time series analysis by Laser speckle contrast imaging (LSCI). Measurements were carried out before, immediately and 24 h after trauma. Immediately after CCI cortical perfusion in the lesion core dropped to 10 % of before injury (baseline; %BL) and to 21-24 %BL in the cortical area surrounding the core. Interestingly, cortical perfusion was also significantly reduced in the contralateral non-injured hemisphere (41-58 %BL) matching the corresponding brain region of the injured hemisphere. 24 h after CCI perfusion of the contralateral hemisphere returned to baseline level in the area corresponding to the lesion core, whereas the lateral area of the parietal cortex was hyperperfused (125 %BL). The lesion core region itself remained severely hypoperfused (18 to 26 %BL) during the observation period. TBI causes a maldistribution of both ipsi- and contralateral cerebral perfusion immediately after trauma, which persist for at least 24 h. Higher perfusion levels in the lesion core 24 h after trauma were associated with increased tissue damage, which supports the role of reperfusion injury for secondary brain damage after TBI.
Collapse
Affiliation(s)
- Simon Meyer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Tobias Hirnet
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; Department of Anesthesiology, HELIOS University Hospital Wuppertal, University Witten/Herdecke, Heusnerstraße 40, 42283 Wuppertal, Germany.
| |
Collapse
|
16
|
Transient Thermal Response of Blood Vessels during Laser Irradiation Monitored by Laser Speckle Contrast Imaging. PHOTONICS 2022. [DOI: 10.3390/photonics9080520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Real-time monitoring of blood flow and thrombosis formation induced by laser irradiation is critical to reveal the thermal-damage mechanism and successfully implement vascular-dermatology laser surgery. Laser speckle contrast imaging (LSCI) is a non-invasive technique to visualize perfusion in various tissues. However, the ability of the LSCI to monitor the transient thermal response of blood vessels, especially thrombus formation during laser irradiation, requires further research. In this paper, an LSCI system was constructed and a 632 nm He-Ne laser was employed to illuminate a Sprague Dawley rat dorsal skin chamber model irradiated by a 1064 nm Nd: YAG therapy laser. The anisotropic diffusion filtering (ADF) technique is implemented after temporal LSCI (tLSCI) processing to improve the SNR and temporal resolution. The speckle flow index is used to characterize the blood-flow velocity to reduce the computational cost. The combination of the tLSCI and ADF increases the temporal resolution by five times and the SNR by 17.2 times and 16.14 times, without and with laser therapy, respectively. The laser-induced thrombus formation and vascular damage during laser surgery can be visualized without any exogenous labels, which provides a powerful tool for thrombus monitoring during laser surgery.
Collapse
|
17
|
Complementary Tools in Cerebral Bypass Surgery. World Neurosurg 2022; 163:50-59. [PMID: 35436579 DOI: 10.1016/j.wneu.2022.03.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Cerebral revascularization surgery has been advanced by the refinement of several adjunctive tools. These tools include perioperative blood thinners, intraoperative spasmolytic agents, electrophysiological monitoring, and methods for assessing bypass patency or marking arteriotomies. Despite the array of options, the proper usage and comparative advantages of different complements in cerebral bypass have not been well-cataloged elsewhere. In this literature review, we describe the appropriate usage, benefits, and limitations of various bypass adjuncts. Understanding these adjuncts can help surgeons ensure that they receive reliable intraoperative information about bypass function and minimize the risk of serious complications. Overall, this review provides a succinct reference for neurosurgeons on various cerebrovascular bypass adjuncts.
Collapse
|
18
|
Tao S, Zhang T, Zhou K, Liu X, Feng Y, Zhao W, Chen J. Intraoperative Monitoring Cerebral Blood Flow During the Treatment of Brain Arteriovenous Malformations in Hybrid Operating Room by Laser Speckle Contrast Imaging. Front Surg 2022; 9:855397. [PMID: 35599788 PMCID: PMC9120635 DOI: 10.3389/fsurg.2022.855397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hemodynamic changes caused by hybrid surgery for brain arteriovenous malformations (bAVM) are usually related to long-term lesions from "blood stealing". There are currently no viable low-cost, noninvasive procedures for assessing cerebral perfusion in the operating room. This study aims to investigate the use of intraoperative laser speckle contrast image (LSCI) software in AVM surgery. Methods In Zhongnan Hospital of Wuhan University, 14 patients who underwent surgery with LSCI were collected. To analyze the hemodynamic features of AVM and the influence on the peripheral cortex of AVM embolization and resection, we assessed the transit time between feeding arteries and drainage veins by intraoperative digital subtraction angiography (DSA). Meanwhile, LSCI was performed at pre-embolization, post-embolization, and after complete resection of bAVM. Results In this study, the transit time of bAVM before and after embolization was compared, the transit time before embolization was significantly shorter than that after embolization (p < 0.05). We also got good visualization of relative CBF, in addition, to flow imaging in the cortical vasculature round bAVM with LSCI. The flux of post-surgery was significantly higher than pre-embolization (p < 0.01). Conclusion Hemodynamic variable assessment plays an important role in the resection of AVM in the hybrid operative room and LSCI can be used to visualize and evaluate cortical cerebral blood flow to detect pathological hyperperfusion in real-time with a good spatial-temporal resolution in a sensitive and continuous, non-invasive mode.
Collapse
Affiliation(s)
- Sicai Tao
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Tingbao Zhang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Keyao Zhou
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaohu Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Feng
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Miller DR, Ashour R, Sullender CT, Dunn AK. Continuous blood flow visualization with laser speckle contrast imaging during neurovascular surgery. NEUROPHOTONICS 2022; 9:021908. [PMID: 35265733 PMCID: PMC8900813 DOI: 10.1117/1.nph.9.2.021908] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Significance: Laser speckle contrast imaging (LSCI) has emerged as a promising tool for intraoperative cerebral blood flow (CBF) monitoring because it produces real-time full-field blood flow maps noninvasively and label free. Aim: We aim to demonstrate the ability of LSCI to continuously visualize blood flow during neurovascular procedures. Approach: LSCI hardware was attached to the surgical microscope and did not interfere with the normal operation of the microscope. To more easily visualize CBF in real time, LSCI images were registered with the built-in microscope white light camera such that LSCI images were overlaid on the white light images and displayed to the neurosurgeon continuously in real time. Results: LSCI was performed throughout each surgery when the microscope was positioned over the patient, providing the surgeon with real-time visualization of blood flow changes before, during, and after aneurysm clipping or arteriovenous malformation (AVM) resection in humans. LSCI was also compared with indocyanine green angiography (ICGA) to assess CBF during aneurysm clipping and AVM surgery; integration of the LSCI hardware with the microscope enabled simultaneous acquisition of LSCI and ICGA. Conclusions: The results suggest that LSCI can provide continuous and real-time CBF visualization without affecting the surgeon workflow or requiring a contrast agent. The results also demonstrate that LSCI and ICGA provide different, yet complementary information about vessel perfusion.
Collapse
Affiliation(s)
- David R. Miller
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Ramsey Ashour
- The University of Texas at Austin, Dell Medical School, Department of Neurosurgery, Austin, Texas, United States
| | - Colin T. Sullender
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Andrew K. Dunn
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| |
Collapse
|
20
|
Ma L, Fei B. Comprehensive review of surgical microscopes: technology development and medical applications. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200292VRR. [PMID: 33398948 PMCID: PMC7780882 DOI: 10.1117/1.jbo.26.1.010901] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Surgical microscopes provide adjustable magnification, bright illumination, and clear visualization of the surgical field and have been increasingly used in operating rooms. State-of-the-art surgical microscopes are integrated with various imaging modalities, such as optical coherence tomography (OCT), fluorescence imaging, and augmented reality (AR) for image-guided surgery. AIM This comprehensive review is based on the literature of over 500 papers that cover the technology development and applications of surgical microscopy over the past century. The aim of this review is threefold: (i) providing a comprehensive technical overview of surgical microscopes, (ii) providing critical references for microscope selection and system development, and (iii) providing an overview of various medical applications. APPROACH More than 500 references were collected and reviewed. A timeline of important milestones during the evolution of surgical microscope is provided in this study. An in-depth technical overview of the optical system, mechanical system, illumination, visualization, and integration with advanced imaging modalities is provided. Various medical applications of surgical microscopes in neurosurgery and spine surgery, ophthalmic surgery, ear-nose-throat (ENT) surgery, endodontics, and plastic and reconstructive surgery are described. RESULTS Surgical microscopy has been significantly advanced in the technical aspects of high-end optics, bright and shadow-free illumination, stable and flexible mechanical design, and versatile visualization. New imaging modalities, such as hyperspectral imaging, OCT, fluorescence imaging, photoacoustic microscopy, and laser speckle contrast imaging, are being integrated with surgical microscopes. Advanced visualization and AR are being added to surgical microscopes as new features that are changing clinical practices in the operating room. CONCLUSIONS The combination of new imaging technologies and surgical microscopy will enable surgeons to perform challenging procedures and improve surgical outcomes. With advanced visualization and improved ergonomics, the surgical microscope has become a powerful tool in neurosurgery, spinal, ENT, ophthalmic, plastic and reconstructive surgeries.
Collapse
Affiliation(s)
- Ling Ma
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
| | - Baowei Fei
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, Texas, United States
| |
Collapse
|
21
|
Hecht N, Schrammel M, Neumann K, Müller MM, Dreier JP, Vajkoczy P, Woitzik J. Perfusion-Dependent Cerebral Autoregulation Impairment in Hemispheric Stroke. Ann Neurol 2020; 89:358-368. [PMID: 33219550 DOI: 10.1002/ana.25963] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Loss of cerebral autoregulation (CA) plays a key role in secondary neurologic injury. However, the regional distribution of CA impairment after acute cerebral injury remains unclear because, in clinical practice, CA is only assessed within a limited compartment. Here, we performed large-scale regional mapping of cortical perfusion and CA in patients undergoing decompressive surgery for malignant hemispheric stroke. METHODS In 24 patients, autoregulation over the affected hemisphere was calculated based on direct, 15 to 20-minute cortical perfusion measurement with intraoperative laser speckle imaging and mean arterial blood pressure (MAP) recording. Cortical perfusion was normalized against noninfarcted tissue and 6 perfusion categories from 0% to >100% were defined. The interaction between cortical perfusion and MAP was estimated using a linear random slope model and Pearson correlation. RESULTS Cortical perfusion and CA impairment were heterogeneously distributed across the entire hemisphere. The degree of CA impairment was significantly greater in areas with critical hypoperfusion (40-60%: 0.42% per mmHg and 60-80%: 0.46% per mmHg) than in noninfarcted (> 100%: 0.22% per mmHg) or infarcted (0-20%: 0.29% per mmHg) areas (*p < 0.001). Pearson correlation confirmed greater CA impairment at critically reduced perfusion (20-40%: r = 0.67; 40-60%: r = 0.68; and 60-80%: r = 0.68) compared to perfusion > 100% (r = 0.36; *p < 0.05). Tissue integrity had no impact on the degree of CA impairment. INTERPRETATION In hemispheric stroke, CA is impaired across the entire hemisphere to a variable extent. Autoregulation impairment was greatest in hypoperfused and potentially viable tissue, suggesting that precise localization of such regions is essential for effective tailoring of perfusion pressure-based treatment strategies. ANN NEUROL 2021;89:358-368.
Collapse
Affiliation(s)
- Nils Hecht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Max Schrammel
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, University of Oldenburg, Oldenburg, Germany
| | - Konrad Neumann
- Institute for Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marc-Michael Müller
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Anesthesiology, University of Schleswig-Holstein, Kiel, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
22
|
Mrosk F, Hecht N, Vajkoczy P. Decompressive hemicraniectomy in ischemic stroke. J Neurosurg Sci 2020; 65:249-258. [PMID: 33252206 DOI: 10.23736/s0390-5616.20.05103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malignant hemispheric stroke (MHS) is a life-threatening event, associated with high morbidity and mortality. Decompressive hemicraniectomy (DHS) is the treatment of choice to relieve the emerging space-occupying brain edema. This review details the pathophysiological and scientific background, considerations for clinical decision making, surgical treatment and impact on the patients' outcome. Although surgery reduces mortality significantly, the probability for unfavorable outcome is still high in selected cases. While former randomized controlled studies aimed for the prevention of the primary cause, the current research focuses on the treatment and prevention of secondary neurological injury.
Collapse
Affiliation(s)
- Friedrich Mrosk
- Department of Neurosurgery, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany -
| | - Peter Vajkoczy
- Department of Neurosurgery, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Rennert RC, Strickland BA, Russin JJ. Commentary: Whole-Field Indocyanine Green Intensity Analysis to Intraoperatively Predict Cerebral Hyperperfusion Syndrome Following Superficial Temporal Artery-Middle Cerebral Artery Bypass: A Retrospective Case-Control Study in 7-Year Experience With 112 Cases. Oper Neurosurg (Hagerstown) 2020; 18:E193-E194. [PMID: 31642498 DOI: 10.1093/ons/opz322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/02/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robert C Rennert
- Department of Neurological Surgery, University of California San Diego, San Diego, California
| | - Ben A Strickland
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jonathan J Russin
- Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
24
|
Mangraviti A, Volpin F, Cha J, Cunningham SI, Raje K, Brooke MJ, Brem H, Olivi A, Huang J, Tyler BM, Rege A. Intraoperative Laser Speckle Contrast Imaging For Real-Time Visualization of Cerebral Blood Flow in Cerebrovascular Surgery: Results From Pre-Clinical Studies. Sci Rep 2020; 10:7614. [PMID: 32376983 PMCID: PMC7203106 DOI: 10.1038/s41598-020-64492-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
Cerebrovascular surgery can benefit from an intraoperative system that conducts continuous monitoring of cerebral blood flow (CBF). Such a system must be handy, non-invasive, and directly integrated into the surgical workflow. None of the currently available techniques, considered alone, meets all these criteria. Here, we introduce the SurgeON™ system: a newly developed non-invasive modular tool which transmits high-resolution Laser Speckle Contrast Imaging (LSCI) directly onto the eyepiece of the surgical microscope. In preclinical rodent and rabbit models, we show that this system enabled the detection of acute perfusion changes as well as the recording of temporal response patterns and degrees of flow changes in various microvascular settings, such as middle cerebral artery occlusion, femoral artery clipping, and complete or incomplete cortical vessel cautery. During these procedures, a real-time visualization of vasculature and CBF was available in high spatial resolution through the eyepiece as a direct overlay on the live morphological view of the surgical field. Upon comparison with indocyanine green angiography videoangiography (ICG-VA) imaging, also operable via SurgeON, we found that direct-LSCI can produce greater information than ICG-VA and that continuous display of data is advantageous for performing immediate LSCI-guided adjustments in real time.
Collapse
Affiliation(s)
- Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Francesco Volpin
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Jaepyeong Cha
- Vasoptic Medical, Inc., Baltimore, MD, United States
| | | | - Karan Raje
- Vasoptic Medical, Inc., Baltimore, MD, United States
| | | | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University, Baltimore, MD, United States.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University, Baltimore, MD, United States.,Department of Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Betty M Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.
| | - Abhishek Rege
- Vasoptic Medical, Inc., Baltimore, MD, United States
| |
Collapse
|
25
|
Motoyama Y, Hayashi H, Kawanishi H, Tsubaki K, Takatani T, Takamura Y, Kotsugi M, Kim T, Yamada S, Nakagawa I, Park YS, Kawaguchi M, Nakase H. Ocular blood flow by laser speckle flowgraphy to detect cerebral ischemia during carotid endarterectomy. J Clin Monit Comput 2020; 35:327-336. [PMID: 32034601 DOI: 10.1007/s10877-020-00475-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/25/2020] [Indexed: 11/29/2022]
Abstract
Laser speckle flowgraphy (LSFG) is a noninvasive technique that can measure relative blood flow velocity in the optic fundus contributed by the ophthalmic artery, the main first branch originating from the internal carotid artery (ICA). The aim of this study was to assess the feasibility of ocular blood flow measurement by LSFG to detect ischemic stress due to carotid clamping during carotid endarterectomy (CEA). Nineteen patients undergoing CEA with ocular blood flow measurement by LSFG and intraoperative monitoring (IOM) were prospectively enrolled between August 2016 and March 2019. The mean blur rate (MBR) of ocular blood flow by LSFG, representing relative blood flow of the branch of the retinal artery originating from the optic nerve head, was compared between before and after carotid clamping during CEA. The correlation between the reduction ratio of MBR and the regional saturation oxygen (rSO2) index by near infrared spectroscopy was investigated. Ocular blood flow measurement by LSFG could not be performed in one patient with a severe cataract. In the other 18 patients, LSFG could be performed in all 106 sessions during surgery. The MBR reduction ratio between before and after carotid clamping ranged from - 12 to 100%. The MBR reduction ratio was positively correlated with the rSO2 index (r = 0.694, 95% confidence interval: 0.336-0.877, p = 0.001). The MBR reduction ratio of ocular blood flow by LSFG after carotid clamping was significantly correlated with the rSO2 index. The ocular blood flow by LSFG could be considered an adjunct modality for evaluating cerebral ischemic tolerance during CEA.
Collapse
Affiliation(s)
- Yasushi Motoyama
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan. .,Stroke Center, Nara Medical University, Kashihara, Nara, Japan.
| | - Hironobu Hayashi
- Department of Anesthesiology, Nara Medical University, Kashihara, Nara, Japan
| | - Hideaki Kawanishi
- Department of Operation Center, Nara Medical University, Kashihara, Nara, Japan
| | - Kohsuke Tsubaki
- Department of Anesthesiology, Nara Medical University, Kashihara, Nara, Japan
| | - Tsunenori Takatani
- Department of Operation Center, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshiaki Takamura
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.,Stroke Center, Nara Medical University, Kashihara, Nara, Japan
| | - Masashi Kotsugi
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Taekyun Kim
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.,Stroke Center, Nara Medical University, Kashihara, Nara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Young-Su Park
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Masahiko Kawaguchi
- Department of Anesthesiology, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.,Stroke Center, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
26
|
Sindeeva OA, Verkhovskii RA, Abdurashitov AS, Voronin DV, Gusliakova OI, Kozlova AA, Mayorova OA, Ermakov AV, Lengert EV, Navolokin NA, Tuchin VV, Gorin DA, Sukhorukov GB, Bratashov DN. Effect of Systemic Polyelectrolyte Microcapsule Administration on the Blood Flow Dynamics of Vital Organs. ACS Biomater Sci Eng 2019; 6:389-397. [PMID: 33463221 DOI: 10.1021/acsbiomaterials.9b01669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polyelectrolyte microcapsules and other targeted drug delivery systems could substantially reduce the side effects of drug and overall toxicity. At the same time, the cardiovascular system is a unique transport avenue that can deliver drug carriers to any tissue and organ. However, one of the most important potential problems of drug carrier systemic administration in clinical practice is that the carriers might cause circulatory disorders, the development of pulmonary embolism, ischemia, and tissue necrosis due to the blockage of small capillaries. Thus, the presented work aims to find out the processes occurring in the bloodstream after the systemic injection of polyelectrolyte capsules that are 5 μm in size. It was shown that 1 min after injection, the number of circulating capsules decreases several times, and after 15 min less than 1% of the injected dose is registered in the blood. By this time, most capsules accumulate in the lungs, liver, and kidneys. However, magnetic field action could slightly increase the accumulation of capsules in the region-of-interest. For the first time, we have investigated the real-time blood flow changes in vital organs in vivo after intravenous injection of microcapsules using a laser speckle contrast imaging system. We have demonstrated that the organism can adapt to the emergence of drug carriers in the blood and their accumulation in the vessels of vital organs. Additionally, we have evaluated the safety of the intravenous administration of various doses of microcapsules.
Collapse
Affiliation(s)
- Olga A Sindeeva
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Peoples' Friendship University of Russia, 6 Mikluho-Maklaya St., Moscow 117198, Russia
| | - Roman A Verkhovskii
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Yuri Gagarin State Technical University of Saratov, 77 Politekhnicheskaya st., Saratov 410054, Russia
| | - Arkady S Abdurashitov
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
| | - Denis V Voronin
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,National University of Oil and Gas (Gubkin University), 65 Leninsky Prospekt, Moscow 119991, Russia
| | - Olga I Gusliakova
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Skolkovo Institute of Science and Technology, 3 Nobelya st., Moscow 121205, Russia
| | | | - Oksana A Mayorova
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia
| | - Aleksey V Ermakov
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia
| | - Ekaterina V Lengert
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Ghent University, 653 Coupure Links, Ghent 9000, Belgium
| | - Nikita A Navolokin
- Saratov State Medical University, 112 Bolshaya Kazachia st., Saratov 410012, Russia
| | - Valery V Tuchin
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,National University of Oil and Gas (Gubkin University), 65 Leninsky Prospekt, Moscow 119991, Russia.,Institute of Precision Mechanics and Control, Russian Academy of Sciences, 24 Rabochaya St., Saratov 410028, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, 3 Nobelya st., Moscow 121205, Russia
| | - Gleb B Sukhorukov
- Peoples' Friendship University of Russia, 6 Mikluho-Maklaya St., Moscow 117198, Russia.,Skolkovo Institute of Science and Technology, 3 Nobelya st., Moscow 121205, Russia.,Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Daniil N Bratashov
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow 141701, Russia
| |
Collapse
|
27
|
Hecht N, Wessels L, Fekonja L, von Weitzel-Mudersbach P, Vajkoczy P. Bypass strategies for common carotid artery occlusion. Acta Neurochir (Wien) 2019; 161:1993-2002. [PMID: 31377956 DOI: 10.1007/s00701-019-04001-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/27/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Common carotid artery occlusion (CCA-occlusion) is a rare condition where standard revascularization is not feasible. Here, we analyzed our experience with surgical revascularization of CCA-occlusion to develop an algorithm for selection of the most suitable bypass strategy according to the Riles classification. METHODS During a 10-year period, 16 out of 288 patients with cerebrovascular disease and compromised hemodynamic reserve underwent revascularization for unilateral CCA-occlusion. The utilized bypass strategies included (1) a saphenous vein graft from the subclavian artery (SA) to the internal carotid artery (ICA), (2) a radial artery graft from the V3 segment of the vertebral artery (VA) to a superficial branch of the middle cerebral artery (MCA), or (3) a saphenous vein graft from the SA to a deep branch of the MCA. RESULTS In CCA-occlusion with maintained external carotid artery (ECA)/ICA patency (Riles type 1A), an SA-ICA bypass was performed (25%). In cases without ECA/ICA patency (Riles type 1B or 2) but suitable VA, a VA-MCA bypass was grafted (31%). In cases with unsuitable VA, a long SA-MCA interposition bypass was performed (38%). Transient postoperative neurological deficits occurred in 5 patients (31%) with 1 patient (6%) suffering permanent neurological worsening and 1 mortality (6%). Overall, no difference was found between the median preoperative mRS (2; range, 1-4) and the mRS at the time point of the last follow-up (2; range, 1-6; p = 0.75). The long-term graft patency was 94%. CONCLUSIONS Although surgical revascularization for CCA-occlusion is feasible, it is associated with a higher risk than standard bypass grafting. Considering the poor natural history of CCA-occlusion, however, this risk may be justified in carefully selected patients.
Collapse
Affiliation(s)
- Nils Hecht
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Wessels
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lucius Fekonja
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Peter Vajkoczy
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
28
|
Zhao X, Belykh E, Cavallo C, Valli D, Gandhi S, Preul MC, Vajkoczy P, Lawton MT, Nakaji P. Application of Fluorescein Fluorescence in Vascular Neurosurgery. Front Surg 2019; 6:52. [PMID: 31620443 PMCID: PMC6759993 DOI: 10.3389/fsurg.2019.00052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Fluorescein sodium (FNa) is a fluorescent drug with a long history of use for assessing retinal blood flow in ophthalmology; however, its application in vascular neurosurgery is only now gaining popularity. This review summarizes the current knowledge about using FNa videoangiography in vascular neurosurgery. Methods: We performed a literature review on the usage of FNa for fluorescent videoangiography procedures in neurosurgery. We analyzed methods of injection, dosages of FNa, visualizing platforms, and interpretation of FNa videoangiography. We also reviewed practical applications of FNa videoangiography during various vascular neurosurgeries. Results: FNa videoangiography can be performed with intraarterial (intracarotid) or intravenous dye injections. Both methods provide excellent resolution with enhanced fluorescence that shows intravascular blood flow on top of visible surrounding anatomy, and both allow simultaneous purposeful microsurgical manipulations. Although it is invasive, an intracarotid FNa injection results in faster contrast appearance and higher-intensity fluorescence and requires a lower dose per injection (reported range, 1–50 mg) compared with peripheral intravenous FNa injection (reported range, 75–2,000 mg or 1–1.5 mg/kg body weight). Four optical excitation/detection tools for FNa videoangiography have been successfully used: conventional xenon-light operating microscope with a special filter set, pencil-type light-emitting diode probe with a filter set, laser-illumination operating microscope, and an endoscope with a filter set. FNa videoangiography was reported to be feasible and useful in various clinical scenarios, such as examining the feeders and drainers in arteriovenous malformation surgery, checking the patency of a microvascular anastomosis, and assessing blood flow during aneurysm clipping. FNa videoangiography can be repeated during the same procedure and used along with indocyanine green (ICG) videoangiography. Conclusions: Compared with ICG videoangiography, FNa videoangiography has the advantages of enabling real-time inspection and better visualization at deep locations; however, thick vessel walls limit visualization of FNa in larger vessels. FNa videoangiography is a useful tool in multiple neurovascular scenarios and merits further studies to establish its clinical value.
Collapse
Affiliation(s)
- Xiaochun Zhao
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Claudio Cavallo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Daniel Valli
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Sirin Gandhi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
29
|
Venugopal K, Unni SN, Bach A, Conzen C, Lindauer U. Assessment of cerebral hemodynamics during neurosurgical procedures using laser speckle image analysis. JOURNAL OF BIOPHOTONICS 2019; 12:e201800408. [PMID: 30983133 DOI: 10.1002/jbio.201800408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe medical condition associated with a significant cause of mortality throughout the world. Cisterna magna injection model is accepted widely to mimic clinical aSAH and is performed on small animal models to study aSAH during neurosurgery. Coherent light scattered from the surface of the rat brain is used to infer information about the variations in blood flow during this condition. We obtained speckle images from the exposed cortex during the entire experiment using an external tissue imaging system. Contrast and fractal analyses are carried out for the recorded speckle pattern time series. Correlation analysis based on Hurst exponent for these images is found to be a more sensitive tool in studying aSAH as compared to routinely used laser speckle contrast analysis for assessing the changes in blood flow velocity. Additionally, our studies provide improved blood flow detection sensitivity with image Hurst exponent in combination with computed fractal dimension, during an event of aSAH.
Collapse
Affiliation(s)
- Krishnapriya Venugopal
- Department of Applied Mechanics, Indian Institute of Technology Madras, Biophotonics Lab, Chennai, India
| | - Sujatha N Unni
- Department of Applied Mechanics, Indian Institute of Technology Madras, Biophotonics Lab, Chennai, India
| | - Annika Bach
- Department of Neurosurgery, Faculty of Medicine, Translational Neurosurgery and Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Catharina Conzen
- Department of Neurosurgery, Faculty of Medicine, Translational Neurosurgery and Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Ute Lindauer
- Department of Neurosurgery, Faculty of Medicine, Translational Neurosurgery and Neurobiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
30
|
Heeman W, Steenbergen W, van Dam GM, Boerma EC. Clinical applications of laser speckle contrast imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31385481 PMCID: PMC6983474 DOI: 10.1117/1.jbo.24.8.080901] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/02/2019] [Indexed: 05/02/2023]
Abstract
When a biological tissue is illuminated with coherent light, an interference pattern will be formed at the detector, the so-called speckle pattern. Laser speckle contrast imaging (LSCI) is a technique based on the dynamic change in this backscattered light as a result of interaction with red blood cells. It can be used to visualize perfusion in various tissues and, even though this technique has been extensively described in the literature, the actual clinical implementation lags behind. We provide an overview of LSCI as a tool to image tissue perfusion. We present a brief introduction to the theory, review clinical studies from various medical fields, and discuss current limitations impeding clinical acceptance.
Collapse
Affiliation(s)
- Wido Heeman
- University of Groningen, Faculty Campus Fryslân, Leeuwarden, The Netherlands
- University Medical Centre Groningen, Department of Surgery, Optical Molecular Imaging Groningen, Groningen, The Netherlands
- LIMIS Development BV, Leeuwarden, The Netherlands
| | - Wiendelt Steenbergen
- University of Twente, Techmed Center, Faculty of Science and Technology, Biomedical Photonic Imaging Group, Enschede, The Netherlands
| | - Gooitzen M. van Dam
- University Medical Centre Groningen, Department of Surgery, Optical Molecular Imaging Groningen, Groningen, The Netherlands
| | - E. Christiaan Boerma
- Medical Centre Leeuwarden, Department of Intensive Care, Leeuwarden, The Netherlands
- Address all correspondence to E. Christiaan Boerma, E-mail:
| |
Collapse
|
31
|
He J, Lu H, Young L, Deng R, Callow D, Tong S, Jia X. Real-time quantitative monitoring of cerebral blood flow by laser speckle contrast imaging after cardiac arrest with targeted temperature management. J Cereb Blood Flow Metab 2019; 39:1161-1171. [PMID: 29283290 PMCID: PMC6547180 DOI: 10.1177/0271678x17748787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain injury is the main cause of mortality and morbidity after cardiac arrest (CA). Changes in cerebral blood flow (CBF) after reperfusion are associated with brain injury and recovery. To characterize the relative CBF (rCBF) after CA, 14 rats underwent 7 min asphyxia-CA and were randomly treated with 6 h post-resuscitation normothermic (36.5-37.5℃) or hypothermic- (32-34℃) targeted temperature management (TTM) (N = 7). rCBF was monitored by a laser speckle contrast imaging (LSCI) technique. Brain recovery was evaluated by neurologic deficit score (NDS) and quantitative EEG - information quantity (qEEG-IQ). There were regional differences in rCBF among veins of distinct cerebral areas and heterogeneous responses among the three components of the vascular system. Hypothermia immediately following return of spontaneous circulation led to a longer hyperemia duration (19.7 ± 1.8 vs. 12.7 ± 0.8 min, p < 0.01), a lower rCBF (0.73 ± 0.01 vs. 0.79 ± 0.01; p < 0.001) at the hypoperfusion phase, a better NDS (median [25th-75th], 74 [61-77] vs. 49 [40-77], p < 0.01), and a higher qEEG-IQ (0.94 ± 0.02 vs. 0.77 ± 0.02, p < 0.001) compared with normothermic TTM. High resolution LSCI technique demonstrated hypothermic TTM extends hyperemia duration, delays onset of hypoperfusion phase and lowered rCBF, which is associated with early restoration of electrophysiological recovery and improved functional outcome after CA.
Collapse
Affiliation(s)
- Junyun He
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hongyang Lu
- 2 School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Leanne Young
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,3 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruoxian Deng
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,3 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Callow
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shanbao Tong
- 2 School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Xiaofeng Jia
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,3 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,4 Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.,5 Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,6 Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Intraoperative Tissue Perfusion Measurement by Laser Speckle Imaging: A Potential Aid for Reducing Postoperative Complications in Free Flap Breast Reconstruction. Plast Reconstr Surg 2019; 143:287e-292e. [PMID: 30688880 DOI: 10.1097/prs.0000000000005223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adequate tissue perfusion is essential to minimize postoperative complications following microsurgery. Intraoperative knowledge of tissue perfusion could aid surgical decision-making and result in reduced complications. Laser speckle imaging is a new, noninvasive technique for mapping tissue perfusion. This article discusses the feasibility of using laser speckle imaging during free flap breast reconstruction and its potential to identify areas of inadequate perfusion, thus reducing surgical complications. Adult patients scheduled to undergo free flap breast reconstruction were recruited into the study. Laser speckle images were obtained from the abdominal and breast areas at different stages intraoperatively. Zonal perfusion was compared with the Holm classification and clinical observations. Twenty patients scheduled to undergo free flap breast reconstruction were recruited (23 reconstructed breasts) (mean age, 50 years; range, 32 to 68 years). Flap zonal perfusion was 238 (187 to 313), 222 (120 to 265), 206 (120 to 265), and 125 (102 to 220) perfusion units for zones I, II, III, and IV, respectively (analysis of variance, p < 0.0001). Zonal area with perfusion below an arbitrary perfusion threshold were 20 (0.3 to 75), 41 (3 to 99), 49 (9 to 97), and 99 (25 to 100) percent, respectively (analysis of variance, p < 0.0001). One example is presented to illustrate potential intraoperative uses for laser speckle imaging. This study shows that laser speckle imaging is a feasible, noninvasive technique for intraoperative mapping of tissue perfusion during free flap breast reconstruction. Zonal tissue perfusion was reduced across the Holm classification. Observations indicated the potential for laser speckle imaging to provide additional information to augment surgical decision-making by detection of inadequate tissue perfusion. This highlights the opportunity for surgeons to consider additional aids for intraoperative tissue perfusion assessment to help reduce perfusion-related complications. CLINICAL QUESTION/LEVEL OF EVIDENCE:: Diagnostic, IV.
Collapse
|
33
|
Gallagher MJ, Hogg FR, Zoumprouli A, Papadopoulos MC, Saadoun S. Spinal Cord Blood Flow in Patients with Acute Spinal Cord Injuries. J Neurotrauma 2019; 36:919-929. [DOI: 10.1089/neu.2018.5961] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mathew J. Gallagher
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| | - Florence R.A. Hogg
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| | - Argyro Zoumprouli
- Neuro-intensive Care Unit, St. George's Hospital, London, United Kingdom
| | | | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| |
Collapse
|
34
|
Wen L, Zhang Y, Zhang L, Liu X, Wang P, Shen S, Hu C, Guo L, Jiang W, Sroka R, Wang X. Application of different noninvasive diagnostic techniques used in HMME-PDT in the treatment of port wine stains. Photodiagnosis Photodyn Ther 2019; 25:369-375. [PMID: 30625397 DOI: 10.1016/j.pdpdt.2019.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/27/2018] [Accepted: 01/04/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hematoporphyrin monomethyl ether photodynamic therapy (HMME-PDT) is an effective method for treating port wine stains (PWS). However, methods to evaluate the treatment of HMME-PDT for PWS effectively and objectively are lacking. OBJECTIVE This study aimed to describe the different noninvasive diagnostic techniques used in the evaluation of treatment response to HMME-PDT for PWS. METHODS Thirty-one lesions of 22 patients with PWS were treated with HMME-PDT. Four noninvasive diagnostic techniques including VISIA-CR™ system, dermoscopy, high-frequency ultrasound (HFUS), and laser speckle contrast imaging (LSCI) were used to obtain standard radiographic data on skin color, skin thickness, blood vessel morphology, blood vessel distribution, and blood perfusion from lesions and surrounding normal skin before and after HMME-PDT. RESULTS The standard image pattern of VISIA-CR™ system showed color change in the lesions of PWS after HMME-PDT. RBX red image of VISIA-CR™ system showed that erythema was highly aggregated even in invisible lesions at baseline but decreased after HMME-PDT. The erythema index reduced value d was related to the efficacy rating (γ = 0.631, P < 0.05). Dermoscopy showed that the number of spot-like and irregular linear vessels increased, which was correlated with the increase in clinical classification. After HMME-PDT, vascular rupture was observed by dermoscopy. The response rate of lesions with vascular rupture was 100.00% (20/20). Moreover, the response rate of lesions without vascular rupture was 63.64% (7/11). Vascular rupture sign was correlated with better efficacy (P < 0.05). HFUS showed that the dermis of PWS thickened and was arranged loosely with scattered linear hypoechoic signal. After HMME-PDT, the dermal layer of the lesions became thinner with a decreased linear hypoechoic signal. The response rate of the lesions with linear hypoechoic signal was 76.92% (10/13), and that without linear hypoechoic signal was 94.44% (17/18). The lesions without linear hypoechoic signal in the dermis showed better efficacy (P < 0.05). In some lesions, LSCI showed high blood perfusion signal in PWS lesions and blood perfusion reduction after HMME-PDT. CONCLUSION VISIA-CR™ system can be used to observe not only visible but also invisible lesions of PWS. Moreover, lesions fading after HMME-PDT can be described objectively by VISIA-CR™ system. Dermoscopy played an important role in the clinical classification of PWS, including assessing vascular injury after HMME-PDT, guiding the adjustment of therapeutic dose, and selecting the end point of treatment. Both HFUS and LSCI can be used to assist treatment response evaluation of HMME-PDT.
Collapse
Affiliation(s)
- Long Wen
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai Skin Disease Hospital, China
| | - Yunfeng Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojing Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chan Hu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lehang Guo
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Wencai Jiang
- Department of Skin and Cosmetic Research, Shanghai Skin Disease Hospital, Shanghai, China
| | - Ronald Sroka
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China; Laser-Forschungslabor, LIFE-Center of University Hospital of LMU, Department of Urology, University of LMU, Munich, Germany
| | - Xiuli Wang
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai Skin Disease Hospital, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Ramakonar H, Quirk BC, Kirk RW, Li J, Jacques A, Lind CRP, McLaughlin RA. Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans. SCIENCE ADVANCES 2018; 4:eaav4992. [PMID: 30585293 PMCID: PMC6300404 DOI: 10.1126/sciadv.aav4992] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/20/2018] [Indexed: 05/05/2023]
Abstract
Intracranial hemorrhage can be a devastating complication associated with needle biopsies of the brain. Hemorrhage can occur to vessels located adjacent to the biopsy needle as tissue is aspirated into the needle and removed. No intraoperative technology exists to reliably identify blood vessels that are at risk of damage. To address this problem, we developed an "imaging needle" that can visualize nearby blood vessels in real time. The imaging needle contains a miniaturized optical coherence tomography probe that allows differentiation of blood flow and tissue. In 11 patients, we were able to intraoperatively detect blood vessels (diameter, >500 μm) with a sensitivity of 91.2% and a specificity of 97.7%. This is the first reported use of an optical coherence tomography needle probe in human brain in vivo. These results suggest that imaging needles may serve as a valuable tool in a range of neurosurgical needle interventions.
Collapse
Affiliation(s)
- Hari Ramakonar
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Surgery, University of Western Australia, Crawley, Western Australia, Australia
| | - Bryden C. Quirk
- ARC Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Rodney W. Kirk
- ARC Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Jiawen Li
- ARC Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Angela Jacques
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Institute for Health Research, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Christopher R. P. Lind
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Surgery, University of Western Australia, Crawley, Western Australia, Australia
| | - Robert A. McLaughlin
- ARC Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Corresponding author.
| |
Collapse
|
36
|
Rennert RC, Strickland BA, Ravina K, Bakhsheshian J, Russin JJ. Assessment of Hemodynamic Changes and Hyperperfusion Risk After Extracranial-to-Intracranial Bypass Surgery Using Intraoperative Indocyanine Green-Based Flow Analysis. World Neurosurg 2018; 114:352-360. [PMID: 29626683 DOI: 10.1016/j.wneu.2018.03.189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Intraoperative blood flow assessments during cerebral bypass would ideally assess vessel patency, downstream perfusion, and risk of postoperative hyperperfusion syndrome (HPS). Previous studies using indocyanine green-based flow analyses (ICG-BFA) have identified multiple parameters that can intraoperatively track bypass-related changes in cerebral perfusion and potentially predict postoperative risk of HPS. Herein, we determine the most robust parameter and anatomic location for intraoperative ICG-BFA assessment of bypass-related perfusion changes and prediction of postoperative risk of HPS. METHODS Retrospective analysis of an institutional review board-approved prospective database identified patients undergoing superficial temporal artery-to-middle cerebral artery bypass. Demographic and clinical information, as well as manually calculated and automated pre- and postbypass intraoperative ICG-BFA data from cortical, arterial, and venous regions of interest were recorded and analyzed. RESULTS Seven patients underwent superficial temporal artery-to-middle cerebral artery bypass (4 Moyamoya, 3 carotid occlusions). Average age was 48.2 ± 13.9 years (3 female, 4 male). Although all parameters measured showed trends toward improvement postbypass, only changes in arterial and venous automated ICG-BFA slope (also known as blood flow index [maximum intensity/rise time]) reached significance. None of the patients experienced symptomatic HPS, despite 5 of 7 (71.4%) having an increased HPS risk based on previously published ICG-BFA data. CONCLUSIONS ICG-BFA has utility for the intraoperative assessment of bypass-related changes in cerebral perfusion, with automated blood flow index being the most robustly affected parameter. Although previously published ICG-BFA indices did not predict the development of symptomatic postoperative HPS, larger-scale studies correlating observed ICG-BFA changes with risk of HPS are warranted.
Collapse
Affiliation(s)
- Robert C Rennert
- Department of Neurological Surgery, University of California San Diego, San Diego, California, USA
| | - Ben A Strickland
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kristine Ravina
- Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joshua Bakhsheshian
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan J Russin
- Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
37
|
|
38
|
Nakagawa S, Murai Y, Matano F, Ishisaka E, Morita A. Evaluation of Patency After Vascular Anastomosis Using Quantitative Evaluation of Visualization Time in Indocyanine Green Video Angiography. World Neurosurg 2018; 110:e699-e709. [DOI: 10.1016/j.wneu.2017.11.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/05/2023]
|
39
|
Richards LM, Kazmi SS, Olin KE, Waldron JS, Fox DJ, Dunn AK. Intraoperative multi-exposure speckle imaging of cerebral blood flow. J Cereb Blood Flow Metab 2017; 37:3097-3109. [PMID: 28112550 PMCID: PMC5584700 DOI: 10.1177/0271678x16686987] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multiple studies have demonstrated that laser speckle contrast imaging (LSCI) has high potential to be a valuable cerebral blood flow monitoring technique during neurosurgery. However, the quantitative accuracy and sensitivity of LSCI is limited, and highly dependent on the exposure time. An extension to LSCI called multi-exposure speckle imaging (MESI) overcomes these limitations, and was evaluated intraoperatively in patients undergoing brain tumor resection. This clinical study ( n = 8) recorded multiple exposure times from the same cortical tissue area spanning 0.5-20 ms, and evaluated images individually as single-exposure LSCI and jointly using the MESI model. This study demonstrated that the MESI estimates provided the broadest flow sensitivity for sampling the flow magnitude in the human brain, closely followed by the shorter exposure times. Conservation of flow analysis on vascular bifurcations was used to validate physiological accuracy, with highly conserved flow estimates (<10%) from both MESI and 1 ms LSCI ( n = 14 branches). The MESI model had high goodness-of-fit with proper image calibration and acquisition, and was used to monitor blood flow changes after tissue cautery. Results from this study demonstrate that intraoperative MESI can be performed with high quantitative accuracy and sensitivity for cerebral blood flow monitoring.
Collapse
Affiliation(s)
- Lisa M Richards
- 1 Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, USA
| | - Sm Shams Kazmi
- 1 Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, USA
| | - Katherine E Olin
- 1 Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, USA
| | - James S Waldron
- 2 NeuroTexas Institute, St. David's Medical Center, Austin, USA
| | - Douglas J Fox
- 2 NeuroTexas Institute, St. David's Medical Center, Austin, USA
| | - Andrew K Dunn
- 1 Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, USA
| |
Collapse
|
40
|
Evaluation of Gastric Microcirculation by Laser Speckle Contrast Imaging During Esophagectomy. J Am Coll Surg 2017; 225:395-402. [DOI: 10.1016/j.jamcollsurg.2017.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
|
41
|
Abstract
Neurovascular surgery is a broad and challenging, yet exciting field within neurologic surgery. The neurovascular surgeon must be meticulous; because the brain and spinal cord are unforgiving to ischemic insults. Along with the pressures of this demanding subspecialty comes the potential to help patients recover from potentially devastating pathology to go on and lead normal, healthy lives. Several intraoperative imaging modalities are available to help maximize treatment success while reducing risk. This article reviews each of these modalities, including digital subtraction angiography, fluorescence angiography, Doppler ultrasonography, laser Doppler, laser speckle contrast imaging, neuronavigation, and neuroendoscopy.
Collapse
|
42
|
Jones S, Schwartzbauer G, Jia X. Brain Monitoring in Critically Neurologically Impaired Patients. Int J Mol Sci 2016; 18:E43. [PMID: 28035993 PMCID: PMC5297678 DOI: 10.3390/ijms18010043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
Assessment of neurologic injury and the evolution of severe neurologic injury is limited in comatose or critically ill patients that lack a reliable neurologic examination. For common yet severe pathologies such as the comatose state after cardiac arrest, aneurysmal subarachnoid hemorrhage (aSAH), and severe traumatic brain injury (TBI), critical medical decisions are made on the basis of the neurologic injury. Decisions regarding active intensive care management, need for neurosurgical intervention, and withdrawal of care, depend on a reliable, high-quality assessment of the true state of neurologic injury, and have traditionally relied on limited assessments such as intracranial pressure monitoring and electroencephalogram. However, even within TBI there exists a spectrum of disease that is likely not captured by such limited monitoring and thus a more directed effort towards obtaining a more robust biophysical signature of the individual patient must be undertaken. In this review, multimodal monitoring including the most promising serum markers of neuronal injury, cerebral microdialysis, brain tissue oxygenation, and pressure reactivity index to access brain microenvironment will be discussed with their utility among specific pathologies that may help determine a more complete picture of the neurologic injury state for active intensive care management and long-term outcomes. Goal-directed therapy guided by a multi-modality approach appears to be superior to standard intracranial pressure (ICP) guided therapy and should be explored further across multiple pathologies. Future directions including the application of optogenetics to evaluate brain injury and recovery and even as an adjunct monitoring modality will also be discussed.
Collapse
Affiliation(s)
- Salazar Jones
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Gary Schwartzbauer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Farraro R, Fathi O, Choi B. Handheld, point-of-care laser speckle imaging. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:94001. [PMID: 27579578 PMCID: PMC5005973 DOI: 10.1117/1.jbo.21.9.094001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/12/2016] [Indexed: 05/15/2023]
Abstract
Laser speckle imaging (LSI) enables measurement of relative changes in blood flow in biological tissues. We postulate that a point-of-care form factor will lower barriers to routine clinical use of LSI. Here, we describe a first-generation handheld LSI device based on a tablet computer. The coefficient of variation of speckle contrast was < 2% after averaging imaging data collected over an acquisition period of 5.3 s. With a single, experienced user, handheld motion artifacts had a negligible effect on data collection. With operation by multiple users, we did not identify any significant difference (p > 0.05) between the measured speckle contrast values using either a handheld or mounted configuration. In vivo data collected during occlusion experiments demonstrate that a handheld LSI is capable of both quantitative and qualitative assessment of changes in blood flow. Finally, as a practical application of handheld LSI, we collected data from a 53-day-old neonate with confirmed compromised blood flow in the hand. We readily identified with LSI a region of diminished blood flow in the thumb of the affected hand. Our data collectively suggest that handheld LSI is a promising technique to enable clinicians to obtain point-of-care measurements of blood flow.
Collapse
Affiliation(s)
- Ryan Farraro
- University of California-Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road East, Irvine, California 92612, United States
- University of California-Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine, California 92697, United States
| | - Omid Fathi
- University of California-Irvine, Department of Pediatrics, 505 South Main Street, Irvine, Orange, California 92868, United States
| | - Bernard Choi
- University of California-Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road East, Irvine, California 92612, United States
- University of California-Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine, California 92697, United States
- University of California-Irvine, Department of Surgery, 333 City Boulevard West, Suite 1600, Orange, California 92868, United States
- University of California-Irvine, Edwards Lifesciences Center for Advanced Cardiovascular Technology, 2400 Engineering Hall, Irvine, California 92697, United States
- CHOC Children’s Hospital, 1201 West La Veta Avenue, Orange, California 92868, United States
- Address all correspondence to: Bernard Choi, E-mail:
| |
Collapse
|
44
|
Fantini S, Sassaroli A, Tgavalekos KT, Kornbluth J. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. NEUROPHOTONICS 2016; 3:031411. [PMID: 27403447 PMCID: PMC4914489 DOI: 10.1117/1.nph.3.3.031411] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/10/2016] [Indexed: 05/23/2023]
Abstract
Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation.
Collapse
Affiliation(s)
- Sergio Fantini
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Kristen T. Tgavalekos
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Joshua Kornbluth
- Tufts University School of Medicine, Department of Neurology, Division of Neurocritical Care, 800 Washington Street, Box #314, Boston, Massachusetts 02111, United States
| |
Collapse
|
45
|
Hecht N, Müller MM, Sandow N, Pinczolits A, Vajkoczy P, Woitzik J. Infarct prediction by intraoperative laser speckle imaging in patients with malignant hemispheric stroke. J Cereb Blood Flow Metab 2016; 36:1022-32. [PMID: 26661215 PMCID: PMC4908625 DOI: 10.1177/0271678x15612487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
Currently, a reliable method for real-time prediction of ischemia in the human brain is not available. Here, we took a first step towards validating non-invasive intraoperative laser speckle imaging (iLSI) for prediction of infarction in 22 patients undergoing decompressive surgery for treatment of malignant hemispheric stroke. During surgery, cortical perfusion was visualized and recorded in real-time with iLSI. The true morphological infarct extension within the iLSI imaging field was superimposed onto the iLSI blood flow maps according to a postoperative MRI (16 h [95% CI: 13, 19] after surgery) with three-dimensional magnetization-prepared rapid gradient-echo and diffusion-weighted imaging reconstruction. Based on the frequency distribution of iLSI perfusion values within the infarcted and non-infarcted territories, probability curves and perfusion thresholds of normalized cerebral blood flow predictive of eventual infarction or non-infarction were calculated. Intraoperative LSI predicted and excluded cortical ischemia with 95% probability at normalized perfusion levels below 40% and above 110%, respectively, which represented 73% of the entire cortical surface area. Together, our results suggest that iLSI is valid for (pseudo-) quantitative assessment of blood flow in the human brain and may be used to identify tissue at risk for infarction at a given time-point in the course of ischemic stroke.
Collapse
Affiliation(s)
- Nils Hecht
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marc-Michael Müller
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nora Sandow
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Pinczolits
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
46
|
Müller MWD, Österreich M, Müller A, Lygeros J. Assessment of the Brain's Macro- and Micro-Circulatory Blood Flow Responses to CO2 via Transfer Function Analysis. Front Physiol 2016; 7:162. [PMID: 27242536 PMCID: PMC4860618 DOI: 10.3389/fphys.2016.00162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/15/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most commonly used for this purpose, transcranial Doppler sonography (TCD, macro-circulation level), and near-infrared spectroscopy (NIRS, micro-circulation level), in an attempt to identify the most promising approach. METHODS In eight healthy subjects (5 women; mean age, 38 ± 10 years), CA disturbance was achieved by adding carbon dioxide (CO2) to the breathing air. We simultaneously recorded end-tidal CO2 (ETCO2), blood pressure (BP; non-invasively at the fingertip), and cerebral blood flow velocity (CBFV) in both middle cerebral arteries using TCD and determined oxygenated and deoxygenated hemoglobin levels using NIRS. For the analysis, we used transfer function calculations in the low-frequency band (0.07-0.15 Hz) to compare BP-CBFV, BP-oxygenated hemoglobin (OxHb), BP-tissue oxygenation index (TOI), CBFV-OxHb, and CBFV-TOI. RESULTS ETCO2 increased from 37 ± 2 to 44 ± 3 mmHg. The CO2-induced CBFV increase significantly correlated with the OxHb increase (R (2) = 0.526, p < 0.001). Compared with baseline, the mean CO2 administration phase shift (in radians) significantly increased (p < 0.005) from -0.67 ± 0.20 to -0.51 ± 0.25 in the BP-CBFV system, and decreased from 1.21 ± 0.81 to -0.05 ± 0.91 in the CBFV-OxHb system, and from 0.94 ± 1.22 to -0.24 ± 1.0 in the CBFV-TOI system; no change was observed for BP-OxHb (0.38 ± 1.17 to 0.41 ± 1.42). Gain changed significantly only in the BP-CBFV system. The correlation between the ETCO2 change and phase change was higher in the CBFV-OxHb system [r = -0.60; 95% confidence interval (CI): -0.16, -0.84; p < 0.01] than in the BP-CBFV system (r = 0.52; 95% CI: 0.03, 0.08; p < 0.05). CONCLUSION The transfer function characterizes the blood flow transition from macro- to micro-circulation by time delay only. The CBFV-OxHb system response with a broader phase shift distribution offers the prospect of a more detailed grading of CA responses. Whether this is of clinical relevance needs further studies in different patient populations.
Collapse
Affiliation(s)
- Martin W-D Müller
- Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne Lucerne, Switzerland
| | - Mareike Österreich
- Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne Lucerne, Switzerland
| | - Andreas Müller
- Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne Lucerne, Switzerland
| | - John Lygeros
- Automatic Control Laboratory, ETH Zurich Zurich, Switzerland
| |
Collapse
|
47
|
Takeshima Y, Miyake H, Nakagawa I, Motoyama Y, Park YS, Nakase H. Visualization of Regional Cerebral Blood Flow Dynamics during Cortical Venous Occlusion using Laser Speckle Contrast Imaging in a Rat Model. J Stroke Cerebrovasc Dis 2015. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.04.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
48
|
Kazmi SMS, Richards LM, Schrandt CJ, Davis MA, Dunn AK. Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow. J Cereb Blood Flow Metab 2015; 35:1076-84. [PMID: 25944593 PMCID: PMC4640282 DOI: 10.1038/jcbfm.2015.84] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
Laser speckle contrast imaging (LSCI) provides a rapid characterization of cortical flow dynamics for functional monitoring of the microcirculation. The technique stems from interactions of laser light with moving particles. These interactions encode the encountered Doppler phenomena within a random interference pattern imaged in widefield, known as laser speckle. Studies of neurovascular function and coupling with LSCI have benefited from the real-time characterization of functional dynamics in the laboratory setting through quantification of perfusion dynamics. While the technique has largely been relegated to acute small animal imaging, its scalability is being assessed and characterized for both chronic and clinical neurovascular imaging.
Collapse
Affiliation(s)
- S M Shams Kazmi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Lisa M Richards
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Christian J Schrandt
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Mitchell A Davis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
49
|
Li H, Li Y, Yuan L, Wu C, Lu H, Tong S. Intraoperative cerebral blood flow imaging of rodents. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:094301. [PMID: 25273744 DOI: 10.1063/1.4895657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Intraoperative monitoring of cerebral blood flow (CBF) is of interest to neuroscience researchers, which offers the assessment of hemodynamic responses throughout the process of neurosurgery and provides an early biomarker for surgical guidance. However, intraoperative CBF imaging has been challenging due to animal's motion and position change during the surgery. In this paper, we presented a design of an operation bench integrated with laser speckle contrast imager which enables monitoring of the CBF intraoperatively. With a specially designed stereotaxic frame and imager, we were able to monitor the CBF changes in both hemispheres during the rodent surgery. The rotatable design of the operation plate and implementation of online image registration allow the technician to move the animal without disturbing the CBF imaging during surgery. The performance of the system was tested by middle cerebral artery occlusion model of rats.
Collapse
Affiliation(s)
- Hangdao Li
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Li
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lu Yuan
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Caihong Wu
- School of Media and Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyang Lu
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shanbao Tong
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
50
|
Kazmi SMS, Balial S, Dunn AK. Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation. BIOMEDICAL OPTICS EXPRESS 2014; 5:2157-71. [PMID: 25071956 PMCID: PMC4102356 DOI: 10.1364/boe.5.002157] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 05/19/2023]
Abstract
Improved Laser Speckle Contrast Imaging (LSCI) blood flow analyses that incorporate inverse models of the underlying laser-tissue interaction have been used to develop more quantitative implementations of speckle flowmetry such as Multi-Exposure Speckle Imaging (MESI). In this paper, we determine the optimal camera exposure durations required for obtaining flow information with comparable accuracy with the prevailing MESI implementation utilized in recent in vivo rodent studies. A looping leave-one-out (LOO) algorithm was used to identify exposure subsets which were analyzed for accuracy against flows obtained from analysis with the original full exposure set over 9 animals comprising n = 314 regional flow measurements. From the 15 original exposures, 6 exposures were found using the LOO process to provide comparable accuracy, defined as being no more than 10% deviant, with the original flow measurements. The optimal subset of exposures provides a basis set of camera durations for speckle flowmetry studies of the microcirculation and confers a two-fold faster acquisition rate and a 28% reduction in processing time without sacrificing accuracy. Additionally, the optimization process can be used to identify further reductions in the exposure subsets for tailoring imaging over less expansive flow distributions to enable even faster imaging.
Collapse
Affiliation(s)
- S. M. Shams Kazmi
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, Texas. 78712, USA
| | - Satyajit Balial
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, Texas. 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, Texas. 78712, USA
| |
Collapse
|