1
|
Rather MA, Khan A, Jahan S, Siddiqui AJ, Wang L. Influence of Tau on Neurotoxicity and Cerebral Vasculature Impairment Associated with Alzheimer's Disease. Neuroscience 2024; 552:1-13. [PMID: 38871021 DOI: 10.1016/j.neuroscience.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease is a fatal chronic neurodegenerative condition marked by a gradual decline in cognitive abilities and impaired vascular function within the central nervous system. This affliction initiates its insidious progression with the accumulation of two aberrant protein entities including Aβ plaques and neurofibrillary tangles. These chronic elements target distinct brain regions, steadily erasing the functionality of the hippocampus and triggering the erosion of memory and neuronal integrity. Several assumptions are anticipated for AD as genetic alterations, the occurrence of Aβ plaques, altered processing of amyloid precursor protein, mitochondrial damage, and discrepancy of neurotropic factors. In addition to Aβ oligomers, the deposition of tau hyper-phosphorylates also plays an indispensable part in AD etiology. The brain comprises a complex network of capillaries that is crucial for maintaining proper function. Tau is expressed in cerebral blood vessels, where it helps to regulate blood flow and sustain the blood-brain barrier's integrity. In AD, tau pathology can disrupt cerebral blood supply and deteriorate the BBB, leading to neuronal neurodegeneration. Neuroinflammation, deficits in the microvasculature and endothelial functions, and Aβ deposition are characteristically detected in the initial phases of AD. These variations trigger neuronal malfunction and cognitive impairment. Intracellular tau accumulation in microglia and astrocytes triggers deleterious effects on the integrity of endothelium and cerebral blood supply resulting in further advancement of the ailment and cerebral instability. In this review, we will discuss the impact of tau on neurovascular impairment, mitochondrial dysfunction, oxidative stress, and the role of hyperphosphorylated tau in neuron excitotoxicity and inflammation.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States.
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail City, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States
| |
Collapse
|
2
|
Li J, Niu J, Zheng W, Bian Y, Wu F, Jia X, Fan Z, Zhao X, Yang Q. Dilated lenticulostriate artery on whole-brain vessel wall imaging differentiates pathogenesis and predicts clinical outcomes in single subcortical infarction. Eur Radiol 2024:10.1007/s00330-024-10971-6. [PMID: 39060491 DOI: 10.1007/s00330-024-10971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES This study aimed to investigate the dilation of lenticulostriate artery (LSA) identified by whole-brain vessel wall imaging (WB-VWI) in differentiating the etiologic subtypes of single subcortical infarction (SSI) and to determine whether the appearance of dilated LSA was associated with 90-day clinical outcomes in parental atherosclerotic disease (PAD)-related SSI. METHODS Patients with acute SSI were prospectively enrolled and categorized into PAD-related SSI and cerebral small-vessel disease (CSVD)-related SSI groups. The imaging features of LSA morphology (branches, length, dilation, and tortuosity), plaques (burden, remodeling index, enhancement degree, and hyperintense plaque), and CSVD (white matter hyperintensity, lacunes, cerebral microbleed, and enlarged perivascular space) were evaluated. The logistic regression was performed to determine the association of dilated LSA with PAD-related SSI and 90-day clinical outcomes. RESULTS In total, 131 patients (mean age, 52.2 ± 13.2 years; 99 men) were included. The multivariate logistic regression analysis revealed that the presence of dilated LSAs (odds ratio (OR), 7.40; 95% confidence interval (CI): 1.88-29.17; p = 0.004)) was significantly associated with PAD-related SSI. Moreover, after adjusting for confounding factors, the association of poor outcomes with the total length of LSAs (OR, 0.94; 95% CI: 0.90-0.99; p = 0.011), dilated LSAs (OR, 0.001; 95% CI: 0.0001-0.08; p = 0.002), and plaque burden (OR, 1.35; 95% CI: 1.11-1.63; p = 0.002) remained statistically significant. CONCLUSION The dilation of LSA visualized on WB-VWI could differentiate various subtypes of SSI within LSA territory and was a prognostic imaging marker for 90-day clinical outcomes for PAD-related SSI. CLINICAL RELEVANCE STATEMENT Evaluation of LSA morphology based on WB-VWI can differentiate the pathogenesis and predict clinical outcomes in SSI, providing crucial insights into the etiologic mechanisms, risk stratification, and tailored therapies for these patients. KEY POINTS The prognosis of SSIs within lenticulostriate territory depend on the etiology of the disease. LSA dilation on WB-VWI was associated with parental atherosclerosis and better 90-day outcomes. Accurately identifying the etiology of SSIs in lenticulostriate territory assists in treatment decision-making.
Collapse
Affiliation(s)
- Jin Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junxia Niu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Weimin Zheng
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yueyan Bian
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fang Wu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiuqin Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhaoyang Fan
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
- Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Staehr C, Aalkjaer C, Matchkov V. The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension. Clin Sci (Lond) 2023; 137:1595-1618. [PMID: 37877226 PMCID: PMC10600256 DOI: 10.1042/cs20220796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, Aarhus, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Danish Cardiovascular Academy, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| | - Vladimir V. Matchkov
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| |
Collapse
|
4
|
Fang X, Border JJ, Rivers PL, Zhang H, Williams JM, Fan F, Roman RJ. Amyloid beta accumulation in TgF344-AD rats is associated with reduced cerebral capillary endothelial Kir2.1 expression and neurovascular uncoupling. GeroScience 2023; 45:2909-2926. [PMID: 37326915 PMCID: PMC10643802 DOI: 10.1007/s11357-023-00841-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Alzheimer's disease (AD) exerts a tremendous socio-economic burden worldwide. Although reduced cerebral blood flow is an early and persistent symptom that precedes the loss of cognitive function in AD, the underlying molecular and cellular mechanisms remain unclear. The present study investigated whether capillary endothelial inward rectifier potassium 2 (Kir2.1) expression is reduced in TgF344-AD (AD) rats and contributes to neurovascular uncoupling and cognitive deficits in AD. Three- to fourteen-month-old AD rats expressing mutant human APP and PS1 and age-matched wild-type (WT) F344 rats were studied. AD rats exhibited higher amyloid beta (Aβ) expression in the brain as early as 3 months of age and amyloid plaques by 4 months of age. Functional hyperemic responses induced by whisker stimulation were impaired at 4 months of age, which were exacerbated in 6-month- and 14-month-old AD rats. The expression of Kir2.1 protein was significantly lower in the brains of 6-month-old AD versus WT rats, and Kir2.1 coverage was lower in the cerebral microvasculature of AD than in WT rats. Aβ1-42 reduced the Kir2.1 expression in cultured capillary endothelial cells. Cerebral parenchymal arterioles with attached capillaries exhibited a reduced vasodilator in response to 10 mM K+ applied to capillaries, and constricted less following administration of a Kir2.1 channel blocker, compared to WT vessels. These results indicate that capillary endothelial Kir2.1 expression is reduced and contributes to impaired functional hyperemia in AD rats at early ages, perhaps secondary to elevated Aβ expression.
Collapse
Affiliation(s)
- Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jane J Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Patrice L Rivers
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jan Michael Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Physiology, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd, Augusta, GA, 30912, USA.
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
5
|
Zhuo B, Deng S, Li B, Zhu W, Zhang M, Qin C, Meng Z. Possible Effects of Acupuncture in Poststroke Aphasia. Behav Neurol 2023; 2023:9445381. [PMID: 37091130 PMCID: PMC10115536 DOI: 10.1155/2023/9445381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/30/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023] Open
Abstract
Neural plasticity promotes the reorganization of language networks and is an essential recovery mechanism for poststroke aphasia (PSA). Neuroplasticity may be a pivotal bridge to elucidate the potential recovery mechanisms of acupuncture for aphasia. Therefore, understanding the neuroplasticity mechanism of acupuncture in PSA is crucial. However, the underlying therapeutic mechanism of neuroplasticity in PSA after acupuncture needs to be explored. Excitotoxicity after brain injury affects the activity of neurotransmitters and disrupts the transmission of normal neuron information. Thus, a helpful strategy of acupuncture might be to improve PSA by affecting the availability of these neurotransmitters and glutamate receptors at synapses. In addition, the regulation of neuroplasticity by acupuncture may also be related to the regulation of astrocytes. Considering the guiding significance of acupuncture for clinical treatment, it is necessary to carry out further study about the influence of acupuncture on the recovery of aphasia after stroke. This study summarizes the current research on the neural mechanism of acupuncture in treating PSA. It seeks to elucidate the potential effect of acupuncture on the recovery of PSA from the perspective of synaptic plasticity and integrity of gray and white matter.
Collapse
Affiliation(s)
- Bifang Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Boxuan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weiming Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Menglong Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenyang Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihong Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
6
|
Johnson AC. Hippocampal Vascular Supply and Its Role in Vascular Cognitive Impairment. Stroke 2023; 54:673-685. [PMID: 36848422 PMCID: PMC9991081 DOI: 10.1161/strokeaha.122.038263] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
The incidence of age-related dementia is increasing as the world population ages and due to lack of effective treatments for dementia. Vascular contributions to cognitive impairment and dementia are increasing as the prevalence of pathologies associated with cerebrovascular disease rise, including chronic hypertension, diabetes, and ischemic stroke. The hippocampus is a bilateral deep brain structure that is central to learning, memory, and cognitive function and highly susceptible to hypoxic/ischemic injury. Compared with cortical brain regions such as the somatosensory cortex, less is known about the function of the hippocampal vasculature that is critical in maintaining neurocognitive health. This review focuses on the hippocampal vascular supply, presenting what is known about hippocampal hemodynamics and blood-brain barrier function during health and disease, and discusses evidence that supports its contribution to vascular cognitive impairment and dementia. Understanding vascular-mediated hippocampal injury that contributes to memory dysfunction during healthy aging and cerebrovascular disease is essential to develop effective treatments to slow cognitive decline. The hippocampus and its vasculature may represent one such therapeutic target to mitigate the dementia epidemic.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington
| |
Collapse
|
7
|
Impact of diabetes and ischemic stroke on the cerebrovasculature: A female perspective. Neurobiol Dis 2022; 167:105667. [PMID: 35227927 PMCID: PMC9615543 DOI: 10.1016/j.nbd.2022.105667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 01/16/2023] Open
Abstract
There is a very complex interaction between the brain and the cerebral vasculature to meet the metabolic demands of the brain for proper function. Preservation of vascular networks and cerebrovascular function ultimately plays a key role in this intricate communication within the brain in health and disease. Experimental evidence showed that diabetes not only affects the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression, but also alters cerebrovascular function resulting in compromised myogenic reactivity and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain can rapidly occur. When an ischemic insult is superimposed on this pathology, not only is the neurovascular injury greater, but repair mechanisms fail, resulting in greater physical and cognitive deficits. While clinically it is known that women suffer disproportionately from diabetes as well as ischemic stroke and post-stroke cognitive impairment, the cerebrovascular architecture, patho/physiology, as well as cerebrovascular contributions to stroke recovery in female and diabetic animal models are inadequately studied and highlighted in this review.
Collapse
|
8
|
Fan JL, Brassard P, Rickards CA, Nogueira RC, Nasr N, McBryde FD, Fisher JP, Tzeng YC. Integrative cerebral blood flow regulation in ischemic stroke. J Cereb Blood Flow Metab 2022; 42:387-403. [PMID: 34259070 PMCID: PMC8985438 DOI: 10.1177/0271678x211032029] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optimizing cerebral perfusion is key to rescuing salvageable ischemic brain tissue. Despite being an important determinant of cerebral perfusion, there are no effective guidelines for blood pressure (BP) management in acute stroke. The control of cerebral blood flow (CBF) involves a myriad of complex pathways which are largely unaccounted for in stroke management. Due to its unique anatomy and physiology, the cerebrovascular circulation is often treated as a stand-alone system rather than an integral component of the cardiovascular system. In order to optimize the strategies for BP management in acute ischemic stroke, a critical reappraisal of the mechanisms involved in CBF control is needed. In this review, we highlight the important role of collateral circulation and re-examine the pathophysiology of CBF control, namely the determinants of cerebral perfusion pressure gradient and resistance, in the context of stroke. Finally, we summarize the state of our knowledge regarding cardiovascular and cerebrovascular interaction and explore some potential avenues for future research in ischemic stroke.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Fiona D McBryde
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Department of Surgery & Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
9
|
Rudilosso S, Rodríguez-Vázquez A, Urra X, Arboix A. The Potential Impact of Neuroimaging and Translational Research on the Clinical Management of Lacunar Stroke. Int J Mol Sci 2022; 23:1497. [PMID: 35163423 PMCID: PMC8835925 DOI: 10.3390/ijms23031497] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Lacunar infarcts represent one of the most frequent subtypes of ischemic strokes and may represent the first recognizable manifestation of a progressive disease of the small perforating arteries, capillaries, and venules of the brain, defined as cerebral small vessel disease. The pathophysiological mechanisms leading to a perforating artery occlusion are multiple and still not completely defined, due to spatial resolution issues in neuroimaging, sparsity of pathological studies, and lack of valid experimental models. Recent advances in the endovascular treatment of large vessel occlusion may have diverted attention from the management of patients with small vessel occlusions, often excluded from clinical trials of acute therapy and secondary prevention. However, patients with a lacunar stroke benefit from early diagnosis, reperfusion therapy, and secondary prevention measures. In addition, there are new developments in the knowledge of this entity that suggest potential benefits of thrombolysis in an extended time window in selected patients, as well as novel therapeutic approaches targeting different pathophysiological mechanisms involved in small vessel disease. This review offers a comprehensive update in lacunar stroke pathophysiology and clinical perspective for managing lacunar strokes, in light of the latest insights from imaging and translational studies.
Collapse
Affiliation(s)
- Salvatore Rudilosso
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Alejandro Rodríguez-Vázquez
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Xabier Urra
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Adrià Arboix
- Cerebrovascular Division, Department of Neurology, Hospital Universitari del Sagrat Cor, Universitat de Barcelona, 08034 Barcelona, Spain
| |
Collapse
|
10
|
Guldbrandsen HO, Staehr C, Iversen NK, Postnov DD, Matchkov VV. Does Src Kinase Mediated Vasoconstriction Impair Penumbral Reperfusion? Stroke 2021; 52:e250-e258. [PMID: 33947213 DOI: 10.1161/strokeaha.120.032737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite successful recanalization, a significant number of patients with ischemic stroke experience impaired local brain tissue reperfusion with adverse clinical outcome. The cause and mechanism of this multifactorial complication are yet to be understood. At the current moment, major attention is given to dysfunction in blood-brain barrier and capillary blood flow but contribution of exaggerated constriction of cerebral arterioles has also been suggested. In the brain, arterioles significantly contribute to vascular resistance and thus control of perfusion. Accordingly, pathological changes in arteriolar wall function can, therefore, limit sufficient reperfusion in ischemic stroke, but this has not yet received sufficient attention. Although an increased vascular tone after reperfusion has been demonstrated in several studies, the mechanism behind it remains to be characterized. Importantly, the majority of conventional mechanisms controlling vascular contraction failed to explain elevated cerebrovascular tone after reperfusion. We propose here that the Na,K-ATPase-dependent Src kinase activation are the key mechanisms responsible for elevation of cerebrovascular tone after reperfusion. The Na,K-ATPase, which is essential to control intracellular ion homeostasis, also executes numerous signaling functions. Under hypoxic conditions, the Na,K-ATPase is endocytosed from the membrane of vascular smooth muscle cells. This initiates the Src kinase signaling pathway that sensitizes the contractile machinery to intracellular Ca2+ resulting in hypercontractility of vascular smooth muscle cells and, thus, elevated cerebrovascular tone that can contribute to impaired reperfusion after stroke. This mechanism integrates with cerebral edema that was suggested to underlie impaired reperfusion and is further supported by several studies, which are discussed in this article. However, final demonstration of the molecular mechanism behind Src kinase-associated arteriolar hypercontractility in stroke remains to be done.
Collapse
Affiliation(s)
| | - Christian Staehr
- Department of Biomedicine, MEMBRANES, Health (H.O.G., C.S., V.V.M.), Aarhus University, Denmark
| | - Nina Kerting Iversen
- Center of Functionally Integrative Neuroscience, Institute for Clinical Medicine (N.K.I.), Aarhus University, Denmark
| | - Dmitry D Postnov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Denmark (D.D.P.)
| | - Vladimir V Matchkov
- Department of Biomedicine, MEMBRANES, Health (H.O.G., C.S., V.V.M.), Aarhus University, Denmark
| |
Collapse
|
11
|
Mustapha M, Nassir CMNCM, Aminuddin N, Safri AA, Ghazali MM. Cerebral Small Vessel Disease (CSVD) - Lessons From the Animal Models. Front Physiol 2019; 10:1317. [PMID: 31708793 PMCID: PMC6822570 DOI: 10.3389/fphys.2019.01317] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cerebral small vessel disease (CSVD) refers to a spectrum of clinical and imaging findings resulting from pathological processes of various etiologies affecting cerebral arterioles, perforating arteries, capillaries, and venules. Unlike large vessels, it is a challenge to visualize small vessels in vivo, hence the difficulty to directly monitor the natural progression of the disease. CSVD might progress for many years during the early stage of the disease as it remains asymptomatic. Prevalent among elderly individuals, CSVD has been alarmingly reported as an important precursor of full-blown stroke and vascular dementia. Growing evidence has also shown a significant association between CSVD's radiological manifestation with dementia and Alzheimer's disease (AD) pathology. Although it remains contentious as to whether CSVD is a cause or sequelae of AD, it is not far-fetched to posit that effective therapeutic measures of CSVD would mitigate the overall burden of dementia. Nevertheless, the unifying theory on the pathomechanism of the disease remains elusive, hence the lack of effective therapeutic approaches. Thus, this chapter consolidates the contemporary insights from numerous experimental animal models of CSVD, to date: from the available experimental animal models of CSVD and its translational research value; the pathomechanical aspects of the disease; relevant aspects on systems biology; opportunities for early disease biomarkers; and finally, converging approaches for future therapeutic directions of CSVD.
Collapse
Affiliation(s)
- Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Niferiti Aminuddin
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
12
|
Hu L, Feng Y, Liu W, Jin L, Nie Z. Botulinum toxin type A suppresses arterial vasoconstriction by regulating calcium sensitization and the endothelium-dependent endothelial nitric oxide synthase/soluble guanylyl cyclase/cyclic guanosine monophosphate pathway: An in vitro study. Exp Biol Med (Maywood) 2019; 244:1475-1484. [PMID: 31547684 DOI: 10.1177/1535370219878143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Liang Hu
- Department of Neurology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ya Feng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Wuchao Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Lingjing Jin
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhiyu Nie
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
13
|
Abutarboush R, Gu M, Kawoos U, Mullah SH, Chen Y, Goodrich SY, Lashof-Sullivan M, McCarron RM, Statz JK, Bell RS, Stone JR, Ahlers ST. Exposure to Blast Overpressure Impairs Cerebral Microvascular Responses and Alters Vascular and Astrocytic Structure. J Neurotrauma 2019; 36:3138-3157. [PMID: 31210096 PMCID: PMC6818492 DOI: 10.1089/neu.2019.6423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Exposure to blast overpressure may result in cerebrovascular impairment, including cerebral vasospasm. The mechanisms contributing to this vascular response are unclear. The aim of this study was to evaluate the relationship between blast and functional alterations of the cerebral microcirculation and to investigate potential underlying changes in vascular microstructure. Cerebrovascular responses were assessed in sham- and blast-exposed male rats at multiple time points from 2 h through 28 days after a single 130-kPa (18.9-psi) exposure. Pial microcirculation was assessed through a cranial window created in the parietal bone of anesthetized rats. Pial arteriolar reactivity was evaluated in vivo using hypercapnia, barium chloride, and serotonin. We found that exposure to blast leads to impairment of arteriolar reactivity >24 h after blast exposure, suggesting delayed injury mechanisms that are not simply attributed to direct mechanical deformation. Observed vascular impairment included a reduction in hypercapnia-induced vasodilation, increase in barium-induced constriction, and reversal of the serotonin effect from constriction to dilation. A reduction in vascular smooth muscle contractile proteins consistent with vascular wall proliferation was observed, as well as delayed reduction in nitric oxide synthase and increase in endothelin-1 B receptors, mainly in astrocytes. Collectively, the data show that exposure to blast results in delayed and prolonged alterations in cerebrovascular reactivity that are associated with changes in the microarchitecture of the vessel wall and astrocytes. These changes may contribute to long-term pathologies involving dysfunction of the neurovascular unit, including cerebral vasospasm.
Collapse
Affiliation(s)
- Rania Abutarboush
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Ming Gu
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Usmah Kawoos
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Saad H Mullah
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Ye Chen
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Samantha Y Goodrich
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Margaret Lashof-Sullivan
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Richard M McCarron
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jonathan K Statz
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Randy S Bell
- Neurosurgery Department, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia Medical Center, Charlottesville, Virginia
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland
| |
Collapse
|
14
|
Cellular Control of Brain Capillary Blood Flow: In Vivo Imaging Veritas. Trends Neurosci 2019; 42:528-536. [PMID: 31255380 DOI: 10.1016/j.tins.2019.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 01/01/2023]
Abstract
The precise modulation of regional cerebral blood flow during neural activation is important for matching local energetic demand and supply and clearing brain metabolites. Here we discuss advances facilitated by high-resolution optical in vivo imaging techniques that for the first time have provided direct visualization of capillary blood flow and its modulation by neural activity. We focus primarily on studies of microvascular flow, mural cell control of vessel diameter, and oxygen level-dependent changes in red blood cell deformability. We also suggest methodological standards for best practices when studying microvascular perfusion, partly motivated by recent controversies about the precise location within the microvascular tree where neurovascular coupling is initiated, and the role of mural cells in the control of vasomotility.
Collapse
|
15
|
Fouda AY, Fagan SC, Ergul A. Brain Vasculature and Cognition. Arterioscler Thromb Vasc Biol 2019; 39:593-602. [PMID: 30816798 PMCID: PMC6540805 DOI: 10.1161/atvbaha.118.311906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
There is a complex interaction between the brain and the cerebral vasculature to meet the metabolic demands of the brain for proper function. Preservation of cerebrovascular function and integrity has a central role in this sophisticated communication within the brain, and any derangements can have deleterious acute and chronic consequences. In almost all forms of cognitive impairment, from mild to Alzheimer disease, there are changes in cerebrovascular function and structure leading to decreased cerebral blood flow, which may initiate or worsen cognitive impairment. In this focused review, we discuss the contribution of 2 major vasoactive pathways to cerebrovascular dysfunction and cognitive impairment in an effort to identify early intervention strategies.
Collapse
Affiliation(s)
- Abdelrahman Y. Fouda
- Vascular Biology Center, Augusta University, GA
- Charlie Norwood VA Medical Center Augusta, GA
| | - Susan C. Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, GA
- Charlie Norwood VA Medical Center Augusta, GA
| | - Adviye Ergul
- Ralph Johnson Veterans Administration Medical Center, Medical University of South Carolina, Charleston, SC
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
16
|
Cipolla MJ, Liebeskind DS, Chan SL. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab 2018; 38:2129-2149. [PMID: 30198826 PMCID: PMC6282213 DOI: 10.1177/0271678x18800589] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Comorbidities are a hallmark of stroke that both increase the incidence of stroke and worsen outcome. Hypertension is prevalent in the stroke population and the most important modifiable risk factor for stroke. Hypertensive disorders promote stroke through increased shear stress, endothelial dysfunction, and large artery stiffness that transmits pulsatile flow to the cerebral microcirculation. Hypertension also promotes cerebral small vessel disease through several mechanisms, including hypoperfusion, diminished autoregulatory capacity and localized increase in blood-brain barrier permeability. Preeclampsia, a hypertensive disorder of pregnancy, also increases the risk of stroke 4-5-fold compared to normal pregnancy that predisposes women to early-onset cognitive impairment. In this review, we highlight how comorbidities and concomitant disorders are not only risk factors for ischemic stroke, but alter the response to acute ischemia. We focus on hypertension as a comorbidity and its effects on the cerebral circulation that alters the pathophysiology of ischemic stroke and should be considered in guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- 1 Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - David S Liebeskind
- 2 Neurovascular Imaging Research Core and Stroke Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Siu-Lung Chan
- 1 Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
17
|
Kaesmacher J, Kreiser K, Manning NW, Gersing AS, Wunderlich S, Zimmer C, Kleine JF, Wiestler B, Boeckh-Behrens T. Clinical outcome prediction after thrombectomy of proximal middle cerebral artery occlusions by the appearance of lenticulostriate arteries on magnetic resonance angiography: A retrospective analysis. J Cereb Blood Flow Metab 2018; 38:1911-1923. [PMID: 28737109 PMCID: PMC6259316 DOI: 10.1177/0271678x17719790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Post-ischemic vasodynamic changes in infarcted brain parenchyma are common and range from hypo- to hyperperfusion. In the present study, appearance of the lenticulostriate arteries (LSAs) on postinterventional 3T time-of-flight (TOF)-MRA suggestive for altered post-stroke vasodynamics following thrombectomy was investigated. Patients who underwent thrombectomy for a proximal MCA occlusion and for whom postinterventional 3T TOF-MRA (median at day 3) was available, were included in this retrospective analysis (n=98). LSA appearance was categorized into presence (LSA-sign+) or absence (LSA-sign-) of vasodilatation in the ischemic hemisphere. Functional outcome was determined using the modified Rankin scale (mRS). LSA-sign+ was observed in 64/98 patients. Hypertension (adjusted OR: 0.171, 95% CI: 0.046-0.645) and preinterventional IV rtPA (adjusted OR: 0.265, 95% CI: 0.088-0.798) were associated with absence of the LSA-sign+. In multivariate logistic regression, LSA-sign+ was associated with substantial neurologic improvement (adjusted OR: 10.18, 95% CI: 2.69-38.57) and good functional outcome (discharge-mRS ≤ 2, adjusted OR: 7.127, 95% CI: 1.913-26.551 and day 90 mRS ≤ 2, adjusted OR: 3.786, 95% CI: 1.026-13.973) after correcting for relevant confounders. For all clinical endpoints, model fit improved when including the LSA-sign term (p<0.05). Asymmetrical dilatation of LSAs following successful thrombectomy indicates favorable neurologic and mid-term functional outcomes. This may indicate preserved cerebral blood flow regulatory mechanisms.
Collapse
Affiliation(s)
- Johannes Kaesmacher
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Kornelia Kreiser
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Nathan W Manning
- 2 Florey Institute of Neuroscience and Mental Health, University of Melbourne, ViC, Australia
| | - Alexandra S Gersing
- 3 Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Silke Wunderlich
- 4 Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Claus Zimmer
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Justus F Kleine
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany.,5 Department of Neuroradiology, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Benedikt Wiestler
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Tobias Boeckh-Behrens
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
18
|
Li W, Abdul Y, Ward R, Ergul A. Endothelin and diabetic complications: a brain-centric view. Physiol Res 2018; 67:S83-S94. [PMID: 29947530 DOI: 10.33549/physiolres.933833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The global epidemic of diabetes is of significant concern. Diabetes associated vascular disease signifies the principal cause of morbidity and mortality in diabetic patients. It is also the most rapidly increasing risk factor for cognitive impairment, a silent disease that causes loss of creativity, productivity, and quality of life. Small vessel disease in the cerebral vasculature plays a major role in the pathogenesis of cognitive impairment in diabetes. Endothelin system, including endothelin-1 (ET-1) and the receptors (ET(A) and ET(B)), is a likely candidate that may be involved in many aspects of the diabetes cerebrovascular disease. In this review, we took a brain-centric approach and discussed the role of the ET system in cerebrovascular and cognitive dysfunction in diabetes.
Collapse
Affiliation(s)
- W Li
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA, Department of Physiology, Augusta University, Augusta, Georgia, USA.
| | | | | | | |
Collapse
|
19
|
Li Z, Tremble SM, Cipolla MJ. Implications for understanding ischemic stroke as a sexually dimorphic disease: the role of pial collateral circulations. Am J Physiol Heart Circ Physiol 2018; 315:H1703-H1712. [PMID: 30239233 DOI: 10.1152/ajpheart.00402.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated structural and functional differences in primary and pial collateral circulations in adult normotensive male and female Wistar rats. Male ( n = 10) and female ( n = 7) rats were subjected to middle cerebral artery (MCA) occlusion and changes in relative cerebral blood flow in MCA and pial collateral territories were measured by multisite laser-Doppler flowmetry. Rats were then transcardially perfused with a mixture of carbon black and latex, perfusion fixed, and imaged to compare primary and pial collateral structure between male ( n = 4) and female ( n = 3) rats, including lumen diameters and number. To study pial collateral function, leptomeningeal anastomoses (LMAs) were isolated and pressurized from male ( n = 7) and female ( n = 6) rats. Myogenic tone and reactivity to pressure, vascular function to pharmacological activator, or inhibitor of ion channels was measured and compared. There was no difference between relative cerebral blood flow in both MCA and pial collateral territories during occlusion and reperfusion between groups. Compared with male LMAs, female LMAs had similar myogenic tone (24.0 ± 7.3% vs. 16.0 ± 3.7%, P > 0.05) and reactivity to increased pressure and similar vascular responses to vasoconstrictive and vasodilatory stimuli. Additionally, compared with female LMAs, male LMAs had similar numbers (21 ± 1 vs. 20 ± 2, P > 0.05) and diameters (30.5 ± 2.0 vs. 26.2 ± 0.6 μm, P > 0.05), and no sex difference was detected in the diameter of arterial segments of circle of Willis. Together, our data establish no sex difference of cerebral collateral structure or function, suggesting that the reduced severity of stroke outcome in female rats is not likely due to differences in the cerebral collateral circulation. NEW & NOTEWORTHY Our work compared the function of leptomeningeal anastomoses between male and female adult normotensive rats with no sex difference found. We also confirmed no sex difference in primary and pial collateral structure in Wistar rats. Our findings suggest that the reduced severity of stroke in premenopausal women and reproductively intact female rodents is not likely due to improved primary and pial collateral circulations.
Collapse
Affiliation(s)
- Zhaojin Li
- Department of Neurological Sciences, University of Vermont Robert Larner College of Medicine , Burlington, Vermont
| | - Sarah M Tremble
- Department of Neurological Sciences, University of Vermont Robert Larner College of Medicine , Burlington, Vermont
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont Robert Larner College of Medicine , Burlington, Vermont.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Robert Larner College of Medicine , Burlington, Vermont.,Department of Pharmacology, University of Vermont Robert Larner College of Medicine , Burlington, Vermont
| |
Collapse
|
20
|
Cipolla MJ, Linfante I, Abuchowski A, Jubin R, Chan SL. Pharmacologically increasing collateral perfusion during acute stroke using a carboxyhemoglobin gas transfer agent (Sanguinate™) in spontaneously hypertensive rats. J Cereb Blood Flow Metab 2018; 38:755-766. [PMID: 28436705 PMCID: PMC5987934 DOI: 10.1177/0271678x17705567] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Similar to patients with chronic hypertension, spontaneously hypertensive rats (SHR) develop fast core progression during middle cerebral artery occlusion (MCAO) resulting in large final infarct volumes. We investigated the effect of Sanguinate™ (SG), a PEGylated carboxyhemoglobin (COHb) gas transfer agent, on changes in collateral and reperfusion cerebral blood flow and brain injury in SHR during 2 h of MCAO. SG (8 mL/kg) or vehicle ( n = 6-8/group) was infused i.v. after 30 or 90 min of ischemia with 2 h reperfusion. Multi-site laser Doppler probes simultaneously measured changes in core MCA and collateral flow during ischemia and reperfusion using a validated method. Brain injury was measured using TTC. Animals were anesthetized with choral hydrate. Collateral flow changed little in vehicle-treated SHR during ischemia (-8 ± 9% vs. prior to infusion) whereas flow increased in SG-treated animals (29 ± 10%; p < 0.05). In addition, SG improved reperfusion regardless of time of treatment; however, brain injury was smaller only with early treatment in SHR vs. vehicle (28.8 ± 3.2% vs. 18.8 ± 2.3%; p < 0.05). Limited collateral flow in SHR during MCAO is consistent with small penumbra and large infarction. The ability to increase collateral flow in SHR with SG suggests that this compound may be useful as an adjunct to endovascular therapy and extend the time window for treatment.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- 1 Department of Neurological Sciences and Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| | - Italo Linfante
- 2 Miami Cardiac and Vascular Institute and Neuroscience Center, Baptist Hospital, Miami, FL, USA
| | - Abe Abuchowski
- 3 Prolong Pharmaceuticals, LLC, South Plainfield, NJ, USA
| | - Ronald Jubin
- 3 Prolong Pharmaceuticals, LLC, South Plainfield, NJ, USA
| | - Siu-Lung Chan
- 1 Department of Neurological Sciences and Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
21
|
Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A. Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Compr Physiol 2018; 8:773-799. [PMID: 29687902 DOI: 10.1002/cphy.c170019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic diseases including obesity, insulin resistance, and diabetes have profound effects on cerebral circulation. These diseases not only affect the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression but also alter the physiology of blood vessels resulting in compromised myogenic reactivity, neurovascular uncoupling, and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain rapidly occur. This overview is organized into sections describing cerebrovascular architecture, physiology, and BBB in these diseases. In each section, we review these properties starting with larger arteries moving into smaller vessels. Where information is available, we review in the order of obesity, insulin resistance, and diabetes. We also tried to include information on biological variables such as the sex of the animal models noted since most of the information summarized was obtained using male animals. © 2018 American Physiological Society. Compr Physiol 8:773-799, 2018.
Collapse
Affiliation(s)
- Maha Coucha
- South University, School of Pharmacy, Savannah, Georgia, USA
| | | | - Rebecca Ward
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yasir Abdul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
22
|
Kristiansen SB, Haanes KA, Sheykhzade M, Edvinsson L. Endothelin receptor mediated Ca 2+ signaling in coronary arteries after experimentally induced ischemia/reperfusion injury in rat. J Mol Cell Cardiol 2017; 111:1-9. [DOI: 10.1016/j.yjmcc.2017.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
|
23
|
Li Y, Pagano PJ. Microvascular NADPH oxidase in health and disease. Free Radic Biol Med 2017; 109:33-47. [PMID: 28274817 PMCID: PMC5482368 DOI: 10.1016/j.freeradbiomed.2017.02.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
The systemic and cerebral microcirculation contribute critically to regulation of local and global blood flow and perfusion pressure. Microvascular dysfunction, commonly seen in numerous cardiovascular pathologies, is associated with alterations in the oxidative environment including potentiated production of reactive oxygen species (ROS) and subsequent activation of redox signaling pathways. NADPH oxidases (Noxs) are a primary source of ROS in the vascular system and play a central role in cardiovascular health and disease. In this review, we focus on the roles of Noxs in ROS generation in resistance arterioles and capillaries, and summarize their contributions to microvascular physiology and pathophysiology in both systemic and cerebral microcirculation. In light of the accumulating evidence that Noxs are pivotal players in vascular dysfunction of resistance arterioles, selectively targeting Nox isozymes could emerge as a novel and effective therapeutic strategy for preventing and treating microvascular diseases.
Collapse
Affiliation(s)
- Yao Li
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Spray S, Johansson SE, Radziwon-Balicka A, Haanes KA, Warfvinge K, Povlsen GK, Kelly PAT, Edvinsson L. Enhanced contractility of intraparenchymal arterioles after global cerebral ischaemia in rat - new insights into the development of delayed cerebral hypoperfusion. Acta Physiol (Oxf) 2017; 220:417-431. [PMID: 27864916 DOI: 10.1111/apha.12834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/11/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
AIM Delayed cerebral hypoperfusion is a secondary complication found in the days after transient global cerebral ischaemia that worsens the ischaemic damage inflicted by the initial transient episode of global cerebral ischaemia. A recent study demonstrated increased cerebral vasoconstriction in the large arteries on the brain surface (pial arteries) after global cerebral ischaemia. However, smaller arterioles inside the brain (parenchymal arterioles) are equally important in the regulation of cerebral blood flow and yet their pathophysiology after global cerebral ischaemia is largely unknown. Therefore, we investigated whether increased contractility occurs in the intraparenchymal arterioles. METHODS Global cerebral ischaemia was induced in male Wistar rats by bilateral common carotid occlusion for 15 min combined with hypovolaemia. Regional cerebral blood flow was determined by quantitative autoradiography. Intraparenchymal arterioles were isolated and pressurized, and concentration-response curves to endothelin-1 with and without the endothelin B receptor-selective antagonist BQ788 was generated. Endothelin B receptor expression was investigated by quantitative flow cytometry and immunohistochemistry. RESULTS We observed increased endothelin-1-mediated contractility of parenchymal arterioles correlating with reduced cerebral blood flow of the cortex, hippocampus and caudate nucleus 48 h after global cerebral ischaemia. The increased endothelin-1-mediated contractility was abolished by BQ788, and the vascular smooth muscle cell-specific expression of endothelin B receptors was significantly increased after global cerebral ischaemia. CONCLUSION Increased endothelin-1-mediated contractility and expression of endothelin B receptors in the intraparenchymal vasculature contributes to the development of delayed cerebral hypoperfusion after global cerebral ischaemia in combination with vascular changes of the pial vasculature.
Collapse
Affiliation(s)
- S. Spray
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - S. E. Johansson
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - A. Radziwon-Balicka
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - K. A. Haanes
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - K. Warfvinge
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University Hospital; Lund Sweden
| | - G. K. Povlsen
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - P. A. T. Kelly
- Centre for Cognitive and Neural System; University of Edinburgh; Edinburgh UK
| | - L. Edvinsson
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University Hospital; Lund Sweden
| |
Collapse
|
25
|
Cipolla MJ, Sweet JG, Chan SL. Effect of hypertension and peroxynitrite decomposition with FeTMPyP on CBF and stroke outcome. J Cereb Blood Flow Metab 2017; 37:1276-1285. [PMID: 27317653 PMCID: PMC5453450 DOI: 10.1177/0271678x16654158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated the effect of peroxynitrite decomposition catalyst FeTMPyP treatment on perfusion deficit, vascular function and stroke outcome in Wistar ( n = 26) and spontaneously hypertensive rats stroke-prone (SHRSP; n = 26) that underwent tMCAO for 2 h or Sham operation. Peri-infarct CBF was measured by hydrogen clearance in the absence or presence of FeTMPyP (10 mg/kg, i.v.) or vehicle 10 min before reperfusion. Myogenic tone of parenchymal arterioles (PAs) was measured as an indication of small vessel resistance (SVR). Baseline CBF was similar between Wistar and SHRSP (114 ± 12 vs. 132 ± 9 mL/100 g/min); however, MCAO caused greater perfusion deficit in SHRSP (24 ± 6 vs. 7 ± 1 mL/100 g/min; p < 0.05) and increased infarct volume by TTC (12 ± 6 vs. 32 ± 2%; p < 0.05). Reperfusion CBF was decreased from baseline in both SHRSP and Wistar (54 ± 16 and 46 ± 19 mL/100 g/min; p < 0.05), suggesting increased infarction in SHRSP was related to greater perfusion deficit. PAs from SHRSP had increased tone vs. Wistar that was enhanced after tMCAO. FeTMPyP treatment did not affect CBF during ischemia or reperfusion, or tone of PAs, but decreased the incidence of hemorrhage in SHRSP by 50%. Thus, increased tone in PAs from SHRSP could increase perfusion deficit during MCAO that was not alleviated by FeTMPyP.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| | - Julie G Sweet
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| | - Siu-Lung Chan
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
26
|
|
27
|
Ahnstedt H, Sweet J, Cruden P, Bishop N, Cipolla MJ. Effects of Early Post-Ischemic Reperfusion and tPA on Cerebrovascular Function and Nitrosative Stress in Female Rats. Transl Stroke Res 2016; 7:228-38. [PMID: 27125535 DOI: 10.1007/s12975-016-0468-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 01/13/2023]
Abstract
Stroke is a major health issue in women. Our previous studies in male rats showed decreased myogenic tone in middle cerebral arteries (MCAs) after ischemia and reperfusion (I/R), while tone in parenchymal arterioles (PAs) was increased. This vascular response may aggravate stroke damage in males by limiting reperfusion; however, the effect in females is not known. The current study investigated the effect of I/R and tissue plasminogen activator (tPA) on myogenic tone and reactivity of MCAs and PAs in female rats. Nitrosative stress by peroxynitrite and recruitment of inflammatory neutrophils to the microvasculature were also studied. Female rats were subjected to 2-h MCA filament occlusion (n = 16) or sham surgery (n = 17) and given tPA (1 mg/kg, i.v) or vehicle followed by 30-min reperfusion. Myogenic tone and reactivity were measured in isolated and pressurized MCAs and PAs from the same animals. Cerebrovascular F-actin, 3-nitrotyrosine (3-NT, peroxynitrite marker), and intravascular neutrophils were quantified. Myogenic tone and constriction to the nitric oxide synthase inhibitor Nω-nitro-L-arginine were decreased in MCAs but unchanged in PAs after I/R with no effect of tPA. F-actin and 3-NT expression were unaffected by I/R or tPA. Our study showed that MCAs from females, similar to what has been seen in males, are dilated after I/R and have decreased myogenic tone while tone in PAs was unchanged. Increased small vessel resistance may contribute to decreased reperfusion and worse outcome after stroke.
Collapse
Affiliation(s)
- Hilda Ahnstedt
- Department of Neurological Sciences, University of Vermont College of Medicine, HSRF 416A, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Julie Sweet
- Department of Neurological Sciences, University of Vermont College of Medicine, HSRF 416A, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Patrick Cruden
- Department of Neurological Sciences, University of Vermont College of Medicine, HSRF 416A, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Nicole Bishop
- Department of Neurological Sciences, University of Vermont College of Medicine, HSRF 416A, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont College of Medicine, HSRF 416A, 149 Beaumont Avenue, Burlington, VT, 05405, USA. .,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA.
| |
Collapse
|
28
|
Clark JW. On the roles of vascular smooth muscle contraction in cerebral blood flow autoregulation - a modeling perspective. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:7796-9. [PMID: 26738100 DOI: 10.1109/embc.2015.7320200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We here review existing models of vascular smooth muscle cell, endothelial cell and cell-cell communication, which have been developed to better understand vascular tone and blood flow autoregulation. In particular, we discuss models that intended to explain modulation of myogenic tone by intraluminal pressure in resistance arterioles. Modeling efforts in the recent past have witnessed a shift from empirical models to models with mechanistic details that underscore different physical aspects of vascular regulation. Future models should synthesize mechanistic interactions in a hierarchy, from molecular regulation of ion channels to whole organ blood flow control.
Collapse
|
29
|
Beard DJ, McLeod DD, Logan CL, Murtha LA, Imtiaz MS, van Helden DF, Spratt NJ. Intracranial pressure elevation reduces flow through collateral vessels and the penetrating arterioles they supply. A possible explanation for 'collateral failure' and infarct expansion after ischemic stroke. J Cereb Blood Flow Metab 2015; 35:861-72. [PMID: 25669909 PMCID: PMC4420869 DOI: 10.1038/jcbfm.2015.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 01/09/2023]
Abstract
Recent human imaging studies indicate that reduced blood flow through pial collateral vessels ('collateral failure') is associated with late infarct expansion despite stable arterial occlusion. The cause for 'collateral failure' is unknown. We recently showed that intracranial pressure (ICP) rises dramatically but transiently 24 hours after even minor experimental stroke. We hypothesized that ICP elevation would reduce collateral blood flow. First, we investigated the regulation of flow through collateral vessels and the penetrating arterioles arising from them during stroke reperfusion. Wistar rats were subjected to intraluminal middle cerebral artery (MCA) occlusion (MCAo). Individual pial collateral and associated penetrating arteriole blood flow was quantified using fluorescent microspheres. Baseline bidirectional flow changed to MCA-directed flow and increased by >450% immediately after MCAo. Collateral diameter changed minimally. Second, we determined the effect of ICP elevation on collateral and watershed penetrating arteriole flow. Intracranial pressure was artificially raised in stepwise increments during MCAo. The ICP increase was strongly correlated with collateral and penetrating arteriole flow reductions. Changes in collateral flow post-stroke appear to be primarily driven by the pressure drop across the collateral vessel, not vessel diameter. The ICP elevation reduces cerebral perfusion pressure and collateral flow, and is the possible explanation for 'collateral failure' in stroke-in-progression.
Collapse
Affiliation(s)
- Daniel J Beard
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Damian D McLeod
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Caitlin L Logan
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lucy A Murtha
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Mohammad S Imtiaz
- 1] School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia [2] Computational Cardiology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Neil J Spratt
- 1] School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia [2] Department of Neurology, John Hunter Hospital, Hunter New England Local Health District, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
30
|
Durgan DJ, Crossland RF, Lloyd EE, Phillips SC, Bryan RM. Increased cerebrovascular sensitivity to endothelin-1 in a rat model of obstructive sleep apnea: a role for endothelin receptor B. J Cereb Blood Flow Metab 2015; 35:402-11. [PMID: 25425077 PMCID: PMC4348382 DOI: 10.1038/jcbfm.2014.214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/30/2014] [Accepted: 11/05/2014] [Indexed: 11/09/2022]
Abstract
Obstructive sleep apnea (OSA) is associated with cerebrovascular diseases. However, little is known regarding the effects of OSA on the cerebrovascular wall. We tested the hypothesis that OSA augments endothelin-1 (ET-1) constrictions of cerebral arteries. Repeated apneas (30 or 60 per hour) were produced in rats during the sleep cycle (8 hours) by remotely inflating a balloon implanted in the trachea. Four weeks of apneas produced a 23-fold increase in ET-1 sensitivity in isolated and pressurized posterior cerebral arteries (PCAs) compared with PCAs from sham-operated rats (EC50=10(-9.2) mol/L versus 10(-10.6) mol/L; P<0.001). This increased sensitivity was abolished by the ET-B receptor antagonist, BQ-788. Constrictions to the ET-B receptor agonist, IRL-1620, were greater in PCAs from rats after 2 or 4 weeks of apneas compared with that from sham-operated rats (P=0.013). Increased IRL-1620 constrictions in PCAs from OSA rats were normalized with the transient receptor potential channel (TRPC) blocker, SKF96365, or the Rho kinase (ROCK) inhibitor, Y27632. These data show that OSA increases the sensitivity of PCAs to ET-1 through enhanced ET-B activity, and enhanced activity of TRPCs and ROCK. We conclude that enhanced ET-1 signaling is part of a pathologic mechanism associated with adverse cerebrovascular outcomes of OSA.
Collapse
Affiliation(s)
- David J Durgan
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas, USA
| | - Randy F Crossland
- 1] Department of Anesthesiology, Baylor College of Medicine, Houston, Texas, USA [2] Department of Molecular Physiology and Biophysics (Graduate Program in Cardiovascular Sciences), Baylor College of Medicine, Houston, Texas, USA
| | - Eric E Lloyd
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sharon C Phillips
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert M Bryan
- 1] Department of Anesthesiology, Baylor College of Medicine, Houston, Texas, USA [2] Department of Molecular Physiology and Biophysics (Graduate Program in Cardiovascular Sciences), Baylor College of Medicine, Houston, Texas, USA [3] Department of Medicine (Cardiovascular Sciences), Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
31
|
Bickford JS, Ali NF, Nick JA, Al-Yahia M, Beachy DE, Doré S, Nick HS, Waters MF. Endothelin-1-mediated vasoconstriction alters cerebral gene expression in iron homeostasis and eicosanoid metabolism. Brain Res 2014; 1588:25-36. [PMID: 25230250 DOI: 10.1016/j.brainres.2014.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/21/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
Abstract
Endothelins are potent vasoconstrictors and signaling molecules. Their effects are broad, impacting processes ranging from neurovascular and cardiovascular health to cell migration and survival. In stroke, traumatic brain injury or subarachnoid hemorrhage, endothelin-1 (ET-1) is induced resulting in cerebral vasospasm, ischemia, reperfusion and the activation of various pathways. Given the central role that ET-1 plays in these patients and to identify the downstream molecular events specific to transient vasoconstriction, we studied the consequences of ET-1-mediated vasoconstriction of the middle cerebral artery in a rat model. Our observations demonstrate that ET-1 can lead to increases in gene expression, including genes associated with the inflammatory response (Ifnb, Il6, Tnf) and oxidative stress (Hif1a, Myc, Sod2). We also observed inductions (>2 fold) of genes involved in eicosanoid biosynthesis (Pla2g4a, Pla2g4b, Ptgs2, Ptgis, Alox12, Alox15), heme metabolism (Hpx, Hmox1, Prdx1) and iron homeostasis (Hamp, Tf). Our findings demonstrate that mRNA levels for the hormone hepcidin (Hamp) are induced in the brain in response to ET-1, providing a novel target in the treatment of multiple conditions. These changes on the ipsilateral side were also accompanied by corresponding changes in a subset of genes in the contralateral hemisphere. Understanding ET-1-mediated events at the molecular level may lead to better treatments for neurological diseases and provide significant impact on neurological function, morbidity and mortality.
Collapse
Affiliation(s)
- Justin S Bickford
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Departments of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Narjis F Ali
- Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA
| | - Jerelyn A Nick
- Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA
| | - Musab Al-Yahia
- Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA
| | - Dawn E Beachy
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Harry S Nick
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Departments of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Michael F Waters
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA.
| |
Collapse
|
32
|
Cipolla MJ, Chan SL, Sweet J, Tavares MJ, Gokina N, Brayden JE. Postischemic reperfusion causes smooth muscle calcium sensitization and vasoconstriction of parenchymal arterioles. Stroke 2014; 45:2425-30. [PMID: 24968928 DOI: 10.1161/strokeaha.114.005888] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Parenchymal arterioles (PAs) are high-resistance vessels in the brain that connect pial vessels to the microcirculation. We previously showed that PAs have increased vasoconstriction after ischemia and reperfusion that could increase perfusion deficit. Here, we investigated underlying mechanisms by which early postischemic reperfusion causes increased vasoconstriction of PAs. METHODS Isolated and pressurized PAs from within the middle cerebral artery territory were studied in male Wistar rats that were either nonischemic control (n=34) or after exposure to transient middle cerebral artery occlusion (MCAO) by filament occlusion for 2 hours with 30 minutes of reperfusion (MCAO; n=38). The relationships among pressure-induced tone, smooth muscle calcium (using Fura 2), and membrane potential were determined. Sensitivity of the contractile apparatus to calcium was measured in permeabilized arterioles using Staphylococcus aureus α-toxin. Reactivity to inhibition of transient receptor potential melastanin receptor type 4 (9-phenanthrol), Rho kinase (Y27632), and protein kinase C (Gö6976) was also measured. RESULTS After MCAO, PAs had increased myogenic tone compared with controls (47±2% versus 35±2% at 40 mm Hg; P<0.01), without an increase in smooth muscle calcium (177±21 versus 201±16 nmol/L; P>0.05) or membrane depolarization (-38±4 versus -36±1 mV; P>0.05). In α-toxin-permeabilized vessels, MCAO caused increased sensitivity of the contractile apparatus to calcium. MCAO did not affect dilation to transient receptor potential melastanin receptor type 4 or protein kinase C inhibition but diminished dilation to Rho kinase inhibition. CONCLUSIONS The increased vasoconstriction of PAs during early postischemic reperfusion seems to be due to calcium sensitization of smooth muscle and could contribute to infarct expansion and limit neuroprotective agents from reaching their target tissue.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- From the Department of Neurological Sciences (M.J.C., S.-L.C., J.S.), Department of Pharmacology (M.J.C., M.J.T., J.E.B.), and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont, Burlington (M.J.C., N.G.).
| | - Siu-Lung Chan
- From the Department of Neurological Sciences (M.J.C., S.-L.C., J.S.), Department of Pharmacology (M.J.C., M.J.T., J.E.B.), and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont, Burlington (M.J.C., N.G.)
| | - Julie Sweet
- From the Department of Neurological Sciences (M.J.C., S.-L.C., J.S.), Department of Pharmacology (M.J.C., M.J.T., J.E.B.), and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont, Burlington (M.J.C., N.G.)
| | - Matthew J Tavares
- From the Department of Neurological Sciences (M.J.C., S.-L.C., J.S.), Department of Pharmacology (M.J.C., M.J.T., J.E.B.), and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont, Burlington (M.J.C., N.G.)
| | - Natalia Gokina
- From the Department of Neurological Sciences (M.J.C., S.-L.C., J.S.), Department of Pharmacology (M.J.C., M.J.T., J.E.B.), and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont, Burlington (M.J.C., N.G.)
| | - Joseph E Brayden
- From the Department of Neurological Sciences (M.J.C., S.-L.C., J.S.), Department of Pharmacology (M.J.C., M.J.T., J.E.B.), and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont, Burlington (M.J.C., N.G.)
| |
Collapse
|
33
|
Cipolla MJ, Sweet J, Chan SL, Tavares MJ, Gokina N, Brayden JE. Increased pressure-induced tone in rat parenchymal arterioles vs. middle cerebral arteries: role of ion channels and calcium sensitivity. J Appl Physiol (1985) 2014; 117:53-9. [PMID: 24790017 DOI: 10.1152/japplphysiol.00253.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Brain parenchymal arterioles (PAs) are high-resistance vessels that branch off pial arteries and perfuse the brain parenchyma. PAs are the target of cerebral small vessel disease and have been shown to have greater pressure-induced tone at lower pressures than pial arteries. We investigated mechanisms by which brain PAs have increased myogenic tone compared with middle cerebral arteries (MCAs), focusing on differences in vascular smooth muscle (VSM) calcium and ion channel function. The amount of myogenic tone and VSM calcium was measured using Fura 2 in isolated and pressurized PAs and MCAs. Increases in intraluminal pressure caused larger increases in tone and cytosolic calcium in PAs compared with MCAs. At 50 mmHg, myogenic tone was 37 ± 5% for PAs vs. 6.5 ± 4% for MCAs (P < 0.01), and VSM calcium was 200 ± 20 nmol/l in PAs vs. 104 ± 15 nmol/l in MCAs (P < 0.01). In vessels permeabilized with Staphylococcus aureus α-toxin, PAs were not more sensitive to calcium, suggesting calcium sensitization was not at the level of the contractile apparatus. PAs were 30-fold more sensitive to the voltage-dependent calcium channel (VDCC) inhibitor nifedipine than MCAs (EC50 for PAs was 3.5 ± 0.4 vs. 82.1 ± 2.1 nmol/l for MCAs;P < 0.01); however, electrophysiological properties of the VDCC were not different in VSM. PAs had little to no response to the calcium-activated potassium channel inhibitor iberiotoxin, whereas MCAs constricted ∼15%. Thus increased myogenic tone in PAs appears related to differences in ion channel activity that promotes VSM membrane depolarization but not to a direct sensitization of the contractile apparatus to calcium.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont; Department of Pharmacology, University of Vermont, Burlington, Vermont; and Department of Obstetrics, Gynecology & Reproductive Sciences, University of Vermont, Burlington, Vermont
| | - Julie Sweet
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Siu-Lung Chan
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Matthew J Tavares
- Department of Pharmacology, University of Vermont, Burlington, Vermont; and
| | - Natalia Gokina
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Vermont, Burlington, Vermont
| | - Joseph E Brayden
- Department of Pharmacology, University of Vermont, Burlington, Vermont; and
| |
Collapse
|
34
|
Effect of diet-induced obesity on BKCa function in contraction and dilation of rat isolated middle cerebral artery. Vascul Pharmacol 2014; 61:10-5. [DOI: 10.1016/j.vph.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 01/09/2023]
|
35
|
Durgan DJ, Bryan RM. The same but different. J Cereb Blood Flow Metab 2013; 33:1485. [PMID: 23778165 PMCID: PMC3790921 DOI: 10.1038/jcbfm.2013.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 11/09/2022]
|