1
|
Sharma P, Hasan MR, Naikoo UM, Khatoon S, Pilloton R, Narang J. Aptamer Based on Silver Nanoparticle-Modified Flexible Carbon Ink Printed Electrode for the Electrochemical Detection of Chikungunya Virus. BIOSENSORS 2024; 14:344. [PMID: 39056620 PMCID: PMC11274990 DOI: 10.3390/bios14070344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Medical devices have progressed from their initial bulky forms to smart devices. However, their rigidity hampers their seamless integration into everyday life. The fields of stretchable, textile, and flexible electronics are emerging research areas with the potential to drive significant technological progress. This research presents a laboratory-based technique to produce highly sensitive and flexible biosensors for detecting the chikungunya virus. These biosensors are based on 0D nanomaterials and demonstrate significant advancements in voltammetry. The electrochemical platform was created utilizing the stencil printing (StPE) technique. Adapting the biosensor setup involved the selection of aptamer as the biorecognition element bound with silver nanoparticles (AgNPs). This biosensor was employed in the voltammetric identification of the Chikungunya virus antigen (CHIKV-Ag) within a solution containing 0.5 mM potassium ferro/ferri cyanide, a redox pair. The biosensor was employed to evaluate CHIKV-Ag within a human serum sample. It demonstrated a linear detection span ranging from 0.1 ng/mL to 1 μg/mL, with a detection limit of 0.1 ng/mL for CHIKV-Ag. The proposed approach, due to its flexibility in production and the electrocatalytic attributes displayed by the zero-dimensional nanostructure, presents innovative opportunities for cost-effective and tailored aptamer-based bioelectronics, thereby broadening the scope of this domain.
Collapse
Affiliation(s)
- Pradakshina Sharma
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (P.S.); (M.R.H.); (U.M.N.); (S.K.)
| | - Mohd. Rahil Hasan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (P.S.); (M.R.H.); (U.M.N.); (S.K.)
| | - Ubaid Mushtaq Naikoo
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (P.S.); (M.R.H.); (U.M.N.); (S.K.)
| | - Shaheen Khatoon
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (P.S.); (M.R.H.); (U.M.N.); (S.K.)
| | - Roberto Pilloton
- Institute of Crystallography, National Research Council, 00143 Rome, Italy
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (P.S.); (M.R.H.); (U.M.N.); (S.K.)
| |
Collapse
|
2
|
Ahmad A, Imran M, Ahsan H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023; 15:1630. [PMID: 37376078 DOI: 10.3390/pharmaceutics15061630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
A biomarker is any measurable biological moiety that can be assessed and measured as a potential index of either normal or abnormal pathophysiology or pharmacological responses to some treatment regimen. Every tissue in the body has a distinct biomolecular make-up, which is known as its biomarkers, which possess particular features, viz., the levels or activities (the ability of a gene or protein to carry out a particular body function) of a gene, protein, or other biomolecules. A biomarker refers to some feature that can be objectively quantified by various biochemical samples and evaluates the exposure of an organism to normal or pathological procedures or their response to some drug interventions. An in-depth and comprehensive realization of the significance of these biomarkers becomes quite important for the efficient diagnosis of diseases and for providing the appropriate directions in case of multiple drug choices being presently available, which can benefit any patient. Presently, advancements in omics technologies have opened up new possibilities to obtain novel biomarkers of different types, employing genomic strategies, epigenetics, metabolomics, transcriptomics, lipid-based analysis, protein studies, etc. Particular biomarkers for specific diseases, their prognostic capabilities, and responses to therapeutic paradigms have been applied for screening of various normal healthy, as well as diseased, tissue or serum samples, and act as appreciable tools in pharmacology and therapeutics, etc. In this review, we have summarized various biomarker types, their classification, and monitoring and detection methods and strategies. Various analytical techniques and approaches of biomarkers have also been described along with various clinically applicable biomarker sensing techniques which have been developed in the recent past. A section has also been dedicated to the latest trends in the formulation and designing of nanotechnology-based biomarker sensing and detection developments in this field.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
3
|
Singh S, Arshid N, Cinti S. Electrochemical nano biosensors for the detection of extracellular vesicles exosomes: From the benchtop to everywhere? Biosens Bioelectron 2022; 216:114635. [PMID: 35988430 DOI: 10.1016/j.bios.2022.114635] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
Detection of extracellular vesicles (EVs) exosomes is a challenge to address the need for better diagnostic tests and to create a point-of-care (POC) platform that can detect, monitor and treat health conditions early to allow personalized therapies. A multidisciplinary approach is needed to address these health-related technical issues. Over the past decade, materials scientists and engineers have worked on the same platform to develop flexible, lightweight, miniaturized, and integrated POC devices for exosome detection. Therefore, exosome detection based on various nanomaterials is of particular interest. In this paper, we describe the current state of knowledge on 0D-3D nanostructured materials and present a POC-based technique for exosome detection. Finally, the challenges that need to be solved to expand their clinical application are discussed.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmacy, University of Naples 'Federico II', Via D. Montesano 49, 80131, Naples, Italy
| | - Numan Arshid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Stefano Cinti
- Department of Pharmacy, University of Naples 'Federico II', Via D. Montesano 49, 80131, Naples, Italy; BAT Center- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055, Naples, Italy.
| |
Collapse
|
4
|
Lin WY, Chen CH, Lee MY. Design and Implementation of a Wearable Accelerometer-Based Motion/Tilt Sensing Internet of Things Module and Its Application to Bed Fall Prevention. BIOSENSORS 2021; 11:bios11110428. [PMID: 34821644 PMCID: PMC8615976 DOI: 10.3390/bios11110428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Accelerometer-based motion sensing has been extensively applied to fall detection. However, such applications can only detect fall accidents; therefore, a system that can prevent fall accidents is desirable. Bed falls account for more than half of patient falls and are preceded by a clear warning indicator: the patient attempting to get out of bed. This study designed and implemented an Internet of Things module, namely, Bluetooth low-energy-enabled Accelerometer-based Sensing In a Chip-packaging (BASIC) module, with a tilt-sensing algorithm based on the patented low-complexity COordinate Rotation DIgital Computer (CORDIC)-based algorithm for tilt angle conversions. It is applied for detecting the postural changes (from lying down to sitting up) and to protect individuals at a high risk of bed falls by prompting caregivers to take preventive actions and assist individuals trying to get up. This module demonstrates how motion and tilt sensing can be applied to bed fall prevention. The module can be further miniaturized or integrated into a wearable device and commercialized in smart health-care applications for bed fall prevention in hospitals and homes.
Collapse
Affiliation(s)
- Wen-Yen Lin
- Center for Biomedical Engineering, Department of Electrical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33302, Taiwan;
| | - Chien-Hung Chen
- Graduate Institute of Biomedical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan;
| | - Ming-Yih Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33302, Taiwan;
- Graduate Institute of Biomedical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan;
| |
Collapse
|
5
|
Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A. Biological Nanofactories: Using Living Forms for Metal Nanoparticle Synthesis. Mini Rev Med Chem 2021; 21:245-265. [PMID: 33198616 DOI: 10.2174/1389557520999201116163012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Metal nanoparticles are nanosized entities with dimensions of 1-100 nm that are increasingly in demand due to applications in diverse fields like electronics, sensing, environmental remediation, oil recovery and drug delivery. Metal nanoparticles possess large surface energy and properties different from bulk materials due to their small size, large surface area with free dangling bonds and higher reactivity. High cost and pernicious effects associated with the chemical and physical methods of nanoparticle synthesis are gradually paving the way for biological methods due to their eco-friendly nature. Considering the vast potentiality of microbes and plants as sources, biological synthesis can serve as a green technique for the synthesis of nanoparticles as an alternative to conventional methods. A number of reviews are available on green synthesis of nanoparticles but few have focused on covering the entire biological agents in this process. Therefore present paper describes the use of various living organisms like bacteria, fungi, algae, bryophytes and tracheophytes in the biological synthesis of metal nanoparticles, the mechanisms involved and the advantages associated therein.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | | | - Ahmed M Abdel-Azeem
- Botany Department, Faculty of Science, University of Suez Canal, Ismailia, Egypt
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Govind Gupta
- Sage School of Agriculture, Sage University, Bhopal, India
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|
6
|
Ștefan G, Hosu O, De Wael K, Lobo-Castañón MJ, Cristea C. Aptamers in biomedicine: Selection strategies and recent advances. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Ambaye AD, Kefeni KK, Mishra SB, Nxumalo EN, Ntsendwana B. Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors. Talanta 2021; 225:121951. [DOI: 10.1016/j.talanta.2020.121951] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023]
|
8
|
Jannu Vinay Gopal, Reddy MJK, Kannabiran K. Immobilization of an Antibacterial Compound from Streptomyces sp. onto Multi-Walled Carbon Nanotubes. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Cho YW, Park JH, Lee KH, Lee T, Luo Z, Kim TH. Recent advances in nanomaterial-modified electrical platforms for the detection of dopamine in living cells. NANO CONVERGENCE 2020; 7:40. [PMID: 33351161 PMCID: PMC7755953 DOI: 10.1186/s40580-020-00250-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/10/2020] [Indexed: 05/28/2023]
Abstract
Dopamine is a key neurotransmitter that plays essential roles in the central nervous system, including motor control, motivation, arousal, and reward. Thus, abnormal levels of dopamine directly cause several neurological diseases, including depressive disorders, addiction, and Parkinson's disease (PD). To develop a new technology to treat such diseases and disorders, especially PD, which is currently incurable, dopamine release from living cells intended for transplantation or drug screening must be precisely monitored and assessed. Owing to the advantages of miniaturisation and rapid detection, numerous electrical techniques have been reported, mostly in combination with various nanomaterials possessing specific nanoscale geometries. This review highlights recent advances in electrical biosensors for dopamine detection, with a particular focus on the use of various nanomaterials (e.g., carbon-based materials, hybrid gold nanostructures, metal oxides, and conductive polymers) on electrode surfaces to improve both sensor performance and biocompatibility. We conclude that this review will accelerate the development of electrical biosensors intended for the precise detection of metabolite release from living cells, which will ultimately lead to advances in therapeutic materials and techniques to cure various neurodegenerative disorders.
Collapse
Affiliation(s)
- Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kwang-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, 01899, Seoul, Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, China
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
- Integrative Research Center for Two-dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
10
|
Byun J, Cho S, Moon J, Kim H, Kang H, Jung J, Lim EK, Jeong J, Park HG, Cho WK, Kang T. Zwitterionic Polydopamine/Protein G Coating for Antibody Immobilization: Toward Suppression of Nonspecific Binding in Immunoassays. ACS APPLIED BIO MATERIALS 2020; 3:3631-3639. [PMID: 35025233 DOI: 10.1021/acsabm.0c00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
For the development of immunoassays into sophisticated analyte-sensing methods, it is a priority to suppress nonspecific binding in immunoassays. Herein, we report a one-step surface coating method that can not only optimally immobilize antibodies but also suppress nonspecific binding. Zwitterionic dopamine (ZW-DOPA) exhibits distinct antifouling performance, and protein G enables an antibody to have an optimal orientation. A mixture of ZW-DOPA and protein G can be simply coated onto various kinds of surfaces, and the antibody can be immobilized onto the ZW-DOPA/protein G-coated surfaces. The antifouling property of the zwitterionic group, surface-independent coating property of the catechol and amine groups, and antibody-retaining property of protein G synergistically contribute to surface-independent and oriented immobilization of antibodies without nonspecific binding. The surface characteristics of ZW-DOPA/protein G-coated substrates were analyzed by X-ray photoelectron spectroscopy, contact angle goniometry, atomic force microscopy, and ellipsometry. Importantly, the ZW-DOPA/protein G-coated substrates showed high resistance to nonspecific protein adhesion. We also verified that antibodies could be immobilized onto ZW-DOPA/protein G-coated substrates using fluorescence and biolayer interferometry systems. Finally, ZW-DOPA/protein G-coated substrates were employed as immune substrates for influenza virus detection via the naked eye and surface-enhanced Raman scattering, allowing us to efficiently identify the virus. It is anticipated that the developed ZW-DOPA/protein G coating method will be useful for the advancement of immunoassays.
Collapse
Affiliation(s)
- Jihyun Byun
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea
| | - Soojeong Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Jeong Moon
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea.,Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Korea
| | - Hongki Kim
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea
| | - Hyunju Kang
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea.,Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea.,Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Korea
| | - Jinyoung Jeong
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Korea.,Environmental Disease Research Center, KRIBB, Daejeon 34141, Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea
| |
Collapse
|
11
|
Gupta J, Juneja S, Bhattacharya J. UV Lithography-Assisted Fabrication of Low-Cost Copper Electrodes Modified with Gold Nanostructures for Improved Analyte Detection. ACS OMEGA 2020; 5:3172-3180. [PMID: 32118133 PMCID: PMC7045309 DOI: 10.1021/acsomega.9b03125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
An in-house UV lithography setup has been optimized to fabricate low-cost disposable electrochemical sensing Cu electrodes using a copper clad board. In view of the high oxidation probability of copper, the low-cost electrodes were modified using different gold nanostructures and a conducing polymer PEDOT:PSS to attain maximal signal output and improved shelf-life. Zero-dimensional (0D) gold nanoparticles (∼40 nm) and three-dimensional (3D) gold nanoflowers (∼38 nm) mixed with PEDOT:PSS were used as signal-enhancing conductors for the ultrasensitive detection of our model contaminant, methylene blue dye (MB). The bare copper electrode was sensitive to MB, linearly within the range of 4-100 μM, with a limit of detection of 3.49 μM. While for gold nanoparticle-PEDOT:PSS-modified electrode, the sensitivity of the electrode was found to increase linearly in the range of 0.01-0.1 μM, and for gold nanoflowers-PEDOT:PSS, the sensitivity achieved was 0.01-0.1 μM with the LOD as 0.0022 μM. For a PEDOT:PSS-modified Cu electrode, used as a comparative to study the contributing role of gold nanostructures towards improved sensitivity, the linearity was found to be in the range of 0.1-1.9 μM with the LOD as 0.0228 μM. A 6 times improvement in signal sensitivity for the nanoflower-PEDOT:PSS electrode compared to the nanoparticle-PEDOT:PSS-modified electrode indicates the influence of nanoparticle shape on the electrode efficiency. 3D gold nanoflowers with a large surface area-to-volume ratio and a high catalytic activity prove to be a superior choice for electrode modification.
Collapse
Affiliation(s)
- Jagriti Gupta
- Nanobiotechnology Lab, School
of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Subhavna Juneja
- Nanobiotechnology Lab, School
of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jaydeep Bhattacharya
- Nanobiotechnology Lab, School
of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
12
|
Cervini P, Mattioli IA, Cavalheiro ÉTG. Developing a screen-printed graphite-polyurethane composite electrode modified with gold nanoparticles for the voltammetric determination of dopamine. RSC Adv 2019; 9:42306-42315. [PMID: 35542837 PMCID: PMC9076564 DOI: 10.1039/c9ra09046k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/04/2019] [Indexed: 11/21/2022] Open
Abstract
A screen-printed electrode (SPGPUE) was prepared with graphite-polyurethane composite ink containing gold nanoparticles (AuNPs), resulting in a screen-printed graphite-polyurethane composite electrode modified with gold nanoparticles (SPGPUE-AuNPs). Gold nanoparticles were prepared by the citrate method and extracted from the water medium since polyurethane is not compatible with humidity. After extraction to chloroform, they were characterized via transmission electron microscopy (TEM). The presence of gold on the SPGPUE-AuNP surface was confirmed via SEM and EDX analyses, while thermogravimetry revealed the presence of approximately 3.0% (m/m) gold in the composite. An electrochemical pretreatment in 0.10 mol L-1 phosphate buffer (pH 7.0) with successive cycling between -1.0 V and 1.0 V (vs. pseudo-Ag/AgCl) under a scan rate of 200 mV s-1 and 150 cycles was required in order to provide a suitable electrochemical response for the voltammetric determination of dopamine. After the optimization of the parameters of differential pulse voltammetry (DPV), an analytical curve was obtained within a linear dynamic range of 0.40-60.0 μmol L-1 and detection limit (LOD) of 1.55 ×10-8 mol L-1 for dopamine at the SPGPUE-AuNP. A non-modified SPGPUE was used for comparison and a linear range was obtained between 2.0 and 10 μmol L-1 with an LOD of 2.94 × 10-7 mol L-1. During the dopamine determination in cerebrospinal synthetic fluid (CSF), recoveries between 89.3 and 103% were achieved. There were no significant interferences from ascorbic acid and uric acid, but some from epinephrine due to the structural similarity.
Collapse
Affiliation(s)
- Priscila Cervini
- Instituto de Química de São Carlos, Universidade de São Paulo Av. Trabalhador São-carlense, 400 CEP 13566-590 São Carlos SP Brazil +55 16 33738054 +55 16 33738054
| | - Isabela A Mattioli
- Instituto de Química de São Carlos, Universidade de São Paulo Av. Trabalhador São-carlense, 400 CEP 13566-590 São Carlos SP Brazil +55 16 33738054 +55 16 33738054
| | - Éder T G Cavalheiro
- Instituto de Química de São Carlos, Universidade de São Paulo Av. Trabalhador São-carlense, 400 CEP 13566-590 São Carlos SP Brazil +55 16 33738054 +55 16 33738054
| |
Collapse
|
13
|
Chen Y, Wang M, Fu H, Qu X, Zhang Z, Kang F, Zhu D. Spectroscopic and molecular modeling investigation on inhibition effect of nitroaromatic compounds on acetylcholinesterase activity. CHEMOSPHERE 2019; 236:124365. [PMID: 31325829 DOI: 10.1016/j.chemosphere.2019.124365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Nitroaromatic compounds (NACs) are widely distributed in the environment and are considered toxic or carcinogenic. However, little attention has been paid to the binding interactions between NACs and biomacromolecules (e.g., proteins). Here we investigated the effects of three model NACs, nitrobenzene (NB), 1,3-dinitrobenzene (DNB), and 1,3,5-trinitrobenzene (TNB), on the activity of acetylcholinesterase (AChE). The presence of NACs (up to 0.5 mM) effectively suppressed the AChE-catalyzed hydrolysis of acetylthiocholine iodide, with the suppression effect increasing with the nitro-group substitution (TNB > DNB > NB). Consistently, the UV absorption of AChE at 206 nm arising from the skeleton structure decreased by the addition NACs, and the decrease exhibited the same compound sequence, reflecting the perturbing interactions with the skeleton enzyme structure. However, no changes were made on the secondary structure of AChE, as evidenced by the circular dichroism analysis. The fluorescence quenching analysis of AChE demonstrated that NB and DNB interacted with both tryptophan (Trp) and tyrosine (Tyr) residues, whereas TNB interacted only with Trp. The UV absorption and fluorescence quenching analyses both reflected that the interactions with the non-skeleton aromatic amino acids were weak. 1H NMR analysis confirmed the strong π-π coupling interactions between TNB and model Trp. Molecular simulation indicated that the DNB or TNB molecule was sandwiched between Trp84 and Phe330 at the catalytic site via π-π coupling interactions. The findings highlight the importance of specific interactions of NACs with proteins to cause them to malfunction.
Collapse
Affiliation(s)
- Yiqun Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Minli Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Zhaobin Zhang
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Fuxing Kang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Dongqiang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China; School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Martín-Pérez A, Ramos D, Tamayo J, Calleja M. Coherent Optical Transduction of Suspended Microcapillary Resonators for Multi-Parameter Sensing Applications. SENSORS 2019; 19:s19235069. [PMID: 31757060 PMCID: PMC6929062 DOI: 10.3390/s19235069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023]
Abstract
Characterization of micro and nanoparticle mass has become increasingly relevant in a wide range of fields, from materials science to drug development. The real-time analysis of complex mixtures in liquids demands very high mass sensitivity and high throughput. One of the most promising approaches for real-time measurements in liquid, with an excellent mass sensitivity, is the use of suspended microchannel resonators, where a carrier liquid containing the analytes flows through a nanomechanical resonator while tracking its resonance frequency shift. To this end, an extremely sensitive mechanical displacement technique is necessary. Here, we have developed an optomechanical transduction technique to enhance the mechanical displacement sensitivity of optically transparent hollow nanomechanical resonators. The capillaries have been fabricated by using a thermal stretching technique, which allows to accurately control the final dimensions of the device. We have experimentally demonstrated the light coupling into the fused silica capillary walls and how the evanescent light coming out from the silica interferes with the surrounding electromagnetic field distribution, a standing wave sustained by the incident laser and the reflected power from the substrate, modulating the reflectivity. The enhancement of the displacement sensitivity due to this interferometric modulation (two orders of magnitude better than compared with previous accomplishments) has been theoretically predicted and experimentally demonstrated.
Collapse
|
15
|
Wearable sensors for monitoring the physiological and biochemical profile of the athlete. NPJ Digit Med 2019; 2:72. [PMID: 31341957 PMCID: PMC6646404 DOI: 10.1038/s41746-019-0150-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Athletes are continually seeking new technologies and therapies to gain a competitive edge to maximize their health and performance. Athletes have gravitated toward the use of wearable sensors to monitor their training and recovery. Wearable technologies currently utilized by sports teams monitor both the internal and external workload of athletes. However, there remains an unmet medical need by the sports community to gain further insight into the internal workload of the athlete to tailor recovery protocols to each athlete. The ability to monitor biomarkers from saliva or sweat in a noninvasive and continuous manner remain the next technological gap for sports medical personnel to tailor hydration and recovery protocols per the athlete. The emergence of flexible and stretchable electronics coupled with the ability to quantify biochemical analytes and physiological parameters have enabled the detection of key markers indicative of performance and stress, as reviewed in this paper.
Collapse
|
16
|
Timchalk C, Weber TJ, Smith JN. The need for non- or minimally-invasive biomonitoring strategies and the development of pharmacokinetic/pharmacodynamic models for quantification. CURRENT OPINION IN TOXICOLOGY 2017; 4:28-34. [PMID: 35978611 PMCID: PMC9380408 DOI: 10.1016/j.cotox.2017.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Advancements in Exposure Science involving the development and deployment of biomarkers of exposure and biological response are anticipated to significantly (and positively) influence health outcomes associated with occupational, environmental and clinical exposure to chemicals/drugs. To achieve this vision, innovative strategies are needed to develop multiplex sensor platforms capable of quantifying individual and mixed exposures (i.e. systemic dose) by measuring biomarkers of dose and biological response in readily obtainable (non-invasive) biofluids. Secondly, the use of saliva (alternative to blood) for biomonitoring coupled with the ability to rapidly analyze multiple samples in real-time offers an innovative opportunity to revolutionize biomonitoring assessments. In this regard, the timing and number of samples taken for biomonitoring will not be limited as is currently the case. In addition, real-time analysis will facilitate identification of work practices or conditions that are contributing to increased exposures and will make possible a more rapid and successful intervention strategy. The initial development and application of computational models for evaluation of saliva/blood analyte concentration at anticipated exposure levels represents an important opportunity to establish the limits of quantification and robustness of multiplex sensor systems by exploiting a unique computational modeling framework. The use of these pharmacokinetic models will also enable prediction of an exposure dose based on the saliva/blood measurement. This novel strategy will result in a more accurate prediction of exposures and, once validated, can be employed to assess dosimetry to a broad range of chemicals in support of biomonitoring and epidemiology studies.
Collapse
Affiliation(s)
| | - Thomas J Weber
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jordan N Smith
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
17
|
Osica I, Imamura G, Shiba K, Ji Q, Shrestha LK, Hill JP, Kurzydłowski KJ, Yoshikawa G, Ariga K. Highly Networked Capsular Silica-Porphyrin Hybrid Nanostructures as Efficient Materials for Acetone Vapor Sensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9945-9954. [PMID: 28234457 DOI: 10.1021/acsami.6b15680] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of novel functional nanomaterials is critically important for the further evolution of advanced chemical sensor technology. For this purpose, metalloporphyrins offer unique binding properties as host molecules that can be tailored at the synthetic level and potentially improved by incorporation into inorganic materials. In this work, we present a novel hybrid nanosystem based on a highly networked silica nanoarchitecture conjugated through covalent bonding to an organic functional molecule, a tetraphenylporphyrin derivative, and its metal complexes. The sensing properties of the new hybrid materials were studied using a nanomechanical membrane-type surface stress sensor (MSS) with acetone and nitric oxide as model analytes. This hybrid inorganic-organic MSS-based system exhibited excellent performance for acetone sensing at low operating temperatures (37 °C), making it available for diagnostic monitoring. The hybridization of an inorganic substrate of large surface area with organic molecules of various functionalities results in sub-ppm detection of acetone vapors. Acetone is an important metabolite in lipid metabolism and can also be present in industrial environments at deleterious levels. Therefore, we believe that the analysis system presented by our work represents an excellent opportunity for the development of a portable, easy-to-use device for monitoring local acetone levels.
Collapse
Affiliation(s)
- Izabela Osica
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba 305-0044, Japan
- Faculty of Materials Science and Engineering, Warsaw University of Technology , Woloska 141, 02-507 Warsaw, Poland
| | - Gaku Imamura
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba 305-0044, Japan
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS) , Tsukuba, Ibaraki 305-0044, Japan
| | - Kota Shiba
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Qingmin Ji
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba 305-0044, Japan
- Herbert Gleiter Institute for Nanoscience, Nanjing University of Science and Technology , 200 Xiaolingwei, Nanjing, 210094, China
| | - Lok Kumar Shrestha
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jonathan P Hill
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Krzysztof J Kurzydłowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology , Woloska 141, 02-507 Warsaw, Poland
| | - Genki Yoshikawa
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba , Tennodai 1-1-1 Tsukuba, Ibaraki 305-8571, Japan
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
18
|
Zhang W, Guo Z, Chen Y, Cao Y. Nanomaterial Based Biosensors for Detection of Biomarkers of Exposure to OP Pesticides and Nerve Agents: A Review. ELECTROANAL 2017. [DOI: 10.1002/elan.201600748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Weiying Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical college; Wuhan University of Science and Technology; Wuhan 430065 P.R.China
| | - Yong Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
- Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640; 24 Rue Lhomond Paris 75005 France
| | - Yiping Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
| |
Collapse
|
19
|
Pokhrel LR, Ettore N, Jacobs ZL, Zarr A, Weir MH, Scheuerman PR, Kanel SR, Dubey B. Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury(II) detection in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1379-1388. [PMID: 27539821 DOI: 10.1016/j.scitotenv.2016.08.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/07/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Infamous for "Mad hatter syndrome" and "Minamata disease", mercury (Hg) is ranked high on the Agency for Toxic Substances and Disease Registry's priority list of hazardous substances for its potent neurologic, renal, and developmental toxicities. Most typical exposures are via contaminated water and food. Although regulations and advisories are exercised at various levels, Hg pollution from both natural and anthropogenic sources has remained a major public health and safety concern. Rapid detection of solvated aqueous Hg2+ ions at low levels is critical for immediate response and protection of those who are vulnerable (young children, pregnant and breast-feeding women) to acute and chronic exposures to Hg2+. Various types of sensors capable of detecting Hg in water have been developed. In particular, the novel use of engineered carbon nanotubes (CNTs) has garnered attention due to their specificity and sensitivity towards Hg2+ detection in solution. In this focused review, we describe the sensitivity, selectivity and mechanisms of Hg2+ ion sensing at trace levels by employing CNT-based various sensor designs, and appraise the open literature on the currently applied and "proof-of-concept" methods. Five different types of CNT-based sensor systems are described: potentiometric, DNA-based fluorescence, surface plasmon resonance (SPR), colorimetric, and stripping voltammetric assays. In addition, the recognized merits and shortcomings for each type of electrochemical sensors are discussed. The knowledge from this succinct review shall guide the development of the next generation CNT-based biochemical sensors for rapid Hg2+ detection in the environment, which is a significant first step towards human health risk analysis of this legacy toxicant.
Collapse
Affiliation(s)
- Lok R Pokhrel
- Division of Environmental Health, Department of Epidemiology and Biostatistics, College of Public Health, Temple University, 1301 Cecil B. Moore Avenue, Ritter Annex, Philadelphia, PA 19122, USA.
| | - Nicholas Ettore
- Division of Environmental Health, Department of Epidemiology and Biostatistics, College of Public Health, Temple University, 1301 Cecil B. Moore Avenue, Ritter Annex, Philadelphia, PA 19122, USA
| | - Zachary L Jacobs
- Division of Environmental Health, Department of Epidemiology and Biostatistics, College of Public Health, Temple University, 1301 Cecil B. Moore Avenue, Ritter Annex, Philadelphia, PA 19122, USA
| | - Asha Zarr
- Division of Environmental Health, Department of Epidemiology and Biostatistics, College of Public Health, Temple University, 1301 Cecil B. Moore Avenue, Ritter Annex, Philadelphia, PA 19122, USA
| | - Mark H Weir
- Division of Environmental Health, Department of Epidemiology and Biostatistics, College of Public Health, Temple University, 1301 Cecil B. Moore Avenue, Ritter Annex, Philadelphia, PA 19122, USA
| | - Phillip R Scheuerman
- Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37604, USA
| | - Sushil R Kanel
- Department of Systems Engineering and Management, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH 45433, USA
| | - Brajesh Dubey
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721320, India
| |
Collapse
|
20
|
Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, Giri AP. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:157-169. [PMID: 27697374 DOI: 10.1016/j.jenvman.2016.09.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides.
Collapse
Affiliation(s)
- Neha Khandelwal
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Ranjit S Barbole
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Shashwat S Banerjee
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Govind P Chate
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Ankush V Biradar
- Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemical Research Institute, Bhavnagar 364002, Gujarat, India
| | - Jayant J Khandare
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India; Maharashtra Institute of Pharmacy, MIT Campus, Pune 411038, Maharashtra, India.
| | - Ashok P Giri
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
21
|
Trojanowicz M. Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Gnanaprakasam P, Jeena SE, Premnath D, Selvaraju T. Simple and Robust Green Synthesis of Au NPs on Reduced Graphene Oxide for the Simultaneous Detection of Toxic Heavy Metal Ions and Bioremediation Using Bacterium as the Scavenger. ELECTROANAL 2016. [DOI: 10.1002/elan.201600002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Soban Easow Jeena
- Department of Chemistry; Karunya University; Coimbatore 641114 India
| | - Dhanaraj Premnath
- Department of Bioinformatics; Karunya University; Coimbatore 641114 India
| | | |
Collapse
|
23
|
Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 2016; 146:801-14. [DOI: 10.1016/j.talanta.2015.06.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/07/2015] [Accepted: 06/05/2015] [Indexed: 01/07/2023]
|
24
|
Rick J, Tsai MC, Hwang BJ. Biosensors Incorporating Bimetallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 6:E5. [PMID: 28344262 PMCID: PMC5302532 DOI: 10.3390/nano6010005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs), which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today's society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.
Collapse
Affiliation(s)
- John Rick
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Meng-Che Tsai
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Bing Joe Hwang
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.
| |
Collapse
|
25
|
Taurino I, Sanzó G, Mazzei F, Favero G, De Micheli G, Carrara S. Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions. Sci Rep 2015; 5:15277. [PMID: 26515434 PMCID: PMC4626773 DOI: 10.1038/srep15277] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/21/2015] [Indexed: 11/09/2022] Open
Abstract
Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism.
Collapse
Affiliation(s)
- Irene Taurino
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gabriella Sanzó
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Chemistry and Drug Technologies, Sapienza University of Rome, Italy
| | - Franco Mazzei
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Italy
| | - Gabriele Favero
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Italy
| | - Giovanni De Micheli
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandro Carrara
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Mirmoghtadaie L, Shamaeizadeh N, Mirzanasiri N. Folic Acid Determination Using Electrochemical Sensors. Int J Prev Med 2015; 6:100. [PMID: 26605021 PMCID: PMC4629298 DOI: 10.4103/2008-7802.167179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/23/2015] [Indexed: 11/10/2022] Open
Abstract
Folic acid (FA) is a water soluble vitamin that exists in many natural species. The lack of FA causes some deficiencies in the human body, so finding a simple and sensitive method for determining the FA is important. One of the modern techniques which overcome the disadvantages of conventional determination methods is the sensors. Possibility of miniaturization, the development of microfabricated electrochemical (EC) sensors has resulted in high sensitivity, portability, improved performance and spatial resolution, low power consumption, and the opportunity for integration with other technologies made Micro-Electrical-Mechanical Systems-based EC sensors suitable to identify low concentration analytes and microorganisms in a variety of mediums.
Collapse
Affiliation(s)
- Leila Mirmoghtadaie
- Department of Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahal Shamaeizadeh
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nooshin Mirzanasiri
- Center of Excellence in Electrochemistry, Faculty of Chemistry, Tehran University, Tehran, Iran
| |
Collapse
|
27
|
Timchalk C, Weber TJ, Smith JN. Computational strategy for quantifying human pesticide exposure based upon a saliva measurement. Front Pharmacol 2015; 6:115. [PMID: 26074822 PMCID: PMC4444746 DOI: 10.3389/fphar.2015.00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/14/2015] [Indexed: 01/19/2023] Open
Abstract
Quantitative exposure data is important for evaluating toxicity risk and biomonitoring is a critical tool for evaluating human exposure. Direct personal monitoring provides the most accurate estimation of a subject's true dose, and non-invasive methods are advocated for quantifying exposure to xenobiotics. In this regard, there is a need to identify chemicals that are cleared in saliva at concentrations that can be quantified to support the implementation of this approach. This manuscript reviews the computational modeling approaches that are coupled to in vivo and in vitro experiments to predict salivary uptake and clearance of xenobiotics and provides additional insight on species-dependent differences in partitioning that are of key importance for extrapolation. The primary mechanism by which xenobiotics leave the blood and enter saliva involves paracellular transport, passive transcellular diffusion, or transcellular active transport with the majority of xenobiotics transferred by passive diffusion. The transcellular or paracellular diffusion of unbound chemicals in plasma to saliva has been computationally modeled using compartmental and physiologically based approaches. Of key importance for determining the plasma:saliva partitioning was the utilization of the Schmitt algorithm that calculates partitioning based upon the tissue composition, pH, chemical pKa, and plasma protein-binding. Sensitivity analysis identified that both protein-binding and pKa (for weak acids and bases) have significant impact on determining partitioning and species dependent differences based upon physiological variance. Future strategies are focused on an in vitro salivary acinar cell based system to experimentally determine and computationally predict salivary gland uptake and clearance for xenobiotics. It is envisioned that a combination of salivary biomonitoring and computational modeling will enable the non-invasive measurement of chemical exposures in human populations.
Collapse
Affiliation(s)
- Charles Timchalk
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory Richland, WA, USA
| | - Thomas J Weber
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory Richland, WA, USA
| | - Jordan N Smith
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
28
|
Choi SJ, Paek HJ, Yu J. Oxidative stress by layered double hydroxide nanoparticles via an SFK-JNK and p38-NF-κB signaling pathway mediates induction of interleukin-6 and interleukin-8 in human lung epithelial cells. Int J Nanomedicine 2015; 10:3217-29. [PMID: 25995631 PMCID: PMC4425322 DOI: 10.2147/ijn.s82061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anionic nanoclays are layered double hydroxide nanoparticles (LDH-NPs) that have been shown to exhibit toxicity by inducing reactive oxidative species and a proinflammatory mediator in human lung epithelial A549 cells. However, the molecular mechanism responsible for this LDH-NP-induced toxicity and the relationship between oxidative stress and inflammatory events remains unclear. In this study, we focused on intracellular signaling pathways and transcription factors induced in response to oxidative stress caused by exposure to LDH-NPs in A549 cells. Mitogen-activated protein kinase (MAPK) cascades, such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase (JNK), and p38, were investigated as potential signaling mechanisms responsible for regulation of oxidative stress and cytokine release. Src family kinases (SFKs), which are known to mediate activation of MAPK, together with redox-sensitive transcription factors, including nuclear factor kappa B and nuclear factor-erythroid 2-related factor-2, were also investigated as downstream events of MAPK signaling. The results obtained suggest that LDH-NP exposure causes oxidative stress, leading to expression of antioxidant enzymes, such as catalase, glucose reductase, superoxide dismutase, and heme oxygenase-1, via a SFK-JNK and p38-nuclear factor kappa B signaling pathway. Further, activation of this signaling was also found to regulate release of inflammatory cytokines, including interleukin-6 and interleukin-8, demonstrating the inflammatory potential of LDH-NP.
Collapse
Affiliation(s)
- Soo-Jin Choi
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Hee-Jeong Paek
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Jin Yu
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Abstract
Fabrication of integrated electrochemical sensors is an important step towards realizing fully integrated and truly wireless platforms for many local, real-time sensing applications. Micro/nanoscale patterning of small area electrochemical sensor surfaces enhances the sensor performance to overcome the limitations resulting from their small surface area and thus is the key to the successful miniaturization of integrated platforms. We have demonstrated the microfabrication of electrochemical sensors utilizing top-down lithography and etching techniques on silicon and CMOS substrates. This choice of fabrication avoids the need of bottom-up techniques that are not compatible with established methods for fabricating electronics (e.g., CMOS) which form the industrial basis of most integrated microsystems. We present the results of applying microfabricated sensors to various measurement problems, with special attention to their use for continuous DNA and glucose sensing. Our results demonstrate the advantages of using micro- and nanofabrication techniques for the miniaturization and optimization of modern sensing platforms that employ well-established electronic measurement techniques.
Collapse
|
30
|
Hauser CAE, Maurer-Stroh S, Martins IC. Amyloid-based nanosensors and nanodevices. Chem Soc Rev 2014; 43:5326-45. [DOI: 10.1039/c4cs00082j] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Xu X, Duan G, Li Y, Liu G, Wang J, Zhang H, Dai Z, Cai W. Fabrication of gold nanoparticles by laser ablation in liquid and their application for simultaneous electrochemical detection of Cd2+, Pb2+, Cu2+, Hg2+. ACS APPLIED MATERIALS & INTERFACES 2014; 6:65-71. [PMID: 24341613 DOI: 10.1021/am404816e] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this paper, we demonstrated the fabrication of high active and high sensitive Au nanoparticles by laser ablation in liquid (LAL) method, and their application in electrochemical detection of heavy metal ions. First, LAL method are used to fabricate Au nanoparticles in water in a clean way. Second, the Au nanoparticles were assembled onto the surface of the glassy carbon (GC) electrode by an electrophoretic deposition method to form an AuNPs/GC electrode for electrochemical characterization and detection. Through differential pulse anodic stripping voltammetry method, it shows that the AuNPs/GC electrode could be used for the simultaneous and selective electrochemical detection of Cd(2+), Pb(2+), Cu(2+), and Hg(2+). By studying the influence of test conditions to optimize the electrochemical detection, we can detect Cd(2+), Pb(2+), Cu(2+), and Hg(2+) simultaneously with a low concentration of 3 × 10(-7) M in the experiments.
Collapse
Affiliation(s)
- Xiaoxia Xu
- Key Lab of Materials Physics, Anhui Key lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences , Hefei, 230031, Anhui, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gunier RB, Ward MH, Airola M, Bell EM, Colt J, Nishioka M, Buffler PA, Reynolds P, Rull RP, Hertz A, Metayer C, Nuckols JR. Determinants of agricultural pesticide concentrations in carpet dust. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:970-6. [PMID: 21330232 PMCID: PMC3222988 DOI: 10.1289/ehp.1002532] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 02/17/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Residential proximity to agricultural pesticide applications has been used as a surrogate for exposure in epidemiologic studies, although little is known about the relationship with levels of pesticides in homes. OBJECTIVE We identified determinants of concentrations of agricultural pesticides in dust. METHODS We collected samples of carpet dust and mapped crops within 1,250 m of 89 residences in California. We measured concentrations of seven pesticides used extensively in agriculture (carbaryl, chlorpyrifos, chlorthal-dimethyl, diazinon, iprodione, phosmet, and simazine). We estimated use of agricultural pesticides near residences from a statewide database alone and by linking the database with crop maps. We calculated the density of pesticide use within 500 and 1,250 m of residences for 180, 365, and 730 days before collection of dust and evaluated relationships between agricultural pesticide use estimates and pesticide concentrations in carpet dust. RESULTS For five of the seven pesticides evaluated, residences with use of agricultural pesticides within 1,250 m during the previous 365 days had significantly higher concentrations of pesticides than did residences with no nearby use. The highest correlation with concentrations of pesticides was generally for use reported within 1,250 m of the residence and 730 days before sample collection. Regression models that also accounted for occupational and home use of pesticides explained only a modest amount of the variability in pesticide concentrations (4-28%). CONCLUSIONS Agricultural pesticide use near residences was a significant determinant of concentrations of pesticides in carpet dust for five of seven pesticides evaluated.
Collapse
Affiliation(s)
- Robert B Gunier
- Cancer Prevention Institute of California, Berkeley, California 94704, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Aragay G, Pons J, Merkoçi A. Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection. Chem Rev 2011; 111:3433-58. [DOI: 10.1021/cr100383r] [Citation(s) in RCA: 1023] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gemma Aragay
- Nanobioelectronics & Biosensors Group, Institut Català de Nanotecnologia (CIN2, ICN-CSIC), 08193, Bellaterra, Barcelona, Spain
- Departament of Chemistry, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Josefina Pons
- Departament of Chemistry, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanotecnologia (CIN2, ICN-CSIC), 08193, Bellaterra, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
34
|
Aragay G, Pons J, Merkoçi A. Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03751f] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
McHale CM, Zhang L, Hubbard AE, Smith MT. Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat Res 2010; 705:172-83. [PMID: 20382258 PMCID: PMC2928857 DOI: 10.1016/j.mrrev.2010.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/01/2010] [Indexed: 12/13/2022]
Abstract
Gene-environment interactions contribute to complex disease development. The environmental contribution, in particular low-level and prevalent environmental exposures, may constitute much of the risk and contribute substantially to disease. Systematic risk evaluation of the majority of human chemical exposures, has not been conducted and is a goal of regulatory agencies in the U.S. and worldwide. With the recent recognition that toxicological approaches more predictive of effects in humans are required for risk assessment, in vitro human cell line data as well as animal data are being used to identify toxicity mechanisms that can be translated into biomarkers relevant to human exposure studies. In this review, we discuss how data from toxicogenomic studies of exposed human populations can inform risk assessment, by generating biomarkers of exposure, early effect, and/or susceptibility, elucidating mechanisms of action underlying exposure-related disease, and detecting response at low doses. Good experimental design incorporating precise, individual exposure measurements, phenotypic anchors (pre-disease or traditional toxicological markers), and a range of relevant exposure levels, is necessary. Further, toxicogenomic studies need to be designed with sufficient power to detect true effects of the exposure. As more studies are performed and incorporated into databases such as the Comparative Toxicogenomics Database (CTD) and Chemical Effects in Biological Systems (CEBS), data can be mined for classification of newly tested chemicals (hazard identification), and, for investigating the dose-response, and inter-relationship among genes, environment and disease in a systems biology approach (risk characterization).
Collapse
Affiliation(s)
- Cliona M. McHale
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Luoping Zhang
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Alan E. Hubbard
- School of Public Health, Division of Biostatistics, University of California, Berkeley, CA 94720
| | - Martyn T. Smith
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| |
Collapse
|
36
|
Su B, Tang J, Huang J, Yang H, Qiu B, Chen G, Tang D. Graphene and Nanogold-Functionalized Immunosensing Interface with Enhanced Sensitivity for One-Step Electrochemical Immunoassay of Alpha-Fetoprotein in Human Serum. ELECTROANAL 2010. [DOI: 10.1002/elan.201000324] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Felhofer JL, Blanes L, Garcia CD. Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis 2010; 31:2469-86. [PMID: 20665910 PMCID: PMC2928674 DOI: 10.1002/elps.201000203] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the last years, there has been an explosion in the number of developments and applications of CE and microchip-CE. In part, this growth has been the direct consequence of recent developments in instrumentation associated with CE. This review, which is focused on the contributions published in the last 5 years, is intended to complement the articles presented in this special issue dedicated to instrumentation and to provide an overview of the general trends and some of the most remarkable developments published in the areas of high-voltage power supplies, detectors, auxiliary components, and compact systems. It also includes a few examples of alternative uses of and modifications to traditional CE instruments.
Collapse
Affiliation(s)
- Jessica L. Felhofer
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| | - Lucas Blanes
- Centre for Forensic Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Carlos D. Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| |
Collapse
|
38
|
Busby-Hjerpe AL, Campbell JA, Smith JN, Lee S, Poet TS, Barr DB, Timchalk C. Comparative pharmacokinetics of chlorpyrifos versus its major metabolites following oral administration in the rat. Toxicology 2010; 268:55-63. [DOI: 10.1016/j.tox.2009.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/02/2009] [Accepted: 11/28/2009] [Indexed: 10/20/2022]
|
39
|
Smith JN, Wang J, Lin Y, Timchalk C. Pharmacokinetics of the Chlorpyrifos Metabolite 3,5,6-Trichloro-2-Pyridinol (TCPy) in Rat Saliva. Toxicol Sci 2009; 113:315-25. [DOI: 10.1093/toxsci/kfp283] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Lee EJ, Arbuckle TE. Urine-sampling methods for environmental chemicals in infants and young children. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2009; 19:625-33. [PMID: 19550439 DOI: 10.1038/jes.2009.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/19/2009] [Accepted: 05/26/2009] [Indexed: 05/23/2023]
Abstract
This review paper examines and evaluates urine-sampling methodologies in infants and young children, to determine which methods are suitable for use in large biomonitoring surveys or studies of environmental chemicals in children younger than 6 years. Methods for non-toilet-trained children include the use of urine bags, collection pads (e.g., cotton or gauze inserts), disposable diapers, cotton diapers, and the clean catch method. In toilet-trained children, collection methods include use of a commode insert pan as well as specimen collection cups. The advantages and disadvantages of these various methods need to be evaluated with respect to the target population, timing and frequency of collection, minimum sample volume required, method of urine extraction, potential for contamination of the sample, stability of the analyte of interest, and burden on participants and research team. Collection methods must not introduce contamination or affect the integrity of the sample, should be logistically practical, and should minimize discomfort experienced by the child. Although collection of urine samples from children who are not toilet-trained is more challenging than collection from older toilet-trained children, the vulnerability of younger children to the exposure to and health effects of environmental chemicals makes finding suitable methods a priority.
Collapse
Affiliation(s)
- Ellen J Lee
- Chemicals Surveillance Division, Risk Management Bureau, Health Canada, Ottawa, ON, Canada
| | | |
Collapse
|
41
|
Kraly JR, Holcomb RE, Guan Q, Henry CS. Review: Microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta 2009; 653:23-35. [PMID: 19800473 DOI: 10.1016/j.aca.2009.08.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 01/19/2023]
Abstract
Metabolomics is an emerging area of research focused on measuring small molecules in biological samples. There are a number of different types of metabolomics, ranging from global profiling of all metabolites in a single sample to measurement of a selected group of analytes. Microfluidics and related technologies have been used in this research area with good success. The aim of this review article is to summarize the use of microfluidics in metabolomics. Direct application of microfluidics to the determination of small molecules is covered first. Next, important sample preparation methods developed for microfluidics and applicable to metabolomics are covered. Finally, a summary of metabolomic work as it relates to analysis of cellular events using microfluidics is covered.
Collapse
Affiliation(s)
- James R Kraly
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, CO 80523, United States
| | | | | | | |
Collapse
|
42
|
Hubal EAC. Biologically relevant exposure science for 21st century toxicity testing. Toxicol Sci 2009; 111:226-32. [PMID: 19602574 DOI: 10.1093/toxsci/kfp159] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
High visibility efforts in toxicity testing and computational toxicology including the recent National Research Council of the National Academies (NRC) report, Toxicity Testing in the 21st Century: A Vision and Strategy (NRC, 2007a), raise important research questions and opportunities for the field of exposure science. The authors of the National Academies report (NRC, 2007a) emphasize that population-based data and human exposure information are required at each step of their vision for toxicity testing and that these data will continue to play a critical role in both guiding development and use of the toxicity information. In fact, state-of-the-art exposure science is essential for translation of toxicity data to assess potential for risk to individuals and populations and to inform public health decisions. As we move forward to implement the NRC vision, a transformational change in exposure science is required. Application of a fresh perspective and novel techniques to capture critical determinants at biologically motivated resolution for translation from controlled in vitro systems to the open multifactorial system of real-world human-environment interaction will be critical. Development of an exposure ontology and knowledge base will facilitate extension of network analysis to the individual and population for translating toxicity information and assessing health risk. Such a sea change in exposure science is required to incorporate consideration of lifestage, genetic susceptibility, and interaction of nonchemical stressors for holistic assessment of risk factors associated with complex environmental disease. A new generation of scientific tools has emerged to rapidly measure signals from cells, tissues, and organisms following exposure to chemicals. Investment in 21st century exposure science is now required to fully realize the potential of the NRC vision for toxicity testing.
Collapse
Affiliation(s)
- Elaine A Cohen Hubal
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| |
Collapse
|
43
|
Sadik OA, Zhou AL, Kikandi S, Du N, Wang Q, Varner K. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. ACTA ACUST UNITED AC 2009; 11:1782-800. [DOI: 10.1039/b912860c] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|