1
|
He D, Zhang M, Li Y, Liu F, Ban B. Insights into the ANKRD11 variants and short-stature phenotype through literature review and ClinVar database search. Orphanet J Rare Dis 2024; 19:292. [PMID: 39135054 PMCID: PMC11318275 DOI: 10.1186/s13023-024-03301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Ankyrin repeat domain containing-protein 11 (ANKRD11), a transcriptional factor predominantly localized in the cell nucleus, plays a crucial role in the expression regulation of key genes by recruiting chromatin remodelers and interacting with specific transcriptional repressors or activators during numerous biological processes. Its pathogenic variants are strongly linked to the pathogenesis and progression of multisystem disorder known as KBG syndrome. With the widespread application of high-throughput DNA sequencing technologies in clinical medicine, numerous pathogenic variants in the ANKRD11 gene have been reported. Patients with KBG syndrome usually exhibit a broad phenotypic spectrum with a variable degree of severity, even if having identical variants. In addition to distinctive dental, craniofacial and neurodevelopmental abnormalities, patients often present with skeletal anomalies, particularly postnatal short stature. The relationship between ANKRD11 variants and short stature is not well-understood, with limited knowledge regarding its occurrence rate or underlying biological mechanism involved. This review aims to provide an updated analysis of the molecular spectrum associated with ANKRD11 variants, investigate the prevalence of the short stature among patients harboring these variants, evaluate the efficacy of recombinant human growth hormone in treating children with short stature and ANKRD11 variants, and explore the biological mechanisms underlying short stature from both scientific and clinical perspectives. Our investigation indicated that frameshift and nonsense were the most frequent types in 583 pathogenic or likely pathogenic variants identified in the ANKRD11 gene. Among the 245 KBGS patients with height data, approximately 50% displayed short stature. Most patients showed a positive response to rhGH therapy, although the number of patients receiving treatment was limited. ANKRD11 deficiency potentially disrupts longitudinal bone growth by affecting the orderly differentiation of growth plate chondrocytes. Our review offers crucial insights into the association between ANKRD11 variants and short stature and provides valuable guidance for precise clinical diagnosis and treatment of patients with KBG syndrome.
Collapse
Affiliation(s)
- Dongye He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China.
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Fupeng Liu
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China.
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China.
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China.
| |
Collapse
|
2
|
Wei S, Li Y, Yang W, Chen S, Liu F, Zhang M, Ban B, He D. Functional investigation of a novel ANKRD11 frameshift variant identified in a Chinese family with KBG syndrome. Heliyon 2024; 10:e28082. [PMID: 38515699 PMCID: PMC10956060 DOI: 10.1016/j.heliyon.2024.e28082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
KBG syndrome is a rare autosomal dominant condition characterized by multisystem developmental disorder, primarily caused by loss-of-function variants in ankyrin repeat domain-containing protein 11 (ANKRD11). Approximately 80 % of ANKRD11 variants associated with KBG syndrome, are frameshift and nonsense variants. Current insight into the pathogenesis of KBG syndrome resulting from ANKRD11 truncating variants remains limited. Here, we presented two members from a non-consanguineous Chinese pedigree both exhibiting characteristics fitting the KBG syndrome-associated phenotypic spectrum. Whole-exome sequencing identified a novel heterozygous frameshift variant in ANKRD11 (NM_013275.6, c.2280_2281delGT, p.Y761Qfs*20) in the proband. Sanger sequencing confirmed that the variant was inherited from her mother and co-segregated with KBG syndrome phenotype. In vitro functional assays revealed that the frameshift variant escaped nonsense-mediated mRNA decay, and resulting in a truncated protein with significantly increased expression levels compared to full-length ANKRD11. Immunofluorescence results demonstrated that truncated protein was predominantly expressed in the nucleus of HEK293 cells, while wild-type ANKRD11 was equally distributed in both the nucleus and cytoplasm. Moreover, the truncated protein significantly reduced CDKN1A/P21-promoter luciferase activity in comparison to wild-type ANKRD11 protein, as well as a remarkably decrease in the endogenous CDKN1A/P21 mRNA level in HEK293 cells. These findings suggest a loss of transcriptional activation function and potentially a dominant-negative mechanism. Overall, our study expands the mutational spectrum of ANKRD11 gene and provides new insights into the pathogenic mechanism of KBG syndrome caused by ANKRD11 truncating variants.
Collapse
Affiliation(s)
- Shuoshuo Wei
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, PR China
| | - Shuxiong Chen
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China
| | - Fupeng Liu
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Dongye He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China
| |
Collapse
|
3
|
Kaur A, Chaudhry C, Kaur P, Daniel R, Srivastava P. Pattern Recognition of Common Multiple Congenital Malformation Syndromes with Underlying Chromatinopathy. J Pediatr Genet 2024; 13:6-14. [PMID: 38567171 PMCID: PMC10984715 DOI: 10.1055/s-0042-1748019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/07/2022] [Indexed: 10/17/2022]
Abstract
Chromatinopathy is an emerging category of multiple malformation syndromes caused by disruption in global transcriptional regulation with imbalances in the chromatin states (i.e., open or closed chromatin). These syndromes are caused by pathogenic variants in genes coding for the writers, erasers, readers, and remodelers of the epigenetic machinery. Majority of these disorders (93%) show neurological dysfunction in the form of intellectual disability. Other overlapping features are growth abnormalities, limb deformities, and immune dysfunction. In this study, we describe a series of children with six common chromatinopathy syndromes with an aim to develop pattern recognition of this emerging category of multiple malformation syndromes.
Collapse
Affiliation(s)
- Anupriya Kaur
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chakshu Chaudhry
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Parminder Kaur
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Roshan Daniel
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Priyanka Srivastava
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Whitney R, Komar M, Yoganathan S, Costain G, Jain P. Epilepsy in KBG Syndrome: Report of Additional Cases. Pediatr Neurol 2024; 151:138-142. [PMID: 38157719 DOI: 10.1016/j.pediatrneurol.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND KBG syndrome is a genetic disorder characterized by short stature, dysmorphic features, macrodontia, cognitive impairment, and limb anomalies. Epilepsy is an important comorbidity associated with KBG syndrome, although the entire phenotypic spectrum may not be fully appreciated. METHODS We identified five new patients with KBG syndrome-related epilepsy and compared their phenotype to previously reported cases in the literature. RESULTS Five patients with KBG syndrome-related epilepsy were identified. Three patients (60%) were male. Median age of seizure onset was 18 months (interquartile range 5, 32). The epilepsy type was generalized in three patients (60%); in two, the epilepsy type was combined (40%), with focal and generalized seizures. In one patient (20%), the epilepsy syndrome was classifiable and the child was diagnosed with myoclonic-atonic epilepsy. All five patients had pathogenic variants in the ANKRD11 gene. Epilepsy was refractory in two patients (40%). No specific antiseizure medication (ASM) was found to be superior. Literature review yielded 134 cases, median age of seizure onset was 4 years, and seizures were generalized (n = 60, 44%), focal (n = 26, 19%), or combined (n = 13, 10%). An epilepsy syndrome was diagnosed in 12 patients (8.8%). In those with documented response to ASM (n = 49), 22.4% were refractory (n = 11). CONCLUSIONS Our study confirms that few patients with epilepsy and KBG syndrome have an identifiable epilepsy syndrome and generalized seizures are most common. We highlight that epilepsy associated with KBG syndrome may occur before age one year and should be an important diagnostic consideration in this age group.
Collapse
Affiliation(s)
- Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Madeline Komar
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Sangeetha Yoganathan
- Division of Pediatric Neurology, Department of Neurological Sciences, Christian Medical College (CMC), Vellore, Tamil Nadu, India
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, and Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Buijsse N, Jansen FE, Ockeloen CW, van Kempen MJA, Zeidler S, Willemsen MH, Scarano E, Monticone S, Zonneveld‐Huijssoon E, Low KJ, Bayat A, Sisodiya SM, Samanta D, Lesca G, de Jong D, Giltay JC, Verbeek NE, Kleefstra T, Brilstra EH, Vlaskamp DRM. Epilepsy is an important feature of KBG syndrome associated with poorer developmental outcome. Epilepsia Open 2023; 8:1300-1313. [PMID: 37501353 PMCID: PMC10690702 DOI: 10.1002/epi4.12799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy.
Collapse
Affiliation(s)
- Nathan Buijsse
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Floor E. Jansen
- Department of Pediatric Neurology, Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Charlotte W. Ockeloen
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Shimriet Zeidler
- Department of Clinical GeneticsErasmus Medical CenterRotterdamThe Netherlands
| | | | - Emanuela Scarano
- Department of PediatricsSt. Orsola‐Malpighi HospitalBolognaItaly
| | - Sonia Monticone
- Department of PediatricsAzienda Ospedaliero Universitaria Maggiore della CaritàNovaraItaly
| | | | - Karen J. Low
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS trustUniversity of BristolBristolUK
| | - Allan Bayat
- Department for Genetics and Personalized MedicineDanish Epilepsy CentreDianalundDenmark
- Institute for Regional Health ServicesUniversity of Southern DenmarkOdenseDenmark
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology and Chalfont Centre for EpilepsyChalfont St PeterUK
| | - Debopam Samanta
- Child Neurology Section, Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Gaetan Lesca
- Department of GeneticsUniversity Hospitals of LyonLyonFrance
| | - Danielle de Jong
- Department of NeurologyAcademic Center for Epileptology Kempenhaeghe/MUMC+HeezeThe Netherlands
| | - Jaqcues C. Giltay
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nienke E. Verbeek
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Tjitske Kleefstra
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Eva H. Brilstra
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | |
Collapse
|
6
|
Peluso F, Caraffi SG, Contrò G, Valeri L, Napoli M, Carboni G, Seth A, Zuntini R, Coccia E, Astrea G, Bisgaard AM, Ivanovski I, Maitz S, Brischoux-Boucher E, Carter MT, Dentici ML, Devriendt K, Bellini M, Digilio MC, Doja A, Dyment DA, Farholt S, Ferreira CR, Wolfe LA, Gahl WA, Gnazzo M, Goel H, Grønborg SW, Hammer T, Iughetti L, Kleefstra T, Koolen DA, Lepri FR, Lemire G, Louro P, McCullagh G, Madeo SF, Milone A, Milone R, Nielsen JEK, Novelli A, Ockeloen CW, Pascarella R, Pippucci T, Ricca I, Robertson SP, Sawyer S, Falkenberg Smeland M, Stegmann S, Stumpel CT, Goel A, Taylor JM, Barbuti D, Soresina A, Bedeschi MF, Battini R, Cavalli A, Fusco C, Iascone M, Van Maldergem L, Venkateswaran S, Zuffardi O, Vergano S, Garavelli L, Bayat A. Deep phenotyping of the neuroimaging and skeletal features in KBG syndrome: a study of 53 patients and review of the literature. J Med Genet 2023; 60:1224-1234. [PMID: 37586838 DOI: 10.1136/jmg-2023-109141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/30/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND KBG syndrome is caused by haploinsufficiency of ANKRD11 and is characterised by macrodontia of upper central incisors, distinctive facial features, short stature, skeletal anomalies, developmental delay, brain malformations and seizures. The central nervous system (CNS) and skeletal features remain poorly defined. METHODS CNS and/or skeletal imaging were collected from molecularly confirmed individuals with KBG syndrome through an international network. We evaluated the original imaging and compared our results with data in the literature. RESULTS We identified 53 individuals, 44 with CNS and 40 with skeletal imaging. Common CNS findings included incomplete hippocampal inversion and posterior fossa malformations; these were significantly more common than previously reported (63.4% and 65.9% vs 1.1% and 24.7%, respectively). Additional features included patulous internal auditory canal, never described before in KBG syndrome, and the recurrence of ventriculomegaly, encephalic cysts, empty sella and low-lying conus medullaris. We found no correlation between these structural anomalies and epilepsy or intellectual disability. Prevalent skeletal findings comprised abnormalities of the spine including scoliosis, coccygeal anomalies and cervical ribs. Hand X-rays revealed frequent abnormalities of carpal bone morphology and maturation, including a greater delay in ossification compared with metacarpal/phalanx bones. CONCLUSION This cohort enabled us to describe the prevalence of very heterogeneous neuroradiological and skeletal anomalies in KBG syndrome. Knowledge of the spectrum of such anomalies will aid diagnostic accuracy, improve patient care and provide a reference for future research on the effects of ANKRD11 variants in skeletal and brain development.
Collapse
Affiliation(s)
- Francesca Peluso
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Stefano G Caraffi
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Gianluca Contrò
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Lara Valeri
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
- Department of Pediatrics, University of Modena and Reggio Emilia Faculty of Medicine and Surgery, Modena, Emilia-Romagna, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Giorgia Carboni
- Radiology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Alka Seth
- Radiology, Rigshospitalet, Kobenhavn, Denmark
| | - Roberta Zuntini
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Emanuele Coccia
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Guja Astrea
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Toscana, Italy
| | - Anne-Marie Bisgaard
- Center for Rare Diseases, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Ivan Ivanovski
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Silvia Maitz
- Service of Medical Genetics, IOSI, EOC, Lugano, Switzerland
| | | | - Melissa T Carter
- The University of Newcastle, Callaghan, New South Wales, Australia
| | - Maria Lisa Dentici
- Department of Clinical Genetics, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Koenraad Devriendt
- Department for Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Melissa Bellini
- Department of Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Cristina Digilio
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Asif Doja
- The University of Newcastle, Callaghan, New South Wales, Australia
| | - David A Dyment
- The University of Newcastle, Callaghan, New South Wales, Australia
| | - Stense Farholt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| | - Carlos R Ferreira
- Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Coimbra, Portugal
| | - Lynne A Wolfe
- Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Coimbra, Portugal
| | - William A Gahl
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Maria Gnazzo
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesu Pediatric Hospital, Roma, Lazio, Italy
| | - Himanshu Goel
- Hunter Genetics, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- The University of Newcastle, Callaghan, New South Wales, Australia
| | - Sabine Weller Grønborg
- Center for Rare Diseases, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Kobenhavn, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Trine Hammer
- Department of Clinical Genetics, Copenhagen University Hospital, Kobenhavn, Denmark
- Department for Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Lorenzo Iughetti
- Department of Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| | - David A Koolen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| | - Francesca Romana Lepri
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesu Pediatric Hospital, Roma, Lazio, Italy
| | - Gabrielle Lemire
- Department of Genetics, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Ontario, Canada
| | - Pedro Louro
- Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Coimbra, Portugal
| | - Gary McCullagh
- Royal Manchester Children's Hospital and University of Manchester, Royal Manchester Children's Hospital, Manchester, Manchester, UK
| | - Simona F Madeo
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Milone
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Toscana, Italy
| | - Roberta Milone
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Toscana, Italy
| | - Jens Erik Klint Nielsen
- Department of Pediatrics, Zealand University Hospital Roskilde, Roskilde, Sjaelland, Denmark
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesu Pediatric Hospital, Roma, Lazio, Italy
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Tommaso Pippucci
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna Policlinico S Orsola, Bologna, Emilia-Romagna, Italy
| | - Ivana Ricca
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Toscana, Italy
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sarah Sawyer
- Department of Genetics, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Ontario, Canada
| | | | - Sander Stegmann
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, Limburg, Netherlands
| | - Constanze T Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, Limburg, Netherlands
| | - Amy Goel
- University of Newcastle, Callaghan, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Juliet M Taylor
- Genetic Health Service - Northern Hub, Genetic Health Service - Northern Hub, Aukland, New Zealand
| | - Domenico Barbuti
- Radiology and Bioimaging Unit, Bambino Gesu Pediatric Hospital, Roma, Lazio, Italy
| | - Annarosa Soresina
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Ex-perimental Sciences, ASST Spedali Civili di Brescia, Brescia, Lombardia, Italy
| | | | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Toscana, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Toscana, Italy
| | - Anna Cavalli
- Child Neurology and Psychiatry Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Lombardia, Italy
| | - Lionel Van Maldergem
- Centre de génétique humaine, Université de Franche-Comté, Centre Hospitalier Universitaire de Besancon, Besancon, France
| | | | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Lombardia, Italy
| | - Samantha Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia, USA
| | - Livia Garavelli
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Allan Bayat
- Department for Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services Research, University of Southern Denmark, Odense, Syddanmark, Denmark
| |
Collapse
|
7
|
Rhamati L, Marcolla A, Guerrot AM, Lerosey Y, Goldenberg A, Serey-Gaut M, Rio M, Cormier Daire V, Baujat G, Lyonnet S, Rubinato E, Jonard L, Rondeau S, Rouillon I, Couloignier V, Jacquemont ML, Dupin Deguine D, Moutton S, Vincent M, Isidor B, Ziegler A, Marie JP, Marlin S. Audiological phenotyping evaluation in KBG syndrome: Description of a multicenter review. Int J Pediatr Otorhinolaryngol 2023; 171:111606. [PMID: 37336020 DOI: 10.1016/j.ijporl.2023.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES Our objective was to reinforce clinical knowledge of hearing impairment in KBG syndrome. KBG syndrome is a rare genetic disorder due to monoallelic pathogenic variations of ANKRD11.The typical phenotype includes facial dysmorphism, costal and spinal malformation and developmental delay. Hearing loss in KBG patients has been reported for many years, but no study has evaluated audiological phenotyping from a clinical and an anatomical point of view. METHODS This French multicenter study included 32 KBG patients with retrospective collection of data on audiological features, ear imaging and genetic investigations. RESULTS We identified a typical audiological profil in KBG syndrome: conductive (71%), bilateral (81%), mild to moderate (84%) and stable (69%) hearing loss, with some audiological heterogeneity. Among patients with an abnormality on CT imaging (55%), ossicular chain impairment (67%), fixation of the stapes footplate (33%) and inner-ear malformations (33%) were the most common abnormalities. CONCLUSION We recommend a complete audiological and radiological evaluation and an ENT-follow up in all patients presenting with KBG Syndrome. Imaging evaluation is necessary to determine the nature of lesions in the middle and inner ear.
Collapse
Affiliation(s)
- L Rhamati
- Service d'ORL et Chirurgie Cervicofaciale et Audiophonologie, CHU Rouen, France
| | - A Marcolla
- Service d'ORL et Chirurgie Cervicofaciale et Audiophonologie, CHU Rouen, France; UR 3830 GRHVN, Université de Rouen Normandie, France
| | - A M Guerrot
- Département de Génétique, Centre de Référence des anomalies du Développement, Inserm U1245, FHU G4 Génomique, Normandie Université, UNIROUEN, CHU Rouen, France
| | - Y Lerosey
- Service d'ORL et Chirurgie Cervicofaciale et Audiophonologie, CHU Rouen, France; UR 3830 GRHVN, Université de Rouen Normandie, France
| | - A Goldenberg
- Département de Génétique, Centre de Référence des anomalies du Développement, Inserm U1245, FHU G4 Génomique, Normandie Université, UNIROUEN, CHU Rouen, France
| | - M Serey-Gaut
- Centre de Recherche en Audiologie, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France; Centre de Référence Surdités Génétiques, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - M Rio
- UF Neurodeveloppement-Neurologie Mitochondries-Métabolisme, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - V Cormier Daire
- Institut Imagine, UMR-1163 INSERM, Université Paris Cité, Paris, France; Centre de Référence Maladies Osseuses Constitutionnels, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - G Baujat
- Centre de Référence Maladies Osseuses Constitutionnels, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - S Lyonnet
- Institut Imagine, UMR-1163 INSERM, Université Paris Cité, Paris, France; Centre de Référence Anomalies du Développement, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - E Rubinato
- Centre de Référence Surdités Génétiques, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France; Medical Genetics, Institute for Maternal and Child Health -IRCCS "Burlo Garofolo", Trieste, Italy
| | - L Jonard
- UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - S Rondeau
- UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - I Rouillon
- Service d'ORL pédiatrique, Hopital Universitaire Necker Enfants-Malades, AP-HP.CUP, Paris, France
| | - V Couloignier
- Service d'ORL pédiatrique, Hopital Universitaire Necker Enfants-Malades, AP-HP.CUP, Paris, France
| | - M L Jacquemont
- Génétique Médicale, Pôle femme-mère-enfant, CHU la Réunion, Saint Pierre, France
| | - D Dupin Deguine
- Service ORL, Otoneurologie et ORL pédiatrique, Hôpital Pierre Paul Riquet, CHU Purpan, Toulouse, France
| | - S Moutton
- Centre Pluridisciplinaire de Diagnostic PréNatal, Pôle mère enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France
| | - M Vincent
- Service de Génétique Médicale, CHU Nantes, Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - B Isidor
- Service de Génétique Médicale, CHU Nantes, Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - A Ziegler
- Service de Génétique, CHU d'Angers, Angers, France
| | - J P Marie
- Service d'ORL et Chirurgie Cervicofaciale et Audiophonologie, CHU Rouen, France; UR 3830 GRHVN, Université de Rouen Normandie, France
| | - S Marlin
- Centre de Référence Surdités Génétiques, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France; Institut Imagine, UMR-1163 INSERM, Université Paris Cité, Paris, France.
| |
Collapse
|
8
|
Martinez-Cayuelas E, Blanco-Kelly F, Lopez-Grondona F, Swafiri ST, Lopez-Rodriguez R, Losada-Del Pozo R, Mahillo-Fernandez I, Moreno B, Rodrigo-Moreno M, Casas-Alba D, Lopez-Gonzalez A, García-Miñaúr S, Ángeles Mori M, Pacio-Minguez M, Rikeros-Orozco E, Santos-Simarro F, Cruz-Rojo J, Quesada-Espinosa JF, Sanchez-Calvin MT, Sanchez-del Pozo J, Bernado Fonz R, Isidoro-Garcia M, Ruiz-Ayucar I, Alvarez-Mora MI, Blanco-Lago R, De Azua B, Eiris J, Garcia-Peñas JJ, Gil-Fournier B, Gomez-Lado C, Irazabal N, Lopez-Gonzalez V, Madrigal I, Malaga I, Martinez-Menendez B, Ramiro-Leon S, Garcia-Hoyos M, Prieto-Matos P, Lopez-Pison J, Aguilera-Albesa S, Alvarez S, Fernández-Jaén A, Llano-Rivas I, Gener-Querol B, Ayuso C, Arteche-Lopez A, Palomares-Bralo M, Cueto-González A, Valenzuela I, Martinez-Monseny A, Lorda-Sanchez I, Almoguera B. Clinical description, molecular delineation and genotype–phenotype correlation in 340 patients with KBG syndrome: addition of 67 new patients. J Med Genet 2022:jmg-2022-108632. [DOI: 10.1136/jmg-2022-108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/06/2022] [Indexed: 11/30/2022]
Abstract
BackgroundKBG syndrome is a highly variable neurodevelopmental disorder and clinical diagnostic criteria have changed as new patients have been reported. Both loss-of-function sequence variants and large deletions (copy number variations, CNVs) involvingANKRD11cause KBG syndrome, but no genotype–phenotype correlation has been reported.Methods67 patients with KBG syndrome were assessed using a custom phenotypical questionnaire. Manifestations present in >50% of the patients and a ‘phenotypical score’ were used to perform a genotype–phenotype correlation in 340 patients from our cohort and the literature.ResultsNeurodevelopmental delay, macrodontia, triangular face, characteristic ears, nose and eyebrows were the most prevalentf (eatures. 82.8% of the patients had at least one of seven main comorbidities: hearing loss and/or otitis media, visual problems, cryptorchidism, cardiopathy, feeding difficulties and/or seizures. Associations found included a higher phenotypical score in patients with sequence variants compared with CNVs and a higher frequency of triangular face (71.1% vs 42.5% in CNVs). Short stature was more frequent in patients with exon 9 variants (62.5% inside vs 27.8% outside exon 9), and the prevalence of intellectual disability/attention deficit hyperactivity disorder/autism spectrum disorder was lower in patients with the c.1903_1907del variant (70.4% vs 89.4% other variants). Presence of macrodontia and comorbidities were associated with larger deletion sizes and hand anomalies with smaller deletions.ConclusionWe present a detailed phenotypical description of KBG syndrome in the largest series reported to date of 67 patients, provide evidence of a genotype–phenotype correlation between some KBG features and specificANKRD11variants in 340 patients, and propose updated clinical diagnostic criteria based on our findings.
Collapse
|
9
|
Bestetti I, Crippa M, Sironi A, Tumiatti F, Masciadri M, Smeland MF, Naik S, Murch O, Bonati MT, Spano A, Cattaneo E, Mariani M, Gotta F, Crosti F, Cavalli P, Pantaleoni C, Natacci F, Bedeschi MF, Milani D, Maitz S, Selicorni A, Spaccini L, Peron A, Russo S, Larizza L, Low K, Finelli P. Expanding the Molecular Spectrum of ANKRD11 Gene Defects in 33 Patients with a Clinical Presentation of KBG Syndrome. Int J Mol Sci 2022; 23:5912. [PMID: 35682590 PMCID: PMC9180463 DOI: 10.3390/ijms23115912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
KBG syndrome (KBGS) is a neurodevelopmental disorder caused by the Ankyrin Repeat Domain 11 (ANKRD11) haploinsufficiency. Here, we report the molecular investigations performed on a cohort of 33 individuals with KBGS clinical suspicion. By using a multi-testing genomic approach, including gene sequencing, Chromosome Microarray Analysis (CMA), and RT-qPCR gene expression assay, we searched for pathogenic alterations in ANKRD11. A molecular diagnosis was obtained in 22 out of 33 patients (67%). ANKRD11 sequencing disclosed pathogenic or likely pathogenic variants in 18 out of 33 patients. CMA identified one full and one terminal ANKRD11 pathogenic deletions, and one partial duplication and one intronic microdeletion, with both possibly being pathogenic. The pathogenic effect was established by RT-qPCR, which confirmed ANKRD11 haploinsufficiency only for the three deletions. Moreover, RT-qPCR applied to six molecularly unsolved KBGS patients identified gene downregulation in a clinically typical patient with previous negative tests, and further molecular investigations revealed a cryptic deletion involving the gene promoter. In conclusion, ANKRD11 pathogenic variants could also involve the regulatory regions of the gene. Moreover, the application of a multi-test approach along with the innovative use of RT-qPCR improved the diagnostic yield in KBGS suspected patients.
Collapse
Affiliation(s)
- Ilaria Bestetti
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Milena Crippa
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Alessandra Sironi
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Francesca Tumiatti
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | - Maura Masciadri
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | | | - Swati Naik
- Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham B15 2TG, UK;
| | - Oliver Murch
- All Wales Medical Genomics Service, University Hospital of Wales, Cardiff CF14 4XW, UK;
| | - Maria Teresa Bonati
- Clinic of Medical Genetics, San Luca Hospital, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy;
| | - Alice Spano
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, 20900 Monza, Italy; (A.S.); (S.M.)
| | - Elisa Cattaneo
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, “V. Buzzi” Children’s Hospital, University of Milan, 20142 Milan, Italy; (E.C.); (L.S.)
| | - Milena Mariani
- Pediatric Unit, ASST Lariana, 22100 Como, Italy; (M.M.); (A.S.)
| | - Fabio Gotta
- Clinical Genetics, ASST Cremona, Via Concordia 1, 26100 Cremona, Italy; (F.G.); (P.C.)
| | - Francesca Crosti
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy;
| | - Pietro Cavalli
- Clinical Genetics, ASST Cremona, Via Concordia 1, 26100 Cremona, Italy; (F.G.); (P.C.)
| | - Chiara Pantaleoni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20142 Milan, Italy;
| | - Federica Natacci
- Medical Genetic Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20142 Milan, Italy; (F.N.); (M.F.B.)
| | - Maria Francesca Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20142 Milan, Italy; (F.N.); (M.F.B.)
| | - Donatella Milani
- Pediatric Highly Intensive Care, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20142 Milan, Italy;
| | - Silvia Maitz
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, 20900 Monza, Italy; (A.S.); (S.M.)
- Service of Medical Genetics, Oncologic Institute of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | | | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, “V. Buzzi” Children’s Hospital, University of Milan, 20142 Milan, Italy; (E.C.); (L.S.)
| | - Angela Peron
- Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy;
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Silvia Russo
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | - Lidia Larizza
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | - Karen Low
- University Hospitals Bristol NHS Trust, University of Bristol, Bristol BS1 3NU, UK;
| | - Palma Finelli
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| |
Collapse
|
10
|
Gao F, Zhao X, Cao B, Fan X, Li X, Li L, Sui S, Su Z, Gong C. Genetic and Phenotypic Spectrum of KBG Syndrome: A Report of 13 New Chinese Cases and a Review of the Literature. J Pers Med 2022; 12:jpm12030407. [PMID: 35330407 PMCID: PMC8948816 DOI: 10.3390/jpm12030407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
KBG syndrome (KBGS) is a rare autosomal dominant inherited disease that involves multiple systems and is associated with variations in the ankyrin repeat domain 11 (ANKRD11) gene. We report the clinical and genetic data for 13 Chinese KBGS patients diagnosed by genetic testing and retrospectively analyse the genotypes and phenotypes of previously reported KBGS patients. The 13 patients in this study had heterozygous variations in the ANKRD11 gene, including seven frameshift variations, three nonsense variations, and three missense variations. They carried 11 variation sites, of which eight were previously unreported. The clinical phenotype analysis of these 13 patients and 240 previously reported patients showed that the occurrence rates of craniofacial anomalies, dental anomalies, global developmental delays, intellectual disability/learning difficulties, limb anomalies, and behavioural anomalies were >70%. The occurrence rates of short stature, delayed bone age, and spinal vertebral body anomalies were >50%. The frequency of global developmental delays and intellectual disability/learning difficulties in patients with truncated ANKRD11 gene variation was higher than that in patients with missense variation in the ANKRD11 gene (p < 0.05). Collectively, this study reported the genotypic and phenotypic characteristics of the largest sample of KBGS patients from China and discovered eight new ANKRD11 gene variations, which enriched the variation spectrum of the ANKRD11 gene. Variation in the ANKRD11 gene mainly caused craniofacial anomalies, growth and developmental anomalies, skeletal system anomalies, and nervous system anomalies. Truncated variation in the ANKRD11 gene is more likely to lead to global growth retardation and intellectual disability/learning difficulties than missense variation in ANKRD11.
Collapse
Affiliation(s)
- Fenqi Gao
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
| | - Xiu Zhao
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen 518000, China;
| | - Bingyan Cao
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
| | - Xin Fan
- Pediatric Dapartment, The Second Affiliated Hospital of Guangxi Medical University, Nanning 510000, China;
| | - Xiaoqiao Li
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
| | - Lele Li
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
| | - Shengbin Sui
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
| | - Zhe Su
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen 518000, China;
- Correspondence: (Z.S.); (C.G.)
| | - Chunxiu Gong
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
- Correspondence: (Z.S.); (C.G.)
| |
Collapse
|
11
|
Ho S, Luk HM, Lo IFM. KBG syndrome in a Chinese population: A case series. Am J Med Genet A 2022; 188:1693-1699. [PMID: 35174959 DOI: 10.1002/ajmg.a.62688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 01/12/2023]
Abstract
KBG syndrome (OMIM #148050) is an autosomal dominant neurodevelopmental disorder characterized by the presence of macrodontia of the permanent central upper incisors, characteristic facial features, delay in development, intellectual disability, short stature, and various skeletal abnormalities. Over 200 affected individuals have been described worldwide, though underdiagnosis is suspected because the characteristic features are variably present and affected individuals can have a mild phenotype. This case series provides a summary of the clinical and molecular characteristics of 10 Chinese KBG syndrome patients recruited from a single center. To our knowledge, this is the first case series for Chinese KBG patients. This case series aimed at exploring potential ethnicity-related variability in KBG syndrome.
Collapse
Affiliation(s)
- Stephanie Ho
- Clinical Genetic Service, Department of Health, HKSAR, Hong Kong
| | - Ho-Ming Luk
- Clinical Genetic Service, Department of Health, HKSAR, Hong Kong
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, HKSAR, Hong Kong
| |
Collapse
|
12
|
Digilio MC, Calcagni G, Gnazzo M, Versacci P, Dentici ML, Capolino R, Sinibaldi L, Baban A, Putotto C, Alfieri P, Unolt M, Lepri FR, Alesi V, Genovese S, Novelli A, Marino B, Dallapiccola B. Congenital heart defects in molecularly confirmed KBG syndrome patients. Am J Med Genet A 2021; 188:1149-1159. [PMID: 34971082 DOI: 10.1002/ajmg.a.62632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/30/2021] [Accepted: 12/11/2021] [Indexed: 11/11/2022]
Abstract
Congenital heart defects (CHDs) are known to occur in 9%-25% of patients with KBG syndrome. In this study we analyzed the prevalence and anatomic types of CHDs in 46 personal patients with KBG syndrome, carrying pathogenetic variants in ANKRD11 or 16q24.3 deletion, and reviewed CHDs in patients with molecular diagnosis of KBG syndrome from the literature. CHD was diagnosed in 15/40 (38%) patients with ANKRD11 variant, and in one patient with 16q24.3 deletion. Left ventricular outflow tract obstructions have been diagnosed in 9/15 (60%), subaortic or muscular ventricular septal defect in 5/15 (33%), dextrocardia in 1/15 (8%). The single patient with 16q24.3 deletion and CHD had complete atrioventricular septal defect (AVSD) with aortic coarctation. Review of KBG patients from the literature and present series showed that septal defects have been diagnosed in 44% (27/61) of the cases, left ventricular tract obstructions in 31% (19/61), AVSD in 18% (11/61). Septal defects have been diagnosed in 78% of total patients with 16q24.3 deletion. Valvar anomalies are frequently diagnosed, prevalently involving the left side of the heart. A distinctive association with AVSD is identifiable and could represent a marker to suggest the diagnosis in younger patients. In conclusion, after precise molecular diagnosis and systematic cardiological screening the prevalence of CHD in KBG syndrome seems to be higher than previously reported in clinical articles. In addition to septal defects, left-sided anomalies and AVSD should be considered. Clinical management of KBG syndrome should include accurate and detailed echocardiogram at time of diagnosis.
Collapse
Affiliation(s)
- Maria Cristina Digilio
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Giulio Calcagni
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Maria Gnazzo
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Paolo Versacci
- Pediatric Cardiology Unit, Department of Pediatrics and Urologic Sciences, "La Sapienza" University, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Lorenzo Sinibaldi
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Anwar Baban
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics and Urologic Sciences, "La Sapienza" University, Rome, Italy
| | - Paolo Alfieri
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Marta Unolt
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Francesca R Lepri
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Viola Alesi
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Silvia Genovese
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics and Urologic Sciences, "La Sapienza" University, Rome, Italy
| | - Bruno Dallapiccola
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Jiménez de la Peña M, Fernández-Mayoralas DM, López-Martín S, Albert J, Calleja-Pérez B, Fernández-Perrone AL, Jiménez de Domingo A, Tirado P, Álvarez S, Fernández-Jaén A. Abnormal frontal gyrification pattern and uncinate development in patients with KBG syndrome caused by ANKRD11 aberrations. Eur J Paediatr Neurol 2021; 35:8-15. [PMID: 34547584 DOI: 10.1016/j.ejpn.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022]
Abstract
KBG syndrome is characterized by dental, craniofacial and skeletal anomalies, short stature and global developmental delay or intellectual disability. It is caused by microdeletions or truncating mutations of ANKRD11. We report four unrelated probands with this syndrome due to de novo ANKRD11 aberrations that may contribute to a better understanding of the genetics and pathophysiology of this autosomal dominant syndrome. Clinical, cognitive and MRI assessments were performed. Three of the patients showed normal intellectual functioning, whereas the fourth had a borderline level of intellectual functioning. However, all of them showed deficits in various cognitive and socioemotional processes such as attention, executive functions, empathy or pragmatic language. Moreover, all probands displayed marked asymmetry of the uncinate fascicles and an abnormal gyrification pattern in the left frontal lobe. Thus, structural neuroimaging anomalies seem to have been overlooked in this syndrome. Disturbed frontal gyrification and/or lower structural integrity of the uncinate fascisulus might be unrecognized neuroimaging features of KBG syndrome caused by ANKRD11 aberrations. Present results also point out that this syndrome is not necessarily associated with global developmental delay and intellectual disability, but it can be related to other neurodevelopmental disorders or subclinical levels of attention-deficit hyperactivity disorder, autism, communication disorders or specific learning disabilities.
Collapse
Affiliation(s)
| | | | - Sara López-Martín
- Faculty of Psychology, Universidad Autónoma de Madrid, Spain; Neuromottiva, Madrid, Spain
| | - Jacobo Albert
- Faculty of Psychology, Universidad Autónoma de Madrid, Spain
| | | | | | | | - Pilar Tirado
- Department of Pediatric Neurology. Hospital Universitario La Paz, Madrid, Spain
| | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology. Hospital Universitario Quirónsalud, Madrid, Spain; School of Medicine, Universidad Europea de Madrid, Spain.
| |
Collapse
|
14
|
Parenti I, Mallozzi MB, Hüning I, Gervasini C, Kuechler A, Agolini E, Albrecht B, Baquero-Montoya C, Bohring A, Bramswig NC, Busche A, Dalski A, Guo Y, Hanker B, Hellenbroich Y, Horn D, Innes AM, Leoni C, Li YR, Lynch SA, Mariani M, Medne L, Mikat B, Milani D, Onesimo R, Ortiz-Gonzalez X, Prott EC, Reutter H, Rossier E, Selicorni A, Wieacker P, Wilkens A, Wieczorek D, Zackai EH, Zampino G, Zirn B, Hakonarson H, Deardorff MA, Gillessen-Kaesbach G, Kaiser FJ. ANKRD11 variants: KBG syndrome and beyond. Clin Genet 2021; 100:187-200. [PMID: 33955014 DOI: 10.1111/cge.13977] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.
Collapse
Affiliation(s)
- Ilaria Parenti
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Mark B Mallozzi
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Irina Hüning
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Cristina Gervasini
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Beate Albrecht
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Carolina Baquero-Montoya
- Department of Pediatrics, Hospital Pablo Tobón Uribe, Medellín, Colombia
- Genetics Unit, Sura Ayudas Diagnosticas, Medellín, Colombia
| | - Axel Bohring
- Institut für Humangenetik, Westfälische Wilhelms-Universität, Münster, Germany
| | - Nuria C Bramswig
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Andreas Busche
- Institut für Humangenetik, Westfälische Wilhelms-Universität, Münster, Germany
| | - Andreas Dalski
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Yiran Guo
- Center for Applied Genomics and Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Britta Hanker
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | | | - Denise Horn
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Yun R Li
- Center for Applied Genomics and Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Medical Scientist Training Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Milena Mariani
- Centro Fondazione Mariani per il Bambino Fragile ASST-Lariana Sant'Anna Hospital, Department of Pediatrics, San Fermo della Battaglia (Como), Italy
| | - Livija Medne
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barbara Mikat
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Donatella Milani
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Xilma Ortiz-Gonzalez
- Department of Pediatrics, Division of Neurology, Epilepsy Neurogenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eva Christina Prott
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Institut für Praenatale Medizin & Humangenetik, Wuppertal, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, University Hospital of Bonn, Bonn, Germany
| | - Eva Rossier
- Institut für Medizinische Genetik und Angewandte Genomik, Universität Tübingen, Tübingen, Germany
- Genetikum Stuttgart, Genetic Counselling and Diagnostics, Stuttgart, Germany
| | - Angelo Selicorni
- Centro Fondazione Mariani per il Bambino Fragile ASST-Lariana Sant'Anna Hospital, Department of Pediatrics, San Fermo della Battaglia (Como), Italy
| | - Peter Wieacker
- Institut für Humangenetik, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alisha Wilkens
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Birgit Zirn
- Genetikum Stuttgart, Genetic Counselling and Diagnostics, Stuttgart, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics and Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew A Deardorff
- Department of Pathology and Laboratory Medicine and Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Frank J Kaiser
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsmedizin Essen, Essen, Germany
| |
Collapse
|
15
|
Montero-Bullón JF, González-Velasco Ó, Isidoro-García M, Lacal J. Integrated in silico MS-based phosphoproteomics and network enrichment analysis of RASopathy proteins. Orphanet J Rare Dis 2021; 16:303. [PMID: 34229750 PMCID: PMC8258961 DOI: 10.1186/s13023-021-01934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background RASopathies are a group of syndromes showing clinical overlap caused by mutations in genes affecting the RAS-MAPK pathway. Consequent disruption on cellular signaling leads and is driven by phosphoproteome remodeling. However, we still lack a comprehensive picture of the different key players and altered downstream effectors. Methods An in silico interactome of RASopathy proteins was generated using pathway enrichment analysis/STRING tool, including identification of main hub proteins. We also integrated phosphoproteomic and immunoblotting studies using previous published information on RASopathy proteins and their neighbors in the context of RASopathy syndromes. Data from Phosphosite database (www.phosphosite.org) was collected in order to obtain the potential phosphosites subjected to regulation in the 27 causative RASopathy proteins. We compiled a dataset of dysregulated phosphosites in RASopathies, searched for commonalities between syndromes in harmonized data, and analyzed the role of phosphorylation in the syndromes by the identification of key players between the causative RASopathy proteins and the associated interactome. Results In this study, we provide a curated data set of 27 causative RASopathy genes, identify up to 511 protein–protein associations using pathway enrichment analysis/STRING tool, and identify 12 nodes as main hub proteins. We found that a large group of proteins contain tyrosine residues and their biological processes include but are not limited to the nervous system. Harmonizing published RASopathy phosphoproteomic and immunoblotting studies we identified a total of 147 phosphosites with increased phosphorylation, whereas 47 have reduced phosphorylation. The PKB signaling pathway is the most represented among the dysregulated phosphoproteins within the RASopathy proteins and their neighbors, followed by phosphoproteins implicated in the regulation of cell proliferation and the MAPK pathway. Conclusions This work illustrates the complex network underlying the RASopathies and the potential of phosphoproteomics for dissecting the molecular mechanisms in these syndromes. A combined study of associated genes, their interactome and phosphorylation events in RASopathies, elucidates key players and mechanisms to direct future research, diagnosis and therapeutic windows. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01934-x.
Collapse
Affiliation(s)
- Javier-Fernando Montero-Bullón
- Metabolic Engineering Group, Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007, Salamanca, Spain
| | - Óscar González-Velasco
- Bioinformatics and Functional Genomics Group, IBMCC Cancer Research Center, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - María Isidoro-García
- Institute for Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.,Network for Cooperative Research in Health-RETICS ARADyAL, 37007, Salamanca, Spain.,Department of Clinical Biochemistry, University Hospital of Salamanca, 37007, Salamanca, Spain.,Department of Medicine, University of Salamanca, 37007, Salamanca, Spain
| | - Jesus Lacal
- Institute for Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain. .,Molecular Genetics of Human Diseases Group, Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
16
|
Li Q, Sun C, Yang L, Lu W, Luo F. Comprehensive analysis of clinical spectrum and genotype associations in Chinese and literature reported KBG syndrome. Transl Pediatr 2021; 10:834-842. [PMID: 34012832 PMCID: PMC8107870 DOI: 10.21037/tp-20-385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Patients with KBG Syndrome due to ANKRD11 mutations and 16q24.3 microdeletions including ANKRD11 were identified. Classical and most frequent phenotypes include various degrees of intelligence disability (ID), short stature (SS), delayed bone age, macrodontia, distinctive facial features and skeletal anomalies. The variable expressivity of KBG syndrome makes it challenging to establish genotype-phenotype correlations, which also affects further studies for this novel syndrome. We aim to report three unrelated patients with KBG syndrome caused by ANKRD11 gene pathological variants and to evaluate potential associations among ANKRD11 gene variant types, the 16q24.3 microdeletion, and the clinical spectrum of KBG syndrome. METHODS The genetic etiology of three unreported KBG patients was identified by whole exome sequencing and confirmed via Sanger sequencing. Literature review was conducted to summarize the phenotype-genotype relationship based on three unreported Chinese cases and 186 reported cases. RESULTS Two pathological variants (c.7407dupC, p.P2530Rfs*61; c.G3046A, p.D1016N) and one reported variant (c.6792dupC, p. P2271Pfs*8) were detected in our patients. Compared with the 16q24.3 microdeletion, patients harboring ANKRD11 gene mutations showed significantly higher frequency of malformations including macrodontia, long philtrum, abnormal eyebrows, widely spaced eyes, anteverted nares, eyelid ptosis, brachydactyly, brachycephaly (P<0.05), and significantly lower risk of congenital heart diseases and frontal bossing (P<0.05). The intellectual disability (ID) was significantly milder among patients carrying truncating variants located between repression domain 1 (RD1) and activation domain (AD) than those carrying mutations disrupting repression domain 2 (RD2) alone and disrupting all functional domain (RD1, AD or RD2) (P<0.05). CONCLUSIONS Novel pathological variants harbored in the ANKRD11 gene contribute to the KBG syndrome variant spectrum. ANKRD11 gene variants disrupting RD1 and RD2 or RD2 alone are more likely to have more severe ID, which warrants different intervention strategies for KBG syndrome.
Collapse
Affiliation(s)
- Qiuyue Li
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Chengjun Sun
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Lu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
17
|
Chen J, Xia Z, Zhou Y, Ma X, Wang X, Guo Q. A de novo frameshift variant of ANKRD11 (c.1366_1367dup) in a Chinese patient with KBG syndrome. BMC Med Genomics 2021; 14:68. [PMID: 33653342 PMCID: PMC7927266 DOI: 10.1186/s12920-021-00920-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND KBG syndrome is a rare autosomal dominant genetic disease mainly caused by pathogenic variants of ankyrin repeat domain-containing protein 11 (ANKRD11) or deletions involving ANKRD11. Herein, we report a novel de novo heterozygous frameshift ANKRD11 variant via whole exome sequencing in a Chinese girl with KBG syndrome. CASE PRESENTATION A 2-year-2-month-old girl presented with a short stature and developmental delay. Comprehensive physical examinations, endocrine laboratory tests and imaging examination were performed. Whole-exome sequencing and Sanger sequencing were used to detect and confirm the variant associated with KBG in this patient, respectively. The pathogenicity of the variant was further predicted by several in silico prediction tools. The patient was diagnosed as KBG syndrome with a short stature and developmental delay, as well as characteristic craniofacial abnormalities, including a triangular face, long philtrum, wide eyebrows, a broad nasal bridge, prominent and protruding ears, macrodontia of the upper central incisors, dental crowding, and binocular refractive error. Her skeletal anomalies included brachydactyly, fifth finger clinodactyly, and left-skewed caudal vertebrae. Electroencephalographic results generally showed normal background activity with sporadic spikes and slow wave complexes, as well as multiple spikes and slow wave complexes in the bilateral parietal, occipital, and posterior temporal regions during non-rapid-eye-movement sleep. Brain MRI showed a distended change in the bilateral ventricles and third ventricle, as well as malformation of the sixth ventricle. Whole exome sequencing revealed a novel heterozygous frameshift variant in the patient, ANKRD11 c.1366_1367dup, which was predicted to be pathogenic through in silico analysis. The patient had received physical therapy since 4 months of age, and improvement of gross motor dysfunction was evident. CONCLUSIONS The results of this study expand the spectrum of ANKRD11 variants in KBG patients and provide clinical phenotypic data for KBG syndrome at an early age. Our study also demonstrates that whole exome sequencing is an effective method for the diagnosis of rare genetic disorders.
Collapse
Affiliation(s)
- Jing Chen
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhongmin Xia
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaomin Ma
- Department of Radiology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xudong Wang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
18
|
Crippa M, Bestetti I, Maitz S, Weiss K, Spano A, Masciadri M, Smithson S, Larizza L, Low K, Cohen L, Finelli P. SETD5 Gene Haploinsufficiency in Three Patients With Suspected KBG Syndrome. Front Neurol 2020; 11:631. [PMID: 32793091 PMCID: PMC7393934 DOI: 10.3389/fneur.2020.00631] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/28/2020] [Indexed: 01/28/2023] Open
Abstract
Mendelian disorders of the epigenetic machinery (MDEMs), also named chromatin modifying disorders, are a broad group of neurodevelopmental disorders, caused by mutations in functionally related chromatin genes. Mental retardation autosomal dominant 23 (MRD23) syndrome, due to SETD5 gene mutations, falls into this group of disorders. KBG syndrome, caused by ANKRD11 gene haploinsufficiency, is a chromatin related syndrome not formally belonging to this category. We performed high resolution array CGH and trio-based WES on three molecularly unsolved patients with an initial KBGS clinical diagnosis. A de novo deletion of 116 kb partially involving SETD5 and two de novo frameshift variants in SETD5 were identified in the patients. The clinical re-evaluation of the patients was consistent with the molecular findings, though still compatible with KBGS due to overlapping phenotypic features of KBGS and MRD23. Careful detailed expert phenotyping ascertained some facial and physical features that were consistent with MRD23 rather than KBGS. Our results provide further examples that loss-of-function pathogenic variants in genes encoding factors shaping the epigenetic landscape, lead to a wide phenotypic range with significant clinical overlap. We recommend that clinicians consider SETD5 gene haploinsufficiency in the differential diagnosis of KBGS. Due to overlap of clinical features, careful and detailed phenotyping is important and a large gene panel approach is recommended in the diagnostic workup of patients with a clinical suspicion of KBGS.
Collapse
Affiliation(s)
- Milena Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Bestetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Alice Spano
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Maura Masciadri
- Medical Cytogenetics and Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Sarah Smithson
- Clinical Genetics, St. Michael's Hospital, University Hospitals NHS Trust, Bristol, United Kingdom
| | - Lidia Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Karen Low
- Clinical Genetics, St. Michael's Hospital, University Hospitals NHS Trust, Bristol, United Kingdom
| | - Lior Cohen
- Genetics Unit, Barzilai University Medical Center, Ashkelon, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Palma Finelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Cucco F, Sarogni P, Rossato S, Alpa M, Patimo A, Latorre A, Magnani C, Puisac B, Ramos FJ, Pié J, Musio A. Pathogenic variants in EP300 and ANKRD11 in patients with phenotypes overlapping Cornelia de Lange syndrome. Am J Med Genet A 2020; 182:1690-1696. [PMID: 32476269 DOI: 10.1002/ajmg.a.61611] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Cornelia de Lange syndrome (CdLS), Rubinstein-Taybi syndrome (RSTS), and KBG syndrome are three distinct developmental human disorders. Variants in seven genes belonging to the cohesin pathway, NIPBL, SMC1A, SMC3, HDAC8, RAD21, ANKRD11, and BRD4, were identified in about 80% of patients with CdLS, suggesting that additional causative genes remain to be discovered. Two genes, CREBBP and EP300, have been associated with RSTS, whereas KBG results from variants in ANKRD11. By exome sequencing, a genetic cause was elucidated in two patients with clinical diagnosis of CdLS but without variants in known CdLS genes. In particular, genetic variants in EP300 and ANKRD11 were identified in the two patients with CdLS. EP300 and ANKRD11 pathogenic variants caused the reduction of the respective proteins suggesting that their low levels contribute to CdLS-like phenotype. These findings highlight the clinical overlap between CdLS, RSTS, and KBG and support the notion that these rare disorders are linked to abnormal chromatin remodeling, which in turn affects the transcriptional machinery.
Collapse
Affiliation(s)
- Francesco Cucco
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Patrizia Sarogni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Sara Rossato
- U.O.C. Pediatria, Ospedale San Bortolo, Vicenza, Italy
| | - Mirella Alpa
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, Turin, Italy
| | - Alessandra Patimo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Ana Latorre
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Cinzia Magnani
- Neonatology and Neonatal Intensive Care Unit, Maternal and Child Department, University of Parma, Parma, Italy
| | - Beatriz Puisac
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Feliciano J Ramos
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Juan Pié
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
20
|
Kaya Özçora GD, Miyatake S, Matsumoto N, Canpolat M, Erdoğan M, Bayramov R, Kumandaş S. PEX10-related autosomal recessive cerebellar ataxia with hearing loss. Acta Neurol Belg 2020; 120:429-432. [PMID: 30022445 DOI: 10.1007/s13760-018-0987-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/11/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Gül Demet Kaya Özçora
- Department of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
- Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Mehmet Canpolat
- Department of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Murat Erdoğan
- Department of Medical Genetics, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Ruslan Bayramov
- Medical Genetics Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sefer Kumandaş
- Department of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
21
|
Sayed ISM, Abdel-Hamid MS, Abdel-Salam GMH. KBG syndrome in two patients from Egypt. Am J Med Genet A 2020; 182:1309-1312. [PMID: 32222090 DOI: 10.1002/ajmg.a.61552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/19/2020] [Accepted: 03/02/2020] [Indexed: 11/07/2022]
Abstract
KBG syndrome is an intellectual disability (ID) associated with multiple congenital anomalies in which the macrodontia could be the clue for the diagnosis. It is caused either by heterozygous variant in ANKRD11 gene or 16q24.3 microdeletions that involve the ANKRD11 gene. Here, we report on two unrelated male patients who presented with ID, short stature, webbing of neck, and cryptorchidism. Noonan syndrome was suspected first but the presence of macrodontia in both patients pointed to KBG syndrome which was confirmed thereafter by the identification of a novel pathogenic variant in ANKRD11 gene, c.5488G>T (p.E1830*). Macrodontia was noticed in all the deciduous anterior teeth in Patient 1. This observation was reported previously in few patients, but it seems to be a common feature that could be misdiagnosed as premature eruption of teeth. Therefore, our results confirm that maxillary permanent central incisors may not be the only teeth affected in KBG but also all the deciduous teeth. Interestingly, desquamative gingivitis was additionally noted in Patient 1, which has not been reported previously, however; it could be a coincidental finding. To the best of our knowledge, this is the first report from Egypt.
Collapse
Affiliation(s)
- Inas S M Sayed
- Orodental Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
22
|
Thanh DC, Ngoc CTB, Nguyen NL, Vu CD, Tung NV, Nguyen HH. De novo NIPBL Mutations in Vietnamese Patients with Cornelia de Lange Syndrome. ACTA ACUST UNITED AC 2020; 56:medicina56020076. [PMID: 32074972 PMCID: PMC7073647 DOI: 10.3390/medicina56020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022]
Abstract
Cornelia de Lange Syndrome (CdLS) is a rare congenital genetic disease causing abnormal unique facial phenotypes, several defects in organs and body parts, and mental disorder or intellectual disorder traits. Main causes of CdLS have been reported as variants in cohesin complex genes, in which mutations in the NIPBL gene have been estimated to account for up to 80%. Our study included three Vietnamese patients with typical CdLS phenotypes. Whole exome sequencing revealed two known heterozygous mutations c.6697G>A (p.Val2233Met) and c.2602C>T (p.Arg868X), and a novel heterozygous mutation c.4504delG (p.Val1502fsX87) in the NIPBL gene of the three patients. In silico analyses of the identified mutations predicted possible damaging and truncating effects on the NIPBL protein. Inherited analyses in the patients' families showed that all of the mutations are de novo. Our results lead a definitive diagnosis of patients with CdLS and expand the spectrum of mutations in the NIPBL gene. These findings also confirm whole exome sequencing is an efficient tool for genetic screening of CdLS.
Collapse
Affiliation(s)
- Duong Chi Thanh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str., Cau Giay, Hanoi 100000, Vietnam; (D.C.T.); (N.-L.N.); (N.V.T.)
| | - Can Thi Bich Ngoc
- Center for Rare Diseases and Newborn Screening, Department of Endocrinology, Metabolism and Genetics, Vietnam National Hospital of Pediatrics, 18/879 La Thanh str., Dong Da, Hanoi 100000, Vietnam; (C.T.B.N.); (C.D.V.)
| | - Ngoc-Lan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str., Cau Giay, Hanoi 100000, Vietnam; (D.C.T.); (N.-L.N.); (N.V.T.)
| | - Chi Dung Vu
- Center for Rare Diseases and Newborn Screening, Department of Endocrinology, Metabolism and Genetics, Vietnam National Hospital of Pediatrics, 18/879 La Thanh str., Dong Da, Hanoi 100000, Vietnam; (C.T.B.N.); (C.D.V.)
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str., Cau Giay, Hanoi 100000, Vietnam; (D.C.T.); (N.-L.N.); (N.V.T.)
| | - Huy Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str., Cau Giay, Hanoi 100000, Vietnam; (D.C.T.); (N.-L.N.); (N.V.T.)
- Correspondence: ; Tel.: +84-243-7918012
| |
Collapse
|
23
|
Fujita A, Tsukaguchi H, Koshimizu E, Nakazato H, Itoh K, Kuraoka S, Komohara Y, Shiina M, Nakamura S, Kitajima M, Tsurusaki Y, Miyatake S, Ogata K, Iijima K, Matsumoto N, Miyake N. Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome. Ann Neurol 2019; 84:814-828. [PMID: 30427554 DOI: 10.1002/ana.25370] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Galloway-Mowat syndrome (GAMOS) is a neural and renal disorder, characterized by microcephaly, brain anomalies, and early onset nephrotic syndrome. Biallelic mutations in WDR73 and the 4 subunit genes of the KEOPS complex are reported to cause GAMOS. Furthermore, an identical homozygous NUP107 (nucleoporin 107kDa) mutation was identified in 4 GAMOS-like families, although biallelic NUP107 mutations were originally identified in steroid-resistant nephrotic syndrome. NUP107 and NUP133 (nucleoporin 133kDa) are interacting subunits of the nuclear pore complex in the nuclear envelope during interphase, and these proteins are also involved in centrosome positioning and spindle assembly during mitosis. METHODS Linkage analysis and whole exome sequencing were performed in a previously reported GAMOS family with brain atrophy and steroid-resistant nephrotic syndrome. RESULTS We identified a homozygous NUP133 mutation, c.3335-11T>A, which results in the insertion of 9bp of intronic sequence between exons 25 and 26 in the mutant transcript. NUP133 and NUP107 interaction was impaired by the NUP133 mutation based on an immunoprecipitation assay. Importantly, focal cortical dysplasia type IIa was recognized in the brain of an autopsied patient and focal segmental glomerulosclerosis was confirmed in the kidneys of the 3 examined patients. A nup133-knockdown zebrafish model exhibited microcephaly, fewer neuronal cells, underdeveloped glomeruli, and fusion of the foot processes of the podocytes, which mimicked human GAMOS features. nup133 morphants could be rescued by human wild-type NUP133 mRNA but not by mutant mRNA. INTERPRETATION These data indicate that the biallelic NUP133 loss-of-function mutation causes GAMOS. Ann Neurol 2018;84:814-828.
Collapse
Affiliation(s)
- Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | | | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | - Hitoshi Nakazato
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto
| | - Shohei Kuraoka
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama
| | - Shohei Nakamura
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | - Mika Kitajima
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto
| | | | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| |
Collapse
|
24
|
Ishikawa N, Tateishi Y, Tani H, Kobayashi Y, Itai T, Miyatake S, Kato M, Matsumoto N, Kobayashi M. Successful treatment of intractable life-threatening seizures with perampanel in the first case of early myoclonic encephalopathy with a novel de novo SCN1A mutation. Seizure 2019; 71:20-23. [PMID: 31176277 DOI: 10.1016/j.seizure.2019.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Early myoclonic encephalopathy (EME) is a form of developmental and epileptic encephalopathy with myoclonic seizures and a suppression burst on electroencephalogram, which occurs during the neonatal or early infantile period and is characterized by highly intractable seizures and severe development impairment. Although multiple genetic aetiologies of EME have been identified, no SCN1A mutation has been reported. METHODS We described a female patient with EME due to an SCN1A mutation. RESULTS She developed frequent myoclonic and apnoeic seizures during the neonatal period. As her seizures were refractory to many antiepileptic drugs, she underwent a tracheotomy and has since been treated with continuous mechanical ventilation. Eventually, perampanel was added, which resulted in the cessation of the apnoeic seizures. Genetic analysis revealed a heterozygous de novo missense mutation in the SCN1A gene (c.2588 T > C:p.Leu863Ser). CONCLUSION This is the first patient with EME due to anSCN1A mutation to be successfully treated with perampanel. Recently, perampanel was reported to be effective in treating Dravet syndrome, including cases with an SCN1A mutation. Perampanel may contribute to seizure reduction in patients with intractable epilepsy carrying the SCN1A mutation.
Collapse
Affiliation(s)
| | - Yuichi Tateishi
- Department of Pediatrics, Hiroshima University Hospital, Japan
| | - Hiroo Tani
- Department of Pediatrics, Hiroshima University Hospital, Japan
| | | | - Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Hospital, Japan
| |
Collapse
|
25
|
Nixon KC, Rousseau J, Stone MH, Sarikahya M, Ehresmann S, Mizuno S, Matsumoto N, Miyake N, Baralle D, McKee S, Izumi K, Ritter AL, Heide S, Héron D, Depienne C, Titheradge H, Kramer JM, Campeau PM, Campeau PM. A Syndromic Neurodevelopmental Disorder Caused by Mutations in SMARCD1, a Core SWI/SNF Subunit Needed for Context-Dependent Neuronal Gene Regulation in Flies. Am J Hum Genet 2019; 104:596-610. [PMID: 30879640 DOI: 10.1016/j.ajhg.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Mutations in several genes encoding components of the SWI/SNF chromatin remodeling complex cause neurodevelopmental disorders (NDDs). Here, we report on five individuals with mutations in SMARCD1; the individuals present with developmental delay, intellectual disability, hypotonia, feeding difficulties, and small hands and feet. Trio exome sequencing proved the mutations to be de novo in four of the five individuals. Mutations in other SWI/SNF components cause Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, or other syndromic and non-syndromic NDDs. Although the individuals presented here have dysmorphisms and some clinical overlap with these syndromes, they lack their typical facial dysmorphisms. To gain insight into the function of SMARCD1 in neurons, we investigated the Drosophila ortholog Bap60 in postmitotic memory-forming neurons of the adult Drosophila mushroom body (MB). Targeted knockdown of Bap60 in the MB of adult flies causes defects in long-term memory. Mushroom-body-specific transcriptome analysis revealed that Bap60 is required for context-dependent expression of genes involved in neuron function and development in juvenile flies when synaptic connections are actively being formed in response to experience. Taken together, we identify an NDD caused by SMARCD1 mutations and establish a role for the SMARCD1 ortholog Bap60 in the regulation of neurodevelopmental genes during a critical time window of juvenile adult brain development when neuronal circuits that are required for learning and memory are formed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, University of Montreal, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
26
|
Takenaka S, Kuroda Y, Ohta S, Mizuno Y, Hiwatari M, Miyatake S, Matsumoto N, Oka A. A Japanese patient with RAD51-associated Fanconi anemia. Am J Med Genet A 2019; 179:900-902. [PMID: 30907510 DOI: 10.1002/ajmg.a.61130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 11/10/2022]
Abstract
RAD51 is the only identified autosomal dominant gene to date causative of Fanconi anemia (FA) due to dominant negative effects. Only two patients with RAD51-associated FA have been reported with atypical FA phenotypes without bone marrow failure. We describe a new Asian patient with a novel RAD51 mutation, presenting with multiple congenital anomalies and atypical FA with chromosomal instability. The patient was a 9-year-old Japanese girl. She had strabismus, myopia, submucous cleft palate, bilateral hearing impairment, and scoliosis. She also had growth retardation, developmental delay, and severe intellectual disability. We performed trio whole exome sequencing and Sanger sequencing and identified a de novo RAD51 mutation (c.725A>G, p.Gln242Arg). Isolated lymphocytes from the patient were hypersensitive to chromosomal breakage induced by the DNA cross-linking agent, mitomycin C. Our detailed phenotypic analysis of the RAD51-associated atypical FA revealed clinical manifestations from the diverse population and a consistent FA phenotype characterized by chromosome instability, intellectual disability, radial ray abnormality, and microcephaly, but not bone marrow failure.
Collapse
Affiliation(s)
| | - Yukiko Kuroda
- Department of Pediatrics, University of Tokyo, Tokyo, Japan.,Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Sayaka Ohta
- Department of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Yoko Mizuno
- Department of Pediatrics, University of Tokyo, Tokyo, Japan
| | | | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akira Oka
- Department of Pediatrics, University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Hoshi M, Koshimizu E, Miyatake S, Matsumoto N, Imamura A. A novel homozygous mutation of CLCN2 in a patient with characteristic brain MRI images - A first case of CLCN2-related leukoencephalopathy in Japan. Brain Dev 2019; 41:101-105. [PMID: 30077506 DOI: 10.1016/j.braindev.2018.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022]
Abstract
Chloride channel 2 (ClC-2) is one of nine ClC family proteins and is encoded by CLCN2. We report the first patient with a CLCN2 mutation in Japan. A 22-month-old female had generalized tonic-clonic convulsions at the age of 3 months. Brain MRI showed high signals in the bilateral cerebellar white matter including the dentate nucleus, dorsal midbrain, and posterior limbs of the internal capsules in diffusion-weighted images, and apparent diffusion coefficient values were low in the same areas. Antiepileptic drugs were effective, and she had neither intellectual disabilities nor motor disturbance. A homozygous frameshift mutation (c.61dup, p.Leu21Profs∗27) of CLCN2 was identified in the patient. Homozygous mutations of CLCN2 are known to be associated with CLCN2-related leukoencephalopathy (CC2L). The clinical findings of this patient were different from other patients with CC2L. Therefore, mutations in CLCN2 may cause various phenotypes. Further accumulation of cases with CLCN2-mutations is required to explore the clinical spectrum of CC2L.
Collapse
Affiliation(s)
- Miyuki Hoshi
- Department of Pediatrics, Gifu Prefectural General Medical Center, Japan.
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Japan; Clinical Genetics Department, Yokohama City University, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Japan
| | - Atsushi Imamura
- Department of Pediatrics, Gifu Prefectural General Medical Center, Japan
| |
Collapse
|
28
|
Miyatake S, Schneeberger S, Koyama N, Yokochi K, Ohmura K, Shiina M, Mori H, Koshimizu E, Imagawa E, Uchiyama Y, Mitsuhashi S, Frith MC, Fujita A, Satoh M, Taguri M, Tomono Y, Takahashi K, Doi H, Takeuchi H, Nakashima M, Mizuguchi T, Takata A, Miyake N, Saitsu H, Tanaka F, Ogata K, Hennet T, Matsumoto N. Biallelic COLGALT1 variants are associated with cerebral small vessel disease. Ann Neurol 2018; 84:843-853. [PMID: 30412317 DOI: 10.1002/ana.25367] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Approximately 5% of cerebral small vessel diseases are hereditary, which include COL4A1/COL4A2-related disorders. COL4A1/COL4A2 encode type IV collagen α1/2 chains in the basement membranes of cerebral vessels. COL4A1/COL4A2 mutations impair the secretion of collagen to the extracellular matrix, thereby resulting in vessel fragility. The diagnostic yield for COL4A1/COL4A2 variants is around 20 to 30%, suggesting other mutated genes might be associated with this disease. This study aimed to identify novel genes that cause COL4A1/COL4A2-related disorders. METHODS Whole exome sequencing was performed in 2 families with suspected COL4A1/COL4A2-related disorders. We validated the role of COLGALT1 variants by constructing a 3-dimensional structural model, evaluating collagen β (1-O) galactosyltransferase 1 (ColGalT1) protein expression and ColGalT activity by Western blotting and collagen galactosyltransferase assays, and performing in vitro RNA interference and rescue experiments. RESULTS Exome sequencing demonstrated biallelic variants in COLGALT1 encoding ColGalT1, which was involved in the post-translational modification of type IV collagen in 2 unrelated patients: c.452 T > G (p.Leu151Arg) and c.1096delG (p.Glu366Argfs*15) in Patient 1, and c.460G > C (p.Ala154Pro) and c.1129G > C (p.Gly377Arg) in Patient 2. Three-dimensional model analysis suggested that p.Leu151Arg and p.Ala154Pro destabilized protein folding, which impaired enzymatic activity. ColGalT1 protein expression and ColGalT activity in Patient 1 were undetectable. RNA interference studies demonstrated that reduced ColGalT1 altered COL4A1 secretion, and rescue experiments showed that mutant COLGALT1 insufficiently restored COL4A1 production in cells compared with wild type. INTERPRETATION Biallelic COLGALT1 variants cause cerebral small vessel abnormalities through a common molecular pathogenesis with COL4A1/COL4A2-related disorders. Ann Neurol 2018;84:843-853.
Collapse
Affiliation(s)
- Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | | | - Norihisa Koyama
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Kenji Yokochi
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Japan.,Department of Pediatrics, Seirei Mikatahara General Hospital, Shizuoka, Japan
| | - Kayo Ohmura
- Department of Pediatric Neurology, Morinomiya Hospital, Osaka, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Harushi Mori
- Department of Radiology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eri Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mai Satoh
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masataka Taguri
- Department of Data Science, Yokohama City University School of Data Science, Yokohama, Japan
| | - Yasuko Tomono
- Division of Molecular and Cell Biology, Shigei Medical Research Institute, Okayama, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
29
|
Sato T, Kato M, Moriyama K, Haraguchi K, Saitsu H, Matsumoto N, Moriuchi H. A case of tubulinopathy presenting with porencephaly caused by a novel missense mutation in the TUBA1A gene. Brain Dev 2018; 40:819-823. [PMID: 29907476 DOI: 10.1016/j.braindev.2018.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Tubulinopathies include a wide spectrum of disorders ranging from abnormal ocular movement to severe brain malformations, and typically present as diffuse agyria or perisylvian pachygyria with microcephaly, agenesis of the corpus callosum, and cerebellar hypoplasia. They are caused by the dysfunction of tubulins encoded by tubulin-related genes, and the TUBA1A gene encoding alpha-1A tubulin is most frequently responsible for this clinical entity. Porencephaly is relatively rare among patients with the TUBA1A mutations. Mild case of tubulinopathy associated with porencephaly caused by a novel TUBA1A mutation. CASE REPORT The patient, a 10-month-old girl, presented with gross motor delay at 4 months of age and convulsions at 7 months of age. Brain magnetic resonance imaging showed porencephaly, occipital polymicrogyria, hypoplasia of the corpus callosum, volume loss of the white matter, dysgenesis of anterior limbs of internal capsules, non-separative basal ganglia, cerebellar hypoplasia, and dysplastic brainstem. We identified a novel de novo heterozygous missense mutation in the TUBA1A gene, c.381C > A (p.Asp127Glu), by whole-exome sequencing. DISCUSSION Microtubules composed of tubulins regulate not only neuronal migration but also cell division or axon guidance. Accordingly, tubulinopathy affects the cortical lamination, brain size, callosal formation, and white matter as seen in the present case. In contrast to the previously reported cases, the present case showed milder cortical dysgenesis with a rare manifestation of porencephaly. The genotype-phenotype correlation is still unclear, and this study expands the phenotypic range of tubulinopathy.
Collapse
Affiliation(s)
- Tatsuharu Sato
- Department of Pediatrics, Nagasaki University Hospital, Japan.
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Japan
| | - Kaoru Moriyama
- Department of Pediatrics, Nagasaki University Hospital, Japan
| | - Kohei Haraguchi
- Department of Pediatrics, Nagasaki University Hospital, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | | |
Collapse
|
30
|
De Bernardi ML, Ivanovski I, Caraffi SG, Maini I, Street ME, Bayat A, Zollino M, Lepri FR, Gnazzo M, Errichiello E, Superti‐Furga A, Garavelli L. Prominent and elongated coccyx, a new manifestation of KBG syndrome associated with novel mutation in
ANKRD11. Am J Med Genet A 2018; 176:1991-1995. [DOI: 10.1002/ajmg.a.40386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Ivan Ivanovski
- Medical Genetics Unit, Maternal and Child Health DepartmentAUSL‐IRCCS of Reggio Emilia Reggio Emilia Italy
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Maternal and Child Health DepartmentAUSL‐IRCCS of Reggio Emilia Reggio Emilia Italy
| | - Ilenia Maini
- Medical Genetics Unit, Maternal and Child Health DepartmentAUSL‐IRCCS of Reggio Emilia Reggio Emilia Italy
| | - Maria Elisabeth Street
- Division of Pediatric Endocrinology and Diabetology, Maternal and Child Health DepartmentAUSL‐IRCCS of Reggio Emilia Reggio Emilia Italy
| | - Allan Bayat
- Department of Clinical Genetics, RigshospitaletUniversity Hospital of Copenhagen Copenhagen Denmark
| | - Marcella Zollino
- Institute of Genomic MedicineCatholic University, Gemelli Hospital Foundation Rome Italy
| | | | - Maria Gnazzo
- Laboratory of Medical GeneticsBambino Gesù Children's Hospital‐IRCCS Rome Italy
| | | | - Andrea Superti‐Furga
- Division of Genetic MedicineCentre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne Lausanne Switzerland
| | - Livia Garavelli
- Medical Genetics Unit, Maternal and Child Health DepartmentAUSL‐IRCCS of Reggio Emilia Reggio Emilia Italy
| |
Collapse
|
31
|
Imagawa E, Albuquerque EVA, Isidor B, Mitsuhashi S, Mizuguchi T, Miyatake S, Takata A, Miyake N, Boguszewski MCS, Boguszewski CL, Lerario AM, Funari MA, Jorge AAL, Matsumoto N. Novel SUZ12 mutations in Weaver-like syndrome. Clin Genet 2018; 94:461-466. [PMID: 30019515 DOI: 10.1111/cge.13415] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Abstract
SUZ12 is a core component of polycomb repressive complex 2 (PRC2) along with EZH2 and EED. Recently, germline mutations in the SUZ12, EZH2 and EED genes have been reported in Weaver syndrome (WS) or Weaver-like syndrome, suggesting a functional link between PRC2 deficits and WS. However, only one case of a SUZ12 mutation presenting with Weaver-like syndrome has been reported. Here, we report a missense and a frameshift mutation in SUZ12 (c.1797A>C; p.Gln599His and c.844_845del; p.Ala282Glnfs*7), both of which are novel, in two individuals. Their clinical features included postnatal overgrowth, increased bifrontal diameter, large ears, round face, horizontal chin crease and skeletal anomalies, but did not fulfill the WS diagnostic criteria. These data provide strong evidence that SUZ12 mutations cause Weaver-like syndrome.
Collapse
Affiliation(s)
- Eri Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Edoarda V A Albuquerque
- Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Bertrand Isidor
- Service de Génétique Médicale, Hôpital Hôtel-Dieu, Nantes, France
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - César L Boguszewski
- Department of Internal Medicine, Endocrine Division (SEMPR), Federal University of Paraná, Curitiba, Brazil
| | - Antonio M Lerario
- Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil.,Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Mariana A Funari
- Laboratorio de Hormonios e Genetica Molecular (LIM/42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
32
|
A novel SLC9A1 mutation causes cerebellar ataxia. J Hum Genet 2018; 63:1049-1054. [DOI: 10.1038/s10038-018-0488-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/08/2018] [Accepted: 07/01/2018] [Indexed: 11/08/2022]
|
33
|
Kunii M, Doi H, Ishii Y, Ohba C, Tanaka K, Tada M, Fukai R, Hashiguchi S, Kishida H, Ueda N, Kudo Y, Kugimoto C, Nakano T, Udaka N, Miyatake S, Miyake N, Saitsu H, Ito Y, Takahashi K, Nakamura H, Tomita‐Katsumoto A, Takeuchi H, Koyano S, Matsumoto N, Tanaka F. Genetic analysis of adult leukoencephalopathy patients using a custom‐designed gene panel. Clin Genet 2018; 94:232-238. [DOI: 10.1111/cge.13371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 01/17/2023]
Affiliation(s)
- M. Kunii
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - H. Doi
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - Y. Ishii
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - C. Ohba
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - K. Tanaka
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - M. Tada
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - R. Fukai
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - S. Hashiguchi
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - H. Kishida
- Department of Neurology Yokohama City University Medical Center Yokohama Japan
| | - N. Ueda
- Department of Neurology Yokohama City University Medical Center Yokohama Japan
| | - Y. Kudo
- Department of Neurology Yokohama City Stroke, Nerve Backbone Center Yokohama Japan
| | - C. Kugimoto
- Department of Neurology Yokohama City Stroke, Nerve Backbone Center Yokohama Japan
| | - T. Nakano
- Department of Neurology and Stroke Medicine Yokohama Sakae Kyosai Hospital Yokohama Japan
| | - N. Udaka
- Department of Pathology Yokohama City University Yokohama Japan
| | - S. Miyatake
- Department of Human Genetics Yokohama City University Yokohama Japan
| | - N. Miyake
- Department of Human Genetics Yokohama City University Yokohama Japan
| | - H. Saitsu
- Department of Human Genetics Yokohama City University Yokohama Japan
| | - Y. Ito
- Department of Neurology Toyota Memorial Hospital Toyota Japan
| | - K. Takahashi
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - H. Nakamura
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - A. Tomita‐Katsumoto
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - H. Takeuchi
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - S. Koyano
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - N. Matsumoto
- Department of Human Genetics Yokohama City University Yokohama Japan
| | - F. Tanaka
- Department of Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| |
Collapse
|
34
|
Yuge K, Iwama K, Yonee C, Matsufuji M, Sano N, Saikusa T, Yae Y, Yamashita Y, Mizuguchi T, Matsumoto N, Matsuishi T. A novel STXBP1 mutation causes typical Rett syndrome in a Japanese girl. Brain Dev 2018; 40:493-497. [PMID: 29544889 DOI: 10.1016/j.braindev.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 11/18/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder mostly caused by mutations in Methyl-CpG-binding protein 2 (MECP2); however, mutations in various other genes may lead to RTT-like phenotypes. Here, we report the first case of a Japanese girl with RTT caused by a novel syntaxin-binding protein 1 (STXBP1) frameshift mutation (c.60delG, p.Lys21Argfs*16). She showed epilepsy at one year of age, regression of acquired psychomotor abilities thereafter, and exhibited stereotypic hand and limb movements at 3 years of age. Her epilepsy onset was earlier than is typical for RTT patients. However, she fully met the 2010 diagnostic criteria of typical RTT. STXBP1 mutations cause early infantile epileptic encephalopathy (EIEE), various intractable epilepsies, and neurodevelopmental disorders. However, the case described here presented a unique clinical presentation of typical RTT without EIEE and a novel STXBP1 mutation.
Collapse
Affiliation(s)
- Kotaro Yuge
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Chihiro Yonee
- Department of Pediatric Neurology, MinamiKyushu Hospital, Kagoshima, Japan
| | - Mayumi Matsufuji
- Department of Pediatric Neurology, MinamiKyushu Hospital, Kagoshima, Japan
| | - Nozomi Sano
- Department of Pediatric Neurology, MinamiKyushu Hospital, Kagoshima, Japan
| | - Tomoko Saikusa
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Yukako Yae
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Yushiro Yamashita
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Toyojiro Matsuishi
- Research Center for Children and Research Center for Rett syndrome, St. Mary's Hospital, Fukuoka, Japan.
| |
Collapse
|
35
|
Larizza L, Finelli P. Developmental disorders with intellectual disability driven by chromatin dysregulation: Clinical overlaps and molecular mechanisms. Clin Genet 2018; 95:231-240. [DOI: 10.1111/cge.13365] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/14/2018] [Indexed: 12/30/2022]
Affiliation(s)
- L. Larizza
- Laboratory of Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
| | - P. Finelli
- Laboratory of Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
- Department of Medical Biotechnology and Translational Medicine; Università degli Studi di Milano; Milan Italy
| |
Collapse
|
36
|
Doi H, Koyano S, Miyatake S, Nakajima S, Nakazawa Y, Kunii M, Tomita-Katsumoto A, Oda K, Yamaguchi Y, Fukai R, Ikeda S, Kato R, Ogata K, Kubota S, Hayashi N, Takahashi K, Tada M, Tanaka K, Nakashima M, Tsurusaki Y, Miyake N, Saitsu H, Ogi T, Aihara M, Takeuchi H, Matsumoto N, Tanaka F. Cerebellar ataxia-dominant phenotype in patients with ERCC4 mutations. J Hum Genet 2018; 63:417-423. [DOI: 10.1038/s10038-017-0408-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/05/2017] [Accepted: 12/22/2017] [Indexed: 01/05/2023]
|
37
|
A novel DARS2 mutation in a Japanese patient with leukoencephalopathy with brainstem and spinal cord involvement but no lactate elevation. Hum Genome Var 2017; 4:17051. [PMID: 29138691 PMCID: PMC5678206 DOI: 10.1038/hgv.2017.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial aspartyl-tRNA synthetase 2 gene (DARS2) is responsible for leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL). A Japanese patient with LBSL showed compound heterozygous DARS2 mutations c.358_359delinsTC (p.Gly120Ser) and c.228-15C>G (splicing error). This provides further evidence that most patients with LBSL show compound heterozygous mutations in DARS2 in association with a common splicing mutation in the splicing acceptor site of intron 2.
Collapse
|
38
|
A commentary on ANKRD11 variants cause variable clinical features associated with KBG syndrome and Coffin-Siris-like syndrome. J Hum Genet 2017; 62:739-740. [PMID: 28566769 PMCID: PMC5537411 DOI: 10.1038/jhg.2017.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
39
|
Shtaya A, Dabbous B, Fanou E, Bridges L, Hettige S. Unusual Intraparenchymal Pontomedullary Epidermoid Cyst in a 2-Year-Old Child: A Case Report and Review of the Literature. World Neurosurg 2017; 104:1046.e15-1046.e20. [PMID: 28529053 DOI: 10.1016/j.wneu.2017.04.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Intrinsic brainstem epidermoid cysts are rare, benign, slow-growing lesions. Their eloquence precludes complete excision; however, subtotal resection often will result in prolonged or sometimes permanent relief of presenting symptoms and signs. We describe an unusual case and review the literature of this pathology in the pediatric population. CASE DESCRIPTION We report an intra-axial pontine epidermoid cyst in a 2-year-old girl who presented with developmental delay, multiple cranial nerve palsies, and pneumonia. Magnetic resonance imaging demonstrated an intrinsic pontine lesion with partial restricted diffusion and an enhancing plaque, the latter not typically seen in congenital lesions like epidermoid. However, gross surgical inspection and histopathology confirmed an epidermoid. CONCLUSIONS Our case, supported by the literature, shows that brain stem epidermoid cysts may have atypical radiologic characteristics and that near-total resection remains safe and can improve outcome.
Collapse
Affiliation(s)
- Anan Shtaya
- Academic Neurosurgery Unit, St George's, University of London, London; Department of Neurosurgery, Atkinson Morley Wing, St George's University Hospital, London, United Kingdom.
| | - Bassam Dabbous
- Department of Neurosurgery, Atkinson Morley Wing, St George's University Hospital, London, United Kingdom
| | - Evgenia Fanou
- Department of Neuroradiology, St George's University Hospital, London, United Kingdom
| | - Leslie Bridges
- Department of Cellular Pathology, St George's University Hospital, London, United Kingdom
| | - Samantha Hettige
- Department of Neurosurgery, Atkinson Morley Wing, St George's University Hospital, London, United Kingdom
| |
Collapse
|