1
|
Pfau K, Lengyel I, Ossewaarde-van Norel J, van Leeuwen R, Risseeuw S, Leftheriotis G, Scholl HPN, Feltgen N, Holz FG, Pfau M. Pseudoxanthoma elasticum - Genetics, pathophysiology, and clinical presentation. Prog Retin Eye Res 2024; 102:101274. [PMID: 38815804 DOI: 10.1016/j.preteyeres.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Pseudoxanthoma elasticum (PXE) is an autosomal-recessively inherited multisystem disease. Mutations in the ABCC6-gene are causative, coding for a transmembrane transporter mainly expressed in hepatocytes, which promotes the efflux of adenosine triphosphate (ATP). This results in low levels of plasma inorganic pyrophosphate (PPi), a critical anti-mineralization factor. The clinical phenotype of PXE is characterized by the effects of elastic fiber calcification in the skin, the cardiovascular system, and the eyes. In the eyes, calcification of Bruch's membrane results in clinically visible lesions, including peau d'orange, angioid streaks, and comet tail lesions. Frequently, patients must be treated for secondary macular neovascularization. No effective therapy is available for treating the cause of PXE, but several promising approaches are emerging. Finding appropriate outcome measures remains a significant challenge for clinical trials in this slowly progressive disease. This review article provides an in-depth summary of the current understanding of PXE and its multi-systemic manifestations. The article offers a detailed overview of the ocular manifestations, including their morphological and functional consequences, as well as potential complications. Lastly, previous and future clinical trials of causative treatments for PXE are discussed.
Collapse
Affiliation(s)
- Kristina Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Georges Leftheriotis
- University Hospital Nice, Vascular Physiology and Medicine Unit, 06000, Nice, France
| | | | - Nicolas Feltgen
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Maximilian Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, Basel, Basel-Stadt, Switzerland
| |
Collapse
|
2
|
Brampton C, Pomozi V, Le Corre Y, Zoll J, Kauffenstein G, Ma C, Hoffmann PR, Martin L, Le Saux O. Bone Marrow-Derived ABCC6 Is an Essential Regulator of Ectopic Calcification In Pseudoxanthoma Elasticum. J Invest Dermatol 2024; 144:1772-1783.e3. [PMID: 38367909 PMCID: PMC11260544 DOI: 10.1016/j.jid.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Physiological calcification of soft tissues is a common occurrence in aging and various acquired and inherited disorders. ABCC6 sequence variations cause the calcification phenotype of pseudoxanthoma elasticum (PXE) as well as some cases of generalized arterial calcification of infancy, which is otherwise caused by defective ENPP1. ABCC6 is primarily expressed in the liver, which has given the impression that the liver is central to the pathophysiology of PXE/generalized arterial calcification of infancy. The emergence of inflammation as a contributor to the calcification in PXE suggested that peripheral tissues play a larger role than expected. In this study, we investigated whether bone marrow-derived ABCC6 contributes to the calcification in PXE. In Abcc6‒/‒ mice, we observed prevalent mineralization in several lymph nodes and surrounding connective tissues and an extensive network of lymphatic vessels within vibrissae, a calcified tissue in Abcc6‒/‒ mice. Furthermore, we found evidence of lymphangiogenesis in patients with PXE and mouse skin, suggesting an inflammatory process. Finally, restoring wild-type bone marrow in Abcc6‒/‒ mice produced a significant reduction of calcification, suggesting that the liver alone is not sufficient to fully inhibit mineralization. With evidence that ABCC6 is expressed in lymphocytes, we suggest that the adaptative immune system and inflammation largely contribute to the calcification in PXE/generalized arterial calcification of infancy.
Collapse
Affiliation(s)
- Christopher Brampton
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA; Bio-Rad Laboratories, Hercules, California, USA
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA; Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Yannick Le Corre
- PXE National Reference Center (MAGEC Nord), University Hospital of Angers, Angers, France
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Gilles Kauffenstein
- UMR INSERM 1260, Nano Regenerative Medicine, University of Strasbourg, Strasbourg, France
| | - Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Ludovic Martin
- PXE National Reference Center (MAGEC Nord), University Hospital of Angers, Angers, France; CNRS 6015, UMR INSERM U1083, MITOVASC Laboratory, University of Angers, Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
| |
Collapse
|
3
|
Lofaro FD, Costa S, Simone ML, Quaglino D, Boraldi F. Fibroblasts' secretome from calcified and non-calcified dermis in Pseudoxanthoma elasticum differently contributes to elastin calcification. Commun Biol 2024; 7:577. [PMID: 38755434 PMCID: PMC11099146 DOI: 10.1038/s42003-024-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare disease characterized by ectopic calcification, however, despite the widely spread effect of pro/anti-calcifying systemic factors associated with this genetic metabolic condition, it is not known why elastic fibers in the same patient are mainly fragmented or highly mineralized in clinically unaffected (CUS) and affected (CAS) skin, respectively. Cellular morphology and secretome are investigated in vitro in CUS and CAS fibroblasts. Here we show that, compared to CUS, CAS fibroblasts exhibit: a) differently distributed and organized focal adhesions and stress fibers; b) modified cell-matrix interactions (i.e., collagen gel retraction); c) imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases; d) differentially expressed pro- and anti-calcifying proteoglycans and elastic-fibers associated glycoproteins. These data emphasize that in the development of pathologic mineral deposition fibroblasts play an active role altering the stability of elastic fibers and of the extracellular matrix milieu creating a local microenvironment guiding the level of matrix remodeling at an extent that may lead to degradation (in CUS) or to degradation and calcification (in CAS) of the elastic component. In conclusion, this study contributes to a better understanding of the mechanisms of the mineral deposition that can be also associated with several inherited or age-related diseases (e.g., diabetes, atherosclerosis, chronic kidney diseases).
Collapse
Affiliation(s)
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Luisa Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
4
|
Tsokolas G, Tossounis C, Tyradellis S, Motta L, Panos GD, Empeslidis T. Angioid Streaks Remain a Challenge in Diagnosis, Management, and Treatment. Vision (Basel) 2024; 8:10. [PMID: 38535759 PMCID: PMC10976272 DOI: 10.3390/vision8010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 10/04/2024] Open
Abstract
Aim: Angioid streaks (ASs) are a rare retinal condition and compromise visual acuity when complicated with choroidal neovascularization (CNV). They represent crack-like dehiscences at the level of the Bruch's membrane. This objective narrative review aims to provide an overview of pathophysiology, current treatment modalities, and future perspectives on this condition. Materials and Methods: A literature search was performed using "PubMed", "Web of Science", "Scopus", "ScienceDirect", "Google Scholar", "medRxiv", and "bioRxiv." Results: ASs may be idiopathic, but they are also associated with systemic conditions, such as pseudoxanthoma elasticum, hereditary hemoglobinopathies, or Paget's disease. Currently, the main treatment is the use of anti-vascular endothelial growth factors (anti-VEGF) to treat secondary CNV, which is the major complication observed in this condition. If CNV is detected and treated promptly, patients with ASs have a good chance of maintaining functional vision. Other treatment modalities have been tried but have shown limited benefit and, therefore, have not managed to be more widely accepted. Conclusion: In summary, although there is no definitive cure yet, the use of anti-VEGF treatment for secondary CNV has provided the opportunity to maintain functional vision in individuals with AS, provided that CNV is detected and treated early.
Collapse
Affiliation(s)
- Georgios Tsokolas
- Ophthalmology Department, Royal Bournemouth Hospital, University Hospitals Dorset NHS Foundation Trust, Castle Lane East, Bournemouth BH7 7DW, UK
| | - Charalambos Tossounis
- Ophthalmology Department, Royal Bournemouth Hospital, University Hospitals Dorset NHS Foundation Trust, Castle Lane East, Bournemouth BH7 7DW, UK
| | - Straton Tyradellis
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals Leicester NHS Trust, Infirmary Square, Leicester LE1 5WW, UK
| | - Lorenzo Motta
- Department of Ophthalmology, School of Medicine, University of Padova, 35121 Padova, Italy
| | - Georgios D Panos
- Department of Ophthalmology, Queen's Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, UK
- Division of Ophthalmology and Visual Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | | |
Collapse
|
5
|
Harmsen IM, Visseren FL, Kok M, de Jong PA, Spiering W. Plasma lipids in Pseudoxanthoma Elasticum (PXE) patients: A comparative study with population-based reference values and Non-PXE controls. ATHEROSCLEROSIS PLUS 2024; 55:5-11. [PMID: 38221909 PMCID: PMC10784135 DOI: 10.1016/j.athplu.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Background and aims - Pseudoxanthoma elasticum (PXE) is a rare genetic disease caused by pathogenic mutations in the ABCC6 gene, resulting in low values of inorganic pyrophosphate (PPi). While low PPi is thought to contribute to arterial calcification, it remains unclear whether this fully explains premature calcification in PXE. It has been hypothesized that the ABCC6 gene could be related to dyslipidemia, which could contribute to vascular calcification seen in PXE. The aim of this study is to evaluate the relation between PXE and plasma lipid concentrations in a large cohort of PXE patients compared with reference values for the general population and compared with non-PXE controls. Methods - The plasma concentrations of total cholesterol, HDL-cholesterol, tiglycerides, and LDL-cholesterol of 312 PXE patients were compared to age- and sex-matched modeled data of the general Dutch population. Differences in median lipid levels were compared with Mann-Whitney-U test. Secondly, plasma lipid concentrations of 44 PXE patients were compared to 44 not-genetically related relatives (spouses or friends), with linear models adjusted for age, sex and BMI. Results - Total cholesterol in PXE patients was 5.6 [IQR 4.6-6.4] mmol/L versus 5.3 [IQR 4.7-6.0] mmol/L (p < 0.01) in the general population; triglycerides were 1.1 [IQR 0.9-1.7] mmol/L versus 1.0 [0.7-1.4] mmol/L (p < 0.01); HDL-c was 1.4 [IQR 1.2-1.7] mmol/L versus 1.5 [IQR 1.2-1.8] mmol/L (p = 0.03) and LDL-c was 3.3 [IQR 2.7-4.1] mmol/L versus 3.2 [IQR 2.7-3.8] mmol/L (p = 0.01). In the patient control analysis with 44 pairs and age, sex and BMI adjusted, comparison with the non-PXE controls only triglycerides were significantly different (mean difference: 0.38 (0.13-0.63)). Conclusion -The lipid profiles of PXE patients are marginally different from the general population or compared to a matched control group, but the differences are unlikely to be clinically relevant. It is therefore unlikely that plasma lipids contribute to the premature vascular calcifications in PXE patients.
Collapse
Affiliation(s)
- Iris M. Harmsen
- Department of Vascular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Frank L.J. Visseren
- Department of Vascular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Madeleine Kok
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Pim A. de Jong
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
6
|
Kauffenstein G, Martin L, Le Saux O. The Purinergic Nature of Pseudoxanthoma Elasticum. BIOLOGY 2024; 13:74. [PMID: 38392293 PMCID: PMC10886499 DOI: 10.3390/biology13020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Pseudoxanthoma Elasticum (PXE) is an inherited disease characterized by elastic fiber calcification in the eyes, the skin and the cardiovascular system. PXE results from mutations in ABCC6 that encodes an ABC transporter primarily expressed in the liver and kidneys. It took nearly 15 years after identifying the gene to better understand the etiology of PXE. ABCC6 function facilitates the efflux of ATP, which is sequentially hydrolyzed by the ectonucleotidases ENPP1 and CD73 into pyrophosphate (PPi) and adenosine, both inhibitors of calcification. PXE, together with General Arterial Calcification of Infancy (GACI caused by ENPP1 mutations) as well as Calcification of Joints and Arteries (CALJA caused by NT5E/CD73 mutations), forms a disease continuum with overlapping phenotypes and shares steps of the same molecular pathway. The explanation of these phenotypes place ABCC6 as an upstream regulator of a purinergic pathway (ABCC6 → ENPP1 → CD73 → TNAP) that notably inhibits mineralization by maintaining a physiological Pi/PPi ratio in connective tissues. Based on a review of the literature and our recent experimental data, we suggest that PXE (and GACI/CALJA) be considered as an authentic "purinergic disease". In this article, we recapitulate the pathobiology of PXE and review molecular and physiological data showing that, beyond PPi deficiency and ectopic calcification, PXE is associated with wide and complex alterations of purinergic systems. Finally, we speculate on the future prospects regarding purinergic signaling and other aspects of this disease.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- UMR INSERM 1260, Regenerative Nanomedicine, University of Strasbourg, 67084 Strasbourg, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, 49000 Angers, France
- MITOVASC-UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
7
|
Harmsen IM, Kok M, Bartstra JW, de Jong PA, Spiering W, Foppen W. Do pseudoxanthoma elasticum patients have higher prevalence of kidney stones on computed tomography compared to hospital controls? Clin Exp Nephrol 2024; 28:75-79. [PMID: 37837579 PMCID: PMC10766656 DOI: 10.1007/s10157-023-02405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/07/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE) is an autosomal recessive disease characterized by diminished inorganic plasma pyrophosphate (PPi), a strong calcification inhibitor. In addition to more typical calcification of skin, retina and arterial wall a diminished plasma PPi could lead to other ectopic calcification, such as formation of kidney stones. OBJECTIVE To compare the prevalence of kidney stones between PXE patients and hospital controls on computed tomography (CT). METHOD Low-dose CT images of PXE patients and controls were assessed by one radiologist, who was blinded for the diagnosis PXE. The number of kidney stones, and the size of the largest stone was recorded. Odds ratios (ORs) for having kidney stone were calculated using multivariable adjusted logistic regression. RESULTS Our study comprised 273 PXE patients and 125 controls. The mean age of PXE patients was 51.5 ± 15.9 years compared to 54.9 ± 14.2 in the control group (p = 0.04) and PXE patients more often were women (63 vs. 50%, p = 0.013). The prevalence of kidney stones on CT was similar: 6.9% in PXE patients, compared to 5.6% in controls (p = 0.6). In the multivariate analysis adjusting for age and sex, there was no significantly higher odds for PXE patients on having stones, compared to controls: OR 1.48 (95% CI 0.62-3.96). CONCLUSION There is no significant difference in the prevalence of incidental kidney stones on CT in PXE patients versus controls.
Collapse
Affiliation(s)
- Iris M Harmsen
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Madeleine Kok
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jonas W Bartstra
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Wouter Foppen
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Mitochondrial Dysfunction and Oxidative Stress in Hereditary Ectopic Calcification Diseases. Int J Mol Sci 2022; 23:ijms232315288. [PMID: 36499615 PMCID: PMC9738718 DOI: 10.3390/ijms232315288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Ectopic calcification (EC) is characterized by an abnormal deposition of calcium phosphate crystals in soft tissues such as blood vessels, skin, and brain parenchyma. EC contributes to significant morbidity and mortality and is considered a major health problem for which no effective treatments currently exist. In recent years, growing emphasis has been placed on the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of EC. Impaired mitochondrial respiration and increased levels of reactive oxygen species can be directly linked to key molecular pathways involved in EC such as adenosine triphosphate homeostasis, DNA damage signaling, and apoptosis. While EC is mainly encountered in common diseases such as diabetes mellitus and chronic kidney disease, studies in rare hereditary EC disorders such as pseudoxanthoma elasticum or Hutchinson-Gilford progeria syndrome have been instrumental in identifying the precise etiopathogenetic mechanisms leading to EC. In this narrative review, we describe the current state of the art regarding the role of mitochondrial dysfunction and oxidative stress in hereditary EC diseases. In-depth knowledge of aberrant mitochondrial metabolism and its local and systemic consequences will benefit the research into novel therapies for both rare and common EC disorders.
Collapse
|
9
|
Narasimhan M, Ramachandran R, Cornelius Gnanadurai JS, Durai PCT, Kalaivani P, Nithila C. Lax skin and blurring of vision- A case report of pseudoxanthoma elasticum. J Family Med Prim Care 2022; 11:7972-7974. [PMID: 36994043 PMCID: PMC10040992 DOI: 10.4103/jfmpc.jfmpc_2337_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 01/31/2023] Open
Abstract
Increased laxity of the skin can be caused by aging, significant weight loss, or defects in the elastic tissue. A 38-year-old female presented with increased laxity of the skin over the neck, thighs, and abdomen for 6 years, associated with headache and blurring of vision for a week. On cutaneous examination, prominent skin folds, laxity, and wrinkles were noted over the neck, abdomen, thighs, and groin, with yellowish papules along the neck creases. Ocular examination revealed features suggestive of angioid streaks. Skin biopsy showed fragmented elastic fibers and intervening calcium deposits on Verhoeff Van Gieson and Von Kossa stains. Based on these findings, a diagnosis of pseudoxanthoma elasticum (PXE) was made. The patient was started on oral and topical sunscreens and eye protection and advised regular follow-up. Diagnosing the condition early based on skin findings can help prevent further multi-system manifestations by taking appropriate preventive measures as this condition is progressive and has no cure.
Collapse
Affiliation(s)
- Murali Narasimhan
- Department of Dermatology, Venereology and Leprosy, SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India
| | - R Ramachandran
- Department of Dermatology, Venereology and Leprosy, SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India
| | | | - Priya Cinna T Durai
- Department of Dermatology, Venereology and Leprosy, SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India
| | - P Kalaivani
- Department of Pathology, SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India
| | - C Nithila
- Department of Dermatology, Venereology and Leprosy, SRM Medical College Hospital and Research Centre, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Targeting ABCC6 in Mesenchymal Stem Cells: Impairment of Mature Adipocyte Lipid Homeostasis. Int J Mol Sci 2022; 23:ijms23169218. [PMID: 36012482 PMCID: PMC9409192 DOI: 10.3390/ijms23169218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in ABCC6, an ATP-binding cassette transporter with a so far unknown substrate mainly expressed in the liver and kidney, cause pseudoxanthoma elasticum (PXE). Symptoms of PXE in patients originate from the calcification of elastic fibers in the skin, eye, and vessels. Previous studies suggested an involvement of ABCC6 in cholesterol and lipid homeostasis. The intention of this study was to examine the influence of ABCC6 deficiency during adipogenic differentiation of human bone marrow-derived stem cells (hMSCs). Induction of adipogenic differentiation goes along with significantly elevated ABCC6 gene expression in mature adipocytes. We generated an ABCC6-deficient cell culture model using clustered regulatory interspaced short palindromic repeat Cas9 (CRISPR–Cas9) system to clarify the role of ABCC6 in lipid homeostasis. The lack of ABCC6 in hMSCs does not influence gene expression of differentiation markers in adipogenesis but results in a decreased triglyceride content in cell culture medium. Protein and gene expression analysis of mature ABCC6-deficient adipocytes showed diminished intra- and extra-cellular lipolysis, release of lipids, and fatty acid neogenesis. Therefore, our results demonstrate impaired lipid trafficking in adipocytes due to ABCC6 deficiency, highlighting adipose tissue and peripheral lipid metabolism as a relevant target for uncovering systemic PXE pathogenesis.
Collapse
|
11
|
Ralph D, van de Wetering K, Uitto J, Li Q. Inorganic Pyrophosphate Deficiency Syndromes and Potential Treatments for Pathologic Tissue Calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:762-770. [PMID: 35182493 PMCID: PMC9088198 DOI: 10.1016/j.ajpath.2022.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Pathologic soft tissue calcification can occur in both genetic and acquired clinical conditions, causing significant morbidity and mortality. Although the pathomechanisms of pathologic calcification are poorly understood, major progress has been made in recent years in defining the underlying genetic defects in Mendelian disorders of ectopic calcification. This review presents an overview of the pathophysiology of five monogenic disorders of pathologic calcification: pseudoxanthoma elasticum, generalized arterial calcification of infancy, arterial calcification due to deficiency of CD73, ankylosis, and progeria. These hereditary disorders, caused by mutations in genes encoding ATP binding cassette subfamily C member 6, ectonucleotide pyrophosphatase/phosphodiesterase 1, CD73, progressive ankylosis protein, and lamin A/C proteins, respectively, are inorganic pyrophosphate (PPi) deficiency syndromes with reduced circulating levels of PPi, the principal physiologic inhibitor of calcium hydroxyapatite deposition in soft connective tissues. In addition to genetic diseases, PPi deficiency has been encountered in acquired clinical conditions accompanied by pathologic calcification. Because specific and effective treatments are lacking for pathologic calcification, the unifying finding of PPi deficiency suggests that PPi-targeted therapies may be beneficial to counteract pathologic soft tissue calcification in both genetic and acquired diseases.
Collapse
Affiliation(s)
- Douglas Ralph
- Genetics, Genomics, and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
12
|
Bhutani N. Pseudoxanthoma elasticum as a diagnostic challenge for pathologists: A rare case report. Ann Med Surg (Lond) 2022; 77:103571. [PMID: 35432986 PMCID: PMC9006764 DOI: 10.1016/j.amsu.2022.103571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
PXE is an extremely rare autosomal recessive disease. It involves major systems in the body like the cutaneous, ocular, cardiovascular, and gastrointestinal. The characteristic histopathological features are calcification and fragmentation of the elastic fibres. Currently, specific or effective treatment is not available.
Collapse
|
13
|
Lázaro-Escudero JA, Chu EY. SnapshotDx Quiz: March 2022. J Invest Dermatol 2022; 142:e27-e32. [PMID: 35184802 DOI: 10.1016/j.jid.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Jorge A Lázaro-Escudero
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Y Chu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
14
|
Stumpf MJ, Schaefer CA, Mahn T, Wolf AE, Biener L, Hendig D, Nickenig G, Schahab N, Pizarro C, Skowasch D. Pulmonary affection of patients with Pseudoxanthoma elasticum: Long-term development and genotype-phenotype-correlation. Intractable Rare Dis Res 2022; 11:7-14. [PMID: 35261845 PMCID: PMC8898393 DOI: 10.5582/irdr.2021.01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/05/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare, heritable disease caused by various, mainly recessively transmitted mutations in the ABCC6 gene. Due to calcification of soft connective tissue phenotypic hallmarks are progressive loss of vision, alternation of the skin and early onset atherosclerosis. Beside these main features patients also suffer from impaired alveolar diffusion. The present study focused on impaired lung functioning based on a large cohort of patients with PXE, its long-term development, and genotype-phenotype correlation. Retrospectively, 98 patients and 45 controls were enrolled. All patients underwent body plethysmography and carbon monoxide diffusion testing. Of 35 patients three or more body plethysmographic records were available for long-term analysis. For genotype-phenotype analysis ABCC6 genotypes were grouped as two missense, mixed, or two nonsense mutations. Patients with PXE showed significantly reduced vital capacity (p < 0.05), diffusion capacity (p < 0.01), and diffusion transfer coefficient (p < 0.05). Over a mean period of 38 months diffusion capacity (p < 0.05) and diffusion transfer coefficient (p < 0.01) dropped significantly whereas lung volumes remained unchanged. Genotype-phenotype correlation revealed no connection between gene variants and lung functioning. In conclusion, PXE is accompanied by progressive reduction of alveolar diffusion indicating progressive alterations of lung tissue. Genotype-phenotype correlation with genotypes sorted as missense and nonsense mutations do not explain impaired lung functioning.
Collapse
Affiliation(s)
- Max Jonathan Stumpf
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
- Address correspondence to:Max Jonathan Stumpf, University Hospital of Bonn, Medical Department II, Cardiology, Pneumology, and Angiology, Venusberg-Campus 1, 53127 Bonn, Germany. E-mail:
| | - Christian Alexander Schaefer
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Thorsten Mahn
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Anna Elisabeth Wolf
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Leonie Biener
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Doris Hendig
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre North Rhine Westphalia, University Hospital of the Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Nadjib Schahab
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Carmen Pizarro
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Therapy of Pseudoxanthoma Elasticum: Current Knowledge and Future Perspectives. Biomedicines 2021; 9:biomedicines9121895. [PMID: 34944710 PMCID: PMC8698611 DOI: 10.3390/biomedicines9121895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare, genetic, metabolic disease with an estimated prevalence of between 1 per 25,000 and 56,000. Its main hallmarks are characteristic skin lesions, development of choroidal neovascularization, and early-onset arterial calcification accompanied by a severe reduction in quality-of-life. Underlying the pathology are recessively transmitted pathogenic variants of the ABCC6 gene, which results in a deficiency of ABCC6 protein. This results in reduced levels of peripheral pyrophosphate, a strong inhibitor of peripheral calcification, but also dysregulation of blood lipids. Although various treatment options have emerged during the last 20 years, many are either already outdated or not yet ready to be applied generally. Clinical physicians often are left stranded while patients suffer from the consequences of outdated therapies, or feel unrecognized by their attending doctors who may feel uncertain about using new therapeutic approaches or not even know about them. In this review, we summarize the broad spectrum of treatment options for PXE, focusing on currently available clinical options, the latest research and development, and future perspectives.
Collapse
|
16
|
Kowal L, Huang J, Luo H, Singh J, Snook AE, Uitto J, Li Q. Functional Assessment of Missense Variants in the ABCC6 Gene Implicated in Pseudoxanthoma Elasticum, a Heritable Ectopic Mineralization Disorder. J Invest Dermatol 2021; 142:1085-1093. [PMID: 34597610 DOI: 10.1016/j.jid.2021.08.435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Pseudoxanthoma elasticum, a heritable multisystem ectopic mineralization disorder, is caused by inactivating mutations in the ABCC6 gene. The encoded protein, ABCC6, a transmembrane transporter, has a specialized efflux function in hepatocytes by contributing to plasma levels of inorganic pyrophosphate, a potent inhibitor of mineralization in soft connective tissues. Reduced plasma inorganic pyrophosphate levels underlie the ectopic mineralization in pseudoxanthoma elasticum. In this study, we characterized the pathogenicity of three human ABCC6 missense variants using an adenovirus-mediated liver-specific ABCC6 transgene expression system in an Abcc6-/- mouse model of pseudoxanthoma elasticum. Variants p.L420V and p.R1064W were found benign because they had abundance and plasma membrane localization in hepatocytes similar to the wild-type human ABCC6 transgene, normalized plasma inorganic pyrophosphate levels, and prevented mineralization in the dermal sheath of vibrissae in muzzle skin, a phenotypic hallmark in the Abcc6-/- mice. In contrast, p.S400F was shown to be pathogenic because it failed to normalize plasma inorganic pyrophosphate levels and had no effect on ectopic mineralization despite its normal expression and proper localization in hepatocytes. These results showed that adenovirus-mediated hepatic ABCC6 expression in Abcc6-/- mice can provide a model system to effectively elucidate the multifaceted functional consequences of human ABCC6 missense variants identified in patients with pseudoxanthoma elasticum.
Collapse
Affiliation(s)
- Luke Kowal
- PXE International Center of Excellence in Research and Clinical Care, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jianhe Huang
- PXE International Center of Excellence in Research and Clinical Care, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hongbin Luo
- PXE International Center of Excellence in Research and Clinical Care, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jagmohan Singh
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jouni Uitto
- PXE International Center of Excellence in Research and Clinical Care, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qiaoli Li
- PXE International Center of Excellence in Research and Clinical Care, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
17
|
Shimada BK, Pomozi V, Zoll J, Kuo S, Martin L, Le Saux O. ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions. Int J Mol Sci 2021; 22:ijms22094555. [PMID: 33925341 PMCID: PMC8123679 DOI: 10.3390/ijms22094555] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI). ABCC6 deficiency in mice underlies an inducible dystrophic cardiac calcification phenotype (DCC). These calcification diseases are part of a spectrum of mineralization disorders that also includes Calcification of Joints and Arteries (CALJA). Since the identification of ABCC6 as the “PXE gene” and the development of several animal models (mice, rat, and zebrafish), there has been significant progress in our understanding of the molecular genetics, the clinical phenotypes, and pathogenesis of these diseases, which share similarities with more common conditions with abnormal calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi) and adenosine by the ectonucleotidases NPP1 and CD73 (NT5E). PPi is a potent endogenous inhibitor of calcification, whereas adenosine indirectly contributes to calcification inhibition by suppressing the synthesis of tissue non-specific alkaline phosphatase (TNAP). At present, therapies only exist to alleviate symptoms for both PXE and GACI; however, extensive studies have resulted in several novel approaches to treating PXE and GACI. This review seeks to summarize the role of ABCC6 in ectopic calcification in PXE and other calcification disorders, and discuss therapeutic strategies targeting various proteins in the pathway (ABCC6, NPP1, and TNAP) and direct inhibition of calcification via supplementation by various compounds.
Collapse
Affiliation(s)
- Briana K Shimada
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Viola Pomozi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Sheree Kuo
- Department of Pediatrics, Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI 96826, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, 49100 Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, 49100 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| |
Collapse
|
18
|
Structural and Functional Characterization of the ABCC6 Transporter in Hepatic Cells: Role on PXE, Cancer Therapy and Drug Resistance. Int J Mol Sci 2021; 22:ijms22062858. [PMID: 33799762 PMCID: PMC8000515 DOI: 10.3390/ijms22062858] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a complex autosomal recessive disease caused by mutations of ABCC6 transporter and characterized by ectopic mineralization of soft connective tissues. Compared to the other ABC transporters, very few studies are available to explain the structural components and working of a full ABCC6 transporter, which may provide some idea about its physiological role in humans. Some studies suggest that mutations of ABCC6 in the liver lead to a decrease in some circulating factor and indicate that PXE is a metabolic disease. It has been reported that ABCC6 mediates the efflux of ATP, which is hydrolyzed in PPi and AMP; in the extracellular milieu, PPi gives potent anti-mineralization effect, whereas AMP is hydrolyzed to Pi and adenosine which affects some cellular properties by modulating the purinergic pathway. Structural and functional studies have demonstrated that silencing or inhibition of ABCC6 with probenecid changed the expression of several genes and proteins such as NT5E and TNAP, as well as Lamin, and CDK1, which are involved in cell motility and cell cycle. Furthermore, a change in cytoskeleton rearrangement and decreased motility of HepG2 cells makes ABCC6 a potential target for anti-cancer therapy. Collectively, these findings suggested that ABCC6 transporter performs functions that modify both the external and internal compartments of the cells.
Collapse
|
19
|
Lofaro FD, Boraldi F, Garcia-Fernandez M, Estrella L, Valdivielso P, Quaglino D. Relationship Between Mitochondrial Structure and Bioenergetics in Pseudoxanthoma elasticum Dermal Fibroblasts. Front Cell Dev Biol 2020; 8:610266. [PMID: 33392199 PMCID: PMC7773789 DOI: 10.3389/fcell.2020.610266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic disease considered as a paradigm of ectopic mineralization disorders, being characterized by multisystem clinical manifestations due to progressive calcification of skin, eyes, and the cardiovascular system, resembling an age-related phenotype. Although fibroblasts do not express the pathogenic ABCC6 gene, nevertheless these cells are still under investigation because they regulate connective tissue homeostasis, generating the "arena" where cells and extracellular matrix components can promote pathologic calcification and where activation of pro-osteogenic factors can be associated to pathways involving mitochondrial metabolism. The aim of the present study was to integrate structural and bioenergenetic features to deeply investigate mitochondria from control and from PXE fibroblasts cultured in standard conditions and to explore the role of mitochondria in the development of the PXE fibroblasts' pathologic phenotype. Proteomic, biochemical, and morphological data provide new evidence that in basal culture conditions (1) the protein profile of PXE mitochondria reveals a number of differentially expressed proteins, suggesting changes in redox balance, oxidative phosphorylation, and calcium homeostasis in addition to modified structure and organization, (2) measure of oxygen consumption indicates that the PXE mitochondria have a low ability to cope with a sudden increased need for ATP via oxidative phosphorylation, (3) mitochondrial membranes are highly polarized in PXE fibroblasts, and this condition contributes to increased reactive oxygen species levels, (4) ultrastructural alterations in PXE mitochondria are associated with functional changes, and (5) PXE fibroblasts exhibit a more abundant, branched, and interconnected mitochondrial network compared to control cells, indicating that fusion prevail over fission events. In summary, the present study demonstrates that mitochondria are modified in PXE fibroblasts. Since mitochondria are key players in the development of the aging process, fibroblasts cultured from aged individuals or aged in vitro are more prone to calcify, and in PXE, calcified tissues remind features of premature aging syndromes; it can be hypothesized that mitochondria represent a common link contributing to the development of ectopic calcification in aging and in diseases. Therefore, ameliorating mitochondrial functions and cell metabolism could open new strategies to positively regulate a number of signaling pathways associated to pathologic calcification.
Collapse
Affiliation(s)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Lara Estrella
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Pedro Valdivielso
- Department of Medicine and Dermatology, Instituto de Investigación Biomédica de Málaga, University of Malaga, Málaga, Spain
- Internal Medicine Unit, Hospital Virgen de la Victoria, Málaga, Spain
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
20
|
Naima J, Abir RA, Hosen MJ. Homology Modeling and Virtual Screening of Proteins Related to PXE and PXE-like Diseases: Insights for Overlapping Metabolites. Curr Pharm Biotechnol 2020; 21:1470-1478. [DOI: 10.2174/1389201021666200519115032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/28/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
Background:
The molecular etiology of Pseudoxanthoma Elasticum (PXE), an autosomal
recessive connective tissue disorder, has become increasingly complex as not only mutations in the
ABCC6, but also in ENPP1 and GGCX, can cause resembling phenotypes.
Methods:
To get insights on the common pathway, the overlapping metabolites for these three proteins
were predicted through 3D homology modeling and virtual screening. 3D homology models of
ABCC6, ENPP1, and GGCX were generated by the MODELLER program, which were further validated
using RAMPAGE and ERRAT servers. Substrate binding sites of ABCC6 were predicted using
blind docking of reported in vitro substrates.
Results:
Virtual screening against the substrate binding site of ABCC6 using metabolites listed in Human
Metabolome Databases (HMDB) revealed the best possible substrate of ABCC6. Those listed metabolites
were further docked against predicted substrate binding sites of GGCX and ENPP1. Molecular
docking and virtual screening revealed a list of 133 overlapping metabolites of these three proteins.
Most of them are Phosphatidylinositol (PI), Phosphatidylserine (PS), Diacylglycerol (DAG), phosphatidic
acid, oleanolic acid metabolites and were found to have links with calcification.
Conclusion:
These predicted overlapping metabolites may give novel insights for searching common
pathomechanism for PXE and PXE-like diseases.
Collapse
Affiliation(s)
- Jannatul Naima
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Ruhshan A. Abir
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Mohammad J. Hosen
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| |
Collapse
|
21
|
Stumpf MJ, Mahn T, Steinmetz M, Fimmers R, Pizarro C, Nickenig G, Skowasch D, Schahab N, Schaefer CA. Pseudoxanthoma elasticum – also a microvascular disease. VASA 2020; 49:57-62. [DOI: 10.1024/0301-1526/a000811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Summary: Background: Pseudoxanthoma elasticum (PXE) is a heritable recessive disease characterized by calcification and fragmentation of soft connective tissue. Besides progressive loss of vision, alternations of the skin, and early-onset atherosclerosis different reports have suggested a microvascular manifestation of PXE and restrictive lung disease. Aim of this study was to elaborate a specific pattern of capillary alterations in PXE as well as to contemplate a possible connection to restrictive lung disease. Patients and methods: 53 consecutive patients with PXE and 26 controls were studied. All patients underwent nailfold capillaroscopy, body plethysmography, capillary blood gas analysis, and venous puncture to assess titer of autoantibodies. Results: PXE was associated with highly pathological alterations of capillaries compared to control. Atypical capillaries, such as ramifications and bushy forms, as well as dilatations varied at highest significance (p < .001). This effect was mirrored by perivascular edema, density and tortuous capillaries. Titer of anti-nuclear autoantibodies were not elevated in patients with PXE. Further analysis revealed negative correlation between vital capacity and presence of atypical capillaries. Conclusions: This study firstly describes the pattern of nailfold capillaries in PXE. Capillaries are highly pathological and consist of ramifications and bushy forms as well as dilatations. Frequently, tortuous capillaries, pericapillary edema and reduced denseness of capillary loops occur. Frequency of atypical capillaries is negatively correlated with vital capacity which can be interpreted as further lead on restrictive lung disease.
Collapse
Affiliation(s)
- Max Jonathan Stumpf
- Medical Clinic II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Thorsten Mahn
- Medical Clinic II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Martin Steinmetz
- Clinic for Cardiology and Angiology, University Hospital Essen, Essen, Germany
| | - Rolf Fimmers
- Institute for Medical Biometry, Computer Science and Epidemiology, University of Bonn, Bonn, Germany
| | - Carmen Pizarro
- Medical Clinic II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Medical Clinic II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Dirk Skowasch
- Medical Clinic II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Nadjib Schahab
- Medical Clinic II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
22
|
Evidence of Cardiovascular Calcification and Fibrosis in Pseudoxanthoma Elasticum Mouse Models Subjected to DOCA-Salt Hypertension. Sci Rep 2019; 9:16327. [PMID: 31704980 PMCID: PMC6841718 DOI: 10.1038/s41598-019-52808-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudoxanthoma Elasticum (PXE) is a rare disorder characterized by fragmentation and progressive calcification of elastic fibres in connective tissues. Although arterial hypertension (AHT) has been reported in PXE patients, its impact on pathological manifestations has as yet been unexplored. We investigated the consequences of experimental AHT on Abcc6−/− PXE mouse models. Experimental AHT was induced by deoxycorticosterone acetate (DOCA-salt) in uni-nephrectomised mice. Blood pressure (BP) and vascular reactivity were monitored using tail-cuff plethysmography and myography respectively. Calcium content and fibrosis were assessed using colorimetry, Von Kossa and Sirius red staining respectively. The gene expression implicated in vascular biology was measured using quantitative polymerase chain reaction. DOCA-salt induced a matching rise in BP in Abcc6−/− and WT mice. Aortic ring contraction and relaxation in vitro were comparable. Calcium accumulated in the hearts of hypertensive Abcc6−/− mice along with significant fibrosis in the myocardium and aorta by contrast with the WT mice. In hypertensive Abcc6−/− mouse aortas, these results were corroborated by gene expression patterns favouring calcification, fibrosis and extracellular matrix remodelling. Abcc6 loss-of-function is associated with greater cardiovascular calcification and fibrosis in mice subjected to DOCA-Salt hypertension. These results suggest likely cardiovascular deterioration in PXE patients with AHT, necessitating diligent BP monitoring.
Collapse
|
23
|
Quantitative Trait Locus and Integrative Genomics Revealed Candidate Modifier Genes for Ectopic Mineralization in Mouse Models of Pseudoxanthoma Elasticum. J Invest Dermatol 2019; 139:2447-2457.e7. [PMID: 31207231 DOI: 10.1016/j.jid.2019.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Pseudoxanthoma elasticum, a prototype of heritable multisystem ectopic mineralization disorders, is caused by mutations in the ABCC6 gene encoding a putative efflux transporter, ABCC6. The phenotypic spectrum of pseudoxanthoma elasticum varies, and the correlation between genotype and phenotype has not been established. To identify genetic modifiers, we performed quantitative trait locus analysis in inbred mouse strains that carry the same hypomorphic allele in Abcc6 yet with highly variable ectopic mineralization phenotypes of pseudoxanthoma elasticum. Abcc6 was confirmed as a major determinant for ectopic mineralization in multiple tissues. Integrative analysis using functional genomics tools that included GeneWeaver, String, and Mouse Genome Informatics identified a total of nine additional candidate modifier genes that could influence the organ-specific ectopic mineralization phenotypes. Integration of the candidate genes into the existing ectopic mineralization gene network expands the current knowledge on the complexity of the network that, as a whole, governs ectopic mineralization in soft connective tissues.
Collapse
|
24
|
|
25
|
Huang J, Snook AE, Uitto J, Li Q. Adenovirus-Mediated ABCC6 Gene Therapy for Heritable Ectopic Mineralization Disorders. J Invest Dermatol 2019; 139:1254-1263. [PMID: 30639429 DOI: 10.1016/j.jid.2018.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 01/27/2023]
Abstract
Loss-of-function mutations in the ABCC6 gene cause pseudoxanthoma elasticum and type 2 generalized arterial calcification of infancy, heritable ectopic mineralization disorders without effective treatment. ABCC6 encodes the putative efflux transporter ABCC6, which is predominantly expressed in the liver. Although the substrate of ABCC6 remains unknown, recent studies showed that pseudoxanthoma elasticum is a metabolic disorder caused by reduced circulating levels of pyrophosphate, a potent mineralization inhibitor. We hypothesized that reconstitution of ABCC6 might counteract ectopic mineralization in an Abcc6-/- mouse model of pseudoxanthoma elasticum. Intravenous administration of a recombinant adenovirus expressing wild-type human ABCC6 in Abcc6-/- mice showed sustained high-level expression of human ABCC6 in the liver for up to 4 weeks, increasing pyrophosphate levels in plasma. In addition, adenovirus injection every 4 weeks restored plasma pyrophosphate levels and, consequently, significantly reduced ectopic mineralization in the skin of young mice. By contrast, the same treatment in old mice with already established mineral deposits failed to reduce mineralization. These results suggest that adenovirus-mediated ABCC6 gene delivery, when initiated early, is a promising prevention therapy for pseudoxanthoma elasticum and generalized arterial calcification of infancy, diseases that currently lack preventive or therapeutic options.
Collapse
Affiliation(s)
- Jianhe Huang
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
26
|
Van Gils M, Nollet L, Verly E, Deianova N, Vanakker OM. Cellular signaling in pseudoxanthoma elasticum: an update. Cell Signal 2019; 55:119-129. [PMID: 30615970 DOI: 10.1016/j.cellsig.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Pseudoxanthoma elasticum is an autosomal recessive genodermatosis with variable expression, due to mutations in the ABCC6 or ENPP1 gene. It is characterized by elastic fiber mineralization and fragmentation, resulting in skin, eye and cardiovascular symptoms. Significant advances have been made in the last 20 years with respect to the phenotypic characterization and pathophysiological mechanisms leading to elastic fiber mineralization. Nonetheless, the substrates of the ABCC6 transporter - the main cause of PXE - remain currently unknown. Though the precise mechanisms linking the ABCC6 transporter to mineralization of the extracellular matrix are unclear, several studies have looked into the cellular consequences of ABCC6 deficiency in PXE patients and/or animal models. In this paper, we compile the evidence on cellular signaling in PXE, which seems to revolve mainly around TGF-βs, BMPs and inorganic pyrophosphate signaling cascades. Where conflicting results or fragmented data are present, we address these with novel signaling data. This way, we aim to better understand the up- and down-stream signaling of TGF-βs and BMPs in PXE and we demonstrate that ANKH deficiency can be an additional mechanism contributing to decreased serum PPi levels in PXE patients.
Collapse
Affiliation(s)
- M Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - L Nollet
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - E Verly
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - N Deianova
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - O M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium.
| |
Collapse
|
27
|
Borst P, Váradi A, van de Wetering K. PXE, a Mysterious Inborn Error Clarified. Trends Biochem Sci 2018; 44:125-140. [PMID: 30446375 DOI: 10.1016/j.tibs.2018.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/07/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Ever since Garrod deduced the existence of inborn errors in 1901, a vast array of metabolic diseases has been identified and characterized in molecular terms. In 2018 it is difficult to imagine that there is any uncharted backyard left in the metabolic disease landscape. Nevertheless, it took until 2013 to identify the cause of a relatively frequent inborn error, pseudoxanthoma elasticum (PXE), a disorder resulting in aberrant calcification. The mechanism found was not only biochemically interesting but also points to possible new treatments for PXE, a disease that has remained untreatable. In this review we sketch the tortuous road that led to the biochemical understanding of PXE and to new ideas for treatment. We also discuss some of the controversies still haunting the field.
Collapse
Affiliation(s)
- Piet Borst
- Division of Oncogenetics, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands.
| | - András Váradi
- Institute of Enzymology, Research Center for Natural Sciences (RCNS), Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
28
|
Li Q, van de Wetering K, Uitto J. Pseudoxanthoma Elasticum as a Paradigm of Heritable Ectopic Mineralization Disorders: Pathomechanisms and Treatment Development. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:216-225. [PMID: 30414410 DOI: 10.1016/j.ajpath.2018.09.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/17/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022]
Abstract
Ectopic mineralization is a global problem and leading cause of morbidity and mortality. The pathomechanisms of ectopic mineralization are poorly understood. Recent studies on heritable ectopic mineralization disorders with defined gene defects have been helpful in elucidation of the mechanisms of ectopic mineralization in general. The prototype of such disorders is pseudoxanthoma elasticum (PXE), a late-onset, slowly progressing disorder with multisystem clinical manifestations. Other conditions include generalized arterial calcification of infancy (GACI), characterized by severe, early-onset mineralization of the cardiovascular system, often with early postnatal demise. In addition, arterial calcification due to CD73 deficiency (ACDC) occurs late in life, mostly affecting arteries in the lower extremities in elderly individuals. These three conditions, PXE, GACI, and ACDC, caused by mutations in ABCC6, ENPP1, and NT5E, respectively, are characterized by reduced levels of inorganic pyrophosphate (PPi) in plasma. Because PPi is a powerful antimineralization factor, it has been postulated that reduced PPi is a major determinant for ectopic mineralization in these conditions. These and related observations on complementary mechanisms of ectopic mineralization have resulted in development of potential treatment modalities for PXE, including administration of bisphosphonates, stable PPi analogs with antimineralization activity. It is conceivable that efficient treatments may soon become available for heritable ectopic mineralization disorders with application to common calcification disorders.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, the PXE International Center of Excellence in Research and Clinical Care, and the Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, the PXE International Center of Excellence in Research and Clinical Care, and the Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, the PXE International Center of Excellence in Research and Clinical Care, and the Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Li Q, Huang J, Pinkerton AB, Millan JL, van Zelst BD, Levine MA, Sundberg JP, Uitto J. Inhibition of Tissue-Nonspecific Alkaline Phosphatase Attenuates Ectopic Mineralization in the Abcc6 -/- Mouse Model of PXE but Not in the Enpp1 Mutant Mouse Models of GACI. J Invest Dermatol 2018; 139:360-368. [PMID: 30130617 DOI: 10.1016/j.jid.2018.07.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a prototype of heritable ectopic mineralization disorders, is caused by mutations in the ABCC6 gene encoding a putative efflux transporter ABCC6. It was recently shown that the absence of ABCC6-mediated adenosine triphosphate release from the liver and, consequently, reduced inorganic pyrophosphate levels underlie the pathogenesis of PXE. Given that tissue-nonspecific alkaline phosphatase (TNAP), encoded by ALPL, is the enzyme responsible for degrading inorganic pyrophosphate, we hypothesized that reducing TNAP levels either by genetic or pharmacological means would lead to amelioration of the ectopic mineralization phenotype in the Abcc6-/- mouse model of PXE. Thus, we bred Abcc6-/- mice to heterozygous Alpl+/- mice that display approximately 50% plasma TNAP activity. The Abcc6-/-Alpl+/- double-mutant mice showed 52% reduction of mineralization in the muzzle skin compared with the Abcc6-/-Alpl+/+ mice. Subsequently, oral administration of SBI-425, a small molecule inhibitor of TNAP, resulted in 61% reduction of plasma TNAP activity and 58% reduction of mineralization in the muzzle skin of Abcc6-/- mice. By contrast, SBI-425 treatment of Enpp1 mutant mice, another model of ectopic mineralization associated with reduced inorganic pyrophosphate, failed to reduce muzzle skin mineralization. These results suggest that inhibition of TNAP might provide a promising treatment strategy for PXE, a currently intractable disease.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Jianhe Huang
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anthony B Pinkerton
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jose Luis Millan
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Bertrand D van Zelst
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michael A Levine
- Division of Endocrinology, Children's Hospital of Philadelphia, and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Li Q, Kingman J, Sundberg JP, Levine MA, Uitto J. Etidronate prevents, but does not reverse, ectopic mineralization in a mouse model of pseudoxanthoma elasticum ( Abcc6-/- ). Oncotarget 2018; 9:30721-30730. [PMID: 30112102 PMCID: PMC6089405 DOI: 10.18632/oncotarget.10738] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) and generalized arterial calcification of infancy (GACI) are heritable disorders manifesting with ectopic tissue mineralization. Most cases of PXE and some cases of GACI are caused by mutations in the ABCC6 gene, resulting in reduced plasma pyrophosphate (PPi) levels. There is no effective treatment for these disorders. It has been suggested that administration of bisphosphonates, stable and non-hydrolyzable PPi analogs, could counteract ectopic mineralization in these disorders. In this study we tested the potential efficacy of etidronate, a first generation bisphosphonate, on ectopic mineralization in the muzzle skin of Abcc6-/- mice, a model of PXE. The Abcc6-/- mice received subcutaneous injections of etidronate, 0.283 and 3.40 mg/kg per injection (0.01× and 0.12×), twice a week, in both prevention and reversal studies. Ectopic mineralization in the dermal sheath of vibrissae in muzzle skin was determined by histopathologic analysis and by direct chemical assay for calcium content. Subcutaneous injection of etidronate prevented ectopic mineralization but did not reverse existing mineralization. The effect of etidronate was accompanied by alterations in the trabecular bone microarchitecture, determined by micro-computed tomography. The results suggest that etidronate may offer a potential treatment modality for PXE and GACI caused by ABCC6 mutations. Etidronate therapy should be initiated in PXE patients as soon as the diagnosis is made, with careful monitoring of potential side effects.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Joshua Kingman
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Michael A. Levine
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
31
|
Parreira B, Cardoso JCR, Costa R, Couto AR, Bruges-Armas J, Power DM. Persistence of the ABCC6 genes and the emergence of the bony skeleton in vertebrates. Sci Rep 2018; 8:6027. [PMID: 29662086 PMCID: PMC5902450 DOI: 10.1038/s41598-018-24370-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
The ATP-binding cassette transporter 6 (ABCC6) gene encodes a cellular transmembrane protein transporter (MRP6) that is involved in the regulation of tissue calcification in mammals. Mutations in ABCC6 are associated with human ectopic calcification disorders. To gain insight into its evolution and involvement in tissue calcification we conducted a comparative analysis of the ABCC6 gene and the related gene ABCC1 from invertebrates to vertebrates where a bony endoskeleton first evolved. Taking into consideration the role of ABCC6 in ectopic calcification of human skin we analysed the involvement of both genes in the regeneration of scales, mineralized structures that develop in fish skin. The ABCC6 gene was only found in bony vertebrate genomes and was absent from Elasmobranchs, Agnatha and from invertebrates. In teleost fish the abcc6 gene duplicated but the two genes persisted only in some teleost genomes. Six disease causing amino acid mutations in human MRP6 are a normal feature of abcc6 in fish, suggesting they do not have a deleterious effect on the protein. After scale removal the abcc6 (5 and 10 days) and abcc1 (10 days) gene expression was up-regulated relative to the intact control skin and this coincided with a time of intense scale mineralization.
Collapse
Affiliation(s)
- Bruna Parreira
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira, Azores, Portugal
| | - João C R Cardoso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rita Costa
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana Rita Couto
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira, Azores, Portugal
| | - Jácome Bruges-Armas
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira, Azores, Portugal.,CEDOC - Chronic Diseases Research Center, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
32
|
Etidronate prevents dystrophic cardiac calcification by inhibiting macrophage aggregation. Sci Rep 2018; 8:5812. [PMID: 29643466 PMCID: PMC5895639 DOI: 10.1038/s41598-018-24228-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/26/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular calcification is associated with high risk of vascular disease. This involves macrophage infiltration of injured vascular tissue and osteoclast-related processes. Splenic monocytes from mice, that are predisposed (C3H) or resistant (B6) to calcification, were isolated and differentiated in vitro with M-CSF to generate macrophages, which aggregate to form multinucleated (MN) cells in the presence of RANKL. MN cell formation was significantly decreased in monocytes from resistant compared with calcifying mice. Conditioned media from C3H macrophages strongly induced calcification in vitro. However, medium from B6 macrophages inhibited calcification. An increase in ICAM-1 was detected in conditioned media from C3H macrophages compared with B6, suggesting a key role for this molecule in calcification processes. Due to natural genetic loss of Abcc6, the causal gene for cardiac calcification, C3H mice have reduced plasma levels of inorganic pyrophosphate (PPi), a potential calcification inhibitor. Supplementation of C3H mice with PPi or Etidronate prevented but did not completely reverse cardiac calcification. Our data provide strong evidence of the pathogenesis of macrophages and MNs during tissue calcification and suggest PPi or its analogue Etidronate as a potential inhibitor of MN formation and calcification. Furthermore, the adhesion molecule ICAM-1 was shown to play a key role in calcification.
Collapse
|
33
|
Váradi A, Fülöp K, Arányi T, Szeri F. Tissue-nonspecific alkaline phosphatase: a promising target for pseudoxanthoma elasticum therapy. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:489. [PMID: 29299451 DOI: 10.21037/atm.2017.10.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- András Váradi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Krisztina Fülöp
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Arányi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Flóra Szeri
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
34
|
Favre G, Laurain A, Aranyi T, Szeri F, Fulop K, Le Saux O, Duranton C, Kauffenstein G, Martin L, Lefthériotis G. The ABCC6 Transporter: A New Player in Biomineralization. Int J Mol Sci 2017; 18:ijms18091941. [PMID: 28891970 PMCID: PMC5618590 DOI: 10.3390/ijms18091941] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 12/16/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is an inherited metabolic disease with autosomal recessive inheritance caused by mutations in the ABCC6 gene. Since the first description of the disease in 1896, alleging a disease involving the elastic fibers, the concept evolved with the further discoveries of the pivotal role of ectopic mineralization that is preponderant in the elastin-rich tissues of the skin, eyes and blood vessel walls. After discovery of the causative gene of the disease in 2000, the function of the ABCC6 protein remains elusive. More than 300 mutations have been now reported and the concept of a dermal disease has progressively evolved toward a metabolic disorder resulting from the remote effects caused by lack of a circulating anti-mineralization factor. Very recently, evidence has accumulated that this anti-mineralizing factor is inorganic pyrophosphate (PPi). This leads to decreased PPi/Pi (inorganic phosphate) ratio that results from the lack of extracellular ATP release by hepatocytes and probably renal cells harboring the mutant ABCC6 protein. However, the mechanism by which ABCC6 dysfunction causes diminished ATP release remains an enigma. Studies of other ABC transporters, such as ABCC7 or ABCC1 could help our understanding of what ABCC6 exact function is. Data and a hypothesis on the possible roles of ABCC6 in acquired metabolic diseases are also discussed.
Collapse
Affiliation(s)
- Guillaume Favre
- FINSERM, U 1081, Aging and Diabetes Team, Institute for Research on Cancer and Aging of Nice (IRCAN), 06107 Nice, France.
- CNRS, UMR7284, Institute for Research on Cancer and Aging of Nice (IRCAN), 06107 Nice, France.
- Faculty of Medicine, University of Nice-Sophia Antipolis, 06107 Nice, France.
- Nephrology Department, University Hospital, 06107 Nice, France.
| | - Audrey Laurain
- Nephrology Department, University Hospital, 06107 Nice, France.
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Krisztina Fulop
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Olivier Le Saux
- Department Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| | - Christophe Duranton
- Laboratory of Physiology and Molecular Medicine (LP2M) UMR CNRS 7073, 06107 Nice, France.
| | - Gilles Kauffenstein
- UMR CNRS 6015-Inserm 1083, School of Medicine, Bretagne Loire University, 49045 Angers, France.
- PXE Health and Research Center, University Hospital of Angers, 49045 Angers, France.
| | - Ludovic Martin
- UMR CNRS 6015-Inserm 1083, School of Medicine, Bretagne Loire University, 49045 Angers, France.
- PXE Health and Research Center, University Hospital of Angers, 49045 Angers, France.
| | - Georges Lefthériotis
- Faculty of Medicine, University of Nice-Sophia Antipolis, 06107 Nice, France.
- Laboratory of Physiology and Molecular Medicine (LP2M) UMR CNRS 7073, 06107 Nice, France.
| |
Collapse
|
35
|
Zhao J, Kingman J, Sundberg JP, Uitto J, Li Q. Plasma PPi Deficiency Is the Major, but Not the Exclusive, Cause of Ectopic Mineralization in an Abcc6 -/- Mouse Model of PXE. J Invest Dermatol 2017; 137:2336-2343. [PMID: 28652107 DOI: 10.1016/j.jid.2017.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a prototype of heritable ectopic mineralization disorders, is caused in most cases by inactivating mutations in the ABCC6 gene. It was recently discovered that absence of ABCC6-mediated adenosine triphosphate release from the liver and consequently reduced plasma inorganic pyrophosphate (PPi) levels underlie PXE. This study examined whether reduced levels of circulating PPi, an antimineralization factor, is the sole mechanism of PXE. The Abcc6-/- and Enpp1asj mice were crossed with transgenic mice expressing human ENPP1, an ectonucleotidase that generates PPi from adenosine triphosphate. We generated Abcc6-/- and Enpp1asj mice, either wild-type or hemizygous for human ENPP1. Plasma levels of PPi and the degree of ectopic mineralization were determined. Overexpression of human ENPP1 in Enpp1asj mice normalized plasma PPi levels to that of wild-type mice and, consequently, completely prevented ectopic mineralization. These changes were accompanied by restoration of their bone microarchitecture. In contrast, although significantly reduced mineralization was noted in Abcc6-/- mice expressing human ENPP1, small mineralization foci were still evident despite increased plasma PPi levels. These results suggest that PPi is the major mediator of ectopic mineralization in PXE, but there might be an alternative, as yet unknown mechanism, independent of PPi, by which ABCC6 prevents ectopic mineralization under physiologic conditions.
Collapse
Affiliation(s)
- Jingyi Zhao
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Joshua Kingman
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
36
|
Ziegler SG, Ferreira CR, MacFarlane EG, Riddle RC, Tomlinson RE, Chew EY, Martin L, Ma CT, Sergienko E, Pinkerton AB, Millán JL, Gahl WA, Dietz HC. Ectopic calcification in pseudoxanthoma elasticum responds to inhibition of tissue-nonspecific alkaline phosphatase. Sci Transl Med 2017; 9:eaal1669. [PMID: 28592560 PMCID: PMC5606141 DOI: 10.1126/scitranslmed.aal1669] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/10/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
Biallelic mutations in ABCC6 cause pseudoxanthoma elasticum (PXE), a disease characterized by calcification in the skin, eyes, and blood vessels. The function of ATP-binding cassette C6 (ABCC6) and the pathogenesis of PXE remain unclear. We used mouse models and patient fibroblasts to demonstrate genetic interaction and shared biochemical and cellular mechanisms underlying ectopic calcification in PXE and related disorders caused by defined perturbations in extracellular adenosine 5'-triphosphate catabolism. Under osteogenic culture conditions, ABCC6 mutant cells calcified, suggesting a provoked cell-autonomous defect. Using a conditional Abcc6 knockout mouse model, we excluded the prevailing pathogenic hypothesis that singularly invokes failure of hepatic secretion of an endocrine inhibitor of calcification. Instead, deficiency of Abcc6 in both local and distant cells was necessary to achieve the early onset and penetrant ectopic calcification observed upon constitutive gene targeting. ABCC6 mutant cells additionally had increased expression and activity of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme that degrades pyrophosphate, a major inhibitor of calcification. A selective and orally bioavailable TNAP inhibitor prevented calcification in ABCC6 mutant cells in vitro and attenuated both the development and progression of calcification in Abcc6-/- mice in vivo, without the deleterious effects on bone associated with other proposed treatment strategies.
Collapse
Affiliation(s)
- Shira G Ziegler
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Elena Gallo MacFarlane
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Baltimore Veterans Administrations Medical Center, Baltimore, MD 21201, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Y Chew
- National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ludovic Martin
- PXE Reference Center and MitoVasc Institute, Angers University Hospital, Angers, France
| | - Chen-Ting Ma
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Eduard Sergienko
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Harry C Dietz
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
37
|
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic metabolic disease with autosomal recessive inheritance caused by mutations in the ABCC6 gene. The lack of functional ABCC6 protein leads to ectopic mineralization that is most apparent in the elastic tissues of the skin, eyes and blood vessels. The clinical prevalence of PXE has been estimated at between 1 per 100,000 and 1 per 25,000, with slight female predominance. The first clinical sign of PXE is almost always small yellow papules on the nape and sides of the neck and in flexural areas. The papules coalesce, and the skin becomes loose and wrinkled. The mid-dermal elastic fibers are short, fragmented, clumped and calcified. Dystrophic calcification of Bruch's membrane, revealed by angioid streaks, may trigger choroidal neovascularization and, ultimately, loss of central vision and blindness in late-stage disease. Lesions in small and medium-sized artery walls may result in intermittent claudication and peripheral artery disease. Cardiac complications (myocardial infarction, angina pectoris) are thought to be relatively rare but merit thorough investigation. Ischemic strokes have been reported. PXE is a metabolic disease in which circulating levels of an anti-mineralization factor are low. There is good evidence to suggest that the factor is inorganic pyrophosphate (PPi), and that the circulating low levels of PPi and decreased PPi/Pi ratio result from the lack of ATP release by hepatocytes harboring the mutant ABCC6 protein. However, the substrate(s) bound, transported or modulated by the ABCC6 protein remain unknown. More than 300 sequence variants of the ABCC6 gene have been identified. There is no cure for PXE; the main symptomatic treatments are vascular endothelial growth factor inhibitor therapy (for ophthalmic manifestations), lifestyle, lipid-lowering and dietary measures (for reducing vascular risk factors), and vascular surgery (for severe cardiovascular manifestations). Future treatment options may include gene therapy/editing and pharmacologic chaperone therapy.
Collapse
Affiliation(s)
- Dominique P Germain
- Division of Medical Genetics, University of Versailles - Saint Quentin en Yvelines, Paris-Saclay University, 2 avenue de la source de la Bièvre, F-78180, Montigny, France.
| |
Collapse
|
38
|
Humeau-Heurtier A, Colominas MA, Schlotthauer G, Etienne M, Martin L, Abraham P. Bidimensional unconstrained optimization approach to EMD: An algorithm revealing skin perfusion alterations in pseudoxanthoma elasticum patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 140:233-239. [PMID: 28254079 DOI: 10.1016/j.cmpb.2016.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Pseudoxanthoma elasticum (PXE) is an inherited and systemic metabolic disorder that affects the skin, leading among other things to a peau d'orange appearance. Unfortunately, PXE is still poorly understood and there is no existing therapy to treat the disease. Because the skin is the first organ to be affected in PXE, we propose herein a study of skin microvascular perfusion. By means of this analysis, our goal is to increase knowledge of PXE. METHODS For this purpose, microvascular data from patients suffering from PXE and from healthy control subjects were recorded using the laser speckle contrast imaging (LSCI) modality. These data were processed using the recent 2D version of the unconstrained optimization approach to empirical mode decomposition (UOA-EMD). Our work therefore corresponds to the first time this algorithm has been applied to biomedical data. RESULTS Our study shows that the 2D-UOA-EMD is able to reveal spatial patterns on local textures of LSCI data. Moreover, these spatial patterns differ between PXE patients and control subjects. Quantification measure of these spatial patterns reveals statistical significant differences between PXE and control subjects, in the neck (p=0.0004) and in the back (p=0.0052). CONCLUSIONS For the first time, alterations in microvascular perfusion in PXE patients have been revealed. Our findings open new avenues for our understanding of pathophysiologic skin changes in PXE.
Collapse
Affiliation(s)
- Anne Humeau-Heurtier
- University of Angers, LARIS - Laboratoire Angevin de Recherche en Ingénierie des Systèmes, 62 avenue Notre-Dame du Lac, 49000 Angers, France.
| | - Marcelo A Colominas
- Laboratorio de Señales y Dinámicas no Lineales,Facultad de Ingeniería, Univ. Nacional de Entre Ríos, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Gastón Schlotthauer
- Laboratorio de Señales y Dinámicas no Lineales,Facultad de Ingeniería, Univ. Nacional de Entre Ríos, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Investigación y Transferencia de Entre Ríos (CITER), Argentina
| | - Maxime Etienne
- University of Angers, Angers Hospital, Department of Dermatology, UMR CNRS 6214-INSERM 1083, Angers, France
| | - Ludovic Martin
- University of Angers, Angers Hospital, Department of Dermatology, UMR CNRS 6214-INSERM 1083, Angers, France
| | - Pierre Abraham
- University of Angers, Angers Hospital, Laboratoire de Physiologie et d'Explorations Vasculaires, UMR CNRS 6214-INSERM 1083, Angers, France
| |
Collapse
|
39
|
Abcc6 Knockout Rat Model Highlights the Role of Liver in PPi Homeostasis in Pseudoxanthoma Elasticum. J Invest Dermatol 2017; 137:1025-1032. [PMID: 28111129 DOI: 10.1016/j.jid.2016.11.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/26/2022]
Abstract
Pseudoxanthoma elasticum, a heritable ectopic mineralization disorder, is caused by mutations in the ABCC6 gene primarily expressed in the liver and the kidneys. The fundamental question on pathogenesis of pseudoxanthoma elasticum, whether lack of ABCC6 expression in liver or kidney is the primary site of molecular pathology in peripheral tissues, has not been addressed. We generated a series of Abcc6-/- rats as models of pseudoxanthoma elasticum depicting ectopic mineralization in the skin, eyes, and the arterial blood vessels. Plasma inorganic pyrophosphate (PPi) level was reduced (<30%) in the Abcc6-/- rats leading to a lowered PPi/inorganic phosphate plasma ratio. In situ liver and kidney perfusions were performed to determine the relative contribution of these organs to PPi levels in circulation. PPi levels in the perfusates both in the liver and kidney of Abcc6-/- rats were significantly reduced, but the PPi levels in the liver perfusates of wild-type rats were 10-fold higher than that in the kidney perfusates. These observations suggest a critical role of hepatic ABCC6 in contributing to plasma PPi levels, identifying liver as a target of molecular correction to counteract ectopic mineralization in pseudoxanthoma elasticum.
Collapse
|
40
|
Ran Y, Thibodeau PH. Stabilization of Nucleotide Binding Domain Dimers Rescues ABCC6 Mutants Associated with Pseudoxanthoma Elasticum. J Biol Chem 2016; 292:1559-1572. [PMID: 27994049 DOI: 10.1074/jbc.m116.759811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
ABC transporters are polytopic membrane proteins that utilize ATP binding and hydrolysis to facilitate transport across biological membranes. Forty-eight human ABC transporters have been identified in the genome, and the majority of these are linked to heritable disease. Mutations in the ABCC6 (ATP binding cassette transporter C6) ABC transporter are associated with pseudoxanthoma elasticum, a disease of altered elastic properties in multiple tissues. Although ∼200 mutations have been identified in pseudoxanthoma elasticum patients, the underlying structural defects associated with the majority of these are poorly understood. To evaluate the structural consequences of these missense mutations, a combination of biophysical and cell biological approaches were applied to evaluate the local and global folding and assembly of the ABCC6 protein. Structural and bioinformatic analyses suggested that a cluster of mutations, representing roughly 20% of the patient population with identified missense mutations, are located in the interface between the transmembrane domain and the C-terminal nucleotide binding domain. Biochemical and cell biological analyses demonstrate these mutations influence multiple steps in the biosynthetic pathway, minimally altering local domain structure but adversely impacting ABCC6 assembly and trafficking. The differential impacts on local and global protein structure are consistent with hierarchical folding and assembly of ABCC6. Stabilization of specific domain-domain interactions via targeted amino acid substitution in the catalytic site of the C-terminal nucleotide binding domain restored proper protein trafficking and cell surface localization of multiple biosynthetic mutants. This rescue provides a specific mechanism by which chemical chaperones could be developed for the correction of ABCC6 biosynthetic defects.
Collapse
Affiliation(s)
- Yanchao Ran
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Patrick H Thibodeau
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15219.
| |
Collapse
|
41
|
Bardawil T, Khalil S, Bergqvist C, Abbas O, Kibbi AG, Bitar F, Nemer G, Kurban M. Genetics of inherited cardiocutaneous syndromes: a review. Open Heart 2016; 3:e000442. [PMID: 27933191 PMCID: PMC5133403 DOI: 10.1136/openhrt-2016-000442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022] Open
Abstract
The life of a human being originates as a single cell which, under the influence of certain factors, divides sequentially into multiple cells that subsequently become committed to develop and differentiate into the different structures and organs. Alterations occurring early on in the development process may lead to fetal demise in utero. Conversely, abnormalities at later stages may result in structural and/or functional abnormalities of varying severities. The cardiovascular system and skin share certain developmental and structural factors; therefore, it is not surprising to find several inherited syndromes with both cardiac and skin manifestations. Here, we will review the overlapping pathways in the development of the skin and heart, as well as the resulting syndromes. We will also highlight several cutaneous clues that may help physicians screen and uncover cardiac anomalies that may be otherwise hidden and result in sudden cardiac death.
Collapse
Affiliation(s)
| | | | | | - Ossama Abbas
- Department of Dermatology , American University of Beirut , Beirut Lebanon
| | - Abdul Ghani Kibbi
- Department of Dermatology , American University of Beirut , Beirut Lebanon
| | - Fadi Bitar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, BeirutLebanon; Department of Pediatrics, American University of Beirut, BeirutLebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics , American University of Beirut , Beirut Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut, BeirutLebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, BeirutLebanon; Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
42
|
Rasmussen MR, Nielsen KL, Laursen MR, Nielsen CB, Svendsen P, Dimke H, Christensen EI, Johannsen M, Moestrup SK. Untargeted Metabolomics Analysis of ABCC6-Deficient Mice Discloses an Altered Metabolic Liver Profile. J Proteome Res 2016; 15:4591-4600. [PMID: 27758107 DOI: 10.1021/acs.jproteome.6b00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss-of-function mutations in the transmembrane ABCC6 transport protein cause pseudoxanthoma elasticum (PXE), an ectopic, metabolic mineralization disorder that affects the skin, eye, and vessels. ABCC6 is assumed to mediate efflux of one or several small molecule compounds from the liver cytosol to the circulation. Untargeted metabolomics using liquid chromatography-mass spectrometry was employed to inspect liver cytosolic extracts from mice with targeted disruption of the Abcc6 gene. Absence of the ABCC6 protein induced an altered profile of metabolites in the liver causing accumulation of compounds as more features were upregulated than downregulated in ABCC6-deficient mice. However, no differences of the identified metabolites in liver could be detected in plasma, whereas urine reflected some of the changes. Of note, N-acetylated amino acids and pantothenic acid (vitamin B5), which is involved in acetylation reactions, were accumulated in the liver. None of the identified metabolites seems to explain mineralization in extrahepatic tissues, but the present study now shows that abrogated ABCC6 function does cause alterations in the metabolic profile of the liver in accordance with PXE being a metabolic disease originating from liver disturbance. Further studies of these changes and the further identification of yet unknown metabolites may help to clarify the liver-related pathomechanism of PXE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Søren K Moestrup
- Department of Clinical Biochemistry, Pharmacology, Odense University Hospital , Odense 5000, Denmark
| |
Collapse
|
43
|
Visual Impairment in Pseudoxanthoma Elasticum: A Survey of 53 Patients from Turkey. Eur J Ophthalmol 2016; 26:449-53. [DOI: 10.5301/ejo.5000766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 11/20/2022]
Abstract
Purpose To estimate the age at onset and severity of ophthalmologic aspects of pseudoxanthoma elasticum (PXE). Methods Medical records of 53 patients with PXE were evaluated. Findings at initial presentation, including refraction, best-corrected visual acuity (BCVA), and biomicroscopic and funduscopic examination were explored. Results The mean age of the patients at time of presentation was 43 years. The male-to-female ratio was 2.8:1. The mean age at occurrence of the first visual symptoms and retinal complications associated with choroidal neovascularization (CNV) was 42 years. Active subfoveal CNV or choroidal scar formation at the time of presentation was observed in 80 eyes (75%) of 49 patients (mean age 43 years). Twenty-seven patients (51%) (mean age 43 years) had BCVA ≤20/200 in at least one eye. Ten patients (19%) had BCVA ≤20/200 in both eyes (mean age 48 years). Twenty patients (41%) presenting with subfoveal chorioretinal scar or an active subfoveal CNV reported a spontaneous decline in visual acuity before age 40. Conclusions Subfoveal CNV was a frequent finding responsible for the poor visual acuity of patients with PXE. Its formation was not strictly age-dependent, and in patients under 40 years of age could be underestimated. More trials are needed to determine clinical recommendations for follow-up of young patients with PXE.
Collapse
|
44
|
Marton J, Albert D, Wiltshire SA, Park R, Bergen A, Qureshi S, Malo D, Burelle Y, Vidal SM. Cyclosporine A Treatment Inhibits Abcc6-Dependent Cardiac Necrosis and Calcification following Coxsackievirus B3 Infection in Mice. PLoS One 2015; 10:e0138222. [PMID: 26375467 PMCID: PMC4574283 DOI: 10.1371/journal.pone.0138222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022] Open
Abstract
Coxsackievirus type B3 (CVB3) is a cardiotropic enterovirus. Infection causes cardiomyocyte necrosis and myocardial inflammation. The damaged tissue that results is replaced with fibrotic or calcified tissue, which can lead to permanently altered cardiac function. The extent of pathogenesis among individuals exposed to CVB3 is dictated by a combination of host genetics, viral virulence, and the environment. Here, we aimed to identify genes that modulate cardiopathology following CVB3 infection. 129S1 mice infected with CVB3 developed increased cardiac pathology compared to 129X1 substrain mice despite no difference in viral burden. Linkage analysis identified a major locus on chromosome 7 (LOD: 8.307, P<0.0001) that controlled the severity of cardiac calcification and necrosis following infection. Sub-phenotyping and genetic complementation assays identified Abcc6 as the underlying gene. Microarray expression profiling identified genotype-dependent regulation of genes associated with mitochondria. Electron microscopy examination showed elevated deposition of hydroxyapatite-like material in the mitochondrial matrices of infected Abcc6 knockout (Abcc6-/-) mice but not in wildtype littermates. Cyclosporine A (CsA) inhibits mitochondrial permeability transition pore opening by inhibiting cyclophilin D (CypD). Treatment of Abcc6 -/- mice with CsA reduced cardiac necrosis and calcification by more than half. Furthermore, CsA had no effect on the CVB3-induced phenotype of doubly deficient CypD-/-Abcc6-/- mice. Altogether, our work demonstrates that mutations in Abcc6 render mice more susceptible to cardiac calcification following CVB3 infection. Moreover, we implicate CypD in the control of cardiac necrosis and calcification in Abcc6-deficient mice, whereby CypD inhibition is required for cardioprotection.
Collapse
Affiliation(s)
- Jennifer Marton
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Danica Albert
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Sean A. Wiltshire
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Robin Park
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Arthur Bergen
- Department of Ophthalmogenetics, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Salman Qureshi
- The Center for Host Resistance and the Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Danielle Malo
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Yan Burelle
- Faculty of Pharmacy, University of Montreal, Montreal, Canada
| | - Silvia M. Vidal
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| |
Collapse
|
45
|
Abstract
PURPOSE The aim of this study was to characterize peau d'orange and angioid streaks, characteristic findings in eyes of patients with pseudoxanthoma elasticum, by examining fundus photography and optical coherence tomography imaging. METHODS Color photographs were evaluated directly as were the component red and green channels. Optical coherence tomography images were evaluated for reflectivity pattern of the band corresponding to the retinal pigment epithelium-Bruch membrane complex. RESULTS Eighteen eyes of 9 patients with a mean age of 48.7 years (range, 31-61 years) were examined; 7 of them were women. Color photographs showed areas of yellowish opacification that obscured visualization of the underlying choroid. At the outer edges of this confluent area, opacification were nonconfluent changes with similar appearance and these regions were typical peau d'orange. Angioid streaks occurred within and extended up to the outer border of the confluent opacification. Underlying choroidal details could be seen through the regions of peau d'orange and through the gaps in angioid streaks. The red channel image showed increased reflectivity from the confluent deposit and improved visualization of the choroidal vasculature, except where the confluent opacification was located. Optical coherence tomography imaging showed increased reflectivity from the outer border of the retinal pigment epithelium-Bruch membrane complex. CONCLUSION The findings suggest that the confluent region is the relevant lesion, not the subconfluent zone known as peau d'orange. Imaging characteristics of the confluent area of opacity are consistent with diffuse infiltration with calcium, a chief histologic abnormality of pseudoxanthoma elasticum. The name coquille d'oeuf was suggested for the confluent area of opacity as a consequence.
Collapse
|
46
|
Marconi B, Bobyr I, Campanati A, Molinelli E, Consales V, Brisigotti V, Scarpelli M, Racchini S, Offidani A. Pseudoxanthoma elasticum and skin: Clinical manifestations, histopathology, pathomechanism, perspectives of treatment. Intractable Rare Dis Res 2015; 4:113-22. [PMID: 26361562 PMCID: PMC4561240 DOI: 10.5582/irdr.2015.01014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023] Open
Abstract
Pseudoxantoma elasticum (PXE), also known as Groenblad-Strandberg syndrome, is a rare heritable disease with an estimated prevalence of 1:50,000 in the general population. PXE is considered a prototype of multisystem ectopic mineralization disorders and it is characterized by aberrant mineralization of soft connective tissue with degeneration of the elastic fibers, involving primarily the eyes, the cardiovascular system, and the skin. Cutaneous lesions consist of small, asymptomatic, yellowish papules or larger coalescent plaques, typically located on the neck and the flexural areas. PXE is caused by mutations in the ABCC6 (ATP-binding cassette subfamily C member 6) gene that encodes a transmembrane ATP binding efflux transporter, normally expressed in the liver and the kidney; however, the exact mechanism of ectopic mineralization remains largely unknown. The histological examination of cutaneous lesions, revealing accumulation of pleomorphic elastic structures in middermis, is essential for the definitive diagnosis of PXE, excluding PXE-like conditions. PXE is currently an intractable disease; although the cutaneous findings primarily present a cosmetic problem, they signify the risk for development of ocular and cardiovascular complications associated with considerable morbidity and mortality. The purpose of this review is to present a comprehensive overview of this rare form of hereditary connective tissue disorders, focus on the pathogenesis, the clinical manifestation, and the differential diagnosis of PXE. Emphasis is also placed on the management of cutaneous lesions and treatment perspectives of PXE.
Collapse
Affiliation(s)
- Barbara Marconi
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| | - Ivan Bobyr
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| | - Anna Campanati
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
- Address correspondence to: Dr. Anna Campanati, Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Via Conca 71, Ancona 60020, Italty. E-mail:
| | - Elisa Molinelli
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| | - Veronica Consales
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| | - Valerio Brisigotti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| | - Marina Scarpelli
- Institute of Pathological Anatomy and Histopathology, Polytechnic University Marche, Ancona, Italty
| | - Stefano Racchini
- Institute of Pathological Anatomy and Histopathology, Polytechnic University Marche, Ancona, Italty
| | - Annamaria Offidani
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| |
Collapse
|
47
|
Mackay EW, Apschner A, Schulte-Merker S. Vitamin K reduces hypermineralisation in zebrafish models of PXE and GACI. Development 2015; 142:1095-101. [PMID: 25758222 DOI: 10.1242/dev.113811] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mineralisation disorder pseudoxanthoma elasticum (PXE) is associated with mutations in the transporter protein ABCC6. Patients with PXE suffer from calcified lesions in the skin, eyes and vasculature, and PXE is related to a more severe vascular calcification syndrome called generalised arterial calcification of infancy (GACI). Mutations in ABCC6 are linked to reduced levels of circulating vitamin K. Here, we describe a mutation in the zebrafish (Danio rerio) orthologue abcc6a, which results in extensive hypermineralisation of the axial skeleton. Administration of vitamin K to embryos was sufficient to restore normal levels of mineralisation. Vitamin K also reduced ectopic mineralisation in a zebrafish model of GACI, and warfarin exacerbated the mineralisation phenotype in both mutant lines. These data suggest that vitamin K could be a beneficial treatment for human patients with PXE or GACI. Additionally, we found that abcc6a is strongly expressed at the site of mineralisation rather than the liver, as it is in mammals, which has significant implications for our understanding of the function of ABCC6.
Collapse
Affiliation(s)
- Eirinn W Mackay
- Hubrecht Institute - KNAW & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Alexander Apschner
- Hubrecht Institute - KNAW & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute - KNAW & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands EZO, WUR, Wageningen 6709 PG, The Netherlands Institute of Cardiovascular Organogenesis and Regeneration, University of Münster, Münster 48149, Germany Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster 48149, Germany
| |
Collapse
|
48
|
Harrington C, Beck FM, Allen CM, Kalmar JR. The prevalence of pseudoxanthoma elasticum–like connective tissue changes in an oral biopsy service and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 119:441-50. [DOI: 10.1016/j.oooo.2014.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022]
|
49
|
Marques GF, Nakandakari S, Coelho APCP, Nigro MHMF, Sabage J. Pseudoxanthoma elasticum: report of two cases. An Bras Dermatol 2014; 89:812-5. [PMID: 25184925 PMCID: PMC4155964 DOI: 10.1590/abd1806-4841.20143144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/02/2013] [Indexed: 11/22/2022] Open
Abstract
Pseudoxanthoma elasticum is a rare inherited multisystem disorder that is characterized by a pathological mineralization of the elastic connective tissue, which involves predominantly the skin, eyes and cardiovascular system. Its cause lies on mutations in the ABCC6 gene, which lead to reduction or absence of the transmembrane transport ADP dependent protein (MRP6), causing an accumulation of extracellular material and subsequent deposition of calcium and other minerals in the elastic tissue. The authors report two cases of pseudoxanthoma elasticum, emphasizing its major clinical features and the importance of early diagnosis of the disorder, aiming for adequate therapeutic management of associated complications.
Collapse
|
50
|
Abstract
This review centers on updating the active research area of vascular calcification. This pathology underlies substantial cardiovascular morbidity and mortality, through adverse mechanical effects on vascular compliance, vasomotion, and, most likely, plaque stability. Biomineralization is a complex, regulated process occurring widely throughout nature. Decades ago, its presence in the vasculature was considered a mere curiosity and an unregulated, dystrophic process that does not involve biological mechanisms. Although it remains controversial whether the process has any adaptive value or past evolutionary advantage, substantial advances have been made in understanding the biological mechanisms driving the process. Different types of calcific vasculopathy, such as inflammatory versus metabolic, have parallel mechanisms in skeletal bone calcification, such as intramembranous and endochondral ossification. Recent work has identified important regulatory roles for inflammation, oxidized lipids, elastin, alkaline phosphatase, osteoprogenitor cells, matrix γ-carboxyglutamic acid protein, transglutaminase, osteoclastic regulatory factors, phosphate regulatory hormones and receptors, apoptosis, prelamin A, autophagy, and microvesicles or microparticles similar to the matrix vesicles of skeletal bone. Recent work has uncovered fascinating interactions between matrix γ-carboxyglutamic acid protein, vitamin K, warfarin, and transport proteins. And, lastly, recent breakthroughs in inherited forms of calcific vasculopathy have identified the genes responsible as well as an unexpected overlap of phenotypes. Until recently, vascular calcification was considered a purely degenerative, unregulated process. Since then, investigative groups around the world have identified a wide range of causative mechanisms and regulatory pathways, and some of the recent developments are highlighted in this review.
Collapse
Affiliation(s)
- Linda L. Demer
- Department of Medicine (Cardiology), University of California, Los Angeles Los Angeles, CA 90095-1679
- Department of Physiology and Bioengineering, University of California, Los Angeles Los Angeles, CA 90095-1679
| | - Yin Tintut
- Department of Medicine (Cardiology), University of California, Los Angeles Los Angeles, CA 90095-1679
| |
Collapse
|