1
|
Vitiello P, Sagnelli C, Ronchi A, Franco R, Caccavale S, Mottola M, Pastore F, Argenziano G, Creta M, Calogero A, Fiorelli A, Casale B, Sica A. Multidisciplinary Approach to the Diagnosis and Therapy of Mycosis Fungoides. Healthcare (Basel) 2023; 11:healthcare11040614. [PMID: 36833148 PMCID: PMC9957453 DOI: 10.3390/healthcare11040614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Mycosis fungoides is the most common primary cutaneous T-cell lymphoma, characterized by skin-homing CD4+ T cells derivation, indolent course, and low-grade of malignancy. Mycosis fungoides's classic type typically onsets with cutaneous erythematous patches, plaque, and tumor. In WHO-EORTC classification, folliculotropic mycosis fungoides, pagetoid reticulosis, and granulomatous slack skin are recognized as distinct variants of mycosis fungoides, because of their clinical and histological features, behavior, and /or prognosis. Mycosis fungoides often shows diagnostic difficulties, due to its absence of specific features and lesional polymorphism. A patient's treatment requires staging. In about 10% of cases, mycosis fungoides can progress to lymph nodes and internal organs. Prognosis is poor at advanced stage and management needs a multidisciplinary team approach. Advanced stage disease including tumors, erythroderma, and nodal, visceral, or blood involvement needs skin directed therapy associated with systemic drugs. Skin directed therapy includes steroids, nitrogen mustard, bexarotene gel, phototherapy UVB, and photochemiotherapy, i.e., total skin electron radiotherapy. Systemic therapies include retinoids, bexarotene, interferon, histone deacetylase inhibitors, photopheresis, targeted immunotherapy, and cytotoxic chemotherapy. Complexity of mycosis fungoides associated with long-term chronic evolution and multiple therapy based on disease stage need a multidisciplinary team approach to be treated.
Collapse
Affiliation(s)
- Paola Vitiello
- Dermatology Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-39-3810-7860
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Stefano Caccavale
- Dermatology Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Maria Mottola
- Department of Heart Surgery and Transplantations, AORN Dei Colli-V Monaldi, 80131 Naples, Italy
| | | | - Giuseppe Argenziano
- Dermatology Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Massimiliano Creta
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Armando Calogero
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Beniamino Casale
- Department of Pneumology and Tisiology, AO Dei Colli-V. Monaldi, 80131 Naples, Italy
| | - Antonello Sica
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
2
|
Zhao L, Hsiao T, Stonesifer C, Daniels J, Garcia-Saleem TJ, Choi J, Geskin L, Rook AH, Wood GS. The Robust Tumoricidal Effects of Combined BET/HDAC Inhibition in Cutaneous T-Cell Lymphoma Can Be Reproduced by ΔNp73 Depletion. J Invest Dermatol 2022; 142:3253-3261.e4. [PMID: 35787399 PMCID: PMC9691518 DOI: 10.1016/j.jid.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 01/05/2023]
Abstract
Combined BET inhibitor/histone deacetylase inhibitor treatment induces marked apoptosis of cutaneous T-cell lymphoma (CTCL) with minimal normal T-cell toxicity. At 96 hours when apoptosis was extensive, a majority of CTCL lines showed ≥2-fold suppression of T-cell survival factors (e.g., AKT1, BCL2 antiapoptotic factors, BIRC5, CD40, CD70, GADD45A, PRKCA, TNFRSF1B, ΔNp73) and ≥2-fold upregulation of proapoptotic factors and tumor suppressors (e.g., ATM, BAK, BIM, multiple caspases, FHIT, HIC1, MGMT, NOD1) (P < 0.05). The largest alterations were in TP73 isoform expression, resulting in increased TAp73/ΔNp73 ratios in CTCL lines and leukemic Sézary cells. Targeted ΔNp73 inhibition by small interfering RNA knockdown resulted in robust CTCL apoptosis comparable with that induced by BET inhibitor/histone deacetylase inhibitor with minimal normal T-cell toxicity. Chromatin immunoprecipitation analysis showed that BET inhibitor/histone deacetylase inhibitor treatment reduced RNA polymerase II binding to ΔNp73, MYC, and AKT1 while increasing its binding to TAp73. CTCL skin lesions expressed both TAp73 and ΔNp73 isoforms in situ. In aggregate, these findings implicate TAp73/ΔNp73 balance as a major factor governing CTCL survival, show that the expression of p73 isoforms can be altered by molecular biological and pharmaceutical means, show that p73 isoforms are expressed across the entire CTCL clinical spectrum, and identify the p73 pathway as a potential target for therapeutics.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tony Hsiao
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Connor Stonesifer
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Jay Daniels
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA
| | | | - Jaehyuk Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA
| | - Larisa Geskin
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Alain H Rook
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary S Wood
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways. Semin Cancer Biol 2022; 86:382-399. [PMID: 34906723 DOI: 10.1016/j.semcancer.2021.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023]
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphoproliferative neoplasms that exhibit a wide spectrum of immune-phenotypical, clinical, and histopathological features. The biology of CTCL is complex and remains elusive. In recent years, the application of next-generation sequencing (NGS) has evolved our understanding of the pathogenetic mechanisms, including genetic aberrations and epigenetic abnormalities that shape the mutational landscape of CTCL and represent one of the important pro-tumorigenic principles in CTCL initiation and progression. Still, identification of the major pathophysiological pathways including genetic and epigenetic components that mediate malignant clonal T cell expansion has not been achieved. This is of prime importance given the role of malignant T cell clones in fostering T helper 2 (Th2)-bias tumor microenvironment and fueling progressive immune dysregulation and tumor cell growth in CTCL patients, manifested by the secretion of Th2-associated cytokines and chemokines. Alterations in malignant cytokine and chemokine expression patterns orchestrate the inflammatory milieu and influence the migration dynamics of malignant clonal T cells. Here, we highlight recent insights about the molecular mechanisms of CTCL pathogenesis, emphasizing the role of cytokines, chemokines, and associated downstream signaling networks in driving immune defects, malignant transformation, and disease progression. In-depth characterization of the CTCL immunophenotype and tumoral microenvironment offers a facile opportunity to expand the therapeutic armamentarium of CTCL, an intractable malignant skin disease with poor prognosis and in dire need of curative treatment approaches.
Collapse
|
4
|
Kumar S, Dhamija B, Attrish D, Sawant V, Sengar M, Thorat J, Shet T, Jain H, Purwar R. Genetic alterations and oxidative stress in T cell lymphomas. Pharmacol Ther 2022; 236:108109. [PMID: 35007658 DOI: 10.1016/j.pharmthera.2022.108109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
T cell lymphomas encompass a diverse group of Non-Hodgkin lymphomas with a wide spectrum of clinical, immunological and pathological manifestations. In the last two decades there has been a progress in our understanding of the cell of origin, genetic abnormalities and their impact on behaviour in T cell lymphomas. Genetic alterations are one of the critical drivers of the pathogenesis of T cell lymphoma. Disease progression has been correlated with multiple genetic abnormalities where malignant clones arise primarily out of the host immune surveillance arsenal. There are many cellular processes involved in disease development, and some of them are T cell signaling, differentiation, epigenetic modifications, and immune regulation. Modulation of these crucial pathways via genetic mutations and chromosomal abnormalities possessing either point or copy number mutations helps tumor cells to develop a niche favourable for their growth via metabolic alterations. Several metabolic pathways especially regulation of redox homeostasis is critical in pathogenesis of lymphoma. Disruption of redox potential and induction of oxidative stress renders malignant cells vulnerable to mitochondrial damage and triggers apoptotic pathways causing cell death. Targeting genetic abnormalities and oxidative stress along with current treatment regime have the potential for improved therapeutics and presents new combination approaches towards selective treatment of T cell lymphomas.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Bhavuk Dhamija
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Diksha Attrish
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Vinanti Sawant
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Manju Sengar
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Jayashree Thorat
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Tanuja Shet
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Hasmukh Jain
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
5
|
Mustafa N, Mitxelena J, Infante A, Zenarruzabeitia O, Eriz A, Iglesias-Ara A, Zubiaga AM. E2f2 Attenuates Apoptosis of Activated T Lymphocytes and Protects from Immune-Mediated Injury through Repression of Fas and FasL. Int J Mol Sci 2021; 23:ijms23010311. [PMID: 35008734 PMCID: PMC8745065 DOI: 10.3390/ijms23010311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/03/2022] Open
Abstract
Targeted disruption of E2f2 in mice causes T-cell hyperactivation and a disproportionate cell cycle entry upon stimulation. However, E2f2−/− mice do not develop a lymphoproliferative condition. We report that E2f2 plays a Fas-dependent anti-apoptotic function in vitro and in vivo. TCR-stimulated murine E2f2−/− T cells overexpress the proapoptotic genes Fas and FasL and exhibit enhanced apoptosis, which is prevented by treatment with neutralizing anti-FasL antibodies. p53 pathway is activated in TCR-stimulated E2f2−/− lymphocytes, but targeted disruption of p53 in E2f2−/− mice does not abrogate Fas/FasL expression or apoptosis, implying a p53-independent apoptotic mechanism. We show that E2f2 is recruited to Fas and FasL gene promoters to repress their expression. in vivo, E2f2−/− mice are prone to develop immune-mediated liver injury owing to an aberrant lymphoid Fas/FasL activation. Taken together, our results suggest that E2f2-dependent inhibition of Fas/FasL pathway may play a direct role in limiting the development of immune-mediated pathologies.
Collapse
Affiliation(s)
- Noor Mustafa
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
| | - Jone Mitxelena
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Ainhoa Eriz
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
| | - Ainhoa Iglesias-Ara
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| | - Ana M. Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| |
Collapse
|
6
|
Nihal M, Wu J, Stonesifer CJ, Daniels J, Choi J, Geskin L, Rook AH, Wood GS. Epigenetic Regulation of Apoptosis in Cutaneous T-Cell Lymphoma: Implications for Therapy with Methotrexate, Jak Inhibitors, and Resveratrol. J Invest Dermatol 2021; 142:493-496.e7. [PMID: 34358529 DOI: 10.1016/j.jid.2021.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 01/12/2023]
Affiliation(s)
- Minakshi Nihal
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin and William S. Middleton VAMC, Madison, Wisconsin, USA.
| | - Jianqiang Wu
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin and William S. Middleton VAMC, Madison, Wisconsin, USA
| | - Connor J Stonesifer
- Department of Dermatology, Irving Medical Center, Columbia University, New York, New York, USA
| | - Jay Daniels
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jaehyuk Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Larisa Geskin
- Department of Dermatology, Irving Medical Center, Columbia University, New York, New York, USA
| | - Alain H Rook
- Department of Dermatology, Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary S Wood
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin and William S. Middleton VAMC, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Lin M, Kowolik CM, Xie J, Yadav S, Overman LE, Horne DA. Potent Anticancer Effects of Epidithiodiketopiperazine NT1721 in Cutaneous T Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13133367. [PMID: 34282785 PMCID: PMC8268131 DOI: 10.3390/cancers13133367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Cutaneous T cell lymphomas (CTCLs) are a group of blood cancers that cannot be cured with current chemotherapeutical or biological drugs. Patients with advanced disease are severely immunocompromised due to the unchecked expansion of malignant T cells and have low survival rates of less than four years. Hence, new treatment options for CTCLs are urgently needed. In this study the anti-CTCL activity of a new compound, NT1721, was determined in vitro and in two CTCL mouse models. We found that NT1721 increased apoptosis (programmed cell death) in the malignant T cells and reduced tumor growth better than two drugs that are currently clinically used for CTCL treatment (i.e., gemcitabine, romidepsin). These results suggest that NT1721 may represent a potent new agent for the treatment of advanced CTCL. Abstract Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of debilitating, incurable malignancies. Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common subtypes, accounting for ~65% of CTCL cases. Patients with advanced disease have a poor prognosis and low median survival rates of four years. CTCLs develop from malignant skin-homing CD4+ T cells that spread to lymph nodes, blood, bone marrow and viscera in advanced stages. Current treatments options for refractory or advanced CTCL, including chemotherapeutic and biological approaches, rarely lead to durable responses. The exact molecular mechanisms of CTCL pathology remain unclear despite numerous genomic and gene expression profile studies. However, apoptosis resistance is thought to play a major role in the accumulation of malignant T cells. Here we show that NT1721, a synthetic epidithiodiketopiperazine based on a natural product, reduced cell viability at nanomolar concentrations in CTCL cell lines, while largely sparing normal CD4+ cells. Treatment of CTCL cells with NT1721 reduced proliferation and potently induced apoptosis. NT1721 mediated the downregulation of GLI1 transcription factor, which was associated with decreased STAT3 activation and the reduced expression of downstream antiapoptotic proteins (BCL2 and BCL-xL). Importantly, NT1721, which is orally available, reduced tumor growth in two CTCL mouse models significantly better than two clinically used drugs (romidepsin, gemcitabine). Moreover, a combination of NT1721 with gemcitabine reduced the tumor growth significantly better than the single drugs. Taken together, these results suggest that NT1721 may be a promising new agent for the treatment of CTCLs.
Collapse
Affiliation(s)
- Min Lin
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
| | - Claudia M. Kowolik
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
- Correspondence: (C.M.K.); (D.A.H.)
| | - Jun Xie
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
| | - Sushma Yadav
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
- Department of Translational Research and Cellular Therapeutics, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Larry E. Overman
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA;
| | - David A. Horne
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
- Correspondence: (C.M.K.); (D.A.H.)
| |
Collapse
|
8
|
Zhang P, Zhang M. Epigenetics in the Pathogenesis and Treatment of Cutaneous T-Cell Lymphoma. Front Oncol 2021; 11:663961. [PMID: 34249700 PMCID: PMC8263908 DOI: 10.3389/fonc.2021.663961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) comprise a group of heterogeneous diseases involving malignant T cells. The pathogenesis and etiology of CTCL are still unclear, although a large number of genetic and epidemiological studies on CTCL have been conducted. Most CTCLs have an indolent course, making early diagnosis difficult. Once large-cell transformation occurs, CTCL progresses to more aggressive types, resulting in an overall survival of less than five years. Epigenetic drugs, which have shown certain curative effects, have been selected as third-line drugs in patients with relapsing and refractory CTCL. Many studies have also identified epigenetic biomarkers from tissues and peripheral blood of patients with CTCL and suggested that epigenetic changes play a role in malignant transformation and histone deacetylase inhibitor (HDACi) resistance in CTCL. Single-cell sequencing has been applied in CTCL studies, revealing heterogeneity in CTCL malignant T cells. The mechanisms of HDACi resistance have also been described, further facilitating the discovery of novel HDACi targets. Despite the heterogeneity of CTCL disease and its obscure pathogenesis, more epigenetic abnormalities have been gradually discovered recently, which not only enables us to understand CTCL disease further but also improves our understanding of the specific role of epigenetics in the pathogenesis and treatment. In this review, we discuss the recent discoveries concerning the pathological roles of epigenetics and epigenetic therapy in CTCL.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China.,Department of Oncology, Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| |
Collapse
|
9
|
Sumarni U, Reidel U, Eberle J. Targeting Cutaneous T-Cell Lymphoma Cells by Ingenol Mebutate (PEP005) Correlates with PKCδ Activation, ROS Induction as Well as Downregulation of XIAP and c-FLIP. Cells 2021; 10:cells10050987. [PMID: 33922439 PMCID: PMC8146015 DOI: 10.3390/cells10050987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/25/2023] Open
Abstract
New therapeutic strategies are needed for cutaneous T-cell lymphoma (CTCL), and the plant extract ingenol mebutate (PEP005) may be considered. PEP005 has been approved for actinic keratosis, and proapoptotic activities were described in different cancer cells. Here, we aimed to investigate its efficacy in four CTCL cell lines and its mode of action. While HuT-78 and HH responded with induced apoptosis as well as with loss of cell viability and cell proliferation, MyLa and SeAx remained resistant. Interestingly, both sensitive and resistant cells showed caspase-8 activation and enhanced levels of reactive oxygen species (ROS), while final caspase-3 activation was restricted to sensitive cells. Apoptosis induction was prevented by the caspase inhibitor QVD-Oph as well as by the antioxidant vitamin E. Caspase activation by PEP005 may be explained to some extent by the downregulation of the caspase antagonistic proteins c-FLIP and XIAP in sensitive cells, whereas both proteins were strongly expressed in resistant cells. Finally, PEP005 resulted in the activation of proapoptotic PKCδ, and the PKC inhibitor bisindolylmaleimide I reduced apoptosis, caspase-3 processing and ROS production, as well as restored cell viability. In conclusion, PKCδ appeared as a central player in apoptosis regulation in CTCL cells, also suggesting its therapeutic targeting.
Collapse
MESH Headings
- Apoptosis
- CASP8 and FADD-Like Apoptosis Regulating Protein/antagonists & inhibitors
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Diterpenes/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/pathology
- Protein Kinase C-delta/genetics
- Protein Kinase C-delta/metabolism
- Reactive Oxygen Species/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Tumor Cells, Cultured
- X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors
Collapse
|
10
|
Trager MH, Geskin LJ. Current status of histone deacetylase inhibitors in cutaneous T-cell lymphoma. GIORN ITAL DERMAT V 2020; 154:681-695. [PMID: 31859467 DOI: 10.23736/s0392-0488.19.06503-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cutaneous T cell lymphoma (CTCL) is a non-Hodgkin's lymphoma with a heterogenous presentation and highly variable disease course. The most common subtypes of CTCL are mycosis fungoides (MF) and Sézary Syndrome (SS). Treatment varies based on the stage of the disease with skin directed therapies typically utilized for early stage disease, and systemic therapies employed for more advanced disease. There are few highly effective treatments available, and systemic therapies have limited response rates. Histone deacetylase inhibitors have emerged as mainstream treatments for MF/SS over the past several years. Here, we discuss the mechanism of action of histone deacetylase inhibitors in relation to the pathogenesis of MF/SS, evaluate the clinical trials that led to Food and Drug Administration approval of two of the histone deacetylase inhibitors for MF/SS and describe the results for those still under investigation. Additionally, we discuss the potential for combination therapies in order to optimize outcomes of treatment with histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Megan H Trager
- Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Larisa J Geskin
- Department of Dermatology, Irving Medical Center, Columbia University, New York, NY, USA -
| |
Collapse
|
11
|
Wu J, Wood GS. Analysis of the Effect of Gentian Violet on Apoptosis and Proliferation in Cutaneous T-Cell Lymphoma in an In Vitro Study. JAMA Dermatol 2019; 154:1191-1198. [PMID: 30167641 DOI: 10.1001/jamadermatol.2018.2756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Importance Triggering the extrinsic apoptotic pathway is an effective way to kill cutaneous T-cell lymphoma (CTCL) cells in vitro and ex vivo. Objective To compare small molecules that induce extrinsic apoptosis in CTCL to identify and analyze compounds that induce high levels of tumor cell death and block tumor cell growth. Design, Setting, and Participants From November 5, 2014, to January 30, 2018, this study performed high-throughput small molecule screening of 1710 compounds followed by detailed analysis of the ability of gentian violet (GV) to promote apoptosis and inhibit proliferation of CTCL cells. Exposures In vitro and ex vivo analyses using enzyme-linked immunosorbent assays, flow cytometry, and immunoblotting. Main Outcomes and Measures Apoptosis, cleaved caspases, extrinsic apoptotic death receptors and ligands, cell proliferation, nuclear factor-κB expression, and other factors. Results This study used high-throughput screening to detect cleaved caspase 8 induced in CTCL cells by 1710 unique compounds. The nonprescription, topical antimicrobial remedy GV induced more total apoptosis than did nitrogen mustard (mechlorethamine). Furthermore, GV induced 4 to 6 times greater apoptosis in CTCL lines than in normal keratinocytes, suggesting a favorable topical toxicity profile. In addition to increasing caspase 8, GV also upregulated death receptors 4 and 5, tumor necrosis factor (TNF)-related apoptosis-inducing ligand, and Fas ligand but not the Fas receptor, TNF receptor, or TNF-α ligand. These results are consistent with induction of extrinsic apoptosis via the Fas and TNF-related apoptosis-inducing ligand pathways. Increased phosphorylation of phospholipase C-γ1, Ca2+ influx, and reactive oxygen species were also detected, indicating that the mechanism of Fas ligand upregulation involves key elements of the activation-induced cell death pathway. In ex vivo studies, 1-μmol/L GV induced up to 90% CTCL apoptosis in Sézary blood cells. In addition, GV reduced expression of antiapoptotic myeloid cell leukemia 1 and proproliferative nuclear factor-κB components and increased inhibitory κB levels. This finding was associated with cell cycle arrest and reduced CTCL tumor cell proliferation. Furthermore, the CTCL killing associated with GV was augmented when used in combination with methotrexate. Conclusions and Relevance This study found that GV attacked tumor viability and growth in CTCL. Although purple at neutral pH, GV can be rendered colorless by altering its pH. These preclinical findings may help to broaden knowledge of the antineoplastic features of GV and provide a rationale for clinical studies of its use as a novel, inexpensive, topical therapy for CTCL that is available worldwide.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Dermatology, University of Wisconsin, Madison.,Veterans Affairs Medical Center, Madison, Wisconsin
| | - Gary S Wood
- Department of Dermatology, University of Wisconsin, Madison.,Veterans Affairs Medical Center, Madison, Wisconsin
| |
Collapse
|
12
|
Soltan MY, Sumarni U, Assaf C, Langer P, Reidel U, Eberle J. Key Role of Reactive Oxygen Species (ROS) in Indirubin Derivative-Induced Cell Death in Cutaneous T-Cell Lymphoma Cells. Int J Mol Sci 2019; 20:ijms20051158. [PMID: 30866411 PMCID: PMC6429192 DOI: 10.3390/ijms20051158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 01/05/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) may develop a highly malignant phenotype in its late phase, and patients may profit from innovative therapies. The plant extract indirubin and its chemical derivatives represent new and promising antitumor strategies. This first report on the effects of an indirubin derivative in CTCL cells shows a strong decrease of cell proliferation and cell viability as well as an induction of apoptosis, suggesting indirubin derivatives for therapy of CTCL. As concerning the mode of activity, the indirubin derivative DKP-071 activated the extrinsic apoptosis cascade via caspase-8 and caspase-3 through downregulation of the caspase antagonistic proteins c-FLIP and XIAP. Importantly, a strong increase of reactive oxygen species (ROS) was observed as an immediate early effect in response to DKP-071 treatment. The use of antioxidative pre-treatment proved the decisive role of ROS, which turned out upstream of all other proapoptotic effects monitored. Thus, reactive oxygen species appear as a highly active proapoptotic pathway in CTCL, which may be promising for therapeutic intervention. This pathway can be efficiently activated by an indirubin derivative.
Collapse
Affiliation(s)
- Marwa Y Soltan
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
- Department of Dermatology and Venereology, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt.
| | - Uly Sumarni
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Chalid Assaf
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
- Clinic for Dermatology and Venereology, Helios Klinikum Krefeld, Lutherplatz 40, 47805 Krefeld, Germany.
| | - Peter Langer
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
- Leibniz Institute of Catalysis at the University of Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Ulrich Reidel
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jürgen Eberle
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
13
|
Olisova OY, Grekova EV, Varshavsky VA, Gorenkova LG, Alekseeva EA, Zaletaev DV, Sydikov AA. [Current possibilities of the differential diagnosis of plaque parapsoriasis and the early stages of mycosis fungoides]. Arkh Patol 2019; 81:9-17. [PMID: 30830099 DOI: 10.17116/patol2019810119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycosis fungoides (MF) is the most common primary cutaneous epidermotropic T-cell lymphoma (80%). The accurate diagnosis of MF confirmed only by clinical, histological and immunohistochemical signs amounts to 50-75%. OBJECTIVE To investigate genetic markers (FOXP3, STAT4, IL-12B) for the early diagnosis of MF, to estimate the informative value of used diagnostic techniques (histology, immunophenotyping), and to determine clonality by the T-cell receptor γ-chain genes. MATERIAL AND METHODS Fifty patients with MF and plaque parapsoriasis (PP) who had been treated at the V.A. Rakhmanov Clinic of Skin and Venereal Diseases and at the National Medical Research Center for Hematology were followed up. A MF group consisted of 27 patients; a PP group included 23 patients, and a control group comprised 10 healthy individuals. The expression of the FOXP3, STAT4, and IL-12B genes was analyzed by TaqMan real time-PCR. The objectives of the study were affected skin portions from patients with MF or PP and healthy individuals. RESULTS The investigation revealed a increase in the expression level of STAT4 mRNA transcripts by 9 times in patients with MF compared with those with PP and by 553 times in healthy individuals. There was also a statistically significant predominance of the expression level of STAT4 mRNA transcripts in patients with spotted and plaque stages of MF (180; 318) compared with those with PP and healthy individuals, as well as a sharp decrease in those with erythrodermic MF, which was statistically significant. CONCLUSION MF cannot be diagnosed without comprehensively assessing the clinical, anamnestic, histological, immunophenotypic, and molecular genetic data. The expression level of STAT4 mRNA transcripts is of great importance for the early diagnosis of MF. Inclusion of the level of STAT4 expression in the list of diagnostic signs increases the accuracy of differential diagnosis of MF and PP from 59.1 to 81.8%, respectively.
Collapse
Affiliation(s)
- O Yu Olisova
- V.A. Rakhmanov Department of Skin and Venereal Diseases, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - E V Grekova
- V.A. Rakhmanov Department of Skin and Venereal Diseases, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - V A Varshavsky
- Acad. A.I. Strukov Department of Pathological Anatomy, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - L G Gorenkova
- National Medical Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - E A Alekseeva
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia; Laboratory of Epigenetics, Research Center for Medical Genetics, Moscow, Russia
| | - D V Zaletaev
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia; Laboratory of Epigenetics, Research Center for Medical Genetics, Moscow, Russia
| | - A A Sydikov
- Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| |
Collapse
|
14
|
Querfeld C, Zain J, Rosen ST. Primary Cutaneous T-Cell Lymphomas: Mycosis Fungoides and Sezary Syndrome. Cancer Treat Res 2019; 176:225-248. [PMID: 30596221 DOI: 10.1007/978-3-319-99716-2_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycosis fungoides and Sézary syndrome are the most common subtypes of all primary cutaneous lymphomas and represent complex diseases that require a multidisciplinary assessment by dermatologists, oncologists, and pathologists. Staging and work-up are critical to guarantee an optimal treatment plan that includes skin-directed and/or systemic regimens depending on the clinical stage, tumor burden, drug-related side effect profile, and patient comorbidities. However, there is no cure and patients frequently relapse, requiring repeated treatment courses for disease control. The study of the tumor microenvironment and molecular mechanisms of these rare neoplasms may assist in the development of new immune therapies providing promising treatment approaches tailored for patients with relapse/refractory disease.
Collapse
Affiliation(s)
- Christiane Querfeld
- Division of Dermatology, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
- Department of Hematology/Hematopoietic Cell Transplantation, Duarte, USA.
- Department of Pathology, Duarte, USA.
- Toni Stephenson Lymphoma Center, City of Hope National Medical Center, Duarte, CA, USA.
| | - Jasmine Zain
- Department of Hematology/Hematopoietic Cell Transplantation, Duarte, USA
- Toni Stephenson Lymphoma Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Steven T Rosen
- Department of Hematology/Hematopoietic Cell Transplantation, Duarte, USA
- Toni Stephenson Lymphoma Center, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
15
|
Tsang M, Gantchev J, Netchiporouk E, Moreau L, Ghazawi FM, Glassman S, Sasseville D, Litvinov IV. A study of meiomitosis and novel pathways of genomic instability in cutaneous T-cell lymphomas (CTCL). Oncotarget 2018; 9:37647-37661. [PMID: 30701021 PMCID: PMC6340880 DOI: 10.18632/oncotarget.26479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Genomic instability is a hallmark of cancer and an enabling factor for genetic alterations that drive cancer development and progression. The clashing of mitosis and aberrantly expressed meiosis machineries, which may contribute to genomic instability, has been coined cancer “meiomitosis”. LINE-1 retrotransposition, a process active in germ cells, acts outside of the meiotic machinery to create DNA double strand breaks (DNA DSBs) and has played an important role in the evolution of the human genome. We have previously demonstrated that in CTCL several cancer testis/meiotic genes are expressed. Furthermore, this cancer exhibits extensive and ongoing chromosomal/microsatellite instability. In this study we analyzed immortalized patient-derived cells and primary CTCL patient samples using RT-PCR, western blotting and confocal microscopy and found that proteins critically involved in meiosis and LINE-1 retrotransposition are expressed and are associated with chromosomal instability and DNA DSB formation. Using cell cycle synchronization, we show G1/S phase-transition-specific expression of meiosis proteins. Using the Alu retrotransposition assay, we demonstrate the functional activity of LINE-1 retrotransposon in CTCL. Histone acetyltransferase inhibition results in downregulation of the ectopic germ cell programs and concomitant decrease in DNA DSBs foci formation. Notably, LINE-1 and meiosis genes were expressed across a panel of other solid tumor cell lines. Taken together, our results indicate that malignant cells in culture undergo “cancer meiomitosis” rather than the classic mitosis division. The ectopic expression of meiosis genes and reactivation of LINE-1 may be contributing to genomic instability and represent novel targets for immunotherapy in this and other cancers.
Collapse
Affiliation(s)
- Matthew Tsang
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Jennifer Gantchev
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Elena Netchiporouk
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Linda Moreau
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Feras M Ghazawi
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Steven Glassman
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Denis Sasseville
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Ivan V Litvinov
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada.,Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| |
Collapse
|
16
|
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of lymphomas that are characterized by primary skin involvement. Mycosis fungoides (MF) and Sézary syndrome (SS), the two most common subtypes of CTCL, can be difficult to manage clinically as there are few effective treatment options available. Recently, histone deacetylase inhibitors (HDACi) have emerged as promising therapies with favorable adverse effect profiles, compared with traditional chemotherapies. In this article, we review the published literature to evaluate the role of HDACi in the treatment of CTCL. Specifically, we (1) briefly discuss the molecular rationale for the use of HDACi in CTCL; (2) compare the efficacy, tolerability, and adverse effects of HDACi; (3) review the cardiac safety data; and (4) discuss optimization of therapy with HDACi in the treatment of CTCL.
Collapse
|
17
|
Haftcheshmeh SM, Tajbakhsh A, Kazemi M, Esmaeili SA, Mardani F, Fazeli M, Sahebkar A. The clinical importance of CD4 + CD7 - in human diseases. J Cell Physiol 2018; 234:1179-1189. [PMID: 30067877 DOI: 10.1002/jcp.27099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022]
Abstract
The CD7 antigen is a member of the immunoglobulin superfamily that expresses on the surface of all thymocytes, a majority of mature T cells, and also natural killer cells. Interestingly, under physiological and different pathological conditions, the loss of CD7 antigen occurred in the subset of CD4+ memory T cells. Various functions have been proposed for CD7, including its role in the activation and intercellular adhesiveness of T cells. Several studies indicate that the number of CD4+ CD7- T cells increases in diseases such as chronic inflammation and T-cell malignancies, these being skin inflammatory lesions. Therefore, this can be useful for the diagnosis of cancer cells, especially with reference to blood origin, treatment monitoring, and establishment of new therapies. Therefore, a comprehensive review could be useful to increase our knowledge about the clinical importance of these cells in human disease.
Collapse
Affiliation(s)
- Saeed Mohammadian Haftcheshmeh
- Department of Medical Immunology, Nanotechnology Research Center, BuAli Research Institute, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Tajbakhsh
- Department of Modern Sciences & Technologies, Faculty of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddese Kazemi
- Inflammation and Inflammatory Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Department of Immunology and Allergy, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mardani
- Department of Immunology and Allergy, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Fazeli
- Department of Modern Sciences & Technologies, Faculty of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
c-CBL E3 Ubiquitin Ligase Expression Increases Across the Spectrum of Benign and Malignant T-Cell Skin Diseases. Am J Dermatopathol 2018; 39:731-737. [PMID: 27805921 DOI: 10.1097/dad.0000000000000780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prolonged survival of lesional T cells plays a central role in the pathogenesis of T-cell-mediated dermatoses. We have recently shown that the ubiquitin ligase c-CBL is highly expressed in cutaneous T-cell lymphoma (CTCL) and that its knockdown increases activation-induced cell death, a key pathway for T-cell apoptosis. Here, we extend our work on c-CBL expression in malignant T cells to their nonneoplastic counterparts in benign inflammatory dermatoses. Immunohistochemical staining with anti-c-CBL antibody was performed on lesional biopsies from a total of 65 patients with atopic dermatitis, allergic contact dermatitis, pityriasis rosea, psoriasis vulgaris, lichen planus, mycosis fungoides (MF)/Sézary syndrome (SS) as well as on tonsil tissue from 5 individuals and on 5 human CTCL cell lines. Protein levels were measured in situ using multispectral image analysis, a quantitative method that is ×5 more sensitive than standard immunohistology for antigen detection. There was a significant (P < 0.05) and progressive increase of mean c-CBL expression across the spectrum of inflammatory dermatoses (2-fold), MF/SS (3-fold), and lymphoma cell lines (4-fold) as compared with tonsillar T lymphocytes. A subset of MF/SS cases expressed mean c-CBL levels above the ranges observed in inflammatory dermatoses. Given our prior finding that c-CBL inhibits activation-induced cell death, c-CBL might play a role in the pathogenesis of inflammatory dermatoses and CTCL.
Collapse
|
19
|
Salva KA, Kim YH, Rahbar Z, Wood GS. Epigenetically Enhanced PDT Induces Significantly Higher Levels of Multiple Extrinsic Pathway Apoptotic Factors than Standard PDT, Resulting in Greater Extrinsic and Overall Apoptosis of Cutaneous T-cell Lymphoma. Photochem Photobiol 2018; 94:1058-1065. [PMID: 29675945 DOI: 10.1111/php.12925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/26/2018] [Indexed: 11/27/2022]
Abstract
Aminolevulinate-based photodynamic therapy (ALA-PDT) selectively eliminates diseased tissues primarily through the induction of intrinsic apoptotic pathway. ALA-PDT is a first-line therapy for actinic keratosis, however, it is less effective for cutaneous T-cell lymphoma (CTCL). We have previously demonstrated that the resistance of CTCL to apoptosis correlates with decreased expression of death receptors such as FAS, and that methotrexate functions as an epigenetic regulator that reestablishes the susceptibility of CTCL to extrinsic pathway apoptosis. We showed previously that MTX augments the effectiveness of PDT by sensitizing cells to apoptosis by induction of apoptotic factors, a process we call "epigenetically enhanced" PDT (ePDT). Here, in CTCL cell lines, leukemic CTCL cells, and normal blood T cells, we analyzed multiple components of the FAS, TRAIL, and TNF families using multispectral imaging of immunostained cytopreparations, a quantitative technique with five-fold greater sensitivity than standard immunocytology. ePDT induced significantly greater FAS, FASL, TRAIL-R1 & -R2, and TNFα levels than standard PDT. This correlated with significantly greater induction of extrinsic pathway apoptosis and/or overall apoptosis in all CTCL samples. There was no appreciable effect on normal T cells. These data set the stage for clinical trials of ePDT as a novel localized treatment of CTCL.
Collapse
Affiliation(s)
- Katrin A Salva
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Youn H Kim
- Department of Dermatology, Stanford University, Stanford, CA
| | - Ziba Rahbar
- Department of Dermatology, Stanford University, Stanford, CA
| | - Gary S Wood
- Department of Dermatology, University of Wisconsin, Madison, WI.,VA Medical Center, Madison, WI
| |
Collapse
|
20
|
Apoptosis Induction and Gene Expression Profile Alterations of Cutaneous T-Cell Lymphoma Cells following Their Exposure to Bortezomib and Methotrexate. PLoS One 2017; 12:e0170186. [PMID: 28107479 PMCID: PMC5249051 DOI: 10.1371/journal.pone.0170186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/30/2016] [Indexed: 01/11/2023] Open
Abstract
Mycosis fungoides (MF) and its leukemic variant Sézary syndrome (SS) comprise the majority of CTCL, a heterogenous group of non-Hodgkins lymphomas involving the skin. The CTCL’s resistance to chemotherapy and the lack of full understanding of their pathogenesis request further investigation. With the view of a more targeted therapy, we evaluated in vitro the effectiveness of bortezomib and methotrexate, as well as their combination in CTCL cell lines, regarding apoptosis induction. Our data are of clinical value and indicate that the bortezomib/methotrexate combinational therapy has an inferior impact on the apoptosis of CTCL compared to monotherapy, with bortezomib presenting as the most efficient treatment option for SS and methotrexate for MF. Using PCR arrays technology, we also investigated the alterations in the expression profile of genes related to DNA repair pathways in CTCL cell lines after treatment with bortezomib or methotrexate. We found that both agents, but mostly bortezomib, significantly deregulate a large number of genes in SS and MF cell lines, suggesting another pathway through which these agents could induce apoptosis in CTCL. Finally, we show that SS and MF respond differently to treatment, verifying their distinct nature and further emphasizing the need for discrete treatment approaches.
Collapse
|
21
|
Wang X, Fu Z, Chen Y, Liu L. Fas expression is downregulated in gastric cancer. Mol Med Rep 2016; 15:627-634. [PMID: 28000850 PMCID: PMC5364875 DOI: 10.3892/mmr.2016.6037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/10/2016] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to investigate Fas expression in tumor samples from patients with gastric cancer, in order to determine the involvement of the Fas signaling pathway. The protein expression levels of Fas, caspase-8, caspase-3 and poly (adenosine diphosphate-ribose) polymerase 1 (PARP1) were examined in gastric cancer specimens and their associations with clinical pathological parameters were analyzed with immunohistochemical staining and western blot analysis. The mRNA expression was quantified with quantitative PCR and apoptosis was examined with a FACScan flow cytometer. The results demonstrated that the downregulation of Fas expression was correlated with less histological differentiation, gender (male), and increased lymph node and distant metastases (P<0.05). In the AGS established gastric cancer cell line, upregulation of the Fas signaling pathway promoted the apoptosis of gastric cancer cells by upregulating the expression of caspase-8 and caspase-3, and downregulating the expression of PARP1. The present study demonstrated that Fas was associated with gastric cancer and promoted the apoptosis of gastric cancer cells via caspase-8, caspase-3 and PARP1. These results suggested that caspase-8, caspase-3 and PARP1 may be triggers of gastric cancer, and upregulation of caspase-8 and caspase-3 expression, or inhibition of PARP1 expression may improve the therapeutic outcome in patients with gastric cancer.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Ying Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
22
|
Kodigepalli KM, Li M, Liu SL, Wu L. Exogenous expression of SAMHD1 inhibits proliferation and induces apoptosis in cutaneous T-cell lymphoma-derived HuT78 cells. Cell Cycle 2016; 16:179-188. [PMID: 27929746 DOI: 10.1080/15384101.2016.1261226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Sterile α motif and HD domain-containing protein 1 (SAMHD1) is a mammalian dNTP hydrolase (dNTPase) that regulates intracellular dNTP balance. We have previously reported that SAMHD1 mRNA and protein levels are significantly downregulated in CD4+ T-cells of patients with cutaneous T-cell lymphoma (CTCL), a disease characterized by infiltration of neoplastic CD4+ T-lymphocytes into the skin. However, functional significance of SAMHD1 in CTCL development and progression remains unknown. Here we investigate the mechanism by which SAMHD1 induces apoptosis in CTCL-derived CD4+ T-cells. We stably expressed exogenous SAMHD1 in the CTCL-derived HuT78 T-cell line containing a very low level of endogenous SAMHD1 protein. We found that low-level exogenous expression of SAMHD1 led to a significant reduction in HuT78 cell growth, proliferation, and colony formation. Exogenous SAMHD1 expression in HuT78 cells also resulted in increased spontaneous and Fas ligand (Fas-L)-induced apoptosis levels via activation of the extrinsic pathway, including caspase-8, -3 and -7. Additionally, increased SAMHD1 significantly reduced the protein and mRNA expression of the short isoform of cFLIP (cFLIPS), an important negative regulator of Fas-L-mediated apoptotic signaling. Our results indicate that exogenous SAMHD1 expression inhibits HuT78 cell growth and proliferation in part by increasing apoptosis. These findings implicate that SAMHD1 acts as an inhibitor in CTCL cell growth, suggesting that downregulation of SAMHD1 expression in neoplastic T-cells can facilitate uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- a Center of Retrovirus Research, Department of Veterinary Biosciences ; The Ohio State University , Columbus , OH , USA
| | - Minghua Li
- a Center of Retrovirus Research, Department of Veterinary Biosciences ; The Ohio State University , Columbus , OH , USA
| | - Shan-Lu Liu
- a Center of Retrovirus Research, Department of Veterinary Biosciences ; The Ohio State University , Columbus , OH , USA
| | - Li Wu
- a Center of Retrovirus Research, Department of Veterinary Biosciences ; The Ohio State University , Columbus , OH , USA.,b Comprehensive Cancer Center, The Ohio State University , Columbus , OH , USA.,c Department of Microbial Infection and Immunity , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
23
|
O' Reilly E, Tirincsi A, Logue SE, Szegezdi E. The Janus Face of Death Receptor Signaling during Tumor Immunoediting. Front Immunol 2016; 7:446. [PMID: 27843441 PMCID: PMC5086583 DOI: 10.3389/fimmu.2016.00446] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
Cancer immune surveillance is essential for the inhibition of carcinogenesis. Malignantly transformed cells can be recognized by both the innate and adaptive immune systems through different mechanisms. Immune effector cells induce extrinsic cell death in the identified tumor cells by expressing death ligand cytokines of the tumor necrosis factor ligand family. However, some tumor cells can escape immune elimination and progress. Acquisition of resistance to the death ligand-induced apoptotic pathway can be obtained through cleavage of effector cell expressed death ligands into a poorly active form, mutations or silencing of the death receptors, or overexpression of decoy receptors and pro-survival proteins. Although the immune system is highly effective in the elimination of malignantly transformed cells, abnormal/dysfunctional death ligand signaling curbs its cytotoxicity. Moreover, DRs can also transmit pro-survival and pro-migratory signals. Consequently, dysfunctional death receptor-mediated apoptosis/necroptosis signaling does not only give a passive resistance against cell death but actively drives tumor cell motility, invasion, and contributes to consequent metastasis. This dual contribution of the death receptor signaling in both the early, elimination phase, and then in the late, escape phase of the tumor immunoediting process is discussed in this review. Death receptor agonists still hold potential for cancer therapy since they can execute the tumor-eliminating immune effector function even in the absence of activation of the immune system against the tumor. The opportunities and challenges of developing death receptor agonists into effective cancer therapeutics are also discussed.
Collapse
Affiliation(s)
- Eimear O' Reilly
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland , Galway , Ireland
| | - Andrea Tirincsi
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland , Galway , Ireland
| | - Susan E Logue
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland , Galway , Ireland
| | - Eva Szegezdi
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland , Galway , Ireland
| |
Collapse
|
24
|
Rubio-Gonzalez B, Zain J, Rosen ST, Querfeld C. Clinical manifestations and pathogenesis of cutaneous lymphomas: current status and future directions. Br J Haematol 2016; 176:16-36. [PMID: 27782301 DOI: 10.1111/bjh.14402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The primary cutaneous lymphomas are a heterogeneous group of T-, Natural Killer- and B- cell neoplasms with a wide range of clinical and pathological presentations, and with very different prognoses compared to systemic lymphomas. Recent studies have shown that the skin microenvironment, which is composed of various immune cell subsets as well as their spatial distribution and T-cell interactions through different chemokines and cytokines, has an important role in the development and pathogenesis of cutaneous lymphomas and has assisted in the development of novel and more effective immunotherapies. The following review will focus on the major subtypes of primary cutaneous lymphomas, including the clinical and histological patterns, molecular hallmarks, and current and future treatment strategies.
Collapse
Affiliation(s)
| | - Jasmine Zain
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Steven T Rosen
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Christiane Querfeld
- Department of Pathology, City of Hope, Duarte, CA, USA.,Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.,Division of Dermatology, City of Hope, Duarte, CA, USA
| |
Collapse
|
25
|
Ma H, Abdul-Hay M. T-cell lymphomas, a challenging disease: types, treatments, and future. Int J Clin Oncol 2016; 22:18-51. [PMID: 27743148 PMCID: PMC7102240 DOI: 10.1007/s10147-016-1045-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
T-cell lymphomas are rare and aggressive malignancies associated with poor outcome, often because of the development of resistance in the lymphoma against chemotherapy as well as intolerance in patients to the established and toxic chemotherapy regimens. In this review article, we discuss the epidemiology, pathophysiology, current standard of care, and future treatments of common types of T-cell lymphomas, including adult T-cell leukemia/lymphoma, angioimmunoblastic T-cell lymphoma, anaplastic large-cell lymphoma, aggressive NK/T-cell lymphoma, and cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Helen Ma
- Department of Internal Medicine, New York University, New York, NY, USA
| | - Maher Abdul-Hay
- Department of Internal Medicine, New York University, New York, NY, USA. .,Perlmutter Cancer Center, New York University, New York, NY, USA.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Mycosis fungoides and Sézary syndrome arise from malignant T cells that reside in skin, and subsequently are capable of circulating between skin, lymph nodes, and blood. The pathophysiologic mechanisms that cause and result in different behaviors of the skin-homing-malignant T cells in different stages of cutaneous T-cell lymphoma (CTCL) are still unknown. It is hypothesized that the skin microenvironment which is composed by various immune cell subsets as well as their spatial distribution and T-cell interaction through different chemokines and cytokines have an important role in the development and pathogenesis of CTCL and will be addressed in this chapter. RECENT FINDINGS Recent studies have discovered that malignant T cells in Sézary syndrome are of the central memory T-cell subset, whereas those in mycosis fungoides are nonrecirculating skin-resident effector memory T cells, and have shown a protumorigenic role of mast cells and macrophages in CTCL. In addition, it has been observed that malignant T cells may exhibit features of one of these three distinct phenotypes (forkhead box P3 + regulatory T-cell phenotype, Th2 phenotype, and Th17 phenotype) and are functionally exhausted through an increased expression of certain coinhibitory molecules, such as programmed death-1. SUMMARY All these new findings could assist in the development of novel targeted therapies for CTCL.
Collapse
|
27
|
Sézary Syndrome and Atopic Dermatitis: Comparison of Immunological Aspects and Targets. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9717530. [PMID: 27294147 PMCID: PMC4886049 DOI: 10.1155/2016/9717530] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/30/2016] [Indexed: 12/27/2022]
Abstract
Sézary syndrome (SS), an aggressive form of erythrodermic pruritic cutaneous T cell lymphoma (CTCL), from an immunological perspective characterized by increased Th2 cytokine levels, elevated serum IgE and impaired cellular immunity. Not only the clinical appearance but also the hallmark immunological characteristics of SS often share striking similarities with acute flares of atopic dermatitis (AD), a common benign chronic inflammatory skin disease. Given the overlap of several immunological features, the application of similar or even identical therapeutic approaches in certain stages of both diseases may come into consideration. The aim of this review is to compare currently accepted immunological aspects and possible therapeutic targets in AD and SS.
Collapse
|
28
|
Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome. Blood 2016; 127:3387-97. [PMID: 27121473 DOI: 10.1182/blood-2016-02-699843] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.
Collapse
|
29
|
Nicolay JP, Felcht M, Schledzewski K, Goerdt S, Géraud C. Sézary syndrome: old enigmas, new targets. J Dtsch Dermatol Ges 2016; 14:256-64. [DOI: 10.1111/ddg.12900] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jan P. Nicolay
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
- Department of Immunogenetics; German Cancer Research Center; Heidelberg Germany
| | - Moritz Felcht
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| |
Collapse
|
30
|
Nicolay JP, Felcht M, Schledzewski K, Goerdt S, Géraud C. Sézary-Syndrom: von ungelösten Fragen zu neuen Therapieansätzen. J Dtsch Dermatol Ges 2016. [DOI: 10.1111/ddg.12900_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan P. Nicolay
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
- Abteilung für Immungenetik; Deutsches Krebsforschungszentrum; Heidelberg Deutschland
| | - Moritz Felcht
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Kai Schledzewski
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Sergij Goerdt
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Cyrill Géraud
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| |
Collapse
|
31
|
Wilcox RA. Cutaneous T-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 2016; 91:151-65. [PMID: 26607183 PMCID: PMC4715621 DOI: 10.1002/ajh.24233] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative disorders involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral, or blood involvement are generally approached with biologic-response modifiers or histone deacetylase inhibitors before escalating therapy to include systemic, single-agent chemotherapy. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Ryan A. Wilcox
- Division of Hematology/Oncology, University of Michigan Cancer Center, 1500 E. Medical Center Drive, Room 4310 CC, Ann Arbor, MI 48109-5948
| |
Collapse
|
32
|
Salva KA, Wood GS. Epigenetically Enhanced Photodynamic Therapy (ePDT) is Superior to Conventional Photodynamic Therapy for Inducing Apoptosis in Cutaneous T-Cell Lymphoma. Photochem Photobiol 2015; 91:1444-51. [PMID: 26302991 DOI: 10.1111/php.12521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/01/2015] [Indexed: 11/26/2022]
Abstract
Conventional photodynamic therapy with aminolevulinate (ALA-PDT) selectively induces apoptosis in diseased cells and is highly effective for treating actinic keratoses. However, similar results are achieved only in a subset of patients with cutaneous T-cell lymphoma (CTCL). Our previous work shows that the apoptotic resistance of CTCL correlates with low expression of death receptors like Fas cell surface death receptor (FAS), and that methotrexate upregulates FAS by inhibiting the methylation of its promoter, acting as an epigenetic derepressor that restores the susceptibility of FAS-low CTCL to caspase-8-mediated apoptosis. Here, we demonstrate that methotrexate increases the response of CTCL to ALA-PDT, a concept we refer to as epigenetically enhanced PDT (ePDT). Multiple CTCL cell lines were subjected to conventional PDT versus ePDT. Apoptotic biomarkers were analyzed in situ with multispectral imaging analysis of immunostained cells, a method that is quantitative and 5× more sensitive than standard immunohistology for antigen detection. Compared to conventional PDT or methotrexate alone, ePDT led to significantly greater cell death in all CTCL cell lines tested by inducing greater activation of caspase-8-mediated extrinsic apoptosis. Upregulation of FAS and/or tumor necrosis factor-related apoptosis-inducing ligand pathway components was observed in different CTCL cell lines. These findings provide a rationale for clinical trials of ePDT for CTCL.
Collapse
Affiliation(s)
- Katrin Agnes Salva
- Department of Dermatology, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI
| | - Gary S Wood
- Department of Dermatology, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI.,VA Medical Center, Madison, WI
| |
Collapse
|
33
|
Zhukov AS, Belousova IE, Samtsov AV. Immunological and molecular genetic mechanisms of the development of mycosis fungoides. VESTNIK DERMATOLOGII I VENEROLOGII 2015. [DOI: 10.25208/0042-4609-2015-91-4-42-50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This review reflects modern information about the possible mechanisms of skin lymphomas. Generalized the data of the possible etiologic factors of the disease. Described the basic pathogenesis and show practical importance identified molecular markers in the diagnosis and treatment of patients with lymphoproliferative diseases of the skin.
Collapse
|
34
|
Abstract
This article reviews methotrexate and the more potent, related compound, pralatrexate, for the treatment of cutaneous T-cell lymphomas, including mycosis fungoides, Sézary syndrome, and CD30+ lymphoproliferative disorders. Although these folate antagonists are traditionally viewed as antiproliferative cell cycle inhibitors, it is recognized that they inhibit DNA methylation, providing a rationale for their use as epigenetic regulators and cell proliferation inhibitors. The underlying mechanisms are outlined, key supporting data presented, followed by brief mention of recent mathematical modeling supporting the general superiority of combination therapy. Several novel examples involving folate antagonists are proposed.
Collapse
Affiliation(s)
- Gary S Wood
- Department of Dermatology, University of Wisconsin and VA Medical Center, 7th Floor, One South Park, Madison, WI 53715, USA.
| | - Jianqiang Wu
- Department of Dermatology, University of Wisconsin and VA Medical Center, 7th Floor, One South Park, Madison, WI 53715, USA
| |
Collapse
|
35
|
Klemke CD, Feoktistova M, Leverkus M. Silencing autocrine death: a ubiquitin ligase that blocks activation-induced cell death in cutaneous T-cell lymphoma. J Invest Dermatol 2015; 135:662-665. [PMID: 25666675 DOI: 10.1038/jid.2014.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cutaneous T-cell lymphoma (CTCL) tumor cells lack the ability of activated T cells to undergo TCR/CD3-mediated activation-induced cell death (AICD). In this issue, the study reported by Wu et al. demonstrates that c-CBL (Casitas B-lineage Lymphoma proto-oncogene) is overexpressed in CTCL. When CTCL cells lose c-CBL, AICD is enhanced. Furthermore, combination therapy with methotrexate (a known demethylating agent for the CD95 gene) in combination with the loss of c-CBL increases CTCL cell death. Therefore, inhibition of c-CBL could represent a method of sensitizing lymphoma cells to enhance AICD. Armed with their novel data, the investigators envision combination therapies that target c-CBL to reactivate AICD in the malignant T cells whenever responsiveness to TCR/CD3 signaling is retained.
Collapse
Affiliation(s)
- Claus-Detlev Klemke
- Departments of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Maria Feoktistova
- Section of Molecular Dermatology, Departments of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Martin Leverkus
- Departments of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany; Section of Molecular Dermatology, Departments of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.
| |
Collapse
|
36
|
Hu SCS. Mycosis fungoides and Sézary syndrome: Role of chemokines and chemokine receptors. World J Dermatol 2015; 4:69-79. [DOI: 10.5314/wjd.v4.i2.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/16/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
Mycosis fungoides is the most common form of cutaneous T-cell lymphoma (CTCL), and is characterized by a clonal expansion of malignant CD4+ T lymphocytes with skin-homing properties. Clinically and pathologically, mycosis fungoides can be categorized into patch, plaque and tumor stages. The clinical course of mycosis fungoides is usually chronic and indolent, but a proportion of patients may develop progressive disease with peripheral blood, lymph node and visceral organ involvement. Sézary syndrome is an aggressive leukemic form of CTCL characterized by a clonal population of malignant T cells in the peripheral blood. Various forms of skin-directed and systemic treatments are available for mycosis fungoides and Sézary syndrome. However, current treatments are generally not curative, and can only control the disease. Currently, the etiology and pathogenesis of mycosis fungoides and Sézary syndrome are not well defined. Proposed mechanisms include chronic antigenic stimulation by infectious agents, expression of specific adhesion molecules, altered cytokine production, mutations of oncogenes and tumor suppressor genes, and avoidance of apoptosis. In recent years, a number of chemokine receptors and their corresponding chemokine ligands have been found to contribute to the migration and survival of lymphoma cells in mycosis fungoides and Sézary syndrome, including CC chemokine receptor 4 (CCR4), CCR10, C-X-C chemokine receptor type 4 (CXCR4), CCR7, CCR3 and CXCR3. Since chemokines and chemokine receptors have been found to play important roles in the pathophysiology of mycosis fungoides and Sézary syndrome, they may be potentially useful targets for the development of new treatments for these diseases in the future.
Collapse
|
37
|
Humme D, Haider A, Möbs M, Mitsui H, Suárez-Fariñas M, Ohmatsu H, Isabell Geilen C, Eberle J, Krueger JG, Beyer M, Hummel M, Anagnostopoulos I, Sterry W, Assaf C. Aurora Kinase A Is Upregulated in Cutaneous T-Cell Lymphoma and Represents a Potential Therapeutic Target. J Invest Dermatol 2015; 135:2292-2300. [PMID: 25848977 DOI: 10.1038/jid.2015.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 01/01/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) form a heterogeneous group of non-Hodgkin's lymphomas characterized by only poor prognosis in advanced stage. Despite significant progress made in the identification of novel genes and pathways involved in the pathogenesis of cutaneous lymphoma, the therapeutic value of these findings has still to be proven. Here, we demonstrate by gene expression arrays that Aurora kinase A is one of the highly overexpressed genes of the serine/threonine kinase in CTCL. The finding was confirmed by quantitative reverse transcriptase-PCR, western blotting, and immunohistochemistry in CTCL cell lines and primary patient samples. Moreover, treatment with a specific Aurora kinase A inhibitor blocks cell proliferation by inducing cell cycle arrest in G2 phase, as well as apoptosis in CTCL cell lines. These data provide a promising rationale for using Aurora kinase A inhibition as a therapeutic modality of CTCL.
Collapse
Affiliation(s)
- Daniel Humme
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Ahmed Haider
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; These authors contributed equally to this work
| | - Markus Möbs
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Mayte Suárez-Fariñas
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Hanako Ohmatsu
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Cyprienne Isabell Geilen
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Marc Beyer
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Wolfram Sterry
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chalid Assaf
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; HELIOS Klinikum Krefeld, Krefeld, Germany.
| |
Collapse
|
38
|
Altered MicroRNA Expression in Folliculotropic and Transformed Mycosis Fungoides. Pathol Oncol Res 2015; 21:821-5. [DOI: 10.1007/s12253-015-9897-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
|
39
|
BIN1 tumor suppressor regulates Fas/Fas ligand–mediated apoptosis through c-FLIP in cutaneous T-cell lymphoma. Leukemia 2015; 29:1402-13. [DOI: 10.1038/leu.2015.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/02/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023]
|
40
|
Wu J, Salva KA, Stutz N, Longley BJ, Spiegelman VS, Wood GS. Quantitative gene analysis of methylation and expression (Q-GAME) in fresh or fixed cells and tissues. Exp Dermatol 2014; 23:304-9. [PMID: 24646432 DOI: 10.1111/exd.12374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 12/27/2022]
Abstract
Epigenetic regulation of gene expression by DNA methylation is a central mechanism governing the silencing of tumor suppressor genes in many forms of cancer. Current methods have not proven optimal for the quantitative analysis of DNA methylation and corresponding in situ protein expression within cells in small specimens like skin biopsies. We have overcome this limitation by combining and modifying several techniques: target cell enrichment, DNA micro-isolation, one-step denaturation/bisulphite conversion/in-column desulphonation, specially designed PCR amplification, pyrosequencing and multispectral image analysis. Using this approach optimized for small samples, we can quantify minor alterations in gene methylation and protein expression using minimal amounts of tissue. Comparative studies of fresh and processed cells showed that our method is valid for DNA in both fresh and formalin-fixed, paraffin-embedded specimens. We can measure the effects of DNA methylation inhibitors, administered in vitro or in vivo, on the promoter methylation and protein expression of selected genes in specific cells. This novel approach should prove useful for a wide variety of investigative and clinical applications in dermatology and other specialties where the collection of small, routinely processed biopsy specimens is common. We refer to this method as Q-GAME (quantitative gene analysis of methylation and expression).
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Dermatology, University of Wisconsin, Madison, WI, USA; The Middleton VA Medical Center, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
41
|
Garcia MN, Grasso D, Lopez-Millan MB, Hamidi T, Loncle C, Tomasini R, Lomberk G, Porteu F, Urrutia R, Iovanna JL. IER3 supports KRASG12D-dependent pancreatic cancer development by sustaining ERK1/2 phosphorylation. J Clin Invest 2014; 124:4709-22. [PMID: 25250570 DOI: 10.1172/jci76037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/19/2014] [Indexed: 12/23/2022] Open
Abstract
Activating mutations in the KRAS oncogene are prevalent in pancreatic ductal adenocarcinoma (PDAC). We previously demonstrated that pancreatic intraepithelial neoplasia (PanIN) formation, which precedes malignant transformation, associates with the expression of immediate early response 3 (Ier3) as part of a prooncogenic transcriptional pathway. Here, we evaluated the role of IER3 in PanIN formation and PDAC development. In human pancreatic cancer cells, IER3 expression efficiently sustained ERK1/2 phosphorylation by inhibiting phosphatase PP2A activity. Moreover, IER3 enhanced KrasG12D-dependent oncogenesis in the pancreas, as both PanIN and PDAC development were delayed in IER3-deficient KrasG12D mice. IER3 expression was discrete in healthy acinar cells, becoming highly prominent in peritumoral acini, and particularly high in acinar ductal metaplasia (ADM) and PanIN lesions, where IER3 colocalized with phosphorylated ERK1/2. However, IER3 was absent in undifferentiated PDAC, which suggests that the IER3-dependent pathway is an early event in pancreatic tumorigenesis. IER3 expression was induced by both mild and severe pancreatitis, which promoted PanIN formation and progression to PDAC in KrasG12D mice. In IER3-deficient mice, pancreatitis abolished KrasG12D-induced proliferation, which suggests that pancreatitis enhances the oncogenic effect of KRAS through induction of IER3 expression. Together, our data indicate that IER3 supports KRASG12D-associated oncogenesis in the pancreas by sustaining ERK1/2 phosphorylation via phosphatase PP2A inhibition.
Collapse
|
42
|
Dulmage BO, Geskin LJ. Lessons learned from gene expression profiling of cutaneous T-cell lymphoma. Br J Dermatol 2014; 169:1188-97. [PMID: 23937674 DOI: 10.1111/bjd.12578] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 12/14/2022]
Abstract
Gene expression studies of cutaneous T-cell lymphoma (CTCL) span a decade, yet the pathogenesis is poorly understood and diagnosis remains a challenge. This review examines the varied approaches to gene expression analysis of CTCL, with emphasis on cell populations, control selection and expression data collection. Despite discordant results, several dysregulated genes have been identified across multiple studies, including PLS3, KIR3DL2, TWIST1 and STAT4. Here, we provide an overview of the most consistently expressed genes across different studies and bring them together through common pathways biologically relevant to CTCL. Four pathways - evasion of activation-induced cell death, T helper 2 lymphocyte differentiation, transforming growth factor-β receptor expression, and tumour necrosis factor receptor ligands - appear to encompass the most frequently affected genes, hypothetically providing insight into the disease pathogenesis.
Collapse
Affiliation(s)
- B O Dulmage
- Department of Dermatology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15213, U.S.A
| | | |
Collapse
|
43
|
Wu J, Salva KA, Wood GS. c-CBL E3 ubiquitin ligase is overexpressed in cutaneous T-cell lymphoma: its inhibition promotes activation-induced cell death. J Invest Dermatol 2014; 135:861-868. [PMID: 25140833 PMCID: PMC4324119 DOI: 10.1038/jid.2014.364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/14/2014] [Accepted: 07/28/2014] [Indexed: 11/17/2022]
Abstract
Mycosis fungoides (MF) and Sezary syndrome (SS) are two major forms of cutaneous T-cell lymphoma (CTCL) characterized by resistance to apoptosis. A central pathway for T-cell apoptosis is activation-induced cell death (AICD) which is triggered through the T-cell receptor (TCR). This results in upregulation of FAS-ligand (FASL) and subsequent apoptosis through the FAS death receptor pathway. It has been known for more than a decade that TCR signaling is defective in CTCL; however, the underlying mechanism has not been apparent. In this report, we show that the E3 ubiquitin ligase, c-CBL, is over-expressed in CTCL and that its knockdown overcomes defective TCR signaling resulting in phosphorylation of PLCg1, calcium influx, ROS generation, up-regulation of FASL and extrinsic pathway apoptosis in CTCL cells expressing adequate FAS. In CTCL cells with suboptimal FAS expression, FAS can be upregulated epigenetically by derepression of the FAS promoter using methotrexate (MTX) which we showed previously has activity as a DNA methylation inhibitor. Using these combined strategies, FAS-low as well as FAS-high CTCL cells can be killed effectively.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Dermatology, University of Wisconsin and the Middleton VA Medical Center, Madison, Wisconsin, USA
| | - Katrin A Salva
- Department of Dermatology, University of Wisconsin and the Middleton VA Medical Center, Madison, Wisconsin, USA
| | - Gary S Wood
- Department of Dermatology, University of Wisconsin and the Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
44
|
Wilcox RA. Cutaneous T-cell lymphoma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol 2014; 89:837-51. [PMID: 25042790 DOI: 10.1002/ajh.23756] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative disorders involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, and blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or blood involvement are generally approached with biologic-response modifiers or histone deacetylase inhibitors prior to escalating therapy to include systemic, single-agent chemotherapy. Multiagent chemotherapy (e.g., CHOP) may be employed for those patients with extensive visceral involvement requiring rapid disease control. In highly selected patients, allogeneic stem-cell transplantation may be considered.
Collapse
Affiliation(s)
- Ryan A. Wilcox
- Division of Hematology/Oncology; University of Michigan Cancer Center; Ann Arbor Michigan
| |
Collapse
|
45
|
Scarisbrick J, Kim Y, Whittaker S, Wood G, Vermeer M, Prince H, Quaglino P. Prognostic factors, prognostic indices and staging in mycosis fungoides and Sézary syndrome: where are we now? Br J Dermatol 2014; 170:1226-36. [DOI: 10.1111/bjd.12909] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 12/28/2022]
Affiliation(s)
- J.J. Scarisbrick
- Department of Dermatology; University Hospital Birmingham; Birmingham U.K
| | - Y.H. Kim
- Stanford Cancer Centre & School of Medicine; Stanford CA U.S.A
| | - S.J. Whittaker
- Department of Dermatology; Guy's and St Thomas' NHS Trust; London U.K
| | - G.S. Wood
- Department of Dermatology; University of Wisconsin and Middleton VA Medical Center; Madison WI U.S.A
| | - M.H. Vermeer
- Department of Dermatology; Leiden University Medical Centre; Leiden the Netherlands
| | - H.M. Prince
- Peter MacCallum Cancer Centre and University of Melbourne; Melbourne VIC Australia
| | - P. Quaglino
- Department of Medical Sciences; Dermatologic Clinic; University of Torino; Turin Italy
| |
Collapse
|
46
|
Methotrexate inhibits the viability of human melanoma cell lines and enhances Fas/Fas-ligand expression, apoptosis and response to interferon-alpha: rationale for its use in combination therapy. Arch Biochem Biophys 2014; 563:101-7. [PMID: 24862567 DOI: 10.1016/j.abb.2014.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/23/2022]
Abstract
Melanoma, a highly aggressive form of cancer, is notoriously resistant to available therapies. Methotrexate (MTX), an antifolate, competitively inhibits DNA synthesis and is effective for several types of cancer. In cutaneous T-cell lymphoma (CTCL), MTX increases Fas death receptor by decreasing Fas promoter methylation by blocking the synthesis of SAM, the principal methyl donor for DNMTs, resulting in enhanced Fas-mediated apoptosis. The objective of this study was to explore the effects of MTX in human melanoma. MTX variably inhibited the survival of melanoma cells and induced apoptosis as evident by annexin V positivity and senescence associated β-galactosidase activity induction. Furthermore, MTX caused increased transcript and protein levels of extrinsic apoptotic pathway factors Fas and Fas-ligand, albeit at different levels in different cell lines. Our pyrosequencing studies showed that this increased expression of Fas was associated with Fas promoter demethylation. Overall, the ability of MTX to up-regulate Fas/FasL and enhance melanoma apoptosis through extrinsic as well as intrinsic pathways might make it a useful component of novel combination therapies designed to affect multiple melanoma targets simultaneously. In support of this concept, combination therapy with MTX and interferon-alpha (IFNα) induced significantly greater apoptosis in the aggressive A375 cell line than either agent alone.
Collapse
|
47
|
Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome). J Am Acad Dermatol 2014; 70:205.e1-16; quiz 221-2. [DOI: 10.1016/j.jaad.2013.07.049] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 02/08/2023]
|
48
|
Nihal M, Ahmad N, Wood GS. SIRT1 is upregulated in cutaneous T-cell lymphoma, and its inhibition induces growth arrest and apoptosis. Cell Cycle 2013; 13:632-40. [PMID: 24343700 DOI: 10.4161/cc.27523] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Silent information regulator type-1 (SIRT1) is the best-studied member of the Sirtuin (Sir2) family of nicotinamide dinucleotide (NAD)-dependent class III histone deacetylases (HDACs), but has not yet been explored in cutaneous T-cell lymphoma (CTCL). We analyzed five CTCL cell lines and lesional tissues using flow cytometry, immunostaining, immunoblotting, cell death, viability, and apoptosis assays, small-molecule inhibitors, and shRNA knockdown. We found strong SIRT1 expression among CTCL lines relative to normal lymphocytes. CTCL cells in lesional tissues also expressed SIRT1 strongly. SIRT1 knockdown resulted in reduced cellular metabolism and proliferation, increased apoptosis, and PARP cleavage products. Tenovin-1, which reversibly inhibits class III HDACs (SIRT1 and SIRT2), reduced SIRT enzymatic activity and SIRT1 expression and led to increased apoptosis. These alterations were accompanied by increased forkhead box O3 (FoxO3) in several cell lines and increased nuclear p53, as well as acetylated p53 in wtp53 MyLa CTCL line. A combination of class I/II and class III HDACIs (vorinostat and tenovin-1) produced significantly greater growth inhibition, cell death via apoptosis, as well as superior p53 promoter upregulation in wtp53 MyLa cells as compared with either agent alone. This occurred in a partially p53-dependent manner, as these effects were blunted by p53 knockdown. Our results indicate that SIRT1 is strongly expressed in CTCL. Its inhibition results in reduced growth and increased apoptosis of CTCL cells. Furthermore, our findings suggest that some CTCL patients, such as those with wtp53, might benefit more from treatment with a combination of different classes of HDACIs than with a single agent.
Collapse
Affiliation(s)
- Minakshi Nihal
- Department of Dermatology; University of Wisconsin School of Medicine and Public Health; Madison, WI USA; Paul P. Carbone Comprehensive Cancer Center; University of Wisconsin School of Medicine and Public Health; Madison, WI USA
| | - Nihal Ahmad
- Department of Dermatology; University of Wisconsin School of Medicine and Public Health; Madison, WI USA; Paul P. Carbone Comprehensive Cancer Center; University of Wisconsin School of Medicine and Public Health; Madison, WI USA; William S. Middleton Memorial Veterans Hospital; Madison, WI USA
| | - Gary S Wood
- Department of Dermatology; University of Wisconsin School of Medicine and Public Health; Madison, WI USA; Paul P. Carbone Comprehensive Cancer Center; University of Wisconsin School of Medicine and Public Health; Madison, WI USA; William S. Middleton Memorial Veterans Hospital; Madison, WI USA
| |
Collapse
|
49
|
Willerslev-Olsen A, Krejsgaard T, Lindahl LM, Bonefeld CM, A. Wasik M, B. Koralov S, Geisler C, Kilian M, Iversen L, Woetmann A, Odum N. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma. Toxins (Basel) 2013; 5:1402-21. [PMID: 23949004 PMCID: PMC3760043 DOI: 10.3390/toxins5081402] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/02/2023] Open
Abstract
In patients with cutaneous T-cell lymphoma (CTCL) bacterial infections constitute a major clinical problem caused by compromised skin barrier and a progressive immunodeficiency. Indeed, the majority of patients with advanced disease die from infections with bacteria, e.g., Staphylococcus aureus. Bacterial toxins such as staphylococcal enterotoxins (SE) have long been suspected to be involved in the pathogenesis in CTCL. Here, we review links between bacterial infections and CTCL with focus on earlier studies addressing a direct role of SE on malignant T cells and recent data indicating novel indirect mechanisms involving SE- and cytokine-driven cross-talk between malignant- and non-malignant T cells.
Collapse
Affiliation(s)
- Andreas Willerslev-Olsen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Thorbjørn Krejsgaard
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus 8000, Denmark; E-Mails: (L.M.L.); (L.I.)
| | - Charlotte Menne Bonefeld
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Mariusz A. Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
| | - Sergei B. Koralov
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA; E-Mail:
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; E-Mail:
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus 8000, Denmark; E-Mails: (L.M.L.); (L.I.)
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Niels Odum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +45-3532-7879
| |
Collapse
|
50
|
Gu X, Wang Y, Zhang G, Li W, Tu P. Aberrant expression of BCL11B in mycosis fungoides and its potential role in interferon-induced apoptosis. J Dermatol 2013; 40:596-605. [PMID: 23682716 DOI: 10.1111/1346-8138.12160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/06/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoguang Gu
- Department of Dermatology and Venerology; Peking University First Hospital; Beijing; China
| | - Yang Wang
- Department of Dermatology and Venerology; Peking University First Hospital; Beijing; China
| | - Gaolei Zhang
- Department of Dermatology and Venerology; Peking University First Hospital; Beijing; China
| | - Weiwei Li
- Department of Dermatology and Venerology; Peking University First Hospital; Beijing; China
| | - Ping Tu
- Department of Dermatology and Venerology; Peking University First Hospital; Beijing; China
| |
Collapse
|