1
|
Li S, Cui Y, Yu S, He J, Ma R, Liao B, Zhao P, Wei P, Robert N. Insights from Tandem Mass Tag (TMT) Proteomic Analysis on Protein Network Modification in Control of Yak Hair Follicle Cycle. Int J Mol Sci 2025; 26:1532. [PMID: 40003997 PMCID: PMC11855600 DOI: 10.3390/ijms26041532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Highland animals have unique hair growth mechanisms to allow them to adapt to harsh living environments. Compared with other species, their hair cycle growth is affected by more environmental factors. Yaks, as highland animals, have obvious periodic hair growth characteristics in a year; this biological process is regulated by numerous proteins, but the specific molecular regulatory mechanism is still unclear. Here we analyzed the histological characteristics of yak hair follicles (HFs) at each stage and conducted TMT proteomics research. The protein expression network of yak hair at each stage and the mechanism of the yak HF growth cycle were systematically explored, and the candidate proteins Sfrp1 and Ppard were verified. A total of 3176 proteins were quantifiable and 1142 differentially expressed proteins (DEPs) were obtained at five stages of the yak hair cycle. DEPs enriched in complement activation change, tissue development, lipid metabolism, WNT pathway, VEGF pathway, JAK-STAT pathway, and PPAR pathway may promote the growth of yak hair follicles, such as Serpinf1, Ppard, and Stat3. DEPs enriched in complement system, coagulation, cell adhesion, lipid metabolic process, proliferation of epidermal cells, and estrogen pathway may promote the degeneration of yak hair, such as Sfrp1, Eppk1, and Egfr. Using Protein-Protein Interaction (PPI) analysis, we found that core nodes of DEP networks in yak skin are significantly different at three critical time points in hair follicle development, and lipid metabolism proteins are common core DEP nodes during yak HF growth and degeneration. The expression of Sfrp1 and Ppard in yak hair follicles at different periods showed they are related to yak hair cycle control. This study showed that the protein regulatory network of the yak HF growth cycle is complex and dynamically changing and revealed key candidate proteins that may affect yak hair follicle development. These findings provided detailed data for further understanding of the plateau adaptation mechanism of the yak, which is of great significance to make better use of the yak livestock resources and enhance their economic value.
Collapse
Affiliation(s)
- Shijie Li
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (J.H.); (R.M.); (B.L.); (P.Z.); (P.W.); (N.R.)
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (J.H.); (R.M.); (B.L.); (P.Z.); (P.W.); (N.R.)
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (J.H.); (R.M.); (B.L.); (P.Z.); (P.W.); (N.R.)
| | - Rui Ma
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (J.H.); (R.M.); (B.L.); (P.Z.); (P.W.); (N.R.)
| | - Bo Liao
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (J.H.); (R.M.); (B.L.); (P.Z.); (P.W.); (N.R.)
| | - Pengfei Zhao
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (J.H.); (R.M.); (B.L.); (P.Z.); (P.W.); (N.R.)
| | - Pengqiang Wei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (J.H.); (R.M.); (B.L.); (P.Z.); (P.W.); (N.R.)
| | - Niayaler Robert
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (J.H.); (R.M.); (B.L.); (P.Z.); (P.W.); (N.R.)
| |
Collapse
|
2
|
Lin LW, Durbin-Johnson BP, Rocke DM, Salemi M, Phinney BS, Rice RH. Environmental pro-oxidants induce altered envelope protein profiles in human keratinocytes. Toxicol Sci 2023; 197:16-26. [PMID: 37788135 PMCID: PMC10734632 DOI: 10.1093/toxsci/kfad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Cornified envelopes (CEs) of human epidermis ordinarily consist of transglutaminase-mediated cross-linked proteins and are essential for skin barrier function. However, in addition to enzyme-mediated isopeptide bonding, protein cross-linking could also arise from oxidative damage. Our group recently demonstrated abnormal incorporation of cellular proteins into CEs by pro-oxidants in woodsmoke. In this study, we focused on 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), mesquite liquid smoke (MLS), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), to further understand the mechanisms through which environmental pro-oxidants induce CE formation and alter the CE proteome. CEs induced by the ionophore X537A were used for comparison. Similar to X537A, DMNQ- and MLS-induced CE formation was associated with membrane permeabilization. However, since DMNQ is non-adduct forming, its CEs were similar in protein profile to those from X537A. By contrast, MLS, rich in reactive carbonyls that can form protein adducts, caused a dramatic change in the CE proteome. TCDD-CEs were found to contain many CE precursors, such as small proline-rich proteins and late cornified envelope proteins, encoded by the epidermal differentiation complex. Since expression of these proteins is mediated by the aryl hydrocarbon receptor (AhR), and its well-known downstream protein, CYP1A1, was exclusively present in the TCDD group, we suggest that TCDD alters the CE proteome through persistent AhR activation. This study demonstrates the potential of environmental pro-oxidants to alter the epidermal CE proteome and indicates that the cellular redox state has an important role in CE formation.
Collapse
Affiliation(s)
- Lo-Wei Lin
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | - Blythe P Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California 95616, USA
| | - David M Rocke
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California 95616, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, California 95616, USA
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, California 95616, USA
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| |
Collapse
|
3
|
Sundberg JP, Rice RH. Phenotyping mice with skin, hair, or nail abnormalities: A systematic approach and methodologies from simple to complex. Vet Pathol 2023; 60:829-842. [PMID: 37191004 DOI: 10.1177/03009858231170329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The skin and adnexa can be difficult to interpret because they change dramatically with the hair cycle throughout life. However, a variety of methods are commonly available to collect skin and perform assays that can be useful for figuring out morphological and molecular changes. This overview provides information on basic approaches to evaluate skin and its molecular phenotype, with references for more detail, and interpretation of results on the skin and adnexa in the mouse. These approaches range from mouse genetic nomenclature, setting up a cutaneous phenotyping study, skin grafts, hair follicle reconstitution, wax stripping, electron microscopy, and Köbner reaction to very specific approaches such as lipid and protein analyses on a large scale.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME
- Vanderbilt University Medical Center, Nashville, TN
| | | |
Collapse
|
4
|
Xiao D, Chen J, Xu L, Zhou C, Mei S, Qiu Q, Xie Q, Liu Y. Protein Biomarkers for the Identification of Forensically Relevant Human Hair from Different Body Parts in Intimate Contact Cases. J Proteome Res 2023. [PMID: 37314855 DOI: 10.1021/acs.jproteome.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Correctly identifying the human hair anatomic location found at crime scenes can link biological sample donors with the actual crime event, thus providing significant insight into the crime scene reconstruction. Forensic proteomic studies on human hairs can facilitate the development of new biomarkers for hair identification while compensating for the limitations of the conventional morphologic hair comparison and DNA analysis. Herein, the LC-MS/MS platform was used to find differentially expressed protein biomarkers in hairs from different body sites. The findings indicated that a total of 296 protein biomarkers with statistically significant differences in body sites were initially identified, and hair samples from the scalp, pubic, and armpit parts were distinguished from each other, which were validated by multiple bioinformatic methods. Fewer differences in protein patterns between armpit and pubic hairs while larger differences between hair and armpit as well as pubic hairs provided reasonable evidence of sexual or close intimate contact in crimes. This study lays the foundation for the development of a more reliable strategy to distinguish human hairs of various body areas from Chinese and will also support microscopic hair comparison analysis and assist in the proper handling of legal proceedings in relative cases by judicial officers, deserving special attention and further in-depth investigation. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the iProX partner repository with the dataset identifier PXD038173.
Collapse
Affiliation(s)
- Ding Xiao
- Guangdong Medical University, Dongguan, Guangdong 523808, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajun Chen
- Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Lu Xu
- Guangdong Medical University, Dongguan, Guangdong 523808, China
- School of Humanities and Management, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Chenhui Zhou
- Guangdong Medical University, Dongguan, Guangdong 523808, China
- Key Laboratory of Lifecycle Care for Chronic Diseases, School of Nursing, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Shuyan Mei
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qingfang Qiu
- Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Qiuhong Xie
- Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yanfang Liu
- Guangdong Medical University, Dongguan, Guangdong 523808, China
- Key Laboratory of Lifecycle Care for Chronic Diseases, School of Nursing, Guangdong Medical University, Dongguan, Guangdong 523808, China
| |
Collapse
|
5
|
Ioannidis AD, Khan SG, Tamura D, DiGiovanna JJ, Rizza E, Kraemer KH, Rice RH. Trichothiodystrophy hair shafts display distinct ultrastructural features. Exp Dermatol 2022; 31:1270-1275. [PMID: 35615778 PMCID: PMC10575343 DOI: 10.1111/exd.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Hair shafts from three trichothiodystrophy (TTD) patients with mutations in the ERCC2 (XPD) gene were examined by transmission electron microscopy. TTD is a rare, recessive disorder with mutations in several genes in the DNA repair/transcription pathway, including ERCC2. Unlike previous studies, the hair shafts were examined after relaxation of their structure by partial disulphide bond reduction in the presence of sodium dodecyl sulphate, permitting improved visualization. Compared with hair shafts of normal phenotype, TTD cuticle cells displayed aberrant marginal bands and exocuticle layers. Clusters of cells stained differently (light versus dark) in the cortex of aberrant shafts, and the keratin macrofibrils appeared much shorter in the cytoplasm. Considerable heterogeneity in these properties was evident among samples and even along the length of single hair shafts. The results are consistent with not only a paucity of high sulphur components, such as keratin-associated proteins, but also a profound imbalance in protein content and organization.
Collapse
Affiliation(s)
- Angeliki-Diotima Ioannidis
- Department of Environmental Toxicology and Forensic Science Program, University of California, Davis, California, USA
| | - Sikandar G. Khan
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Deborah Tamura
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - John J. DiGiovanna
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Elizabeth Rizza
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Kenneth H. Kraemer
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert H. Rice
- Department of Environmental Toxicology and Forensic Science Program, University of California, Davis, California, USA
| |
Collapse
|
6
|
Konka J, Espanol M, Bosch BM, de Oliveira E, Ginebra MP. Maturation of biomimetic hydroxyapatite in physiological fluids: a physicochemical and proteomic study. Mater Today Bio 2021; 12:100137. [PMID: 34632362 PMCID: PMC8487082 DOI: 10.1016/j.mtbio.2021.100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 09/04/2021] [Indexed: 11/26/2022] Open
Abstract
Biomimetic calcium-deficient hydroxyapatite (CDHA) as a bioactive material exhibits exceptional intrinsic osteoinductive and osteogenic properties because of its nanostructure and composition, which promote a favorable microenvironment. Its high reactivity has been hypothesized to play a relevant role in the in vivo performance, mediated by the interaction with the biological fluids, which is amplified by its high specific surface area. Paradoxically, this high reactivity is also behind the in vitro cytotoxicity of this material, especially pronounced in static conditions. The present work explores the structural and physicochemical changes that CDHA undergoes in contact with physiological fluids and to investigate its interaction with proteins. Calcium-deficient hydroxyapatite discs with different micro/nanostructures, coarse (C) and fine (F), were exposed to cell-free complete culture medium over extended periods of time: 1, 7, 14, 21, 28, and 50 days. Precipitate formation was not observed in any of the materials in contact with the physiological fluid, which would indicate that the ionic exchanges were linked to incorporation into the crystal structure of CDHA or in the hydrated layer. In fact, CDHA experienced a maturation process, with a progressive increase in crystallinity and the Ca/P ratio, accompanied by an uptake of Mg and a B-type carbonation process, with a gradual propagation into the core of the samples. However, the reactivity of biomimetic hydroxyapatite was highly dependent on the specific surface area and was amplified in nanosized needle-like crystal structures (F), whereas in coarse specimens the ionic exchanges were restricted to the surface, with low penetration in the material bulk. In addition to showing a higher protein adsorption on F substrates, the proteomics study revealed the existence of protein selectivity toward F or C microstructures, as well as the capability of CDHA, and more remarkably of F-CDHA, to concentrate specific proteins from the culture medium. Finally, a substantial improvement in the material's ability to support cell proliferation was observed after the CDHA maturation process.
Collapse
Affiliation(s)
- J Konka
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain
| | - M Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain
| | - B M Bosch
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Josep Trueta s/n, 08195, Barcelona, Spain
| | - E de Oliveira
- Plataforma de Proteòmica, Parc Científic de Barcelona, PCB, Barcelona, Spain
| | - M-P Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
7
|
Rostaher A, Bettenay S, Specht L, Silva KA, Bechtold L, Chen J, Majzoub M, Mueller RS, Sundberg JP. Hair follicle dystrophy in a litter of domestic cats resembling lanceolate hair mutant mice. Vet Dermatol 2021; 32:74-e14. [PMID: 33470013 DOI: 10.1111/vde.12925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND A new congenital hair-shaft abnormality resembling the lanceolate hair phenotype of rodents is described in a litter of four domestic short hair (DSH) cats. Data relating to hair shaft and follicle disorders remain scarce in veterinary medicine. OBJECTIVES To describe and compare structural abnormalities in these cats with other hair dystrophies in cats and other mammals. ANIMALS A DSH cat litter with progressive noninflammatory alopecia. METHODS AND MATERIALS Histopathological evaluation, scanning and transmission electron microscopy, and X-ray based element analysis defined the hair and skin changes in cats born with alopecia. Findings were compared to archival data from normal cats and lanceolate hair (Dsg4lahJ ) and Keratin 75 (Krt75tm1Der ) mutant mice. RESULTS Light and scanning electron microscopy of the hairs revealed lance- or spear-head shaped defects of the hair tip. Histological findings were swollen hair shafts, initially above the hair bulb matrix and later found in the distal parts of the telogen hair follicles, similar to those observed in Dsg4lahJ Krt75tm1Der mutant mice. Transmission electron microscopy of the hair shaft and hair follicles showed a loss in the normal structure of the guard hairs in the alopecic cats. There was a statistically significant decrease in sulfur content just below the defects in the hair shafts (trichothiodystrophy). CONCLUSION AND CLINICAL IMPORTANCE A rare form of congenital alopecia resulting in follicular dystrophy is described in cats which is similar to hair follicle and hair-shaft changes reported in several mutant mouse strains with single gene mutations in adhesion molecules or keratin genes.
Collapse
Affiliation(s)
- Ana Rostaher
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, Veterinärstrasse 13, München, 80539, Germany
- Dermatology Unit, Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Sonya Bettenay
- Tierdermatologie Deisenhofen, Schäftlarner Weg 1A, Oberhaching, 82041, Germany
| | - Lisa Specht
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, Veterinärstrasse 13, München, 80539, Germany
- Tierärztliche Klinik Nürnberg Hafen, Wertachstraße 1, Nürnberg, 90451, Germany
| | - Kathleen A Silva
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Lesley Bechtold
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Jiang Chen
- Department of Dermatology, Charles C. Gates Regenerative Medicine and Stem Cell Biology Program, University of Colorado at Denver and Health Sciences Center, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Monir Majzoub
- Institute for Veterinary Pathology, Ludwig-Maximilian University Munich, Veterinärstrasse 13, München, 80539, Germany
| | - Ralf S Mueller
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, Veterinärstrasse 13, München, 80539, Germany
| | - John P Sundberg
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| |
Collapse
|
8
|
Karim N, Phinney BS, Salemi M, Wu PW, Naeem M, Rice RH. Human stratum corneum proteomics reveals cross-linking of a broad spectrum of proteins in cornified envelopes. Exp Dermatol 2020; 28:618-622. [PMID: 30916809 DOI: 10.1111/exd.13925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
Defects in keratinocyte transglutaminase (TGM1), resulting in an improper protein scaffold for deposition of the lipid barrier, comprise a major source of autosomal recessive congenital ichthyosis. For that reason, the composition and formation of the cornified (cross-linked) protein envelope of the epidermis have been of considerable interest. Since the isopeptide cross-linked protein components are not individually isolable once incorporated, purified envelopes were analysed by mass spectrometry after trypsin digestion. Quantitative estimates of the identified components revealed some 170 proteins, each comprising at least 0.001% of the total, of which keratins were major constituents accounting for ≈74% of the total. Some prevalent non-keratin constituents such as keratinocyte proline-rich protein, loricrin and late envelope protein-7 were preferentially incorporated into envelopes. The results suggest a model where, as previously observed in hair shaft and nail plate, a diversity of cellular proteins are incorporated. They also help rationalize the minimal effect on epidermis of ablating genes for specific single envelope structural components. The quantitative profile of constituent proteins provides a foundation for future exploration of envelope perturbations that may occur in pathological conditions.
Collapse
Affiliation(s)
- Noreen Karim
- Department of Biotechnology, Medical Genetics Research Laboratory, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Environmental Toxicology, University of California, Davis, California
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, California
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, California
| | - Pei-Wen Wu
- Department of Environmental Toxicology, University of California, Davis, California.,Forensic Science Program, University of California, Davis, California
| | - Muhammad Naeem
- Department of Biotechnology, Medical Genetics Research Laboratory, Quaid-i-Azam University, Islamabad, Pakistan
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, California.,Forensic Science Program, University of California, Davis, California
| |
Collapse
|
9
|
Méchin MC, Takahara H, Simon M. Deimination and Peptidylarginine Deiminases in Skin Physiology and Diseases. Int J Mol Sci 2020; 21:ijms21020566. [PMID: 31952341 PMCID: PMC7014782 DOI: 10.3390/ijms21020566] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/06/2023] Open
Abstract
Deimination, also known as citrullination, corresponds to the conversion of the amino acid arginine, within a peptide sequence, into the non-standard amino acid citrulline. This post-translational modification is catalyzed by a family of calcium-dependent enzymes called peptidylarginine deiminases (PADs). Deimination is implicated in a growing number of physiological processes (innate and adaptive immunity, gene regulation, embryonic development, etc.) and concerns several human diseases (rheumatoid arthritis, neurodegenerative diseases, female infertility, cancer, etc.). Here, we update the involvement of PADs in both the homeostasis of skin and skin diseases. We particularly focus on keratinocyte differentiation and the epidermal barrier function, and on hair follicles. Indeed, alteration of PAD activity in the hair shaft is responsible for two hair disorders, the uncombable hair syndrome and a particular form of inflammatory scarring alopecia, mainly affecting women of African ancestry.
Collapse
Affiliation(s)
- Marie-Claire Méchin
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France;
| | - Hidenari Takahara
- University of Ibaraki, School of Agriculture, Ibaraki 300-0393, Japan;
| | - Michel Simon
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France;
- Correspondence: ; Tel.: +33-5-6115-8427
| |
Collapse
|
10
|
Comparison of protein expression levels and proteomically-inferred genotypes using human hair from different body sites. Forensic Sci Int Genet 2019; 41:19-23. [DOI: 10.1016/j.fsigen.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 03/10/2019] [Indexed: 11/18/2022]
|
11
|
Rice RH, Durbin-Johnson BP, Mann SM, Salemi M, Urayama S, Rocke DM, Phinney BS, Sundberg JP. Corneocyte proteomics: Applications to skin biology and dermatology. Exp Dermatol 2018; 27:931-938. [PMID: 30033667 PMCID: PMC6415749 DOI: 10.1111/exd.13756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Advances in mass spectrometry-based proteomics now permit analysis of complex cellular structures. Application to epidermis and its appendages (nail plate, hair shaft) has revealed a wealth of information about their protein profiles. The results confirm known site-specific differences in levels of certain keratins and add great depth to our knowledge of site specificity of scores of other proteins, thereby connecting anatomy and pathology. An example is the evident overlap in protein profiles of hair shaft and nail plate, helping rationalize their sharing of certain dystrophic syndromes distinct from epidermis. In addition, interindividual differences in protein level are manifest as would be expected. This approach permits characterization of altered profiles as a result of disease, where the magnitude of perturbation can be quantified and monitored during treatment. Proteomic analysis has also clarified the nature of the isopeptide cross-linked residual insoluble material after vigorous extraction with protein denaturants, nearly intractable to analysis without fragmentation. These structures, including the cross-linked envelope of epidermal corneocytes, are comprised of hundreds of protein constituents, evidence for strengthening the terminal structure complementary to disulphide bonding. Along with other developing technologies, proteomic analysis is anticipated to find use in disease risk stratification, detection, diagnosis and prognosis after the discovery phase and clinical validation.
Collapse
Affiliation(s)
- Robert H. Rice
- Department of Environmental Toxicology, University of California, Davis, CA
| | - Blythe P. Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, CA
| | - Selena M. Mann
- Forensic Science Program, University of California, Davis, CA
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, CA
| | - Shiro Urayama
- Division of Gastroenterology & Hepatology, University of California, Davis, CA
| | - David M. Rocke
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, CA
| | | | | |
Collapse
|
12
|
Davis RG, Park HM, Kim K, Greer JB, Fellers RT, LeDuc RD, Romanova EV, Rubakhin SS, Zombeck JA, Wu C, Yau PM, Gao P, van Nispen AJ, Patrie SM, Thomas PM, Sweedler JV, Rhodes JS, Kelleher NL. Top-Down Proteomics Enables Comparative Analysis of Brain Proteoforms Between Mouse Strains. Anal Chem 2018; 90:3802-3810. [PMID: 29481055 DOI: 10.1021/acs.analchem.7b04108] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decade, advances in mass spectrometry-based proteomics have accelerated brain proteome research aimed at studying the expression, dynamic modification, interaction and function of proteins in the nervous system that are associated with physiological and behavioral processes. With the latest hardware and software improvements in top-down mass spectrometry, the technology has expanded from mere protein profiling to high-throughput identification and quantification of intact proteoforms. Murine systems are broadly used as models to study human diseases. Neuroscientists specifically study the mouse brain from inbred strains to help understand how strain-specific genotype and phenotype affect development, functioning, and disease progression. This work describes the first application of label-free quantitative top-down proteomics to the analysis of the mouse brain proteome. Operating in discovery mode, we determined physiochemical differences in brain tissue from four healthy inbred strains, C57BL/6J, DBA/2J, FVB/NJ, and BALB/cByJ, after probing their intact proteome in the 3.5-30 kDa mass range. We also disseminate these findings using a new tool for top-down proteomics, TDViewer and cataloged them in a newly established Mouse Brain Proteoform Atlas. The analysis of brain tissues from the four strains identified 131 gene products leading to the full characterization of 343 of the 593 proteoforms identified. Within the results, singly and doubly phosphorylated ARPP-21 proteoforms, known to inhibit calmodulin, were differentially expressed across the four strains. Gene ontology (GO) analysis for detected differentially expressed proteoforms also helps to illuminate the similarities and dissimilarities in phenotypes among these inbred strains.
Collapse
Affiliation(s)
- Roderick G Davis
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Hae-Min Park
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Kyunggon Kim
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Joseph B Greer
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Ryan T Fellers
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Richard D LeDuc
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Elena V Romanova
- Department of Chemistry , University of Illinois, Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Stanislav S Rubakhin
- Department of Chemistry , University of Illinois, Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Jonathan A Zombeck
- Department of Psychology , University of Illinois, Urbana-Champaign , 405 North Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Cong Wu
- Department of Chemistry , University of Illinois, Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Peter M Yau
- Roy J. Carver Biotechnology Center, Protein Sciences Facility , University of Illinois, Urbana-Champaign , 505 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Peng Gao
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Alexandra J van Nispen
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Steven M Patrie
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Paul M Thomas
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Jonathan V Sweedler
- Department of Chemistry , University of Illinois, Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Justin S Rhodes
- Department of Psychology , University of Illinois, Urbana-Champaign , 405 North Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
13
|
Abstract
Alopecia areata is an autoimmune disorder characterized by transient, non-scarring hair loss and preservation of the hair follicle. Hair loss can take many forms ranging from loss in well-defined patches to diffuse or total hair loss, which can affect all hair-bearing sites. Patchy alopecia areata affecting the scalp is the most common type. Alopecia areata affects nearly 2% of the general population at some point during their lifetime. Skin biopsies of affected skin show a lymphocytic infiltrate in and around the bulb or the lower part of the hair follicle in the anagen (hair growth) phase. A breakdown of immune privilege of the hair follicle is thought to be an important driver of alopecia areata. Genetic studies in patients and mouse models have shown that alopecia areata is a complex, polygenic disease. Several genetic susceptibility loci were identified to be associated with signalling pathways that are important to hair follicle cycling and development. Alopecia areata is usually diagnosed based on clinical manifestations, but dermoscopy and histopathology can be helpful. Alopecia areata is difficult to manage medically, but recent advances in understanding the molecular mechanisms have revealed new treatments and the possibility of remission in the near future.
Collapse
Affiliation(s)
- C Herbert Pratt
- Department of Genetic Resource Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Lloyd E King
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Angela M Christiano
- Departments of Dermatology and Genetics &Development, Columbia University, New York, New York, USA
| | - John P Sundberg
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Research and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609-1500, USA
| |
Collapse
|
14
|
Rice RH, Durbin-Johnson BP, Ishitsuka Y, Salemi M, Phinney BS, Rocke DM, Roop DR. Proteomic Analysis of Loricrin Knockout Mouse Epidermis. J Proteome Res 2016; 15:2560-6. [PMID: 27418529 DOI: 10.1021/acs.jproteome.6b00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The crosslinked envelope of the mammalian epidermal corneocyte serves as a scaffold for assembly of the lipid barrier of the epidermis. Thus, deficient envelope crosslinking by keratinocyte transglutaminase (TGM1) is a major cause of the human autosomal recessive congenital ichthyoses characterized by barrier defects. Expectations that loss of some envelope protein components would also confer an ichthyosis phenotype have been difficult to demonstrate. To help rationalize this observation, the protein profile of epidermis from loricrin knockout mice has been compared to that of wild type. Despite the mild phenotype of the knockout, some 40 proteins were incorporated into envelope material to significantly different extents compared to those of wild type. Nearly half were also incorporated to similarly altered extents into the disulfide bonded keratin network of the corneocyte. The results suggest that loss of loricrin alters their incorporation into envelopes as a consequence of protein-protein interactions during cell maturation. Mass spectrometric protein profiling revealed that keratin 1, keratin 10, and loricrin are prominent envelope components and that dozens of other proteins are also components. This finding helps rationalize the potential formation of functional envelopes, despite loss of a single component, due to the availability of many alternative transglutaminase substrates.
Collapse
Affiliation(s)
| | | | - Yosuke Ishitsuka
- Department of Dermatology, Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | | | | | | | - Dennis R Roop
- Department of Dermatology, Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| |
Collapse
|
15
|
Sundberg JP, Silva KA, King LE, Pratt CH. Skin Diseases in Laboratory Mice: Approaches to Drug Target Identification and Efficacy Screening. Methods Mol Biol 2016; 1438:199-224. [PMID: 27150092 PMCID: PMC5301944 DOI: 10.1007/978-1-4939-3661-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
A large variety of mouse models for human skin, hair, and nail diseases are readily available from investigators and vendors worldwide. Mouse skin is a simple organ to observe lesions and their response to therapy, but identifying and monitoring the progress of treatments of mouse skin diseases can still be challenging. This chapter provides an overview on how to use the laboratory mouse as a preclinical tool to evaluate efficacy of new compounds or test potential new uses for compounds approved for use for treating an unrelated disease. Basic approaches to handling mice, applying compounds, and quantifying effects of the treatment are presented.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609-1500, USA.
| | - Kathleen A Silva
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609-1500, USA
| | - Lloyd E King
- Division of Dermatology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, USA
| | - C Herbert Pratt
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609-1500, USA
| |
Collapse
|
16
|
Grapov D, Lemay DG, Weber D, Phinney BS, Azulay Chertok IR, Gho DS, German JB, Smilowitz JT. The human colostrum whey proteome is altered in gestational diabetes mellitus. J Proteome Res 2014; 14:512-20. [PMID: 25338220 PMCID: PMC4286167 DOI: 10.1021/pr500818d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteomics of human milk has been used to identify the comprehensive cargo of proteins involved in immune and cellular function. Very little is known about the effects of gestational diabetes mellitus (GDM) on lactation and breast milk components. The objective of the current study was to examine the effect of GDM on the expression of proteins in the whey fraction of human colostrum. Colostrum was collected from women who were diagnosed with (n = 6) or without (n = 12) GDM at weeks 24-28 in pregnancy. Colostral whey was analyzed for protein abundances using high-resolution, high-mass accuracy liquid chromatography tandem mass spectrometry. A total of 601 proteins were identified, of which 260 were quantified using label free spectral counting. Orthogonal partial least-squares discriminant analysis identified 27 proteins that best predict GDM. The power law global error model corrected for multiple testing was used to confirm that 10 of the 27 proteins were also statistically significantly different between women with versus without GDM. The identified changes in protein expression suggest that diabetes mellitus during pregnancy has consequences on human colostral proteins involved in immunity and nutrition.
Collapse
Affiliation(s)
- Dmitry Grapov
- National Institute of Health West Coast Metabolomics Center, ‡Genome Center, §Genome Center Proteomics Core Facility, ⊥Department of Food Science and Technology, and ¶Foods for Health Institute, University of California Davis , Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Laatsch CN, Durbin-Johnson BP, Rocke DM, Mukwana S, Newland AB, Flagler MJ, Davis MG, Eigenheer RA, Phinney BS, Rice RH. Human hair shaft proteomic profiling: individual differences, site specificity and cuticle analysis. PeerJ 2014; 2:e506. [PMID: 25165623 PMCID: PMC4137660 DOI: 10.7717/peerj.506] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/18/2014] [Indexed: 12/22/2022] Open
Abstract
Hair from different individuals can be distinguished by physical properties. Although some data exist on other species, examination of the individual molecular differences within the human hair shaft has not been thoroughly investigated. Shotgun proteomic analysis revealed considerable variation in profile among samples from Caucasian, African–American, Kenyan and Korean subjects. Within these ethnic groups, prominent keratin proteins served to distinguish individual profiles. Differences between ethnic groups, less marked, relied to a large extent on levels of keratin associated proteins. In samples from Caucasian subjects, hair shafts from axillary, beard, pubic and scalp regions exhibited distinguishable profiles, with the last being most different from the others. Finally, the profile of isolated hair cuticle cells was distinguished from that of total hair shaft by levels of more than 20 proteins, the majority of which were prominent keratins. The cuticle also exhibited relatively high levels of epidermal transglutaminase (TGM3), accounting for its observed low degree of protein extraction by denaturants. In addition to providing insight into hair structure, present findings may lead to improvements in differentiating hair from various ethnic origins and offer an approach to extending use of hair in crime scene evidence for distinguishing among individuals.
Collapse
Affiliation(s)
- Chelsea N Laatsch
- Forensic Science Graduate Program and Department of Environmental Toxicology, University of California , Davis, CA , USA
| | - Blythe P Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California , Davis, CA , USA
| | - David M Rocke
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California , Davis, CA , USA
| | | | - Abby B Newland
- Procter & Gamble, Mason Business Center , Mason, OH , USA
| | | | | | | | - Brett S Phinney
- Proteomics Core Facility, University of California , Davis, CA , USA
| | - Robert H Rice
- Forensic Science Graduate Program and Department of Environmental Toxicology, University of California , Davis, CA , USA
| |
Collapse
|
18
|
Rice RH, Winters BR, Durbin-Johnson BP, Rocke DM. Chicken corneocyte cross-linked proteome. J Proteome Res 2013; 12:771-6. [PMID: 23256538 DOI: 10.1021/pr301036k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shotgun proteomic analysis was performed of epidermal scale, feather, beak and claw from the domestic chicken. To this end, the samples were separated first into solubilized and particulate fractions, the latter enriched in isopeptide cross-linking, by exhaustive extraction in sodium dodecyl sulfate under reducing conditions. Among the 205 proteins identified were 17 keratins (types α and β), 51 involved in protein synthesis, 8 junctional, 8 histone, 5 heat shock, and 5 14-3-3 proteins. Considerable overlap among the beak, claw, feather, and scale samples was observed in protein profiles, but those from beak and claw were the most similar. Scale and feather profiles were the most distinctive, each exhibiting specific proteins. Less than 20% of the proteins were found only in the detergent-solubilized fraction, while 34-57% were found only in the particulate fraction, depending on the source, and the rest in both fractions. The results provide the first comprehensive analysis of the content of these cornified structures, reveal the efficient use of available proteins in conferring mechanical and chemical stability to them, and emphasize the importance of isopeptide cross-linking in avian epithelial cornification.
Collapse
Affiliation(s)
- Robert H Rice
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
19
|
Rice RH, Bradshaw KM, Durbin-Johnson BP, Rocke DM, Eigenheer RA, Phinney BS, Sundberg JP. Differentiating inbred mouse strains from each other and those with single gene mutations using hair proteomics. PLoS One 2012; 7:e51956. [PMID: 23251662 PMCID: PMC3522583 DOI: 10.1371/journal.pone.0051956] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/07/2012] [Indexed: 01/29/2023] Open
Abstract
Mutant laboratory mice with distinctive hair phenotypes are useful for identifying genes responsible for hair diseases. The work presented here demonstrates that shotgun proteomic profiling can distinguish hair shafts from different inbred mouse strains. For this purpose, analyzing the total hair shaft provided better discrimination than analyzing the isolated solubilized and particulate (cross-linked) fractions. Over 100 proteins exhibited significant differences among the 11 strains and 5 mutant stocks across the wide spectrum of strains surveyed. Effects on the profile of single gene mutations causing hair shaft defects were profound. Since the hair shaft provides a discrete sampling of the species proteome, with constituents serving important functions in epidermal appendages and throughout the body, this work provides a foundation for non-invasive diagnosis of genetic diseases of hair and perhaps other tissues.
Collapse
Affiliation(s)
- Robert H Rice
- Department of Environmental Toxicology and Forensic Science Graduate Program, University of California Davis, Davis, California, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Leskinen PK, Laaksonen T, Ruuskanen S, Primmer CR, Leder EH. The proteomics of feather development in pied flycatchers (Ficedula hypoleuca) with different plumage coloration. Mol Ecol 2012; 21:5762-77. [DOI: 10.1111/mec.12073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 02/04/2023]
Affiliation(s)
| | - Toni Laaksonen
- Department of Biology; University of Turku; Turku; 20014; Finland
| | - Suvi Ruuskanen
- Department of Biology; University of Turku; Turku; 20014; Finland
| | - Craig R. Primmer
- Department of Biology; University of Turku; Turku; 20014; Finland
| | - Erica H. Leder
- Department of Biology; University of Turku; Turku; 20014; Finland
| |
Collapse
|
21
|
Localization of hair shaft protein VSIG8 in the hair follicle, nail unit, and oral cavity. J Invest Dermatol 2011; 131:1936-8. [PMID: 21614015 PMCID: PMC3156960 DOI: 10.1038/jid.2011.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Rice RH. Proteomic analysis of hair shaft and nail plate. JOURNAL OF COSMETIC SCIENCE 2011; 62:229-236. [PMID: 21635850 PMCID: PMC3227502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The protein components of living cells in the hair follicle are amenable to study by standard molecular biological techniques, but identifying those in the hair shaft has been problematic until recently. Most of the protein, primarily keratins and keratin associated proteins, can be extracted under denaturing conditions, but 15-20% is intractable due to transglutaminase-mediated cross-linking. Shotgun proteomics now permits identifying >300 constituents of the isopeptide cross-linked proteome and even certain post-translational modifications. The proteins originate from all the intracellular compartments, indicating that the cross-linking process makes effective use of available resources to produce structures with great mechanical stability. Knowing this proteome provides a foundation for correlating defects in hair shaft structure with protein deficiencies. Such investigations can be extended to mouse models of aberrant pelage hair. Thus, inbred mouse strains can be distinguished by their hair proteomes, raising the possibility of similar variation in the human population. The nail plate is also amenable to this shotgun proteomic approach. Providing discrete and noninvasive sampling of the human proteome, these epidermal appendages could have diagnostic utility for certain disease states.
Collapse
Affiliation(s)
- Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588, USA
| |
Collapse
|
23
|
Rice RH, Xia Y, Alvarado RJ, Phinney BS. Proteomic analysis of human nail plate. J Proteome Res 2010; 9:6752-8. [PMID: 20939611 DOI: 10.1021/pr1009349] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Shotgun proteomic analysis of the human nail plate identified 144 proteins in samples from Causcasian volunteers. The 30 identified proteins solubilized by detergent and reducing agent, 90% of the total nail plate mass, were primarily keratins and keratin associated proteins. Keratins comprised a majority of the detergent-insoluble fraction as well, but numerous cytoplasmic, membrane, and junctional proteins and histones were also identified, indicating broad use by transglutaminases of available proteins as substrates for cross-linking. Two novel membrane proteins were identified, also found in the hair shaft, for which mRNAs were detected only at very low levels by real-time polymerase chain reaction in other tissues. Parallel analyses of nail samples from volunteers from Inner Mongolia, China gave essentially the same protein profiles. Comparison of the profiles of nail plate and hair shaft from the latter volunteers revealed extensive overlap of protein constituents. Analyses of samples from an arsenic-exposed population revealed few proteins whose levels were altered substantially but raised the possibility of detecting sensitive individuals in this way.
Collapse
Affiliation(s)
- Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, California 95616, United States.
| | | | | | | |
Collapse
|
24
|
Mutations in sterol O-acyltransferase 1 (Soat1) result in hair interior defects in AKR/J mice. J Invest Dermatol 2010; 130:2666-8. [PMID: 20574437 DOI: 10.1038/jid.2010.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Sundberg JP, Silva KA, McPhee C, King LE. Skin diseases in laboratory mice: approaches to drug target identification and efficacy screening. Methods Mol Biol 2010; 602:193-213. [PMID: 20012400 DOI: 10.1007/978-1-60761-058-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A large variety of mouse models for human skin and adnexa diseases are readily available from investigators and vendors worldwide. While the skin is an obvious organ to observe lesions and their response to therapy, actually treating and monitoring progress in mice can be challenging. This chapter provides an overview on how to use the laboratory mouse as a preclinical tool to evaluate efficacy of a new compound or test potential new uses for a compound approved for use for treating an unrelated disease. Basic approaches to handling mice, applying compounds, and quantifying effects of the treatment are presented.
Collapse
|