1
|
Mascharak S, Griffin M, Talbott HE, Guo JL, Parker J, Morgan AG, Valencia C, Kuhnert MM, Li DJ, Liang NE, Kratofil RM, Daccache JA, Sidhu I, Davitt MF, Guardino N, Lu JM, Abbas DB, Deleon NMD, Lavin CV, Adem S, Khan A, Chen K, Henn D, Spielman A, Cotterell A, Akras D, Downer M, Tevlin R, Lorenz HP, Gurtner GC, Januszyk M, Naik S, Wan DC, Longaker MT. Inhibiting mechanotransduction prevents scarring and yields regeneration in a large animal model. Sci Transl Med 2025; 17:eadt6387. [PMID: 39970235 DOI: 10.1126/scitranslmed.adt6387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Modulating mechanotransduction by inhibiting yes-associated protein (YAP) in mice yields wound regeneration without scarring. However, rodents are loose-skinned and fail to recapitulate key aspects of human wound repair. We sought to elucidate the effects of YAP inhibition in red Duroc pig wounds, the most human-like model of scarring. We show that one-time treatment with verteporfin, a YAP inhibitor, immediately after wounding is sufficient to prevent scarring and to drive wound regeneration in pigs. By performing single-cell RNA sequencing (scRNA-seq) on porcine wounds in conjunction with spatial proteomic analysis, we found perturbations in fibroblast dynamics with verteporfin treatment and the presence of putative pro-regenerative/profibrotic fibroblasts enriched in regenerating/scarring pig wounds, respectively. We also identified differences in enriched myeloid cell subpopulations after treatment and linked this observation to increased elaboration of interleukin-33 (IL-33) in regenerating wounds. Finally, we validated our findings in a xenograft wound model containing human neonatal foreskin engrafted onto nude mice and used scRNA-seq of human wound cells to draw parallels with fibroblast subpopulation dynamics in porcine wounds. Collectively, our findings provide support for the clinical translation of local mechanotransduction inhibitors to prevent human skin scarring, and they clarify a YAP/IL-33 signaling axis in large animal wound regeneration.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E Talbott
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason L Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annah Grace Morgan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maxwell Michael Kuhnert
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dayan J Li
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Norah E Liang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel M Kratofil
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph A Daccache
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA
| | - Michael F Davitt
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Guardino
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M Lu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darren B Abbas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nestor M D Deleon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher V Lavin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandeep Adem
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anum Khan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Spielman
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Asha Cotterell
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deena Akras
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth Tevlin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H Peter Lorenz
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Abhale K, Veeranjaneyulu A, Desai S. A Snapshot of Biomarkers in Psoriasis. Curr Drug Discov Technol 2025; 22:e180324228068. [PMID: 38500289 DOI: 10.2174/0115701638278470240312075112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
A persistent long-standing, inflammatory skin condition that is brought on by a variety of factors is psoriasis. It is distinguished by itchy, scaly, reddish plaques, particularly on areas of the body that are frequently chafed, including the extensor sites of the limbs. Recent developments in molecular-targeted therapy that use biologics or small-molecule inhibitors can effectively cure even the worst psoriatic indications. The outstanding clinical outcomes of treatment help to clarify the disease's detrimental consequences on quality of life. Biomarkers that identify deep remission are essential for developing uniform treatment plans. Blood protein markers such as AMPs that are consistently quantifiable can be very helpful in routine clinical practice. The metabolic pathways involve biomarkers that can not only help diagnose psoriasis in a clinical setting but also indicate its severity based on the levels present in the body. Machine learning and AI have made a diagnosis of the expression of genes as biomarkers more accessible. In this article, biomarkers, as well as their key role in psoriasis, are discussed.
Collapse
Affiliation(s)
- Krushna Abhale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | | | - Shivani Desai
- Clinical Research and Pharmacovigilance, Serum Institute of India Pvt. Ltd., Hadapsar, Pune, India
| |
Collapse
|
3
|
Wang X, Jia Y, He H. The Role of Linoleic Acid in Skin and Hair Health: A Review. Int J Mol Sci 2024; 26:246. [PMID: 39796110 PMCID: PMC11719646 DOI: 10.3390/ijms26010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Lipids are intimately associated with skin condition. This review aims to discuss the function of linoleic acid (LA, 18:2, ω-6), an essential fatty acid, in skin health and hair growth. In skin, LA can be metabolized into ω-6 unsaturated fatty acid, oxidized derivatives and incorporated into complex lipid molecules, including ω-hydroxy-ceramides. Previous research has revealed that skin diseases including acne, atopic dermatitis and psoriasis are associated with disordered LA metabolism. Studies based on animal or skin cell models suggest that LA or LA-rich vegetable oils, topically applied, exhibit diverse biological activities, including the repair of the skin barrier, the promotion of wound healing, skin whitening, photoprotection, anti-inflammatory effects and the stimulation of hair growth. Moreover, the underlying mechanisms of LA's beneficial effects on skin are summarized. Further research on the correlation of LA metabolism and skin disorders, a deeper exploration of the mechanisms underlying the function of LA in skin management and more investigations of its clinical application are required to enhance the understanding and utilization of LA in cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Xi Wang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (Y.J.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (Y.J.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| | - Huaming He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (Y.J.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Liang Y, Wang Y, Peng A, Li J, Zhang K. Molecular mechanisms and drug therapy of metabolism disorders in psoriasis. J DERMATOL TREAT 2024; 35:2375580. [PMID: 39013549 DOI: 10.1080/09546634.2024.2375580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
Psoriasis is a prevalent skin disease affecting approximately 1%-3% of the population and imposes significant medical, social and economic burdens. Psoriasis involves multiple organs and is often complicated with obesity, diabetes, dyslipidemia, and hypertension. Because of the benefits of lipid-lowering agents and antidiabetic medications for psoriasis, metabolic abnormalities possibly play a pathogenic role in psoriasis. This review focuses on the impacts of a variety of metabolic disorders on psoriasis and the underlying mechanisms. In psoriasis, enhanced glycolysis, glutamine metabolism and altered fatty acid composition in the psoriatic lesion and plasma result in the excessive proliferation of keratinocytes and secretion of inflammatory cytokines. Altered metabolism is associated with the activation of MTORC signaling pathway and transcription factors such as HIF and S6K1. Therefore, MTORC1 can be a target for the treatment of psoriasis. Additionally, there are diabetes drugs and lipid-lowering drugs including TZDs, GLP-1 RAs, Metformin, statins and fibrates, which improve both metabolic levels and psoriasis symptoms.
Collapse
Affiliation(s)
- Yanyang Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Aihong Peng
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Pagac MP, Gempeler M, Campiche R. A New Generation of Postbiotics for Skin and Scalp: In Situ Production of Lipid Metabolites by Malassezia. Microorganisms 2024; 12:1711. [PMID: 39203553 PMCID: PMC11357556 DOI: 10.3390/microorganisms12081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Effects of pre- and probiotics on intestinal health are well researched and microbiome-targeting solutions are commercially available. Even though a trend to appreciate the presence of certain microbes on the skin is seeing an increase in momentum, our understanding is limited as to whether the utilization of skin-resident microbes for beneficial effects holds the same potential as the targeted manipulation of the gut microflora. Here, we present a selection of molecular mechanisms of cross-communication between human skin and the skin microbial community and the impact of these interactions on the host's cutaneous health with implications for the development of skin cosmetic and therapeutic solutions. Malassezia yeasts, as the main fungal representatives of the skin microfloral community, interact with the human host skin via lipid mediators, of which several are characterized by exhibiting potent anti-inflammatory activities. This review therefore puts a spotlight on Malassezia and provides a comprehensive overview of the current state of knowledge about these fungal-derived lipid mediators and their capability to reduce aesthetical and sensory burdens, such as redness and itching, commonly associated with inflammatory skin conditions. Finally, several examples of current skin microbiome-based interventions for cosmetic solutions are discussed, and models are presented for the use of skin-resident microbes as endogenous bio-manufacturing platforms for the in situ supplementation of the skin with beneficial metabolites.
Collapse
Affiliation(s)
- Martin Patrick Pagac
- DSM-Firmenich, Perfumery & Beauty, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland; (M.G.); (R.C.)
| | | | | |
Collapse
|
6
|
Monedeiro F, Ehall B, Tiffner K, Eberl A, Svehlikova E, Prietl B, Pfeifer V, Senekowitsch J, Remm A, Rebane A, Magnes C, Pieber T, Sinner F, Birngruber T. Characterization of Inflammatory Mediators and Metabolome in Interstitial Fluid Collected with Dermal Open Flow Microperfusion before and at the End of Dupilumab Treatment in Atopic Dermatitis. J Proteome Res 2024; 23:3496-3514. [PMID: 38986055 PMCID: PMC11304394 DOI: 10.1021/acs.jproteome.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Dupilumab is a monoclonal antibody approved for the treatment of atopic dermatitis (AD); however, its effects on molecular, cellular, and immunological levels remain to be elucidated. In this study, blood and dermal interstitial fluid (ISF) from nonlesional (NL) and lesional (L) skin were collected from eight patients with moderate to severe AD, before (visit 2-v2) and at the end of a 16-week treatment with dupilumab (visit 10-v10). Clinical treatment effect was demonstrated by significantly decreased AD severity scores at the end of treatment. At v10 versus v2, the percentages of CD4+ interleukin-producing cells showed a decreasing trend in ISF L and NL, unbound IL-4 levels in plasma were increased, IL-5 levels in ISF L reduced, and levels of factors involved in anti-inflammatory pathways and re-epithelization increased. At v2, ISF L showed that AD lesions might have altered amino acid pathways and lipid signaling compared to ISF NL. At v10, ISF L exhibited raised levels of long- and very-long-chain fatty acids and lipids compared to v2. Furthermore, dupilumab administration caused reduced expression of miR-155-5p and miR-378a-3p in ISF L. In conclusion, results from the present study provided novel knowledge by linking local immune and metabolic alterations to AD pathogenesis and treatment response.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Barbara Ehall
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- BioTechMed, Mozartgasse
12, Graz 8010, Austria
| | - Katrin Tiffner
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Anita Eberl
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Eva Svehlikova
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Barbara Prietl
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- Center
for Biomarker Research in Medicine (CBmed) GmbH, Stiftingtalstrasse 5, Graz 8010, Austria
| | - Verena Pfeifer
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- Center
for Biomarker Research in Medicine (CBmed) GmbH, Stiftingtalstrasse 5, Graz 8010, Austria
| | - Julia Senekowitsch
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Anu Remm
- Institute
of Biomedicine and Translational Medicine, University of Tartu, Biomeedikum, Ravila 19, Tartu 50411, Estonia
| | - Ana Rebane
- Institute
of Biomedicine and Translational Medicine, University of Tartu, Biomeedikum, Ravila 19, Tartu 50411, Estonia
| | - Christoph Magnes
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Thomas Pieber
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- Center
for Biomarker Research in Medicine (CBmed) GmbH, Stiftingtalstrasse 5, Graz 8010, Austria
| | - Frank Sinner
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Thomas Birngruber
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| |
Collapse
|
7
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
8
|
Ma Z, An P, Hao S, Huang Z, Yin A, Li Y, Tian J. Single-cell sequencing analysis and multiple machine-learning models revealed the cellular crosstalk of dendritic cells and identified FABP5 and KLRB1 as novel biomarkers for psoriasis. Front Immunol 2024; 15:1374763. [PMID: 38596682 PMCID: PMC11002082 DOI: 10.3389/fimmu.2024.1374763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background Psoriasis is an immune-mediated disorder influenced by environmental factors on a genetic basis. Despite advancements, challenges persist, including the diminishing efficacy of biologics and small-molecule targeted agents, alongside managing recurrence and psoriasis-related comorbidities. Unraveling the underlying pathogenesis and identifying valuable biomarkers remain pivotal for diagnosing and treating psoriasis. Methods We employed a series of bioinformatics (including single-cell sequencing data analysis and machine learning techniques) and statistical methods to integrate and analyze multi-level data. We observed the cellular changes in psoriatic skin tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed drugs on psoriasis treatment in modulating the dendritic cell-associated pathway, and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and immunofluorescence assays were used to validate. Results The regulatory influence of dendritic cells (DCs) on T cells through the CD70/CD27 signaling pathway may emerge as a significant facet of the inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT cells, serving as potential biomarkers influencing psoriasis development. Conclusion Our study analyzed the impact of DC-T cell crosstalk in psoriasis, elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis, and highlighted the promise and value of tofacitinib in psoriasis therapy targeting DCs.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, China
| | - Siyu Hao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Anqi Yin
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| |
Collapse
|
9
|
Al Ashmar S, Anwardeen NR, Anlar GG, Pedersen S, Elrayess MA, Zeidan A. Metabolomic profiling reveals key metabolites associated with hypertension progression. Front Cardiovasc Med 2024; 11:1284114. [PMID: 38390445 PMCID: PMC10881871 DOI: 10.3389/fcvm.2024.1284114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Pre-hypertension is a prevalent condition among the adult population worldwide. It is characterized by asymptomatic elevations in blood pressure beyond normal levels but not yet reaching the threshold for hypertension. If left uncontrolled, pre-hypertension can progress to hypertension, thereby increasing the risk of serious complications such as heart disease, stroke, kidney damage, and others. Objective The precise mechanisms driving the progression of hypertension remain unknown. Thus, identifying the metabolic changes associated with this condition can provide valuable insights into potential markers or pathways implicated in the development of hypertension. Methods In this study, we utilized untargeted metabolomics profiling, which examines over 1,000 metabolites to identify novel metabolites contributing to the progression from pre-hypertension to hypertension. Data were collected from 323 participants through Qatar Biobank. Results By comparing metabolic profiles between pre-hypertensive, hypertensive and normotensive individuals, six metabolites including stearidonate, hexadecadienoate, N6-carbamoylthreonyladenosine, 9 and 13-S-hydroxyoctadecadienoic acid (HODE), 2,3-dihydroxy-5-methylthio- 4-pentenoate (DMTPA), and linolenate were found to be associated with increased risk of hypertension, in both discovery and validation cohorts. Moreover, these metabolites showed a significant diagnostic performance with area under curve >0.7. Conclusion These findings suggest possible biomarkers that can predict the risk of progression from pre-hypertension to hypertension. This will aid in early detection, diagnosis, and management of this disease as well as its associated complications.
Collapse
Affiliation(s)
- Sarah Al Ashmar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Gulsen Guliz Anlar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shona Pedersen
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed A Elrayess
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Naeem Z, Zukunft S, Huard A, Hu J, Hammock BD, Weigert A, Frömel T, Fleming I. Role of the soluble epoxide hydrolase in keratinocyte proliferation and sensitivity of skin to inflammatory stimuli. Biomed Pharmacother 2024; 171:116127. [PMID: 38198951 PMCID: PMC10857809 DOI: 10.1016/j.biopha.2024.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The lipid content of skin plays a determinant role in its barrier function with a particularly important role attributed to linoleic acid and its derivatives. Here we explored the consequences of interfering with the soluble epoxide hydrolase (sEH) on skin homeostasis. sEH; which converts fatty acid epoxides generated by cytochrome P450 enzymes to their corresponding diols, was largely restricted to the epidermis which was enriched in sEH-generated diols. Global deletion of the sEH increased levels of epoxides, including the linoleic acid-derived epoxide; 12,13-epoxyoctadecenoic acid (12,13-EpOME), and increased basal keratinocyte proliferation. sEH deletion (sEH-/- mice) resulted in thicker differentiated spinous and corneocyte layers compared to wild-type mice, a hyperkeratosis phenotype that was reproduced in wild-type mice treated with a sEH inhibitor. sEH deletion made the skin sensitive to inflammation and sEH-/- mice developed thicker imiquimod-induced psoriasis plaques than the control group and were more prone to inflammation triggered by mechanical stress with pronounced infiltration and activation of neutrophils as well as vascular leak and increased 12,13-EpOME and leukotriene (LT) B4 levels. Topical treatment of LTB4 antagonist after stripping successfully inhibited inflammation and neutrophil infiltration both in wild type and sEH-/- skin. While 12,13-EpoME had no effect on the trans-endothelial migration of neutrophils, like LTB4, it effectively induced neutrophil adhesion and activation. These observations indicate that while the increased accumulation of neutrophils in sEH-deficient skin could be attributed to the increase in LTB4 levels, both 12,13-EpOME and LTB4 contribute to neutrophil activation. Our observations identify a protective role of the sEH in the skin and should be taken into account when designing future clinical trials with sEH inhibitors.
Collapse
Affiliation(s)
- Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Arnaud Huard
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main 60590, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; Department of Embryology and Histology, School of Basic Medicine, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main 60590, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany; CardioPulmonary Institute, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Hao J, Yu J, Yorek MS, Yu CL, Pope RM, Chimenti MS, Xiong Y, Klingelhutz A, Jabbari A, Li B. Keratinocyte FABP5-VCP complex mediates recruitment of neutrophils in psoriasis. Cell Rep 2023; 42:113449. [PMID: 37967009 PMCID: PMC10729729 DOI: 10.1016/j.celrep.2023.113449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/03/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
One of the hallmarks of intractable psoriasis is neutrophil infiltration in skin lesions. However, detailed molecular mechanisms of neutrophil chemotaxis and activation remain unclear. Here, we demonstrate a significant upregulation of epidermal fatty acid binding protein (E-FABP, FABP5) in the skin of human psoriasis and psoriatic mouse models. Genetic deletion of FABP5 in mice by global knockout and keratinocyte conditional (Krt6a-Cre) knockout, but not myeloid cell conditional (LysM-Cre) knockout, attenuates psoriatic symptoms. Immunophenotypic analysis shows that FABP5 deficiency specifically reduces skin recruitment of Ly6G+ neutrophils. Mechanistically, activated keratinocytes produce chemokines and cytokines that trigger neutrophil chemotaxis and activation in an FABP5-dependent manner. Proteomic analysis further identifies that FABP5 interacts with valosin-containing protein (VCP), a key player in NF-κB signaling activation. Silencing of FABP5, VCP, or both inhibits NF-κB/neutrophil chemotaxis signaling. Collectively, these data demonstrate dysregulated FABP5 as a molecular mechanism promoting NF-κB signaling and neutrophil infiltration in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Jiaqing Hao
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Jianyu Yu
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Matthew S Yorek
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Chi-Li Yu
- Proteomics Facility, University of Iowa, Iowa City, IA, USA
| | | | - Michael S Chimenti
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Yiqin Xiong
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Aloysius Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, Iowa City, IA, USA; Iowa City VA Medical Center, Iowa City, IA, USA
| | - Bing Li
- Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Li X, Zhang Y, Ding X, Jin Y, Wei C, Xu J. Mass Spectrometry Chromatography-Based Metabolomics: The Effect of Long-Term Aerobic Exercise on Learning Ability and the Metabolism of Intestinal Contents in Mice with Alzheimer's Disease. Metabolites 2023; 13:1150. [PMID: 37999246 PMCID: PMC10673277 DOI: 10.3390/metabo13111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to investigate the effect of long-term aerobic exercise on the metabolism of intestinal contents in APP/PS1 mice was studied using a non-targeted metabolomics technique based on high-performance liquid chromatography-mass spectrometry (HPLC-MS) coupling, providing a theoretical basis for exercise to regulate the metabolism of Alzheimer's disease (AD) organisms. Three-month-old male C57BL/6JNju mice, six wild-type (NC, n = 6); 12 APP/PS1 double transgenic species in total, were randomly divided into AD model (AM, n = 6) and AD model exercise (AE, n = 6) groups. The mice in the NC group were fed naturally, the mice in the AM group were statically placed on a running platform, and the mice in the AE group received a 20-week long-term moderate intensity running platform exercise intervention. Following the exercise intervention, the cecum contents of the mice in each group were collected and analyzed using the HPLC-MS technique, with those meeting both variable important in projection (VIP)> 1.5 and p < 0.05 being screened as differential metabolites. A total of 32 different metabolites were detected between the AM and NC groups, with 19 up-regulated in the AM group such as phosphatidic acid (PA) (18:4(6Z,9Z,12Z,15Z)/21:0) and 13 down-regulated in the AM group, such as 4,8-dimethylnonanoyl, compared to the NC group; 98 different metabolites were found between the AM and AE groups, 41 of which were upregulated such as Lyso phosphatidylcholine (LysoPC) and 57 of which were downregulated compared to the AM group such as Phosphatidylinositol (PI). The regulation of linoleic acid metabolism, glycerophospholipid metabolism, bile secretion, phenylalanine metabolism, and other pathways was predominantly regulated by nine metabolites, which were subsequently identified as indicators of exercise intervention to enhance metabolism in AD mice. The metabolomic technique can identify the metabolic problems of intestinal contents in AD mice and initially screen the biomarkers of exercise to improve the metabolic disorders in AD. These findings can help us better understand the impact of aerobic exercise on AD metabolism.
Collapse
Affiliation(s)
- Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.Z.); (X.D.); (Y.J.); (C.W.); (J.X.)
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Fatty acid-binding proteins (FABPs) are small lipid-binding proteins abundantly expressed in tissues that are highly active in fatty acid (FA) metabolism. Ten mammalian FABPs have been identified, with tissue-specific expression patterns and highly conserved tertiary structures. FABPs were initially studied as intracellular FA transport proteins. Further investigation has demonstrated their participation in lipid metabolism, both directly and via regulation of gene expression, and in signaling within their cells of expression. There is also evidence that they may be secreted and have functional impact via the circulation. It has also been shown that the FABP ligand binding repertoire extends beyond long-chain FAs and that their functional properties also involve participation in systemic metabolism. This article reviews the present understanding of FABP functions and their apparent roles in disease, particularly metabolic and inflammation-related disorders and cancers.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States;
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de La Plata, CONICET-UNLP, Facultad de Ciencias Médicas, La Plata, Argentina;
| |
Collapse
|
14
|
Hao C, Lin S, Liu P, Liang W, Li Z, Li Y. Potential serum metabolites and long-chain noncoding RNA biomarkers for endometrial cancer tissue. J Obstet Gynaecol Res 2023; 49:725-743. [PMID: 36510632 DOI: 10.1111/jog.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endometrial carcinoma (EC) is one of the most common tumors in the female reproductive system. There are nearly 200 000 new cases every year. It is the third most common gynecological malignant tumor leading to female death. The incidence rate is closely related to lifestyle, and the incidence rate varies in different regions. The incidence rate of EC is ranking the first in the female reproductive system cancer just second only to breast, lung, and colorectal cancer in North America and Europe and the incidence rate of EC is only second, followed by breast cancer and cervical cancer in China. PURPOSE The potential metabolic markers of endometrial cancer were screened by liquid chromatograph mass spectrometer (LC-MS), and the tissues of patients with hysteromyoma and endometrial cancer were sequenced to explore the relationship between the disease and change in the content of long-chain noncoding RNA (lncRNA). METHODS Serum and tissue samples were collected from patients with endometrial dysplasia, endometrial cancer stage I, and endometrial cancer stage III. The metabolites in all serum samples were extracted, and the metabolites in all samples were detected by LC-MS/MS technology. The Pareto-scaling method was used for normalization, and the MetaboAnalyst 4.0 software was used for different analyses. The T test between groups showed that p ≤ 0.05 was regarded as the metabolite with a difference. Further, the function of differential metabolites was determined by metabolite function enrichment and co-expression analysis. Meanwhile, the differentially expressed lncRNA was detected by Illumina second-generation high-throughput sequencing technology, and the expression was analyzed by DEGseq software. Different lncRNA were screened according to p < 0.05. LncRNA with significant differences were screened by p < 0.01, q < 0.001, fold change ≥2, and false discovery rate (FDR) ≤0.001. RESULTS Through synthesis of T test, cluster heatmap, and ROC curve analysis, five biomarkers with potential diagnostic ability were obtained, including 2,3-Pyridinedicarboxylic acid (area under the curve (AUC) = 0.69), Hematommic acid, ethyl ester (AUC = 0.69), Maltitol (AUC = 0.69), 13(S)-HODE (AUC = 0.88), and D-Mannitol (AUC = 0.69) had potential diagnostic ability between EC phase I versus EC phase III. At the same time, lncRNA sequencing results showed that when endometrial atypical hyperplasia continued to change, including LINC00511, PVT1, and IQCH-AS1 (downregulated), and only changed significantly in the endometrial dysplasia group, including MALAT1, CARMN (downregulated) and LINC00648, BISPR, LINC01534, and LINC00930 (upregulated). Moreover, both differential metabolites and differential lncRNA were annotated to the lipid metabolism pathway, suggesting that this pathway played an important role in the occurrence and development of endometrial carcinoma. CONCLUSIONS It can combine the results of metabolomics and lncRNA sequencing to assist in the early diagnosis of endometrial precancerous lesions and endometrial cancer patients, to enhance the sensitivity and specificity of diagnosis, which has a certain clinical application prospect.
Collapse
Affiliation(s)
- Chenjun Hao
- Gynaecology and Obstetrics Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| | - Shaodan Lin
- Gynaecology and Obstetrics Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ping Liu
- Gynaecology and Obstetrics Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| | - Weiguo Liang
- Gynaecology and Obstetrics Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| | - Zhi Li
- Gynaecology and Obstetrics Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| | - Yanqiu Li
- Gynaecology and Obstetrics Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| |
Collapse
|
15
|
Jayarajan V, Hall GT, Xenakis T, Bulstrode N, Moulding D, Castellano S, Di WL. Short-Term Treatment with Rho-Associated Kinase Inhibitor Preserves Keratinocyte Stem Cell Characteristics In Vitro. Cells 2023; 12:cells12030346. [PMID: 36766688 PMCID: PMC9913223 DOI: 10.3390/cells12030346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Primary keratinocytes including keratinocyte stem cells (KSCs) can be cultured as epidermal sheets in vitro and are attractive for cell and gene therapies for genetic skin disorders. However, the initial slow growth of freshly isolated keratinocytes hinders clinical applications. Rho-associated kinase inhibitor (ROCKi) has been used to overcome this obstacle, but its influence on the characteristics of KSC and its safety for clinical application remains unknown. In this study, primary keratinocytes were treated with ROCKi Y-27632 for six days (short-term). Significant increases in colony formation and cell proliferation during the six-day ROCKi treatment were observed and confirmed by related protein markers and single-cell transcriptomic analysis. In addition, short-term ROCKi-treated cells maintained their differentiation ability as examined by 3D-organotypic culture. However, these changes could be reversed and became indistinguishable between treated and untreated cells once ROCKi treatment was withdrawn. Further, the short-term ROCKi treatment did not reduce the number of KSCs. In addition, AKT and ERK pathways were rapidly activated upon ROCKi treatment. In conclusion, short-term ROCKi treatment can transiently and reversibly accelerate initial primary keratinocyte expansion while preserving the holoclone-forming cell population (KSCs), providing a safe avenue for clinical applications.
Collapse
Affiliation(s)
- Vignesh Jayarajan
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - George T. Hall
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
| | - Theodoros Xenakis
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
| | - Neil Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital for Children, Great Ormond Street, London WC1N 3JH, UK
| | - Dale Moulding
- Light Microscopy Core Facility, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Sergi Castellano
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
- UCL Genomics, Zayed Centre for Research into Rare Disease in Children, 20 Guilford Street, London WC1N 1DZ, UK
| | - Wei-Li Di
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: ; Tel.: +44-(0)207905-2369; Fax: +44-(0)207905-2882
| |
Collapse
|
16
|
Swindell WR, Bojanowski K, Singh P, Randhawa M, Chaudhuri RK. Bakuchiol and ethyl (linoleate/oleate) synergistically modulate endocannabinoid tone in keratinocytes and repress inflammatory pathway mRNAs. JID INNOVATIONS 2022; 3:100178. [PMID: 36992949 PMCID: PMC10041561 DOI: 10.1016/j.xjidi.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid (eCB) system plays an active role in epidermal homeostasis. Phytocannabinoids such as cannabidiol modulate this system but also act through eCB-independent mechanisms. This study evaluated the effects of cannabidiol, bakuchiol (BAK), and ethyl (linoleate/oleate) (ELN) in keratinocytes and reconstituted human epidermis. Molecular docking simulations showed that each compound binds the active site of the eCB carrier FABP5. However, BAK and ethyl linoleate bound this site with the highest affinity when combined 1:1 (w/w), and in vitro assays showed that BAK + ELN most effectively inhibited FABP5 and fatty acid amide hydrolase. In TNF-stimulated keratinocytes, BAK + ELN reversed TNF-induced expression shifts and uniquely downregulated type I IFN genes and PTGS2 (COX2). BAK + ELN also repressed expression of genes linked to keratinocyte differentiation but upregulated those associated with proliferation. Finally, BAK + ELN inhibited cortisol secretion in reconstituted human epidermis skin (not observed with cannabidiol). These results support a model in which BAK and ELN synergistically interact to inhibit eCB degradation, favoring eCB mobilization and inhibition of downstream inflammatory mediators (e.g., TNF, COX-2, type I IFN). A topical combination of these ingredients may thus enhance cutaneous eCB tone or potentiate other modulators, suggesting novel ways to modulate the eCB system for innovative skincare product development.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Correspondence: William R. Swindell, Department of Internal Medicine, UT Southwestern Medical Center, 5959 Harry Hines Boulevard, Ste 7.700, Dallas, Texas 75390-9175, USA.
| | | | - Parvesh Singh
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville, South Africa
| | | | | |
Collapse
|
17
|
Matwiejuk M, Mysliwiec H, Chabowski A, Flisiak I. The Role of Sphingolipids in the Pathogenesis of Psoriasis. Metabolites 2022; 12:1171. [PMID: 36557209 PMCID: PMC9785224 DOI: 10.3390/metabo12121171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Psoriasis is a complex, chronic, immunologically mediated disease which involves skin and joints. Psoriasis is commonly connected with numerous other diseases such as liver diseases, metabolic syndrome, impaired glucose tolerance, diabetes mellitus, atherosclerosis, hypertension, and ischemic heart disease. Interestingly, comorbidities of psoriasis are an attention-grabbing issue. Additionally, it can cause impairment of quality of life and may be associated with depressive disorders. Altered levels of ceramides in psoriatic skin may lead to anti-apoptotic and pro-proliferative states, consequently leading to an over-proliferation of keratinocytes and the development of skin lesions. The pathophysiology of psoriasis and its comorbidities is not fully understood yet. Sphingolipids (including ceramides) and their disturbed metabolism may be the link between psoriasis and its comorbidities. Overall, the goal of this review was to discuss the role of sphingolipid disturbances in psoriasis and its comorbidities. We searched the PubMed database for relevant articles published before the beginning of May 2022. The systematic review included 65 eligible original articles.
Collapse
Affiliation(s)
- Mateusz Matwiejuk
- Department of Dermatology and Venereology, Medical University of Bialystok, 15-540 Bialystok, Poland
| | - Hanna Mysliwiec
- Department of Dermatology and Venereology, Medical University of Bialystok, 15-540 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, 15-540 Bialystok, Poland
| |
Collapse
|
18
|
Benatzy Y, Palmer MA, Brüne B. Arachidonate 15-lipoxygenase type B: Regulation, function, and its role in pathophysiology. Front Pharmacol 2022; 13:1042420. [PMID: 36438817 PMCID: PMC9682198 DOI: 10.3389/fphar.2022.1042420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 10/30/2023] Open
Abstract
As a lipoxygenase (LOX), arachidonate 15-lipoxygenase type B (ALOX15B) peroxidizes polyenoic fatty acids (PUFAs) including arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid (LA) to their corresponding fatty acid hydroperoxides. Distinctive to ALOX15B, fatty acid oxygenation occurs with positional specificity, catalyzed by the non-heme iron containing active site, and in addition to free PUFAs, membrane-esterified fatty acids serve as substrates for ALOX15B. Like other LOX enzymes, ALOX15B is linked to the formation of specialized pro-resolving lipid mediators (SPMs), and altered expression is apparent in various inflammatory diseases such as asthma, psoriasis, and atherosclerosis. In primary human macrophages, ALOX15B expression is associated with cellular cholesterol homeostasis and is induced by hypoxia. Like in inflammation, the role of ALOX15B in cancer is inconclusive. In prostate and breast carcinomas, ALOX15B is attributed a tumor-suppressive role, whereas in colorectal cancer, ALOX15B expression is associated with a poorer prognosis. As the biological function of ALOX15B remains an open question, this review aims to provide a comprehensive overview of the current state of research related to ALOX15B.
Collapse
Affiliation(s)
- Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Megan A. Palmer
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
19
|
Zhang X, Li X, Wang Y, Chen Y, Hu Y, Guo C, Yu Z, Xu P, Ding Y, Mi QS, Wu J, Gu J, Shi Y. Abnormal lipid metabolism in epidermal Langerhans cells mediates psoriasis-like dermatitis. JCI Insight 2022; 7:150223. [PMID: 35801590 PMCID: PMC9310522 DOI: 10.1172/jci.insight.150223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Psoriasis is a chronic, inflammatory skin disease, frequently associated with dyslipidemia. Lipid disturbance in psoriasis affects both circulatory system and cutaneous tissue. Epidermal Langerhans cells (LCs) are tissue-resident DCs that maintain skin immune surveillance and mediate various cutaneous disorders, including psoriasis. However, the role of LCs in psoriasis development and their lipid metabolic alternation remains unclear. Here, we demonstrate that epidermal LCs of psoriasis patients enlarge with longer dendrites and possess elevated IL-23p19 mRNA and a higher level of neutral lipids when compared with normal LCs of healthy individuals. Accordantly, epidermal LCs from imiquimod-induced psoriasis-like dermatitis in mice display overmaturation, enhanced phagocytosis, and excessive secretion of IL-23. Remarkably, these altered immune properties in lesional LCs are tightly correlated with elevated neutral lipid levels. Moreover, the increased lipid content of psoriatic LCs might result from impaired autophagy of lipids. Bulk RNA-Seq analysis identifies dysregulated genes involved in lipid metabolism, autophagy, and immunofunctions in murine LCs. Overall, our data suggest that dysregulated lipid metabolism influences LC immunofunction, which contributes to the development of psoriasis, and therapeutic manipulation of this metabolic process might provide an effective measurement for psoriasis.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, and.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaorui Li
- Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, and.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Youdong Chen
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yijun Hu
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, and.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Zengyang Yu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Peng Xu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, and.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, and.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Jianhua Wu
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jun Gu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, and.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Coras R, Murillo-Saich JD, Singh AG, Kavanaugh A, Guma M. Lipidomic Profiling in Synovial Tissue. Front Med (Lausanne) 2022; 9:857135. [PMID: 35492314 PMCID: PMC9051397 DOI: 10.3389/fmed.2022.857135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The analysis of synovial tissue offers the potential for the comprehensive characterization of cell types involved in arthritis pathogenesis. The studies performed to date in synovial tissue have made it possible to define synovial pathotypes, which relate to disease severity and response to treatment. Lipidomics is the branch of metabolomics that allows the quantification and identification of lipids in different biological samples. Studies in animal models of arthritis and in serum/plasma from patients with arthritis suggest the involvement of different types of lipids (glycerophospholipids, glycerolipids, sphingolipids, oxylipins, fatty acids) in the pathogenesis of arthritis. We reviewed studies that quantified lipids in different types of tissues and their relationship with inflammation. We propose that combining lipidomics with currently used “omics” techniques can improve the information obtained from the analysis of synovial tissue, for a better understanding of pathogenesis and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Roxana Coras
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jessica D. Murillo-Saich
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Abha G. Singh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Arthur Kavanaugh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- San Diego VA Healthcare Service, San Diego, CA, United States
- *Correspondence: Monica Guma
| |
Collapse
|
21
|
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The Biological Functions and Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol 2022; 10:857919. [PMID: 35445019 PMCID: PMC9013884 DOI: 10.3389/fcell.2022.857919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein's biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research.
Collapse
Affiliation(s)
- Binyue Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Karl Nelson S. Marquez
- Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hankou, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
22
|
The S100A7 nuclear interactors in autoimmune diseases: a coevolutionary study in mammals. Immunogenetics 2022; 74:271-284. [PMID: 35174412 DOI: 10.1007/s00251-022-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/10/2022] [Indexed: 11/05/2022]
Abstract
S100A7, a member of the S100A family of Ca2+-binding proteins, is considered a key effector in immune response. In particular, S100A7 dysregulation has been associated with several diseases, including autoimmune disorders. At the nuclear level, S100A7 interacts with several protein-binding partners which are involved in transcriptional regulation and DNA repair. By using the BioGRID and GAAD databases, S100A7 nuclear interactors with a putative involvement in autoimmune diseases were retrieved. We selected fatty acid-binding protein 5 (FABP5), autoimmune regulator (AIRE), cystic fibrosis transmembrane conductance regulator (CFTR), chromodomain helicase DNA-binding protein 4 (CHD4), epidermal growth factor receptor (EGFR), estrogen receptor 1 (ESR1), histone deacetylase 2 (HDAC2), v-myc avian myelocytomatosis viral oncogene homolog (MYC), protection of telomeres protein 1 (POT1), telomeric repeat-binding factor (NIMA-interacting) 1 (TERF1), telomeric repeat-binding factor 2 (TERF2), and Zic family member 1 (ZIC1). Linear correlation coefficients between interprotein distances were calculated with MirrorTree. Coevolution clusters were also identified with the use of a recent version of the Blocks in Sequences (BIS2) algorithm implemented in the BIS2Analyzer web server. Analysis of pair positions identified interprotein coevolving clusters between S100A7 and the binding partners CFTR and TERF1. Such findings could guide further analysis to better elucidate the function of S100A7 and its binding partners and to design drugs targeting for these molecules in autoimmune diseases.
Collapse
|
23
|
Cui C, Wu C, Wang J, Zheng X, Ma Z, Zhu P, Guan W, Zhang S, Chen F. Leucine supplementation during late gestation globally alters placental metabolism and nutrient transport via modulation of the PI3K/AKT/mTOR signaling pathway in sows. Food Funct 2022; 13:2083-2097. [PMID: 35107470 DOI: 10.1039/d1fo04082k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a previously published study we reported that sow dietary leucine supplementation during late pregnancy significantly improved newborn piglet birth weight by stimulating protein synthesis in the longissimus dorsi muscle. However, there is still limited knowledge as to whether leucine can exert its effects on the placenta, one of the most important temporal organs during pregnancy, to promote maternal-fetal nutrient supply and thus contribute to fetal intrauterine development. Therefore, we tested this hypothesis in the present study. In total, 150 sows at day 90 of gestation were divided into three groups and fed with either a control diet (CON), CON + 0.4% Leu or CON + 0.8% Leu, respectively, until parturition. Placental metabolomics, full spectrum amino acids and nutrient transporters were systematically analyzed after sample collection. The results indicated that Leu supplementation led to an altered placental metabolism with an increased number of metabolites related to glycolysis and the oxidation of fatty acids, as well as elevated levels of amino acid accumulation in the placenta. In addition, nutrient transporters of amino acids, glucose and fatty acids in the placenta were globally up-regulated and several enzymes related to energy metabolism, including hexokinase, succinate dehydrogenase, lactated hydrogenase, glycogen phosphorylase and hydroxyacyl-CoA-dehydrogenase, were also significantly increased with no change observed in the antioxidative status of those groups with Leu supplementation. Furthermore, the phosphorylation of PI3K, Akt, and mTOR was enhanced in the placenta of sows undergoing Leu treatment. Collectively, we concluded that supplementing the diets of sows with Leu during late gestation globally altered placental metabolism and promoted maternal-fetus nutrient transport (amino acids, glucose, and fatty acids) via modulation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Pengwei Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
25
|
Adachi Y. Effects of Fatty Acids on Proliferation of Cultured Wild-type and FABP5-KO Thymic Epithelial Cells. J UOEH 2022; 44:239-248. [PMID: 36089341 DOI: 10.7888/juoeh.44.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipids including fatty acids (FAs), which are water-insoluble molecules, are not only a cellular energy source but also signaling molecules that induce and modulate the expression of various cellular functions. Fatty acid-binding proteins (FABP) bind FAs in the cytoplasm, and are thought to determine the cellular localization of FAs. In a previous observation, FABP5 was expressed in thymic epithelial cells (TEC) in the thymus and was influenced by FAs. Fatty acids have mostly inhibitory effects on various cell types, including cancer cells, but their effects on TEC have not been well investigated. In this study, we investigated the effects of long-chain FAs (LCFAs) and the involvement of FABP5 in cell proliferation using a serum-free primary culture system. The results showed that saturated fatty acids did not affect proliferation, but n-3 long-chain polyunsaturated FA (LCPUFA) reduced, n-6 LCPUFA increased, and retinoic acid strongly reduced the percentage of proliferating wild-type TEC. The proliferation of FABP5-KO TEC was more significantly affected by LCPUFA, suggesting that FABP5 is an important modulator of FA-mediated TEC proliferation. These observations may provide a basis for exploring the properties of TEC.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
26
|
Decreased FABP5 and DSG1 protein expression following PAX6 knockdown of differentiated human limbal epithelial cells. Exp Eye Res 2021; 215:108904. [PMID: 34954205 DOI: 10.1016/j.exer.2021.108904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
PAX6 haploinsufficiency related aniridia is characterized by disorder of limbal epithelial cells (LECs) and aniridia related keratopathy. In the limbal epithelial cells of aniridia patients, deregulated retinoic acid (RA) signaling components were identified. We aimed to visualize differentiation marker and RA signaling component expression in LECs, combining a differentiation triggering growth condition with a small interfering RNA (siRNA) based aniridia cell model (PAX6 knock down). Primary LECs were isolated from corneoscleral rims of healthy donors and cultured in serum free low Ca2+ medium (KSFM) and in KSFM supplemented with 0.9 mmol/L Ca2+. In addition, LECs were treated with siRNA against PAX6. DSG1, PAX6, KRT12, KRT 3, ADH7, RDH10, ALDH1A1, ALDH3A1, STRA6, CYP1B1, RBP1, CRABP2, FABP5, PPARG, VEGFA and ELOVL7 expression was determined using qPCR and western blot. DSG1, FABP5, ADH7, ALDH1A1, RBP1, CRABP2 and PAX6 mRNA and FABP5 protein expression increased (p ≤ 0.03), PPARG, CYP1B1 mRNA expression decreased (p ≤ 0.0003) and DSG1 protein expression was only visible after Ca2+ supplementation. After PAX6 knock down and Ca2+ supplementation, ADH7 and ALDH1A1 mRNA and DSG1 and FABP5 protein expression decreased (p ≤ 0.04), compared to Ca2+ supplementation alone. Using our cell model, with Ca2+ supplementation and PAX6 knockdown with siRNA treatment against PAX6, we provide evidence that haploinsufficiency of the master regulatory gene PAX6 contributes to differentiation defect in the corneal epithelium through alterations of RA signalling. Upon PAX6 knockdown, DSG1 differentiation marker and FABP5 RA signaling component mRNA expression decreases. A similar effect becomes apparent at protein level though differentiation triggering Ca2+ supplementation in the siRNA-based aniridia cell model. Expression data from this cell model and from our siRNA aniridia cell model strongly indicate that FABP5 expression is PAX6 dependent. These new findings may lead to a better understanding of differentiation processes in LECs and are able to explain the insufficient cell function in AAK.
Collapse
|
27
|
Single-cell transcriptomic analysis reveals the critical molecular pattern of UV-induced cutaneous squamous cell carcinoma. Cell Death Dis 2021; 13:23. [PMID: 34934042 PMCID: PMC8692455 DOI: 10.1038/s41419-021-04477-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common nonmelanoma skin cancer characterized by high invasiveness, heterogeneity, and mainly occurs in the ultraviolet (UV)-exposed regions of the skin, but its pathogenesis is still unclear. Here, we generated single-cell transcriptome profiles for 350 cells from six primary UV-induced cSCCs, together with matched adjacent skin samples, and three healthy control skin tissues by single-cell RNA-sequencing technology based on Smart-seq2 strategy. A series of bioinformatics analyses and in vitro experiments were used to decipher and validate the critical molecular pattern of cSCC. Results showed that cSCC cells and normal keratinocytes were significantly distinct in gene expression and chromosomal copy number variation. Furthermore, cSCC cells exhibited 18 hallmark pathways of cancer by gene set enrichment analysis. Differential expression analysis demonstrated that many members belonging to S100 gene family, SPRR gene family, and FABP5 were significantly upregulated in cSCC cells. Further experiments confirmed their upregulation and showed that S100A9 or FABP5 knockdown in cSCC cells inhibited their proliferation and migration through NF-κB pathway. Taken together, our data provide a valuable resource for deciphering the molecular pattern in UV-induced cSCC at a single-cell level and suggest that S100A9 and FABP5 may provide novel targets for therapeutic intervention of cSCC in the future.
Collapse
|
28
|
Yin D, Hao J, Jin R, Yi Y, Bodduluri SR, Hua Y, Anand A, Deng Y, Haribabu B, Egilmez NK, Sauter ER, Li B. Epidermal Fatty Acid Binding Protein Mediates Depilatory-Induced Acute Skin Inflammation. J Invest Dermatol 2021; 142:1824-1834.e7. [DOI: 10.1016/j.jid.2021.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
|
29
|
Li D, Cheng S, Pei Y, Sommar P, Kärner J, Herter EK, Toma MA, Zhang L, Pham K, Cheung YT, Liu Z, Chen X, Eidsmo L, Deng Q, Xu Landén N. Single-Cell Analysis Reveals Major Histocompatibility Complex II‒Expressing Keratinocytes in Pressure Ulcers with Worse Healing Outcomes. J Invest Dermatol 2021; 142:705-716. [PMID: 34536485 DOI: 10.1016/j.jid.2021.07.176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
Pressure ulcer (PU) is a chronic wound often seen in patients with spinal cord injury and other bed-bound individuals, particularly in the elderly population. Despite its association with high mortality, the pathophysiology of PU remains poorly understood. In this study, we compared single-cell transcriptomic profiles of human epidermal cells from PU wound edges with those from uninjured skin and acute wounds in healthy donors. We identified significant shifts in the cell composition and gene expression patterns in PU. In particular, we found that major histocompatibility complex class II‒expressing keratinocytes were enriched in patients with worse healing outcomes. Furthermore, we showed that the IFN-γ in PU-derived wound fluid could induce major histocompatibility complex II expression in keratinocytes and that these wound fluid‒treated keratinocytes inhibited autologous T-cell activation. In line with this observation, we found that T cells from PUs enriched with major histocompatibility complex II+ keratinocytes produced fewer inflammatory cytokines. Overall, our study provides a high-resolution molecular map of human PU compared with that of acute wounds and intact skin, providing insights into PU pathology and the future development of tailored wound therapy.
Collapse
Affiliation(s)
- Dongqing Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shangli Cheng
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yu Pei
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pehr Sommar
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Jaanika Kärner
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva K Herter
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria A Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kim Pham
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuen Ting Cheung
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Leo Foundation Skin Immunology Center, Department of Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
30
|
Molecular Pathogenesis of Psoriasis and Biomarkers Reflecting Disease Activity. J Clin Med 2021; 10:jcm10153199. [PMID: 34361983 PMCID: PMC8346978 DOI: 10.3390/jcm10153199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease induced by multifactorial causes and is characterized by bothersome, scaly reddish plaques, especially on frequently chafed body parts, such as extensor sites of the extremities. The latest advances in molecular-targeted therapies using biologics or small-molecule inhibitors help to sufficiently treat even the most severe psoriatic symptoms and the extra cutaneous comorbidities of psoriatic arthritis. The excellent clinical effects of these therapies provide a deeper understanding of the impaired quality of life caused by this disease and the detailed molecular mechanism in which the interleukin (IL)-23/IL-17 axis plays an essential role. To establish standardized therapeutic strategies, biomarkers that define deep remission are indispensable. Several molecules, such as cytokines, chemokines, antimicrobial peptides, and proteinase inhibitors, have been recognized as potent biomarker candidates. In particular, blood protein markers that are repeatedly measurable can be extremely useful in daily clinical practice. Herein, we summarize the molecular mechanism of psoriasis, and we describe the functions and induction mechanisms of these biomarker candidates.
Collapse
|
31
|
Nowowiejska J, Baran A, Flisiak I. Aberrations in Lipid Expression and Metabolism in Psoriasis. Int J Mol Sci 2021; 22:6561. [PMID: 34207318 PMCID: PMC8234564 DOI: 10.3390/ijms22126561] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Psoriasis (PSO) is a common skin disease that affects about 1%-3% of the general population. It is a great medical, social and economic burden since PSO is associated with many comorbidities, of which the most common are cardiometabolic disorders. Psoriatic patients suffer more frequently from obesity, dyslipidemia, atherosclerosis, and nonalcoholic fatty liver disease. Research shows that lipid expression and metabolism disorders are present more often in such patients. This review focuses on a variety of aberrations in lipids in the skin, blood, and adipose tissue in psoriatic patients and their multifactorial impact on the pathogenesis of psoriasis.
Collapse
Affiliation(s)
| | - Anna Baran
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St, 15-540 Bialystok, Poland; (J.N.); (I.F.)
| | | |
Collapse
|
32
|
Abstract
ABSTRACT Sjögren syndrome (SS) is a chronic inflammatory autoimmune disease of the lacrimal and salivary glands. Salivary gland biopsy is still one of the most valuable and acceptable diagnostic tests for SS, which however, is an invasive test. Therefore, noninvasive diagnostic biomarkers with high specificity and sensitivity are required for the diagnosis and assessment of SS. Because ophthalmological testing constitutes to an important part for the diagnosis of SS. Tears harbor biomarkers with a high potential to be used for differential diagnosis and assessment of treatment in many systemic disorders, including SS. This review aims to summarize recent advances in the identification of tear biomarkers of SS, trying to identify reliable, sensitive, and specific biomarkers that can be used to guide treatment decisions.
Collapse
Affiliation(s)
- Cem Simsek
- Department of Ophthalmology (C.S.), Mugla Sitki Kocman University School of Medicine, Mugla, Turkey ; and Department of Ophthalmology (M.D.), Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
33
|
Takahashi-Shishido N, Sugaya M, Morimura S, Suga H, Oka T, Kamijo H, Miyagaki T, Sato S. Mycosis fungoides and Sézary syndrome tumor cells express epidermal fatty acid-binding protein, whose expression decreases with loss of epidermotropism. J Dermatol 2021; 48:685-689. [PMID: 33560534 DOI: 10.1111/1346-8138.15775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/11/2023]
Abstract
Fatty acid binding protein (FABP) is a family of transport proteins for fatty acid (FA). Epidermal FABP (E-FABP) is highly expressed by resident memory T cells (TRM ) in the skin. It supports the uptake of exogenous FA for long-term survival of skin TRM . Mycosis fungoides (MF) is regarded as malignancy of skin TRM . In this study, we investigated E-FABP expression in psoriasis vulgaris (PV), atopic dermatitis (AD), MF, and Sézary syndrome (SS). E-FABP mRNA levels in PV were much higher than those in healthy controls. E-FABP mRNA levels in AD and MF/SS lesional skin were also significantly higher than those of normal skin. By immunohistochemical staining, E-FABP was positive in MF/SS lesional skin. Interestingly, E-FABP was stained positive in epidermotropic lymphoid cells in patch, plaque, and erythrodermic lesions of MF/SS, suggesting that a part of tumor cells expressed E-FABP. In tumorous lesions, however, most dermal tumor cells were negative for E-FABP. Immunohistochemical staining using patch/plaque lesions and tumorous lesions from the same patients also revealed that E-FABP expression decreased in tumorous lesions. Our study has suggested that MF/SS tumor cells express E-FABP, whose expression decreases with loss of epidermotropism.
Collapse
Affiliation(s)
- Naomi Takahashi-Shishido
- Department of Dermatology, International University of Health and Welfare, Chiba, Japan.,Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Makoto Sugaya
- Department of Dermatology, International University of Health and Welfare, Chiba, Japan
| | - Soshi Morimura
- Department of Dermatology, International University of Health and Welfare, Chiba, Japan
| | - Hiraku Suga
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomonori Oka
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroaki Kamijo
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomomitsu Miyagaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Department of Dermatology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Expression and enhancement of FABP4 in septoclasts of the growth plate in FABP5-deficient mouse tibiae. Histochem Cell Biol 2021; 155:439-449. [PMID: 33398436 PMCID: PMC8062382 DOI: 10.1007/s00418-020-01953-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 01/13/2023]
Abstract
In our previous study, fatty acid-binding protein 5 (FABP5) was expressed in septoclasts with long processes which are considered to resorb uncalcified matrix of the growth plate (GP) cartilage, and no apparent abnormalities were detected in the histo-architecture of the GP of FABP5-deficient (FABP5−/−) mice. Those finding lead us to hypothesize that another FABP can compensate the deletion of FABP5 in septoclasts of its gene-mutant mice. Based on the hypothesis, the present study examined the expression levels of several other FABPs in septoclasts and their morphology in FABP5−/− mouse tibiae. Processes of FABP5−/− septoclasts tend to be shorter than wild septoclasts. FABP4-positive septoclasts in FABP5−/− mice were more numerous than those cells in wild mice. Peroxisome proliferator-activated receptor (PPAR) γ was expressed in FABP4-positive septoclasts of FABP5−/− mice as well as mice administered with GW1929, a PPARγ agonist, suggesting that the occurrence of PPARγ induces an increase of FABP4-positive septoclasts. The present finding suggests that the functional exertion of FABP5 in septoclasts is supplemented by FABP4 in normal and FABP5−/− mice, and that the expression of FABP4 is up-regulated in accompany with PPARγ in FABP5−/− for maintenance of resorptive activity in the GP.
Collapse
|
35
|
Lian N, Shi LQ, Hao ZM, Chen M. Research progress and perspective in metabolism and metabolomics of psoriasis. Chin Med J (Engl) 2020; 133:2976-2986. [PMID: 33237698 PMCID: PMC7752687 DOI: 10.1097/cm9.0000000000001242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT Psoriasis is considered a systemic disease associated with metabolic abnormalities, and it is important to understand the mechanisms by which metabolism affects pathophysiological processes both holistically and systematically. Metabolites are closely related to disease phenotypes, especially in systemic diseases under multifactorial modulation. The emergence of metabolomics has provided information regarding metabolite changes in lesions and circulation and deepened our understanding of the association between metabolic reprogramming and psoriasis. Metabolomics has great potential for the development of effective biomarkers for clinical diagnosis, therapeutic monitoring, prediction of the efficacy of psoriasis management, and further discovery of new metabolism-based therapeutic targets.
Collapse
Affiliation(s)
- Ni Lian
- Department of Dermatology, Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences & Peking Union Medical Collage, Nanjing, Jiangsu 210042, China
| | | | | | | |
Collapse
|
36
|
Different Immunohistochemical Localization of Fatty Acid Binding Protein 5 in Actinic Keratosis Compared with That in Bowen's Disease: A Retrospective Study. Am J Dermatopathol 2020; 43:356-361. [PMID: 33055535 DOI: 10.1097/dad.0000000000001823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Actinic keratosis (AK) and Bowen's disease (BD) are common premalignant lesions of invasive squamous cell carcinoma that have different pathogenesis and clinical significance. Fatty acid-binding protein 5 (FABP5) is responsible for keratinocyte homeostasis and differentiation; however, no study has revealed its expression in AK and BD. Our study aimed to investigate the differential expression and significance of FABP5 in these lesions. Patients with pathologically confirmed cases of AK (n = 37) and BD (n = 12) were included in this study. FABP5 immunostaining pattern was assessed in the normal skin, AK and BD lesions, with a focus on the staining patterns of basal cells, atypical keratinocytes, and uninvolved epidermal keratinocytes. All patients with AK showed negative FABP5 expression in the atypical cells in the basal layer, whereas the uninvolved upper layers showed diffuse, strong FABP5 expression, regardless of the grade of AK. All patients with BD showed heterogeneous and diffuse FABP5 expression in atypical cells of all layers of the epidermis. This study is the first to investigate the role of FABP5 in premalignant skin lesions. The unique immunohistochemical localization of the FABP5 can be a helpful diagnostic marker, and altered fatty acid metabolism may be the key in understanding the different pathophysiology of AK and BD.
Collapse
|
37
|
Moses RL, Boyle GM, Howard-Jones RA, Errington RJ, Johns JP, Gordon V, Reddell P, Steadman R, Moseley R. Novel epoxy-tiglianes stimulate skin keratinocyte wound healing responses and re-epithelialization via protein kinase C activation. Biochem Pharmacol 2020; 178:114048. [PMID: 32446889 DOI: 10.1016/j.bcp.2020.114048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Epoxy-tiglianes are a novel class of diterpene esters. The prototype epoxy-tigliane, EBC-46 (tigilanol tiglate), possesses potent anti-cancer properties and is currently in clinical development as a local treatment for human and veterinary cutaneous tumors. EBC-46 rapidly destroys treated tumors and consistently promotes wound re-epithelialization at sites of tumor destruction. However, the mechanisms underlying these keratinocyte wound healing responses are not completely understood. Here, we investigated the effects of EBC-46 and an analogue (EBC-211) at 1.51 nM-151 µM concentrations, on wound healing responses in immortalized human skin keratinocytes (HaCaTs). Both EBC-46 and EBC-211 (1.51 nM-15.1 µM) accelerated G0/G1-S and S-G2/M cell cycle transitions and HaCaT proliferation. EBC-46 (1.51-151 nM) and EBC-211 (1.51 nM-15.1 µM) further induced significant HaCaT migration and scratch wound repopulation. Stimulated migration/wound repopulation responses were even induced by EBC-46 (1.51 nM) and EBC-211 (1.51-151 nM) with proliferation inhibitor, mitomycin C (1 μM), suggesting that epoxy-tiglianes can promote migration and wound repopulation independently of proliferation. Expression profiling analyses showed that epoxy-tiglianes modulated keratin, DNA synthesis/replication, cell cycle/proliferation, motility/migration, differentiation, matrix metalloproteinase (MMP) and cytokine/chemokine gene expression, to facilitate enhanced responses. Although epoxy-tiglianes down-regulated established cytokine and chemokine agonists of keratinocyte proliferation and migration, enhanced HaCaT responses were demonstrated to be mediated via protein kinase C (PKC) phosphorylation and significantly abrogated by pan-PKC inhibitor, bisindolylmaleimide-1 (BIM-1, 1 μM). By identifying how epoxy-tiglianes stimulate keratinocyte healing responses and re-epithelialization in treated skin, our findings support the further development of this class of small molecules as potential therapeutics for other clinical situations associated with impaired re-epithelialization, such as non-healing skin wounds.
Collapse
Affiliation(s)
- Rachael L Moses
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel A Howard-Jones
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Rachel J Errington
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jenny P Johns
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Paul Reddell
- QBiotics Group, Yungaburra, Queensland, Australia
| | - Robert Steadman
- Welsh Kidney Research Unit, Division of Infection and Immunity, Cardiff Institute of Tissue Engineering and Repair (CITER), School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Ryan Moseley
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK.
| |
Collapse
|
38
|
Effect of methotrexate treatment on the expression of epidermal-fatty acid-binding protein (E-FABP) and apolipoproteins in patients with psoriasis. Postepy Dermatol Alergol 2020; 37:401-406. [PMID: 32792883 PMCID: PMC7394159 DOI: 10.5114/ada.2020.96109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction Epidermal-fatty acid-binding protein (E-FABP) is a marker of transiently amplifying cells which are formed from stem cells in epidermis. Their role is an uptake of fatty acids and metabolism. Psoriatic keratinocytes overexpress E-FABPs, which leads to acanthosis and may explain the lipid’s disturbances in psoriasis. Aim Assessment of FABP and apolipoprotein expression in patients treated with methotrexate (MTX). Material and methods FABP expression in the lesional and perilesional psoriatic skin from 11 male patients compared to 5 healthy skin samples were evaluated by immunohistochemistry. FABP, apolipoprotein A1 (ApoA1) and B (ApoB) serum levels were assessed by ELISA. These parameters were evaluated before and after treatment with subcutaneous MTX (15 mg/wk for 12 weeks). Results Expression of E-FABP was lower in the control group than in the lesional and perilesional psoriatic skin, before and after treatment. After treatment the expression decreased in the lesional and perilesional skin. Serum E-FABP was higher in the control group (482.855 ±240.550 pg/ml) compared to patients, but not statistically significantly. After MTX treatment, a statistically significant reduction was observed in psoriatic patients. ApoA1 levels did not differ in the control and patients groups, both before and after treatment. In contrast, ApoB levels did not differ statistically between the control group (1447.126 ±311.11 ng/ml) and patients before treatment, while they were the lowest after treatment (1081.67 ±117.83 ng/ml vs. 808.306 ±103.72 ng/ml; p < 0.01). Conclusions Our study confirms the beneficial effect of MTX, not only as an anti-proliferative effect, but also reducing the cardiovascular risk by decreasing atherogenic ApoB.
Collapse
|
39
|
Hyperlipidemia induces meibomian gland dysfunction. Ocul Surf 2019; 17:777-786. [PMID: 31201956 DOI: 10.1016/j.jtos.2019.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/28/2019] [Accepted: 06/10/2019] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate the pathological changes of the meibomian gland (MG) and ocular surface in Apolipoprotein E knockout (ApoE-/-) mice and to investigate the association of meibomian gland dysfunction (MGD) with hyperlipidemia. METHODS Total plasma cholesterol was measured in different ages of ApoE-/- and wild type (WT) mice, whilst the ocular surfaces were observed by slit-lamp biomicroscopy. MG sections were subjected to H&E staining, Oil Red O staining, TUNEL assay and immunostaining. Quantitate RT-PCR and Western blot analyses were performed to detect the relative gene expression in MGs. The 5-month-old ApoE-/- mice were administered with rosiglitazone or GW9662 + rosiglitazone via oral gavage for 2 months to determine their effect on MG pathological change. RESULTS We found eyelid abnormality, MG dropout, abnormal MG acinar morphology, dilated MG duct and plugging of the MG orifice in ApoE-/- mice. MG acini in ApoE-/- mice showed exaggerated lipid accumulation. Abnormal keratinization increased in MG duct, accompanied with decreased proliferation and increased apoptosis in ApoE-/- mice. Inflammatory cells infiltrated into the surrounding microenvironment of MG acini, and the NF-κB signaling pathway was activated in MG acinar cells. Oxidative stress was evident in MG acinar cells of ApoE-/- mice. Further investigation showed downregulation of PPAR-γ in MG acinar cells of ApoE-/- mice. PPAR-γ agonist rosiglitazone treatment reduced the morbidity of eyelid, as well as corneal pathological changes and MG inflammation in ApoE-/- mice. CONCLUSION MGD and hyperlipidemia are closely associated in ApoE-/- mice, which represent a new model to study the pathophysiology of MGD related to dyslipidemia.
Collapse
|
40
|
Shao C, Zhao M, Chen X, Sun H, Yang Y, Xiao X, Guo Z, Liu X, Lv Y, Chen X, Sun W, Wu D, Gao Y. Comprehensive Analysis of Individual Variation in the Urinary Proteome Revealed Significant Gender Differences. Mol Cell Proteomics 2019; 18:1110-1122. [PMID: 30894400 PMCID: PMC6553935 DOI: 10.1074/mcp.ra119.001343] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
Disease biomarkers are the measurable changes associated with a pathophysiological process. Without homeostatic control, urine accumulates systematic changes in the body. Thus, urine is an attractive biological material for the discovery of disease biomarkers. One of the major bottlenecks in urinary biomarker discovery is that the concentration and composition of urinary proteins are influenced by many physiological factors. To elucidate the individual variation and related factors influencing the urinary proteome, we comprehensively analyzed the urine samples from healthy adult donors (aged 20-69 years). Co-expression network analysis revealed protein clusters representing the metabolic status, gender-related differences and age-related differences in urinary proteins. In particular, we demonstrated that gender is a crucial factor contributing to individual variation. Proteins that were increased in the male urine samples include prostate-secreted proteins and TIMP1, a protein whose abundance alters under various cancers and renal diseases; however, the proteins that were increased in the female urine samples have known functions in the immune system. Nine gender-related proteins were validated on 85 independent samples by multiple reaction monitoring. Five of these proteins were further used to build a model that could accurately distinguish male and female urine samples with an area under curve value of 0.94. Based on the above results, we strongly suggest that future biomarker investigations should consider gender as a crucial factor in experimental design and data analysis. Finally, reference intervals of each urinary protein were estimated, providing a baseline for the discovery of abnormalities.
Collapse
Affiliation(s)
- Chen Shao
- From the ‡Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences(Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Mindi Zhao
- ¶Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
- ‖Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College
| | - Xizhao Chen
- **Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Haidan Sun
- ‡‡Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College
| | - Yehong Yang
- ‡‡Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College
| | - Xiaoping Xiao
- ‡‡Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College
- §§Cytology Lab, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- ‡‡Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College
| | - Xiaoyan Liu
- ‡‡Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College
| | - Yang Lv
- **Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xiangmei Chen
- **Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Wei Sun
- ‡‡Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College;
| | - Di Wu
- **Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China;
| | - Youhe Gao
- ¶¶Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| |
Collapse
|
41
|
Pecorelli A, Cervellati C, Cordone V, Amicarelli F, Hayek J, Valacchi G. 13-HODE, 9-HODE and ALOX15 as potential players in Rett syndrome OxInflammation. Free Radic Biol Med 2019; 134:598-603. [PMID: 30743046 DOI: 10.1016/j.freeradbiomed.2019.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 02/06/2019] [Indexed: 12/23/2022]
Abstract
Mutations in the MECP2 gene are the main cause of Rett syndrome (RTT), a pervasive neurodevelopmental disorder, that shows also multisystem disturbances associated with a metabolic component. The aim of this study was to investigate whether an increased production of oxidized linoleic acid metabolites, specifically 9- and 13-hydroxyoctadecadienoic acids (HODEs), can contribute to the altered the redox and immune homeostasis, suggested to be involved in RTT. Serum levels of 9- and 13-HODEs were elevated in RTT and associated with the expression of arachidonate 15-Lipoxygenase (ALOX15) in peripheral blood mononuclear cells (PBMCs). Omega-3 polyunsaturated fatty acids supplementation has shown to lower HODEs levels in RTT. Statistically significant correlation was demonstrated between the increased plasma HODEs levels and the lipoprotein-associated phospholipase A2 (Lp-PLA2) activity. Collectively, these findings reinforce the concept of the key role played by lipid peroxidation in RTT, and the possible ability of omega-3 polyunsaturated fatty acids supplementation in improving the oxinflammation status in RTT.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Valeria Cordone
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Viale M. Bracci 16, 53100, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
42
|
Epidermal Fatty Acid-Binding Protein: A Novel Marker in the Diagnosis of Dry Eye Disease in Sjögren Syndrome. Int J Mol Sci 2018; 19:ijms19113463. [PMID: 30400384 PMCID: PMC6274910 DOI: 10.3390/ijms19113463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/23/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022] Open
Abstract
Purpose: Sjögren syndrome (SS) is a chronic inflammatory autoimmune disease of the lacrimal and salivary glands. This study compared the concentrations of epidermal fatty-acid binding protein (E-FABP) in the saliva, serum, and tears of SS patients with dry eye and dry mouth, with those of healthy adults to investigate the usefulness of E-FABP as a diagnostic marker for SS. Design: Prospective, observational case series. Participants: The subjects were 11 new patients with untreated Sjogren syndrome and 12 healthy control individuals. Methods: The diagnosis of SS was in accordance with the Ministry of Health, Labour and Welfare (Japan) Diagnostic Criteria (1999). Saliva, serum, and tear specimens were collected during internal medicine, dental, and ophthalmological examinations. The ophthalmological tests included the Dry Eye-related Quality of life Score (DEQS), tear break-up time (BUT), vital staining with fluorescein (FS) and lissamine green (LG), and the Schirmer test-1. The E-FABP concentration in the tears, saliva, and serum was measured by enzyme-linked immunosorbent assay (ELISA). Main outcome measure: The E-FABP concentrations were compared between patients and controls. Results: There were significant differences between the patient and healthy control groups in all ophthalmological test results. There were no significant differences between the groups in the E-FABP concentrations in the saliva (p = 0.1513) or the serum (p = 0.4799), but the E-FABP concentration in the tears significantly differed between groups. The E-FABP concentration in tears tended to be significantly lower in patients with SS (mean, 323.5 ± 325.6 pg/mL) than healthy control subjects (mean, 4076 pg/mL; p = 0.0136). The E-FABP concentration in tears significantly correlated with the results of dry eye parameters. Conclusion: The E-FABP concentration in tears appears to be related to ocular surface epithelial damage and tear stability and may be a promising novel biomarker in the diagnosis of SS.
Collapse
|
43
|
Li M, Wu X, Guo X, Bao P, Ding X, Chu M, Liang C, Yan P. Comparative iTRAQ proteomics revealed proteins associated with horn development in yak. Proteome Sci 2018; 16:14. [PMID: 30061793 PMCID: PMC6056918 DOI: 10.1186/s12953-018-0141-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/31/2018] [Indexed: 01/15/2023] Open
Abstract
Background The practice of dehorning yak raises animal safety concerns, which have been addressed by selective breeding to obtain genetically hornless yak. The POLLED locus in yak has been studied extensively; however, little is known regarding the proteins that regulate horn bud development. Methods A differential proteomic analysis was performed to compare the skin from the horn bud region of polled yak fetuses and the horn bud tissue of horned yak fetuses using isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with 2D LC-MS/MS. Results One hundred differentially abundant proteins (DAPs) were identified. Of these, 29 were up-regulated and 71 were down-regulated in skin from the horn bud region of polled fetuses when compared to the horn bud tissue of horned fetuses. Bioinformatics analyses showed that the up-regulated DAPs were mainly associated with metabolic activities, while the down-regulated DAPs were significantly enriched in cell adhesion and cell movement activities. Conclusions We concluded that some important proteins were associated with cell adhesion, cell motility, keratinocyte differentiation, cytoskeleton organization, osteoblast differentiation, and fatty acid metabolism during horn bud development. These results advance our understanding of the molecular mechanisms underlying horn development.
Collapse
Affiliation(s)
- Mingna Li
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xiaoyun Wu
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xian Guo
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Pengjia Bao
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xuezhi Ding
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Min Chu
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Chunnian Liang
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Ping Yan
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| |
Collapse
|
44
|
Zhang Y, Hao J, Zeng J, Li Q, Rao E, Sun Y, Liu L, Mandal A, Landers VD, Morris RJ, Cleary MP, Suttles J, Li B. Epidermal FABP Prevents Chemical-Induced Skin Tumorigenesis by Regulation of TPA-Induced IFN/p53/SOX2 Pathway in Keratinocytes. J Invest Dermatol 2018; 138:1925-1934. [PMID: 29559340 DOI: 10.1016/j.jid.2018.02.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 12/15/2022]
Abstract
Skin lipids (e.g., fatty acids) are essential for normal skin functions. Epidermal FABP (E-FABP) is the predominant FABP expressed in skin epidermis. However, the role of E-FABP in skin homeostasis and pathology remains largely unknown. Herein, we utilized the 7,12-dimethylbenz(a)anthracene and 12-O-tetradecanolyphorbol-13-acetate-induced skin tumorigenesis model to assess the role of E-FABP in chemical-induced skin tumorigenesis. Compared to their wild-type littermates, mice deficient in E-FABP, but not adipose FABP, developed more skin tumors with higher incidence. 12-O-tetradecanolyphorbol-13-acetate functioning as a tumor promoter induced E-FABP expression and initiated extensive flaring inflammation in skin. Interestingly, 12-O-tetradecanolyphorbol-13-acetate -induced production of IFN-β and IFN-λ in the skin tissue was dependent on E-FABP expression. Further protein and gene expression arrays demonstrated that E-FABP was critical in enhancing IFN-induced p53 responses and in suppressing SOX2 expression in keratinocytes. Thus, E-FABP expression in skin suppresses chemical-induced skin tumorigenesis through regulation of IFN/p53/SOX2 pathway. Collectively, our data suggest an unknown function of E-FABP in prevention of skin tumor development, and offer E-FABP as a therapeutic target for improving skin innate immunity in chemical-induced skin tumor prevention.
Collapse
Affiliation(s)
- Yuwen Zhang
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Jun Zeng
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qiang Li
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Enyu Rao
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yanwen Sun
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Lianliang Liu
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Anita Mandal
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - V Douglas Landers
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Rebecca J Morris
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Jill Suttles
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
45
|
Sorokin AV, Domenichiello AF, Dey AK, Yuan ZX, Goyal A, Rose SM, Playford MP, Ramsden CE, Mehta NN. Bioactive Lipid Mediator Profiles in Human Psoriasis Skin and Blood. J Invest Dermatol 2018; 138:1518-1528. [PMID: 29454560 DOI: 10.1016/j.jid.2018.02.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/17/2022]
Abstract
Psoriasis is a chronic immune-mediated disease that represents a unique model for investigating inflammation at local and systemic levels. Bioactive lipid mediators (LMs) are potent compounds reported to play a role in the development and resolution of inflammation. Currently, it is not known to what extent these LMs are involved in psoriasis pathophysiology and related metabolic dysfunction. Here, we use targeted and untargeted liquid chromatography-tandem mass spectrometry approaches to quantify LMs in skin and peripheral blood from psoriasis patients and compared them with those of healthy individuals. Lesional psoriasis skin was abundant in arachidonic acid metabolites, as 8-, 12- and 15-hydroxyeicosatetraenoic acid, compared with adjacent nonlesional and skin from healthy individuals. Additionally, a linoleic acid-derived LM, 13-hydroxyoctadecadienoic acid, was significantly increased compared with healthy skin (607.9 ng/g vs. 5.4 ng/g, P = 0.001). These psoriasis skin differences were accompanied by plasma decreases in antioxidant markers, including glutathione, and impaired lipolysis characterized by lower concentrations of primary and secondary bile acids. In conclusion, our study shows that psoriasis skin and blood have disease-specific phenotype profiles of bioactive LMs represented by omega-6 fatty acid-oxidized derivatives. These findings provide insights into psoriasis pathophysiology that could potentially contribute to new biomarkers and therapeutics.
Collapse
Affiliation(s)
- Alexander V Sorokin
- Section of Inflammation and Cardiometabolic Diseases, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony F Domenichiello
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Amit K Dey
- Section of Inflammation and Cardiometabolic Diseases, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhi-Xin Yuan
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Aditya Goyal
- Section of Inflammation and Cardiometabolic Diseases, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shawn M Rose
- Bristol-Myers Squibb Clinical Development, Princeton, New Jersey, USA
| | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher E Ramsden
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA; Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA; FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
46
|
Bogdan D, Falcone J, Kanjiya MP, Park SH, Carbonetti G, Studholme K, Gomez M, Lu Y, Elmes MW, Smietalo N, Yan S, Ojima I, Puopolo M, Kaczocha M. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1) induction during inflammation. J Biol Chem 2018; 293:5295-5306. [PMID: 29440395 DOI: 10.1074/jbc.ra118.001593] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Fatty acid-binding proteins (FABPs) are intracellular lipid carriers that regulate inflammation, and pharmacological inhibition of FABP5 reduces inflammation and pain. The mechanism(s) underlying the anti-inflammatory effects associated with FABP5 inhibition is poorly understood. Herein, we identify a novel mechanism through which FABP5 modulates inflammation. In mice, intraplantar injection of carrageenan induces acute inflammation that is accompanied by edema, enhanced pain sensitivity, and elevations in proinflammatory cytokines and prostaglandin E2 (PGE2). Inhibition of FABP5 reduced pain, edema, cytokine, and PGE2 levels. PGE2 is a major eicosanoid that enhances pain in the setting of inflammation, and we focused on the mechanism(s) through which FABP5 modulates PGE2 production. Cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1) are enzymes up-regulated at the site of inflammation and account for the bulk of PGE2 biosynthesis. Pharmacological or genetic FABP5 inhibition suppressed the induction of mPGES-1 but not COX-2 in carrageenan-injected paws, which occurred predominantly in macrophages. The cytokine interleukin 1β (IL-1β) is a major inducer of mPGES-1 during inflammation. Using A549 cells that express FABP5, IL-1β stimulation up-regulated mPGES-1 expression, and mPGES-1 induction was attenuated in A549 cells bearing a knockdown of FABP5. IL-1β up-regulates mPGES-1 via NF-κB, which activates the mPGES-1 promoter. Knockdown of FABP5 reduced the activation and nuclear translocation of NF-κB and attenuated mPGES-1 promoter activity. Deletion of NF-κB-binding sites within the mPGES-1 promoter abrogated the ability of FABP5 to inhibit mPGES-1 promoter activation. Collectively, these results position FABP5 as a novel regulator of mPGES-1 induction and PGE2 biosynthesis during inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Gregory Carbonetti
- Biochemistry and Cell Biology, and.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794
| | | | | | - Yong Lu
- From the Departments of Anesthesiology
| | - Matthew W Elmes
- Biochemistry and Cell Biology, and.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794
| | | | - Su Yan
- Chemistry.,Institute of Chemical Biology and Drug Discovery, and
| | - Iwao Ojima
- Chemistry.,Institute of Chemical Biology and Drug Discovery, and
| | | | - Martin Kaczocha
- From the Departments of Anesthesiology, .,Biochemistry and Cell Biology, and.,Institute of Chemical Biology and Drug Discovery, and
| |
Collapse
|
47
|
Fatty acids and related lipid mediators in the regulation of cutaneous inflammation. Biochem Soc Trans 2018; 46:119-129. [PMID: 29330355 DOI: 10.1042/bst20160469] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Human skin has a distinct profile of fatty acids and related bioactive lipid mediators that regulate many aspects of epidermal and dermal homeostasis, including immune and inflammatory reactions. Sebum lipids act as effective antimicrobial agents, shape immune cell communications and contribute to the epidermal lipidome. The essential fatty acid linoleic acid is crucial for the structure of the epidermal barrier, while polyunsaturated fatty acids act as precursors to eicosanoids, octadecanoids and docosanoids through cyclooxygenase, lipoxygenase and cytochrome P450 monooxygenase-mediated reactions, and endocannabinoids and N-acyl ethanolamines. Cross-communication between these families of bioactive lipids suggests that their cutaneous activities should be considered as part of a wider metabolic network that can be targeted to maintain skin health, control inflammation and improve skin pathologies.
Collapse
|
48
|
Song J, Zhang H, Wang Z, Xu W, Zhong L, Cao J, Yang J, Tian Y, Yu D, Ji J, Cao J, Zhang S. The Role of FABP5 in Radiation-Induced Human Skin Fibrosis. Radiat Res 2017; 189:177-186. [PMID: 29215326 DOI: 10.1667/rr14901.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced skin fibrosis is a detrimental and chronic disorder that occurs after radiation exposure. The molecular changes underlying the pathogenesis of radiation-induced fibrosis of human skin have not been extensively reported. Technical advances in proteomics have enabled exploration of the biomarkers and molecular pathogenesis of radiation-induced skin fibrosis, with the potential to broaden our understanding of this disease. In this study, we compared protein expression in radiation-induced fibrotic human skin and adjacent normal tissues using iTRAQ-based proteomics technology. We identified 186 preferentially expressed proteins (53 upregulated and 133 downregulated) between radiogenic fibrotic and normal skin tissues. The differentially expressed proteins included keratins (KRT5, KRT6A, KRT16 and KRT17), caspase-14, fatty acid-binding protein 5 (FABP5), SLC2A14 and resistin. Through bioinformatic analysis of the proximal promoters, common motifs and corresponding transcriptional factors were identified that associate with the dysregulated proteins, including PAX5, TBX1, CLOCK and AP2D. In particular, FABP5 (2.15-fold increase in fibrotic skin tissues), a transporter of hydrophobic fatty acids, was investigated in greater detail. Immunohistochemistry confirmed that the protein level of FABP5 was increased in fibrotic human skin tissues, especially in the epidermis. Overexpression of FABP5 resulted in nuclear translocation of SMAD2 and significant activation of the profibrotic TGF-β signaling pathway in human fibroblast WS1 cells. Moreover, exogenous FABP5 (FABP5-EGFP) could be incorporated by skin cells and intensify TGF-β signaling, indicating a communication between the microenvironment and skin fibrosis. Taken together, our findings illustrate the molecular changes during radiation-induced human skin fibrosis and the critical role of FABP5 in activating the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Jianyuan Song
- a Fujian Medical University Union Hospital, Fuzhou 350001, China.,b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Huojun Zhang
- c Department of Radiation Oncology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Wang
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wanglei Xu
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Li Zhong
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jinming Cao
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianfeng Yang
- d Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China; and
| | - Ye Tian
- e The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Daojiang Yu
- e The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jiang Ji
- e The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jianping Cao
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuyu Zhang
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
49
|
Voegeli R, Monneuse JM, Schoop R, Summers B, Rawlings AV. The effect of photodamage on the female Caucasian facial stratum corneum corneome using mass spectrometry-based proteomics. Int J Cosmet Sci 2017; 39:637-652. [PMID: 28865110 DOI: 10.1111/ics.12426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The effect of photodamage on facial stratum corneum (SC) is still poorly understood. OBJECTIVE To describe the SC proteome from tape strippings of Caucasian SC from photoexposed cheek and photoprotected post-auricular (PA) site, a global analysis of photodamage on the skin will be developed leading to a better understanding of keratinocyte signalling pathways and identification of new molecular targets for the treatment of photoaged skin. METHODS Female Caucasian subjects had nine consecutive tape strippings taken from their cheeks and PA site. Proteins were extracted and the trypsin-digested peptides were analysed by nanochromatography coupled to a high-resolution mass spectrometer. Data-dependent acquisition allowed protein identification that was processed by Paragon algorithm of Protein Pilot software. RESULTS Changes in the levels of epidermal differentiation proteins were apparent indicating poor epidermal differentiation and SC maturation (keratins, cornified envelope (CE) proteins) on photoexposed cheeks. Differences in protease-anti-protease balance were observed for corneodesmolysis (favouring desquamation) and filaggrinolysis (favouring reduced filaggrin processing). 12R-LOX, a CE maturation enzyme, was reduced in photodamaged skin but not transglutaminases. Changes in signal keratinocyte transduction pathway markers were demonstrated especially by reduced levels of downstream signalling markers such as calreticulin (unfolded protein response; UPR) and increased level of stratifin (target of rapamycin; mTOR). Evidence for impaired proteostasis was apparent by reduced levels of a key proteasomal subunit (subunit beta type-6). Finally, key antioxidant proteins were upregulated except catalase. CONCLUSION Clear examples of poor keratinocyte differentiation and associated metabolic and signalling pathways together with reduced SC maturation were identified in photodamaged facial SC. Corneocyte immaturity was evident with changes in CE proteins. Particularly, the reduction in 12R-LOX is a novel finding in photodamaged skin and supports the lack of SC maturation. Moreover, filaggrinolysis was reduced, whereas corneodesmolysis was enhanced. From our results, we propose that there is a poor cross-talk between the keratinocyte endoplasmic reticulum UPR, proteasome network and autophagy machinery that possibly leads to impaired keratinocyte proteostasis. Superimposed on these aberrations is an apparently enhanced mTOR pathway that also contributes to reduced SC formation and maturation. Our results clearly indicate a corneocyte scaffold disorder in photodamaged cheek SC.
Collapse
Affiliation(s)
- R Voegeli
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - J-M Monneuse
- Phylogene S.A., 62, Route Nationale 113, 30620, Bernis, France
| | - R Schoop
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - B Summers
- Photobiology Laboratory, Sefako Makgatho Health Sciences University, Molotlegi St, Medunsa 0204, Pretoria, South Africa
| | - A V Rawlings
- AVR Consulting Ltd., 26 Shavington Way, Northwich, Cheshire CW9 8FH, UK
| |
Collapse
|
50
|
Gaetani M, Chinnici CM, Carreca AP, Di Pasquale C, Amico G, Conaldi PG. Unbiased and quantitative proteomics reveals highly increased angiogenesis induction by the secretome of mesenchymal stromal cells isolated from fetal rather than adult skin. J Tissue Eng Regen Med 2017; 12:e949-e961. [DOI: 10.1002/term.2417] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Massimiliano Gaetani
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| | - Anna Paola Carreca
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| | - Claudia Di Pasquale
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| | - Giandomenico Amico
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| | - Pier Giulio Conaldi
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| |
Collapse
|