1
|
Wang X, Wang Q, Meng L, Tian R, Guo H, Tan Z, Tan Y. Biodistribution-based Administration of cGMP-compliant Human Umbilical Cord Mesenchymal Stem Cells Affects the Therapeutic Effect of Wound Healing. Stem Cell Rev Rep 2024; 20:329-346. [PMID: 37889447 DOI: 10.1007/s12015-023-10644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) are used as therapeutic agents for skin injury therapy, few studies have reported the effects of dosing duration and delivery frequency on wound healing. In addition, before the clinical application of MSCs, it is important to assess whether their usage might influence tumor occurrence. METHODS We described the metabolic patterns of subcutaneous injection of hUC-MSCs using fluorescence tracing and qPCR methods and applied them to the development of drug delivery strategies for promoting wound healing. RESULTS (i) We developed cGMP-compliant hUC-MSC products with critical quality control points for wound healing; (ii) The products did not possess any tumorigenic or tumor-promoting/inhibiting ability in vivo; (iii) Fluorescence tracing and qPCR analyses showed that the subcutaneous application of hUC-MSCs did not result in safety-relevant biodistribution or ectopic migration; (iv) Reinjecting hUC-MSCs after significant consumption significantly improved reepithelialization and dermal regeneration. CONCLUSIONS Our findings provided a reference for controlling the quality of MSC products used for wound healing and highlighted the importance of delivery time and frequency for designing in vivo therapeutic studies.
Collapse
Affiliation(s)
- Xin Wang
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Qiuhong Wang
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Lingjiao Meng
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Ruifeng Tian
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Huizhen Guo
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Zengqi Tan
- School of Medicine, Northwest University, Xi'an, China
| | - Yi Tan
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China.
- Shandong Yinfeng Life Science Research Institute, Ji'nan, People's Republic of China.
| |
Collapse
|
2
|
Dolivo DM, Sun LS, Rodrigues AE, Galiano RD, Mustoe TA, Hong SJ. Epidermal Potentiation of Dermal Fibrosis: Lessons from Occlusion and Mucosal Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:510-519. [PMID: 36740181 DOI: 10.1016/j.ajpath.2023.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Fibrotic skin conditions, such as hypertrophic and keloid scars, frequently result from injury to the skin and as sequelae to surgical procedures. The development of skin fibrosis may lead to patient discomfort, limitation in range of motion, and cosmetic disfigurement. Despite the frequency of skin fibrosis, treatments that seek to address the root causes of fibrosis are lacking. Much research into fibrotic pathophysiology has focused on dermal pathology, but less research has been performed to understand aberrations in fibrotic epidermis, leading to an incomplete understanding of dermal fibrosis. The literature on occlusion, a treatment modality known to reduce dermal fibrosis, in part through accelerating wound healing and regulating aberrant epidermal inflammation that otherwise drives fibrosis in the dermis, is reviewed. There is a focus on epidermal-dermal crosstalk, which contributes to the development and maintenance of dermal fibrosis, an underemphasized interplay that may yield novel strategies for treatment if understood in more detail.
Collapse
Affiliation(s)
- David M Dolivo
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lauren S Sun
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Adrian E Rodrigues
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert D Galiano
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Thomas A Mustoe
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Seok Jong Hong
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
3
|
Venkatraman A, Hawkins J, McCain R, Duan C, Cannes do Nascimento N, Cox A, Sivasankar MP. The role of systemic dehydration in vocal fold healing: Preliminary findings. Laryngoscope Investig Otolaryngol 2022; 7:1936-1942. [PMID: 36544957 PMCID: PMC9764801 DOI: 10.1002/lio2.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 01/03/2023] Open
Abstract
Rationale Systemic dehydration negatively alters the expression of vocal fold inflammatory and cell junction markers. These biological changes can have downstream effects on the healing processes of injured vocal folds. In the dermis, reduced hydration prolongs inflammation and delays healing. It is unknown whether this biological effect is observed in vocal fold tissue. Objective To investigate the effects of systemic dehydration on vocal fold healing outcomes following acute, bilateral vocal fold injury in a rodent model. Methods Eighteen systemic dehydrated and 18 euhydrated adult male Sprague Dawley rats experienced bilateral vocal fold injuries or no injury (N = 9/group). Vocal fold gene expression levels of inflammatory mediators and epithelial cell junction markers were measured 24 h post-injury. Results Pro-inflammatory gene markers (IL-1β; TNF-α) were differentially expressed in response to systemic dehydration with vocal fold injury compared to non-injury. Epithelial cell junction markers (Cadherin-3, Desmoglein-1) also exhibited divergent trends following systemic dehydration, but these data were not statistically significant. Conclusions Systemic dehydration may affect cellular vocal fold healing processes within 24 h. These findings lay the groundwork for further investigation of how hydration status can affect vocal fold tissue recovery and influence clinical care.
Collapse
Affiliation(s)
- Anumitha Venkatraman
- Department of Speech, Language, and Hearing SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Jan Hawkins
- Department of Veterinary Clinical SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Robyn McCain
- Center for Comparative and Translation ResearchPurdue UniversityWest LafayetteIndianaUSA
| | - Chenwei Duan
- Department of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | | | - Abigail Cox
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - M. Preeti Sivasankar
- Department of Speech, Language, and Hearing SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
4
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
5
|
Effect of Mortalin on Scar Formation in Human Dermal Fibroblasts and a Rat Incisional Scar Model. Int J Mol Sci 2022; 23:ijms23147918. [PMID: 35887263 PMCID: PMC9318157 DOI: 10.3390/ijms23147918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Wound healing is a complicated cascading process; disequilibrium among reparative processes leads to the formation of pathologic scars. Herein, we explored the role of mortalin in scar formation and its association with the interleukin-1α receptor using in vitro and in vivo models. To investigate the effects of mortalin, we performed an MTT cell viability assay, qRT-PCR, and Western blot analyses, in addition to immunofluorescence and immunoprecipitation studies using cultured fibroblasts. A rat incisional wound model was used to evaluate the effect of a mortalin-specific shRNA (dE1-RGD/GFP/shMot) Ad vector in scar tissue. In vitro, the mortalin-treated human dermal fibroblast displayed a significant increase in proliferation of type I collagen, α-smooth muscle actin, transforming growth factor-β, phospho-Smad2/3-complex, and NF-κB levels. Immunofluorescence staining revealed markedly increased mortalin and interleukin-1α receptor protein in keloid tissue compared to those in normal tissue, suggesting that the association between mortalin and IL-1α receptor was responsible for the fibrogenic effect. In vivo, mortalin-specific shRNA-expressing Ad vectors significantly decreased the scar size and type-I-collagen, α-SMA, and phospho-Smad2/3-complex expression in rat incisional scar tissue. Thus, dE1-RGD/GEP/shMot can inhibit the TGF-β/α-SMA axis and NF-κB signal pathways in scar formation, and blocking endogenous mortalin could be a potential therapeutic target for keloids.
Collapse
|
6
|
Reduced hydration regulates pro-inflammatory cytokines via CD14 in barrier function-impaired skin. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166482. [DOI: 10.1016/j.bbadis.2022.166482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022]
|
7
|
Mirastschijski U, Jiang D, Rinkevich Y. Genital Wound Repair and Scarring. Med Sci (Basel) 2022; 10:23. [PMID: 35466231 PMCID: PMC9036227 DOI: 10.3390/medsci10020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Skin wound repair has been the central focus of clinicians and scientists for almost a century. Insights into acute and chronic wound healing as well as scarring have influenced and ameliorated wound treatment. Our knowledge of normal skin notwithstanding, little is known of acute and chronic wound repair of genital skin. In contrast to extra-genital skin, hypertrophic scarring is uncommon in genital tissue. Chronic wound healing disorders of the genitals are mostly confined to mucosal tissue diseases. This article will provide insights into the differences between extra-genital and genital skin with regard to anatomy, physiology and aberrant wound repair. In light of fundamental differences between genital and normal skin, it is recommended that reconstructive and esthetic surgery should exclusively be performed by specialists with profound expertise in genital wound repair.
Collapse
Affiliation(s)
- Ursula Mirastschijski
- Mira-Beau Gender Esthetics Berlin, 10777 Berlin, Germany
- Wound Repair Unit, CBIB, Department of Biology and Biochemistry, University of Bremen, 28359 Bremen, Germany
| | - Dongsheng Jiang
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 81377 München, Germany; (D.J.); (Y.R.)
| | - Yuval Rinkevich
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 81377 München, Germany; (D.J.); (Y.R.)
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377 München, Germany
| |
Collapse
|
8
|
Dolivo D, Rodrigues A, Galiano R, Hong SJ, Mustoe T. Letter to the Editor regarding "Olfactomedin 4 regulates migration and proliferation of immortalized non-transformed keratinocytes through modulation of the cell cycle machinery and actin cytoskeleton remodeling". Exp Cell Res 2022; 416:113151. [PMID: 35421366 DOI: 10.1016/j.yexcr.2022.113151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Affiliation(s)
- David Dolivo
- Department of Surgery-Northwestern University the Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Adrian Rodrigues
- Department of Surgery-Northwestern University the Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Robert Galiano
- Department of Surgery-Northwestern University the Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Seok Jong Hong
- Department of Surgery-Northwestern University the Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Thomas Mustoe
- Department of Surgery-Northwestern University the Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
9
|
Zhang D, Li B, Zhao M. Therapeutic Strategies by Regulating Interleukin Family to Suppress Inflammation in Hypertrophic Scar and Keloid. Front Pharmacol 2021; 12:667763. [PMID: 33959031 PMCID: PMC8093926 DOI: 10.3389/fphar.2021.667763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic scar (HS) and keloid are fibroproliferative disorders (FPDs) of the skin due to aberrant wound healing, which cause disfigured appearance, discomfort, dysfunction, psychological stress, and patient frustration. The unclear pathogenesis behind HS and keloid is partially responsible for the clinical treatment stagnancy. However, there are now increasing evidences suggesting that inflammation is the initiator of HS and keloid formation. Interleukins are known to participate in inflammatory and immune responses, and play a critical role in wound healing and scar formation. In this review, we summarize the function of related interleukins, and focus on their potentials as the therapeutic target for the treatment of HS and keloid.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bo Li
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Muxin Zhao
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
McCracken JM, Balaji S, Keswani SG, Hakim JCE. An Avant-Garde Model of Injury-Induced Regenerative Vaginal Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:165-173. [PMID: 32602816 PMCID: PMC7906868 DOI: 10.1089/wound.2020.1198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: To design and validate a novel murine model of full-thickness (FT) vaginal wound healing that mirrors postinjury tissue repair and underscores the impact of estrogen signaling-driven healing kinetics, inflammation, and neovascularization. Approach: Five-week-old female CD1 mice were subjected to two 1-mm FT wounds. To assess wound healing kinetics, vaginas were harvested at 6, 12, 18, 24, 48, and 72 h and 7 days postinjury. Wounds from all time points were analyzed by hematoxylin and eosin and trichrome to, respectively, assess the rate of wound closure and tissue deposition. Inflammatory leukocyte (CD45), neutrophil (Ly6G), and macrophage (F480 and CD206) infiltration was examined by immunohistochemistry (IHC) and the resulting anti-inflammatory M2 (CD206)/total (F480) macrophage ratio quantified. Neovascularization (CD31) and estrogen receptor-α (ERα) expression levels were similarly determined by IHC. Results: We observed rapid healing with resolution of mucosal integrity by 48 h (p < 0.05), and overall neutrophils and polarized type 2 macrophages (M2) apexed at 12 h and reduced to near control levels by day 7 postinjury. Tissue repair was virtually indistinguishable from the surrounding vagina. CD31+ vessels increased between 12 h and day 7 and ERα trended to decrease at 12 h postinjury and rebound at day 7 to uninjured levels. Innovation: A proof-of-concept murine model to study vaginal wound healing kinetics and postinjury regenerative repair in the vagina was developed and verified. Conclusion: We surmise that murine vaginal mucosal repair is accelerated and potentially regulated by estrogen signaling through the ERα, thus providing a cellular and molecular foundation to understand vaginal healing responses to injury.
Collapse
Affiliation(s)
- Jennifer M. McCracken
- Division of Pediatric and Adolescent Gynecology, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Swathi Balaji
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Sundeep G. Keswani
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Julie C.-E. Hakim
- Division of Pediatric and Adolescent Gynecology, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
11
|
Raina N, Rani R, Gupta M. Angiogenesis: Aspects in wound healing. ENDOTHELIAL SIGNALING IN VASCULAR DYSFUNCTION AND DISEASE 2021:77-90. [DOI: 10.1016/b978-0-12-816196-8.00010-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Pashos NC, Graham DM, Burkett BJ, O'Donnell B, Sabol RA, Helm J, Martin EC, Bowles AC, Heim WM, Caronna VC, Miller KS, Grasperge B, Sullivan S, Chaffin AE, Bunnell BA. Acellular Biologic Nipple-Areolar Complex Graft: In Vivo Murine and Nonhuman Primate Host Response Evaluation. Tissue Eng Part A 2020; 26:872-885. [PMID: 31950890 PMCID: PMC7462026 DOI: 10.1089/ten.tea.2019.0222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
There are more than 3 million breast cancer survivors living in the United States of which a significant number have undergone mastectomy followed by breast and nipple-areolar complex (NAC) reconstruction. Current strategies for NAC reconstruction are dependent on nonliving or nonpermanent techniques, including tattooing, nipple prosthetics, or surgical nipple-like structures. Described herein is a tissue engineering approach demonstrating the feasibility of an allogeneic acellular graft for nipple reconstruction. Nonhuman primate (NHP)-derived NAC tissues were decellularized and their extracellular matrix components analyzed by both proteomic and histological analyses. Decellularized NHP nipple tissue showed the removal of intact cells and greatly diminished profiles for intracellular proteins, as compared with intact NHP nipple tissue. We further evaluated the biocompatibility of decellularized grafts and their potential to support host-mediated neovascularization against commercially available acellular dermal grafts by performing in vivo studies in a murine model. A follow-up NHP pilot study evaluated the host-mediated neovascularization and re-epithelialization of onlay engrafted decellularized NAC grafts. The murine model revealed greater neovascularization in the decellularized NAC than in the commercially available control grafts, with no observed biocompatibility issues. The in vivo NHP model confirmed that the decellularized NAC grafts encourage neovascularization as well as re-epithelialization. These results support the concept that a biologically derived acellular nipple graft is a feasible approach for nipple reconstruction, supporting neovascularization in the absence of adverse systemic responses. Impact statement Currently, women in the United States most often undergo a mastectomy, followed by reconstruction, after being diagnosed with breast cancer. These breast cancer survivors are often left with nipple-areolar complex (NAC) reconstructions that are subsatisfactory, nonliving, and/or nonpermanent. Utilizing an acellular biologically derived whole NAC graft would allow these patients a living and permanent tissue engineering solution to nipple reconstruction.
Collapse
Affiliation(s)
- Nicholas C. Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Bioinnovation PhD Program, Tulane University, School of Science and Engineering, New Orleans, Louisiana, USA
- BioAesthetics Corporation, Research Triangle Park, North Carolina, USA
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - David M. Graham
- BioAesthetics Corporation, Research Triangle Park, North Carolina, USA
| | | | - Ben O'Donnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Bioinnovation PhD Program, Tulane University, School of Science and Engineering, New Orleans, Louisiana, USA
| | - Rachel A. Sabol
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Joshua Helm
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth C. Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Annie C. Bowles
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - William M. Heim
- BioAesthetics Corporation, Research Triangle Park, North Carolina, USA
| | - Vince C. Caronna
- BioAesthetics Corporation, Research Triangle Park, North Carolina, USA
| | - Kristin S. Miller
- Department of Biomedical Engineering, Tulane University, School of Science and Engineering, New Orleans, Louisiana, USA
| | - Brooke Grasperge
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Scott Sullivan
- Center for Restorative Breast Surgery, New Orleans, Louisiana, USA
| | - Abigail E. Chaffin
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
13
|
Knockdown of sodium channel Na x reduces dermatitis symptoms in rabbit skin. J Transl Med 2020; 100:751-761. [PMID: 31925326 DOI: 10.1038/s41374-020-0371-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 12/19/2022] Open
Abstract
The skin plays a critical role in maintenance of water homeostasis. Dysfunction of the skin barrier causes not only delayed wound healing and hypertrophic scarring, but it also contributes to the development of various skin diseases. Dermatitis is a chronic inflammatory skin disorder that has several different subtypes. Skin of contact dermatitis and atopic dermatitis (AD) show epidermal barrier dysfunction. Nax is a sodium channel that regulates inflammatory gene expression in response to perturbation of barrier function of the skin. We found that in vivo knockdown of Nax using RNAi reduced hyperkeratosis and keratinocyte hyperproliferation in rabbit ear dermatitic skin. Increased infiltration of inflammatory cells (mast cells, eosinophils, T cells, and macrophages), a characteristic of dermatitis, was reduced by Nax knockdown. Upregulation of PAR-2 and thymic stromal lymphopoietin (TSLP), which induce Th2-mediated allergic responses, was inhibited by Nax knockdown. In addition, expression of COX-2, IL-1β, IL-8, and S100A9, which are downstream genes of Nax and are involved in dermatitis pathogenesis, were also decreased by Nax knockdown. Our data show that knockdown of Nax relieved dermatitis symptoms in vivo and indicate that Nax is a novel therapeutic target for dermatitis, which currently has limited therapeutic options.
Collapse
|
14
|
Site-Specific Expression Pattern of PIWI-Interacting RNA in Skin and Oral Mucosal Wound Healing. Int J Mol Sci 2020; 21:ijms21020521. [PMID: 31947648 PMCID: PMC7013508 DOI: 10.3390/ijms21020521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/11/2020] [Indexed: 12/24/2022] Open
Abstract
The oral mucosa exhibits exceptional healing capability when compared to skin. Recent studies suggest that intrinsic differences in coding genes and regulatory small non-coding RNA (sncRNA) genes (e.g., microRNAs) may underlie the exceptional healing that occurs in the oral mucosa. Here, we investigate the role of a novel class of sncRNA-Piwi-interacting RNA (piRNA)-in the tissue-specific differential response to injury. An abundance of piRNAs was detected in both skin and oral mucosal epithelium during wound healing. The expression of PIWI genes (the obligate binding partners of piRNAs) was also detected in skin and oral wound healing. This data suggested that PIWI-piRNA machinery may serve an unknown function in the highly orchestrated wound healing process. Furthermore, unique tissue-specific piRNA profiles were obtained in the skin and oral mucosal epithelium, and substantially more changes in piRNA expression were observed during skin wound healing than oral mucosal wound healing. Thus, we present the first clue suggesting a role of piRNA in wound healing, and provide the first site-specific piRNA profile of skin and oral mucosal wound healing. These results serve as a foundation for the future investigation of the functional contribution(s) of piRNA in wound repair and tissue regeneration.
Collapse
|
15
|
Therapeutic effectiveness of type I interferon in vulvovaginal candidiasis. Microb Pathog 2019; 134:103562. [PMID: 31158491 DOI: 10.1016/j.micpath.2019.103562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/15/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022]
Abstract
Vulvovaginal candidiasis (VVC) affects approximately 75% of all women of during their reproductive years. Previously, we reported that recombinant human IFN α-2b (rhIFNα-2b) protects vaginal epithelial cells from candidal injury in vitro. In the current study, we examined the effects of rhIFNα-2b (1.25 mg/mL, 10% inhibition concentration) on fungal clearance, immunocompetent cytokine responses, non-B IgG production, and tissue repair in a rat model of VVC. Following rhIFNα-2b treatment, the negative pathogen conversion rate reached 50.0% (3/6). Although rhIFNα-2b exhibited a limited ability to decrease inflammation and injury progression (P > 0.05), the Flameng mitochondrial injury scores were significantly reduced (P < 0.001) compared with those of the Model rats. After rhIFNα-2b treatment, the levels of IFN-γ and epithelial-derived IgG (tested by RP215) in vaginal tissues were significantly increased with those in the Control and Model groups (both P < 0.001), while there were no significant differences in the levels of IL-4 and IL-17 (P > 0.05). This is the first study to address the efficacy of rhIFNα-2b in treating VVC in a rat model, providing a theoretical basis for development of this promising treatment for clinical use.
Collapse
|
16
|
Simões A, Chen L, Chen Z, Zhao Y, Gao S, Marucha PT, Dai Y, DiPietro LA, Zhou X. Differential microRNA profile underlies the divergent healing responses in skin and oral mucosal wounds. Sci Rep 2019; 9:7160. [PMID: 31073224 PMCID: PMC6509259 DOI: 10.1038/s41598-019-43682-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/27/2019] [Indexed: 12/31/2022] Open
Abstract
Oral mucosal wounds heal faster than skin wounds, yet the role of microRNAs in this differential healing has never been examined. To delineate the role of microRNAs in this site-specific injury response, we first compared the microRNAome of uninjured skin and oral mucosa in mice. A total of 53 tissue-specific microRNAs for skin and oral mucosa epithelium were identified. The most striking difference was the high abundance of miR-10a/b in skin (accounting for 21.10% of the skin microRNAome) as compared to their low expression in oral mucosa (2.87%). We further examined the dynamic changes of microRNAome throughout the time course of skin and oral mucosal wound healing. More differentially expressed microRNAs were identified in skin wounds than oral wounds (200 and 33, respectively). More specifically, miR-10a/b was significantly down-regulated in skin but not oral wounds. In contrast, up-regulation of miR-21 was observed in both skin and oral wounds. The therapeutic potential of miR-10b and miR-21 in accelerating wound closure was demonstrated in in vitro assays and in a murine skin wound model. Thus, we provided the first site-specific microRNA profile of skin and oral mucosal wound healing, and demonstrate the feasibility of a microRNA-based therapy for promoting wound closure.
Collapse
Affiliation(s)
- Alyne Simões
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,Oral Biology Laboratory, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Lin Chen
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Zujian Chen
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yan Zhao
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shang Gao
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Phillip T Marucha
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,College of Dentistry, Oregon Health and Sciences University, Portland, OR, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Luisa A DiPietro
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Graduate College, University of Illinois at Chicago, Chicago, IL, USA.
| | - Xiaofeng Zhou
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Graduate College, University of Illinois at Chicago, Chicago, IL, USA. .,UIC Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Healing Time Correlates With the Quality of Scaring: Results From a Prospective Randomized Control Donor Site Trial. Dermatol Surg 2018; 44:521-527. [DOI: 10.1097/dss.0000000000001345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
S100A12 Induced in the Epidermis by Reduced Hydration Activates Dermal Fibroblasts and Causes Dermal Fibrosis. J Invest Dermatol 2016; 137:650-659. [PMID: 27840235 DOI: 10.1016/j.jid.2016.10.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/05/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022]
Abstract
Disruption of the barrier function of skin increases transepidermal water loss and up-regulates inflammatory pathways in the epidermis. Consequently, sustained expression of proinflammatory cytokines from the epidermis is associated with dermal scarring. We found increased expression of S100A12 in the epidermis of human hypertrophic and keloid scar. Exposing a stratified keratinocyte culture to a reduced-hydration environment increased the expression and secretion of S100A12 by nearly 70%, which in turn activated dermal fibroblasts in vitro. Direct treatment of fibroblasts with conditioned medium collected from stratified keratinocyte culture under reduced-hydration conditions activated fibroblasts, shown by up-regulation of α-smooth muscle actin, pro-collagen 1, and F-actin expression. However, this fibroblast activation was not found when S100A12 was knocked down by RNA interference in keratinocytes. Pharmacological blockade of S100A12 receptors, RAGE, or TLR4 inhibited S100A12-induced fibroblast activation. Local delivery of S100A12 resulted in a marked hypertrophic scar formation in a validated rabbit hypertrophic scar model compared with saline control. Our findings indicate that S100A12 functions as a proinflammatory cytokine and suggest that S100A12 is a potential therapeutic target for dermal scarring.
Collapse
|
19
|
DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 2016; 100:979-984. [PMID: 27406995 DOI: 10.1189/jlb.4mr0316-102r] [Citation(s) in RCA: 379] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022] Open
Abstract
All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.
Collapse
Affiliation(s)
- Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Xu W, Hong SJ, Zhong A, Xie P, Jia S, Xie Z, Zeitchek M, Niknam-Bienia S, Zhao J, Porterfield DM, Surmeier DJ, Leung KP, Galiano RD, Mustoe TA. Sodium channel Nax is a regulator in epithelial sodium homeostasis. Sci Transl Med 2016; 7:312ra177. [PMID: 26537257 DOI: 10.1126/scitranslmed.aad0286] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanisms by which the epidermis responds to disturbances in barrier function and restores homeostasis are unknown. With a perturbation of the epidermal barrier, water is lost, resulting in an increase in extracellular sodium concentration. We demonstrate that the sodium channel Nax functions as a sodium sensor. With increased extracellular sodium, Nax up-regulates prostasin, which results in activation of the sodium channel ENaC, resulting in increased sodium flux and increased downstream mRNA synthesis of inflammatory mediators. Nax is present in multiple epithelial tissues, and up-regulation of its downstream genes is found in hypertrophic scars. In animal models, blocking Nax expression results in improvement in scarring and atopic dermatitis-like symptoms, both of which are pathological conditions characterized by perturbations in barrier function. These findings support an important role for Nax in maintaining epithelial homeostasis.
Collapse
Affiliation(s)
- Wei Xu
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Seok Jong Hong
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aimei Zhong
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ping Xie
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shengxian Jia
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael Zeitchek
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Solmaz Niknam-Bienia
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jingling Zhao
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Department of Burns, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - D James Surmeier
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kai P Leung
- Microbiology Branch, U.S. Army Dental and Trauma Research Detachment, Institute of Surgical Research, JB Fort Sam Houston, San Antonio, TX 78234, USA
| | - Robert D Galiano
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Thomas A Mustoe
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Wang LL, Zhao R, Li JY, Li SS, Liu M, Wang M, Zhang MZ, Dong WW, Jiang SK, Zhang M, Tian ZL, Liu CS, Guan DW. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing. Eur J Pharmacol 2016; 786:128-136. [PMID: 27268717 DOI: 10.1016/j.ejphar.2016.06.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 12/19/2022]
Abstract
Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing. To verify this hypothesis, mice excisional wounds were created and treated with highly selective CB2 receptor agonist GP1a (1-(2,4-dichlorophenyl)-6-methyl- N-piperidin-1-yl-4H-indeno[1,2-c]pyrazole-3-carboxamide) and antagonist AM630 ([6-iodo-2- methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone) respectively. The inflammatory infiltration, cytokine expression, fibrogenesis, and wound re-epithelialization were analyzed. After CB2 receptor activation, neutrophil and macrophage infiltrations were reduced, and expressions of monocyte chemotactic protein (MCP)-1, stromal cell-derived factor (SDF)-1, Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF)-A were decreased. Keratinocyte proliferation and migration were enhanced. Wound re-epithelialization was accelerated. Fibroblast accumulation and fibroblast-to-myofibroblast transformation were attenuated, and expression of pro-collagen I was decreased. Furthermore, HaCaT cells in vitro were treated with GP1a or AM630, which revealed that CB2 receptor activation promoted keratinocyte migration by inducing the epithelial to mesenchymal transition. These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation. Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Jiao-Yong Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Shan-Shan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Min Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Meng Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Meng-Zhou Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Wen-Wen Dong
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Shu-Kun Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhi-Ling Tian
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Chang-Sheng Liu
- Institute of Forensic Science, Anshan Municipal People's Procuratorate, Anshan, China
| | - Da-Wei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China.
| |
Collapse
|
22
|
Li B, Gao C, Diao JS, Wang DL, Chu FF, Li Y, Wang G, Guo SZ, Xia W. Aberrant Notch signalling contributes to hypertrophic scar formation by modulating the phenotype of keratinocytes. Exp Dermatol 2016; 25:137-42. [PMID: 26566963 DOI: 10.1111/exd.12897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2015] [Indexed: 02/02/2023]
Abstract
Hypertrophic scar (HS) is characterized by fibroblast hyperproliferation and excessive matrix deposition. Aberrant keratinocyte differentiation and their abnormal cytokine secretion are said to contribute to HS by activating fibroblasts. However, the signalling pathway causing the aberrant keratinocytes in HS has remained unidentified thus far. Given that Notch signalling is crucial in initiating keratinocyte differentiation, we hypothesized that Notch signalling contributes to HS by modulating the phenotype of keratinocytes. We found that Notch1, Notch intracellular domain, Jagged1 and Hes-1 were overexpressed in the epidermis of patients with HS. Supernatants from recombinant-Jagged1-treated keratinocyte cultures could accelerate dermal fibroblast proliferation and collagen production. Furthermore, Jagged1 induced keratinocyte differentiation and upregulated the expression of fibrotic factors, including transforming growth factors β1 and β2 , insulin-like growth factor-1, connective tissue growth factor, vascular endothelial growth factor and epidermal growth factor, while DAPT (a Notch inhibitor) significantly suppressed these processes. In a rabbit ear model of HS, local application of DAPT downregulated the production of fibrotic factors in keratinocytes, together with ameliorated scar hyperplasia. Our findings suggest that Notch signalling contributes to HS by modulating keratinocyte phenotype. These results provide new insights into the pathogenesis of HS and indicate a potential therapeutic target.
Collapse
Affiliation(s)
- Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian-Sheng Diao
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Da-Lei Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei-Fei Chu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Li
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shu-Zhong Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Xia
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Xi'an, China
| |
Collapse
|
23
|
Zhong A, Xu W, Zhao J, Xie P, Jia S, Sun J, Galiano RD, Mustoe TA, Hong SJ. S100A8 and S100A9 Are Induced by Decreased Hydration in the Epidermis and Promote Fibroblast Activation and Fibrosis in the Dermis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:109-22. [DOI: 10.1016/j.ajpath.2015.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022]
|
24
|
Wells A, Nuschke A, Yates CC. Skin tissue repair: Matrix microenvironmental influences. Matrix Biol 2015; 49:25-36. [PMID: 26278492 DOI: 10.1016/j.matbio.2015.08.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/31/2022]
Abstract
The process of repair of wounded skin involves intricate orchestration not only between the epidermal and dermal compartments but also between the resident and immigrant cells and the local microenvironment. Only now are we beginning to appreciate the complex roles played by the matrix in directing the outcome of the repair processes, and how this impacts the signals from the various cells. Recent findings speak of dynamic and reciprocal interactions that occurs among the matrix, growth factors, and cells that underlies this integrated process. Further confounding this integration are the physiologic and pathologic situations that directly alter the matrix to impart at least part of the dysrepair that occurs. These topics will be discussed with a call for innovative model systems of direct relevance to the human situation.
Collapse
Affiliation(s)
- Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213 USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA.
| | - Austin Nuschke
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Cecelia C Yates
- Department of Health Development and Promotion, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| |
Collapse
|
25
|
Xu W, Hong SJ, Zeitchek M, Cooper G, Jia S, Xie P, Qureshi HA, Zhong A, Porterfield MD, Galiano RD, Surmeier DJ, Mustoe TA. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin. J Invest Dermatol 2014; 135:796-806. [PMID: 25371970 DOI: 10.1038/jid.2014.477] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/22/2014] [Accepted: 10/05/2014] [Indexed: 02/03/2023]
Abstract
Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.
Collapse
Affiliation(s)
- Wei Xu
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Seok Jong Hong
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael Zeitchek
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Garry Cooper
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shengxian Jia
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ping Xie
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hannan A Qureshi
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aimei Zhong
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marshall D Porterfield
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Robert D Galiano
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas A Mustoe
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
26
|
Xu W, Jia S, Xie P, Zhong A, Galiano RD, Mustoe TA, Hong SJ. The expression of proinflammatory genes in epidermal keratinocytes is regulated by hydration status. J Invest Dermatol 2013; 134:1044-1055. [PMID: 24226202 DOI: 10.1038/jid.2013.425] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 01/08/2023]
Abstract
Mucosal wounds heal more rapidly, exhibit less inflammation, and are associated with minimal scarring when compared with equivalent cutaneous wounds. We previously demonstrated that cutaneous epithelium exhibits an exaggerated response to injury compared with mucosal epithelium. We hypothesized that treatment of injured skin with a semiocclusive dressing preserves the hydration of the skin and results in a wound healing phenotype that more closely resembles that of mucosa. Here we explored whether changes in hydration status alter epidermal gene expression patterns in rabbit partial-thickness incisional wounds. Using microarray studies on injured epidermis, we showed that global gene expression patterns in highly occluded versus non-occluded wounds are distinct. Many genes including IL-1β, IL-8, TNF-α (tumor necrosis factor-α), and COX-2 (cyclooxygenase 2) are upregulated in non-occluded wounds compared with highly occluded wounds. In addition, decreased levels of hydration resulted in an increased expression of proinflammatory genes in human ex vivo skin culture (HESC) and stratified keratinocytes. Hierarchical analysis of genes using RNA interference showed that both TNF-α and IL-1β regulate the expression of IL-8 through independent pathways in response to reduced hydration. Furthermore, both gene knockdown and pharmacological inhibition studies showed that COX-2 mediates the TNF-α/IL-8 pathway by increasing the production of prostaglandin E2 (PGE2). IL-8 in turn controls the production of matrix metalloproteinase-9 in keratinocytes. Our data show that hydration status directly affects the expression of inflammatory signaling in the epidermis. The identification of genes involved in the epithelial hydration pathway provides an opportunity to develop strategies to reduce scarring and optimize wound healing.
Collapse
Affiliation(s)
- Wei Xu
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shengxian Jia
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ping Xie
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Aimei Zhong
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Robert D Galiano
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas A Mustoe
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Seok J Hong
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
27
|
Mustoe TA, Gurjala A. The role of the epidermis and the mechanism of action of occlusive dressings in scarring. Wound Repair Regen 2012; 19 Suppl 1:s16-21. [PMID: 21793961 DOI: 10.1111/j.1524-475x.2011.00709.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The problem of cutaneous scarring has conventionally been approached as a pathology of the dermis. Multiple lines of evidence from the clinic, in vitro experiments, and in vivo animal and human studies, however, increasingly suggest that the epidermis plays a major role in the control of underlying dermal scar. Building on the demonstrated efficacy of silicone gel occlusion, in this paper we review the evidence for epidermal regulation of scar, and propose the novel hypothesis that dermal fibrosis is exquisitely linked to the inflammatory state of the epidermis, which in turn is linked to hydration state as a function of epidermal barrier function. In the spectrum of factors contributing to dermal scar, the epidermis and its downstream effectors offer promising new targets for the development of antiscar therapies.
Collapse
Affiliation(s)
- Thomas A Mustoe
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|