1
|
Li X, Chen Z, Ye W, Yu J, Zhang X, Li Y, Niu Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Xia C, Xia J, Wu J. High-throughput CRISPR technology: a novel horizon for solid organ transplantation. Front Immunol 2024; 14:1295523. [PMID: 38239344 PMCID: PMC10794540 DOI: 10.3389/fimmu.2023.1295523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
2
|
van Amerongen RA, Morton LT, Chaudhari UG, Remst DF, Hagedoorn RS, van den Berg CW, Freund C, Falkenburg JF, Heemskerk MH. Human iPSC-derived preclinical models to identify toxicity of tumor-specific T cells with clinical potential. Mol Ther Methods Clin Dev 2023; 28:249-261. [PMID: 36816758 PMCID: PMC9931760 DOI: 10.1016/j.omtm.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The balance between safety and efficacy of T cell therapies remains challenging and T cell mediated toxicities have occurred. The stringent selection of tumor-specific targets and careful selection of tumor-specific T cells using T cell toxicity screenings are essential. In vitro screening options against vital organs or specialized cell subsets would be preferably included in preclinical pipelines, but options remain limited. Here, we set up preclinical models with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, epicardial cells, and kidney organoids to investigate toxicity risks of tumor-specific T cells more thoroughly. CD8+T cells reactive against PRAME, HA-1H, CD20, or WT1, currently used or planned to be used in phase I/II clinical studies, were included. Using these hiPSC-derived preclinical models, we demonstrated that WT1-specific T cells caused on-target toxicity that correlated with target gene expression. Multiple measures of T cell reactivity demonstrated this toxicity on the level of T cells and hiPSC-derived target cells. In addition, phenotypic analysis illustrated interaction and crosstalk between infiltrated T cells and kidney organoids. In summary, we demonstrated the benefit of hiPSC-derived models in determining toxicity risks of tumor-specific T cells. Furthermore, our data emphasizes the additional value of other measures of T cell reactivity on top of the commonly used cytokine levels.
Collapse
Affiliation(s)
- Rosa A. van Amerongen
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Laura T. Morton
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Umesh G. Chaudhari
- LUMC hiPSC Hotel, Department of Anatomy and Embryology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Dennis F.G. Remst
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Cathelijne W. van den Berg
- Department of Internal Medicine-Nephrology and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Christian Freund
- LUMC hiPSC Hotel, Department of Anatomy and Embryology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | | | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands,Corresponding author: Mirjam H.M. Heemskerk, Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands.
| |
Collapse
|
3
|
Zur RT, Adler G, Shamalov K, Tal Y, Ankri C, Cohen CJ. Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:253-294. [PMID: 35165867 DOI: 10.1007/978-3-030-91311-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an important part of the immune system, T lymphocytes exhibit undoubtedly an important role in targeting and eradicating cancer. However, despite these characteristics, their natural antitumor response may be insufficient. Numerous clinical trials in terminally ill cancer patients testing the design of novel and efficient immunotherapeutic approaches based on the adoptive transfer of autologous tumor-specific T lymphocytes have shown encouraging results. Moreover, this also led to the approval of engineered T-cell therapies in patients. Herein, we will expand on the development and the use of such strategies using tumor-infiltrating lymphocytes or genetically engineered T-cells. We will also comment on the requirements and potential hurdles encountered when elaborating and implementing such treatments as well as the exciting prospects for this kind of emerging personalized medicine therapy.
Collapse
Affiliation(s)
- Raphaëlle Toledano Zur
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Adler
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yair Tal
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chen Ankri
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
4
|
Sutra Del Galy A, Menegatti S, Fuentealba J, Lucibello F, Perrin L, Helft J, Darbois A, Saitakis M, Tosello J, Rookhuizen D, Deloger M, Gestraud P, Socié G, Amigorena S, Lantz O, Menger L. In vivo genome-wide CRISPR screens identify SOCS1 as intrinsic checkpoint of CD4 + T H1 cell response. Sci Immunol 2021; 6:eabe8219. [PMID: 34860579 DOI: 10.1126/sciimmunol.abe8219] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Silvia Menegatti
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Jaime Fuentealba
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | | | - Laetitia Perrin
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Julie Helft
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Aurélie Darbois
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Michael Saitakis
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Jimena Tosello
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Derek Rookhuizen
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Marc Deloger
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Pierre Gestraud
- Bioinformatics and Computational Systems Biology of Cancer, PSL Research University, MINES ParisTech, INSERM U900, Paris 75005, France
| | - Gérard Socié
- AP-HP Hospital Saint Louis, Hematology/Transplantation, Paris 75010, France
| | | | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris 75005, France.,Laboratoire d'immunologie clinique, Institut Curie, Paris 75005, France.,Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Institut Curie, Paris 75005, France
| | - Laurie Menger
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| |
Collapse
|
5
|
De Bousser E, Callewaert N, Festjens N. T Cell Engaging Immunotherapies, Highlighting Chimeric Antigen Receptor (CAR) T Cell Therapy. Cancers (Basel) 2021; 13:6067. [PMID: 34885176 PMCID: PMC8657024 DOI: 10.3390/cancers13236067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
In the past decade, chimeric antigen receptor (CAR) T cell technology has revolutionized cancer immunotherapy. This strategy uses synthetic CARs to redirect the patient's own immune cells to recognize specific antigens expressed on the surface of tumor cells. The unprecedented success of anti-CD19 CAR T cell therapy against B cell malignancies has resulted in its approval by the US Food and Drug Administration (FDA) in 2017. However, major scientific challenges still remain to be addressed for the broad use of CAR T cell therapy. These include severe toxicities, limited efficacy against solid tumors, and immune suppression in the hostile tumor microenvironment. Furthermore, CAR T cell therapy is a personalized medicine of which the production is time- and resource-intensive, which makes it very expensive. All these factors drive new innovations to engineer more powerful CAR T cells with improved antitumor activity, which are reviewed in this manuscript.
Collapse
Affiliation(s)
- Elien De Bousser
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nele Festjens
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| |
Collapse
|
6
|
El-Kadiry AEH, Rafei M, Shammaa R. Cell Therapy: Types, Regulation, and Clinical Benefits. Front Med (Lausanne) 2021; 8:756029. [PMID: 34881261 PMCID: PMC8645794 DOI: 10.3389/fmed.2021.756029] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cell therapy practices date back to the 19th century and continue to expand on investigational and investment grounds. Cell therapy includes stem cell- and non-stem cell-based, unicellular and multicellular therapies, with different immunophenotypic profiles, isolation techniques, mechanisms of action, and regulatory levels. Following the steps of their predecessor cell therapies that have become established or commercialized, investigational and premarket approval-exempt cell therapies continue to provide patients with promising therapeutic benefits in different disease areas. In this review article, we delineate the vast types of cell therapy, including stem cell-based and non-stem cell-based cell therapies, and create the first-in-literature compilation of the different "multicellular" therapies used in clinical settings. Besides providing the nuts and bolts of FDA policies regulating their use, we discuss the benefits of cell therapies reported in 3 therapeutic areas-regenerative medicine, immune diseases, and cancer. Finally, we contemplate the recent attention shift toward combined therapy approaches, highlighting the factors that render multicellular therapies a more attractive option than their unicellular counterparts.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Riam Shammaa
- Canadian Centre for Regenerative Therapy, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
García-Fernández C, Saz A, Fornaguera C, Borrós S. Cancer immunotherapies revisited: state of the art of conventional treatments and next-generation nanomedicines. Cancer Gene Ther 2021; 28:935-946. [PMID: 33837365 DOI: 10.1038/s41417-021-00333-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Nowadays, the landscape of cancer treatments has broadened thanks to the clinical application of immunotherapeutics. After decades of failures, cancer immunotherapy represents an exciting alternative for those patients suffering from a wide variety of cancers, especially for those skin cancers, such as the early stages of melanoma. However, those cancers affecting internal organs still face a long way to success, because of the poor biodistribution of immunotherapies. Here, nanomedicine appears as a hopeful strategy to modulate the biodistribution aiming at target organ accumulation. In this way, efficacy will be improved, while reducing the side effects at the same time. In this review, we aim to highlight the most promising cancer immunotherapeutic strategies. From monoclonal antibodies and their traditional use as targeted therapies to their current use as immune checkpoint inhibitors; as well as adoptive cell transfer therapies; oncolytic viruses, and therapeutic cancer vaccination. Then, we aim to discuss the important role of nanomedicine to improve the performance of these immunotherapeutic tools to finally review the already marketed nanomedicine-based cancer immunotherapies.
Collapse
Affiliation(s)
- Coral García-Fernández
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Anna Saz
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain.
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| |
Collapse
|
8
|
Marton C, Mercier-Letondal P, Galaine J, Godet Y. An unmet need: Harmonization of IL-7 and IL-15 combination for the ex vivo generation of minimally differentiated T cells. Cell Immunol 2021; 363:104314. [PMID: 33677140 DOI: 10.1016/j.cellimm.2021.104314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 11/29/2022]
Abstract
T cell-based adoptive cell transfer therapy is now clinically used to fight cancer with CD19-targeting chimeric antigen receptor T cells. The use of other T cell-based immunotherapies relying on antigen-specific T cells, genetically modified or not, is expanding in various neoplastic diseases. T cell manufacturing has evolved through sophisticated processes to produce T cells with improved therapeutic potential. Clinical-grade manufacturing processes associated with these therapies must meet pharmaceutical requirements and therefore be standardized. Here, we focus on the use of cytokines to expand minimally differentiated T cells, as well as their standardization and harmonization in research and clinical settings.
Collapse
Affiliation(s)
- Chrystel Marton
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.
| | - Patricia Mercier-Letondal
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Jeanne Galaine
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Yann Godet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.
| |
Collapse
|
9
|
Abstract
Cancer immunotherapy aims to promote the activity of cytotoxic T lymphocytes (CTLs) within a tumour, assist the priming of tumour-specific CTLs in lymphoid organs and establish efficient and durable antitumour immunity. During priming, help signals are relayed from CD4+ T cells to CD8+ T cells by specific dendritic cells to optimize the magnitude and quality of the CTL response. In this Review, we highlight the cellular dynamics and membrane receptors that mediate CD4+ T cell help and the molecular mechanisms of the enhanced antitumour activity of CTLs. We outline how deficient CD4+ T cell help reduces the response of CTLs and how maximizing CD4+ T cell help can improve outcomes in cancer immunotherapy strategies.
Collapse
|
10
|
Zhang JL, Zhong XS, Yang SB, Kang X, Li Y, Chen JX, Li WB. Features and therapeutic potential of T-cell receptors in high-grade glioma. Chin Med J (Engl) 2019; 132:1435-1440. [PMID: 31205101 PMCID: PMC6629323 DOI: 10.1097/cm9.0000000000000282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous studies have shown that endogenous T cells play an important role in the prolonged survival time of high-grade glioma (HGG) patients. Our objectives were to investigate the features of T-cell receptor (TCR) repertoires in HGG patients and to elucidate any potential therapeutic value. METHODS During November 2011 and December 2018, tumor tissues and blood samples of 35 patients with HGG who underwent surgery at Beijing Tiantan Hospital or Beijing Shijitan Hospital were selected after surgery. After isolating DNA from samples, multiple rounds of PCR were performed to establish a DNA immune repertoire (IR). Then, the sequences and frequencies of the complementarity-determining 3 (CDR3) region in TCR beta chain (TRB) were identified by high-throughput sequencing and IR analysis. A survival follow-up was conducted monthly thereafter until December 2018. Finally, the t test and Mann-Whitney test were used to compare statistical differences between two sets of data. RESULTS The Shannon diversity index (SHDI) of TRB sequences of HGG patients was significantly lower than that of healthy individuals (7.34 vs. 8.45, P = 0.001). The SHDI of TRB sequences of glioblastoma (GBM) patients with more than 16 months survival time was much higher than that of GBM patients with shorter survival times in both tumor tissues (3.48 ± 0.31 vs. 6.21 ± 0.33, t = -5.49, P = 0.002) and blood cells (6.02 ± 0.66 vs. 7.44 ± 0.32, t = -2.20, P = 0.036). In addition, patients achieved a distinctly higher proportion compared to that of healthy individuals in the proportion of TRBV9 and TRBV5 functional regions (9.83% vs. 6.83%, P = 0.001). Surgical tissue from patients who survived more than 16 months yielded a much higher proportion of TRBV4 and TRBV9 regions (7.14% vs. 3.28%, t = 3.18, P = 0.019). In surgical tissues from two GBM patients who survived for longer than 46 months, we found a potentially therapeutic TCR sequence. CONCLUSIONS HGG patients have less species diversity of TCR repertoires compared with that of healthy individuals. TRBV9 regions in TCRs may be protective factors for long-term survival of GBM patients.
Collapse
Affiliation(s)
- Jie-Lin Zhang
- General Department of Neuro-oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiao-Song Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shou-Bo Yang
- General Department of Neuro-oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xun Kang
- General Department of Neuro-oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yan Li
- Department of Glioma, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Jian-Xin Chen
- Department of Glioma, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Wen-Bin Li
- General Department of Neuro-oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
11
|
Tendeiro Rego R, Morris EC, Lowdell MW. T-cell receptor gene-modified cells: past promises, present methodologies and future challenges. Cytotherapy 2019; 21:341-357. [PMID: 30655164 DOI: 10.1016/j.jcyt.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Immunotherapy constitutes an exciting and rapidly evolving field, and the demonstration that genetically modified T-cell receptors (TCRs) can be used to produce T-lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. Overall, TCR-modified T cells have the ability to target a wide variety of self and non-self targets through the normal biology of a T cell. Although major histocompatibility complex (MHC)-restricted and dependent on co-receptors, genetically engineered TCRs still present a number of characteristics that ensure they are an important alternative strategy to chimeric antigen receptors (CARs), and high-affinity TCRs can now be successfully engineered with the potential to enhance therapeutic efficacy while minimizing adverse events. This review will focus on the main characteristics of TCR gene-modified cells, their potential clinical application and promise to the field of adoptive cell transfer (ACT), basic manufacturing procedures and characterization protocols and overall challenges that need to be overcome so that redirection of TCR specificity may be successfully translated into clinical practice, beyond early-phase clinical trials.
Collapse
Affiliation(s)
- Rita Tendeiro Rego
- UCL Institute of Immunity and Transplantation, London, UK; Centre for Cell, Gene & Tissue Therapeutics, Royal Free London NHS Foundation Trust, London, UK
| | - Emma C Morris
- UCL Institute of Immunity and Transplantation, London, UK
| | - Mark W Lowdell
- UCL Cancer Institute, Department of Haematology, London, UK
| |
Collapse
|
12
|
Riley TP, Baker BM. The intersection of affinity and specificity in the development and optimization of T cell receptor based therapeutics. Semin Cell Dev Biol 2018; 84:30-41. [DOI: 10.1016/j.semcdb.2017.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
|
13
|
Adoptive cellular therapies: the current landscape. Virchows Arch 2018; 474:449-461. [PMID: 30470934 PMCID: PMC6447513 DOI: 10.1007/s00428-018-2484-0] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
For many cancer types, the immune system plays an essential role in their development and growth. Based on these rather novel insights, immunotherapeutic strategies have been developed. In the past decade, immune checkpoint blockade has demonstrated a major breakthrough in cancer treatment and has currently been approved for the treatment of multiple tumor types. Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TIL) or gene-modified T cells expressing novel T cell receptors (TCR) or chimeric antigen receptors (CAR) is another strategy to modify the immune system to recognize tumor cells and thus carry out an anti-tumor effector function. These treatments have shown promising results in various tumor types, and multiple clinical trials are being conducted worldwide to further optimize this treatment modality. Most successful results were obtained in hematological malignancies with the use of CD19-directed CAR T cell therapy and already led to the commercial approval by the FDA. This review provides an overview of the developments in ACT, the associated toxicity, and the future potential of ACT in cancer treatment.
Collapse
|
14
|
Hossain NM, Chapuis AG, Walter RB. T-Cell Receptor-Engineered Cells for the Treatment of Hematologic Malignancies. Curr Hematol Malig Rep 2017; 11:311-7. [PMID: 27095318 DOI: 10.1007/s11899-016-0327-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent attention in adoptive immunotherapy for hematologic malignancies has focused on lymphocytes expressing chimeric antigen receptors. An alternative technique to redirect the immune system toward cancer cells involves the use of T-cells carrying an engineered tumor-recognizing T-cell receptor (TCR). This approach allows targeting of surface or intracellular/nuclear proteins as long as they are processed and presented on the cell surface by human leukocyte antigen molecules. Several trials in advanced solid tumors, particularly melanoma and synovial sarcoma, support the validity of this strategy, although tumor responses have often been short-lived. Emerging data from patients with multiple myeloma and myeloid neoplasms suggest that the benefit of TCR-modified cells may extend to blood cancers. Methodological refinements may be necessary to increase the in vivo persistence and functionality of these cells. Particularly with affinity-enhanced TCRs, however, more effective therapies may increase the potential for serious toxicity due to the unexpected on- or off-target reactivity.
Collapse
Affiliation(s)
- Nasheed M Hossain
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Aude G Chapuis
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA. .,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA. .,Department of Epidemiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Wang M, Zhang C, Song Y, Wang Z, Wang Y, Luo F, Xu Y, Zhao Y, Wu Z, Xu Y. Mechanism of immune evasion in breast cancer. Onco Targets Ther 2017; 10:1561-1573. [PMID: 28352189 PMCID: PMC5359138 DOI: 10.2147/ott.s126424] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Breast cancer (BC) is the most common malignant tumor among women, with high morbidity and mortality. Its onset, development, metastasis, and prognosis vary among individuals due to the interactions between tumors and host immunity. Many diverse mechanisms have been associated with BC, with immune evasion being the most widely studied to date. Tumor cells can escape from the body’s immune response, which targets abnormal components and foreign bodies, using different approaches including modification of surface antigens and modulation of the surrounding environment. In this review, we summarize the mechanisms and factors that impact the immunoediting process and analyze their functions in detail.
Collapse
Affiliation(s)
| | - Changwang Zhang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | | | | | | | - Yi Zhao
- Department of Breast Surgery
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | | |
Collapse
|
16
|
Klebanoff CA, Scott CD, Leonardi AJ, Yamamoto TN, Cruz AC, Ouyang C, Ramaswamy M, Roychoudhuri R, Ji Y, Eil RL, Sukumar M, Crompton JG, Palmer DC, Borman ZA, Clever D, Thomas SK, Patel S, Yu Z, Muranski P, Liu H, Wang E, Marincola FM, Gros A, Gattinoni L, Rosenberg SA, Siegel RM, Restifo NP. Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J Clin Invest 2016; 126:318-34. [PMID: 26657860 PMCID: PMC4701537 DOI: 10.1172/jci81217] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 10/26/2015] [Indexed: 12/23/2022] Open
Abstract
Adoptive cell transfer (ACT) of purified naive, stem cell memory, and central memory T cell subsets results in superior persistence and antitumor immunity compared with ACT of populations containing more-differentiated effector memory and effector T cells. Despite a clear advantage of the less-differentiated populations, the majority of ACT trials utilize unfractionated T cell subsets. Here, we have challenged the notion that the mere presence of less-differentiated T cells in starting populations used to generate therapeutic T cells is sufficient to convey their desirable attributes. Using both mouse and human cells, we identified a T cell-T cell interaction whereby antigen-experienced subsets directly promote the phenotypic, functional, and metabolic differentiation of naive T cells. This process led to the loss of less-differentiated T cell subsets and resulted in impaired cellular persistence and tumor regression in mouse models following ACT. The T memory-induced conversion of naive T cells was mediated by a nonapoptotic Fas signal, resulting in Akt-driven cellular differentiation. Thus, induction of Fas signaling enhanced T cell differentiation and impaired antitumor immunity, while Fas signaling blockade preserved the antitumor efficacy of naive cells within mixed populations. These findings reveal that T cell subsets can synchronize their differentiation state in a process similar to quorum sensing in unicellular organisms and suggest that disruption of this quorum-like behavior among T cells has potential to enhance T cell-based immunotherapies.
Collapse
Affiliation(s)
- Christopher A. Klebanoff
- Clinical Investigator Development Program and
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Christopher D. Scott
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Anthony J. Leonardi
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Tori N. Yamamoto
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anthony C. Cruz
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Claudia Ouyang
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Madhu Ramaswamy
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
- MedImmune, Gaithersburg, Maryland, USA
| | - Rahul Roychoudhuri
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Yun Ji
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Experimental Transplantation and Immunology Branch, NCI, NIH, Bethesda, Maryland, USA
| | - Robert L. Eil
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Madhusudhanan Sukumar
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Joseph G. Crompton
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Douglas C. Palmer
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Zachary A. Borman
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - David Clever
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Stacy K. Thomas
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Shashankkumar Patel
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Zhiya Yu
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Pawel Muranski
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- National Heart, Lung, and Blood Institute, and
| | - Hui Liu
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Ena Wang
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
- Sidra Medical and Research Centre, Doha, Qatar
| | - Francesco M. Marincola
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
- Sidra Medical and Research Centre, Doha, Qatar
| | - Alena Gros
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Luca Gattinoni
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Experimental Transplantation and Immunology Branch, NCI, NIH, Bethesda, Maryland, USA
| | - Steven A. Rosenberg
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Richard M. Siegel
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Nicholas P. Restifo
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Yang J, Lu H, Guo R, Yan D, Ye P, Jin L, Chen C, Cao H, Diao H, Li L. Molecular profile of the T cell receptor beta variable in peripheral blood lymphocytes from chronic asymptomatic HBV carriers. Pathog Dis 2014; 73:1-9. [PMID: 25722488 DOI: 10.1093/femspd/ftu018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Renyong Guo
- Department of Laboratory Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Ping Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Linfeng Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Chunlei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
18
|
Tools and methods for identification and analysis of rare antigen-specific T lymphocytes. EXPERIENTIA SUPPLEMENTUM (2012) 2014; 104:73-88. [PMID: 24214619 DOI: 10.1007/978-3-0348-0726-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T lymphocytes are essential as effector and memory cells for immune defense against infections and as regulatory T cells in the establishment and maintenance of immune tolerance. However, they are also involved in immune pathology being effectors in autoimmune and allergic diseases or suppressors of immunity in cancer, and they often cause problems in transplantation. Therefore, strategies are being developed that allow the in vivo amplification or isolation, in vitro expansion and genetic manipulation of beneficial T cells for adoptive cell therapies or for the tolerization, or elimination of pathogenic T cells. The major goal is to make use of the exquisite antigen specificity of T cells to develop targeted strategies and to develop techniques that allow for the identification and depletion or enrichment of very often rare antigen-specific naïve as well as effector and memory T cells. Such techniques are very useful for immune monitoring of T cell responses in diagnostics and vaccination and for the development of T cell-based assays for the replacement of animal testing in immunotoxicology to identify contact allergens and drugs that cause adverse reactions.
Collapse
|
19
|
Cheadle EJ, Gornall H, Baldan V, Hanson V, Hawkins RE, Gilham DE. CAR T cells: driving the road from the laboratory to the clinic. Immunol Rev 2013; 257:91-106. [DOI: 10.1111/imr.12126] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Eleanor J. Cheadle
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
- Targeted Therapy Group; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - Hannah Gornall
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - Vania Baldan
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - Vivien Hanson
- Transplantation Laboratory; Oxford University Hospitals NHS Foundation Trust; Oxford UK
| | - Robert E. Hawkins
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - David E. Gilham
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| |
Collapse
|
20
|
Engineered T cells for cancer treatment. Cytotherapy 2013; 16:713-33. [PMID: 24239105 DOI: 10.1016/j.jcyt.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 01/08/2023]
Abstract
Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate fibrotic tissue and kill antigen-expressing tumor cells. Various groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence or migratory capacity and increase safety. This review focuses on recent developments in T cell engineering, discusses the clinical application of these engineered cell products and outlines future prospects for this therapeutic modality.
Collapse
|
21
|
Kobayashi E, Mizukoshi E, Kishi H, Ozawa T, Hamana H, Nagai T, Nakagawa H, Jin A, Kaneko S, Muraguchi A. A new cloning and expression system yields and validates TCRs from blood lymphocytes of patients with cancer within 10 days. Nat Med 2013; 19:1542-6. [PMID: 24121927 DOI: 10.1038/nm.3358] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/08/2013] [Indexed: 12/19/2022]
Abstract
Antigen-specific T cell therapy, or T cell receptor (TCR) gene therapy, is a promising immunotherapy for infectious diseases and cancers. However, a suitable rapid and direct screening system for antigen-specific TCRs is not available. Here, we report an efficient cloning and functional evaluation system to determine the antigen specificity of TCR cDNAs derived from single antigen-specific human T cells within 10 d. Using this system, we cloned and analyzed 380 Epstein-Barr virus-specific TCRs from ten healthy donors with latent Epstein-Barr virus infection and assessed the activity of cytotoxic T lymphocytes (CTLs) carrying these TCRs against antigenic peptide-bearing target cells. We also used this system to clone tumor antigen-specific TCRs from peptide-vaccinated patients with cancer. We obtained 210 tumor-associated antigen-specific TCRs and demonstrated the cytotoxic activity of CTLs carrying these TCRs against peptide-bearing cells. This system may provide a fast and powerful approach for TCR gene therapy for infectious diseases and cancers.
Collapse
Affiliation(s)
- Eiji Kobayashi
- 1] Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan. [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Linnemann C, Heemskerk B, Kvistborg P, Kluin RJC, Bolotin DA, Chen X, Bresser K, Nieuwland M, Schotte R, Michels S, Gomez-Eerland R, Jahn L, Hombrink P, Legrand N, Shu CJ, Mamedov IZ, Velds A, Blank CU, Haanen JBAG, Turchaninova MA, Kerkhoven RM, Spits H, Hadrup SR, Heemskerk MHM, Blankenstein T, Chudakov DM, Bendle GM, Schumacher TNM. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat Med 2013; 19:1534-41. [DOI: 10.1038/nm.3359] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 02/06/2013] [Indexed: 01/08/2023]
|
23
|
Yang J, He J, Huang H, Ji Z, Wei L, Ye P, Xu K, Li L. Molecular characterization of T cell receptor beta variable in the peripheral blood T cell repertoire in subjects with active tuberculosis or latent tuberculosis infection. BMC Infect Dis 2013; 13:423. [PMID: 24010943 PMCID: PMC3844601 DOI: 10.1186/1471-2334-13-423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/04/2013] [Indexed: 02/08/2023] Open
Abstract
Background T cells are closely linked to the clinical manifestations of subjects with Mycobacterium tuberculosis (MTB) infection. T cell receptor beta variable (TCRBV) is a signal and indicative molecule on the membrane of T lymphocytes, reflecting the composition and specificity of T cells. The molecular profiles of TCRBV in peripheral blood mononuclear cells (PBMCs) and their subpopulations (CD4+ and CD8+ T cells) from subjects with active tuberculosis (TB) or latent TB infection (LTBI) have not been well described. Methods In 42 subjects with active TB or LTBI, PMBCs and their subsets were separated and sorted. The molecular profiles of the TCRBV complementarity determining region 3 (CDR3) in the three cell populations were investigated using our recently developed gene melting spectral pattern (GMSP) assay. The TCRBV members were then cloned and sequenced when their GMSP image profiles showed a single-peak. Results The average number of skewed TCRBV molecules in the CD4+ cell subset was significantly higher than that in PBMCs and CD8+ T cells. TCRBV12, BV13.1, BV13.2, and BV24 were expressed more prevalently than other TCRBV gene families in the three cell populations. In addition, relatively conserved amino acid motifs were identified in TCRBV5.1 and BV20 CDR3 in PBMCs and its subsets. The monoclonal TCRBV14 and BV23 expressed were different between active TB and LTBI subjects. Conclusions These results indicate that the T cell immune response is complex and multi-specific in active TB and LTBI subjects. Analysis of TCRBV expression in CD4+ T cells suggest that it could be useful in assessing the composition and status of circulating T cells. Furthermore, the expression of TCRBV14, BV23 and the sequencing of CDR3 amino acid motifs of TCRBV5.1, BV20 could be used in the differential diagnosis and treatment of subjects with active TB or LTBI.
Collapse
Affiliation(s)
- Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Limited T cell receptor beta variable repertoire responses to ESAT-6 and CFP-10 in subjects infected with Mycobacterium tuberculosis. Tuberculosis (Edinb) 2013; 93:529-37. [PMID: 23845455 DOI: 10.1016/j.tube.2013.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 02/08/2023]
Abstract
Mycobacterium tuberculosis (MTB)-specific antigens, ESAT-6 or CFP-10 play a key role in diagnosis and control MTB infection. T cell receptor (TCR) reflects the status and function of T cells. However, the features of the TCR beta variable (TCRBV) repertoire used against ESAT-6 and CFP-10 from MTB subjects have not been well described. The molecular profiles of TCRBV complementarity-determining region 3 (CDR3) in PBMCs with or without ESAT-6 or CFP-10 stimulation were assayed using a gene melting spectral pattern (GMSP) assay developed in our previous study. The average number of skewed TCRBV family in PBMCs stimulated with ESAT-6 or CFP-10 was significantly higher than that in unstimulated PBMCs. TCRBV3, BV5.1, BV12, BV13.1, BV13.2, BV20 and BV24 were used more frequently than other TCRBV members in PBMCs from MTB subjects, and TCRBV3, BV5.1 in stimulated PBMCs have a preference in the usage of variable (V) and joining (J) segments and CDR3. The results indicate that the T cell immune response in MTB subjects involves a few of specific T cells. The preferred usage of certain V and J segments and CDR3s of TCRBV3 or BV5.1 may be related to ESAT-6 or CFP-10 respectively, which would help clinical differential diagnosis and treatment of MTB-infected subjects.
Collapse
|
25
|
Stauss HJ, Morris EC. Immunotherapy with gene-modified T cells: limiting side effects provides new challenges. Gene Ther 2013; 20:1029-32. [DOI: 10.1038/gt.2013.34] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 01/19/2023]
|
26
|
Hebeisen M, Oberle SG, Presotto D, Speiser DE, Zehn D, Rufer N. Molecular insights for optimizing T cell receptor specificity against cancer. Front Immunol 2013; 4:154. [PMID: 23801991 PMCID: PMC3685811 DOI: 10.3389/fimmu.2013.00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/05/2013] [Indexed: 01/15/2023] Open
Abstract
Cytotoxic CD8 T cells mediate immunity to pathogens and they are able to eliminate malignant cells. Immunity to viruses and bacteria primarily involves CD8 T cells bearing high affinity T cell receptors (TCRs), which are specific to pathogen-derived (non-self) antigens. Given the thorough elimination of high affinity self/tumor-antigen reactive T cells by central and peripheral tolerance mechanisms, anti-cancer immunity mostly depends on TCRs with intermediate-to-low affinity for self-antigens. Because of this, a promising novel therapeutic approach to increase the efficacy of tumor-reactive T cells is to engineer their TCRs, with the aim to enhance their binding kinetics to pMHC complexes, or to directly manipulate the TCR-signaling cascades. Such manipulations require a detailed knowledge on how pMHC-TCR and co-receptors binding kinetics impact the T cell response. In this review, we present the current knowledge in this field. We discuss future challenges in identifying and targeting the molecular mechanisms to enhance the function of natural or TCR-affinity optimized T cells, and we provide perspectives for the development of protective anti-tumor T cell responses.
Collapse
Affiliation(s)
- Michael Hebeisen
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Lausanne , Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? J Immunother 2013; 35:651-60. [PMID: 23090074 DOI: 10.1097/cji.0b013e31827806e6] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CD8(+) T cells have been described as being naive or one of 4 antigen (Ag)-experienced subtypes representing a continuum of differentiation and maturation: T memory stem cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cells. In mice, adoptive cell transfer of less-differentiated naive T cells, T memory stem cell, and central memory T cell subsets have consistently demonstrated superior in vivo expansion, persistence, and antitumor capacities relative to the more differentiated effector memory T cell and effector T cell subsets. Retrospective analyses from human adoptive cell transfer trials have confirmed that transfer of less-differentiated T-cell subsets is highly correlated with objective clinical responses. These findings, combined with the recent ability to convey de novo Ag reactivity with high efficiency through genetic engineering of exogenous T-cell or chimeric Ag receptors, now challenge the field with 3 important questions: (1) how should less-differentiated T-cell subsets be isolated for human clinical trials?; (2) what is the best means of expanding T cells ex vivo in such a way as to not corrupt the beneficial traits of the younger subsets?; and (3) is it necessary to physically separate younger subsets from their more differentiated counterparts? Answering these questions will allow for the rational development of the next generation of highly effective and potentially curative T-cell therapies for the treatment of cancer.
Collapse
|
28
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Protective capacity of virus-specific T cell receptor-transduced CD8 T cells in vivo. J Virol 2012; 86:10866-9. [PMID: 22787223 DOI: 10.1128/jvi.01472-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The transfer of T cell receptor (TCR) genes by viral vectors represents a promising technique to generate antigen-specific T cells for adoptive immunotherapy. TCR-transduced T cells specific for infectious pathogens have been described, but their protective function in vivo has not yet been examined. Here, we demonstrate that CD8 T cells transduced with the P14 TCR specific for the gp33 epitope of lymphocytic choriomeningitis virus exhibit protective activities in both viral and bacterial infection models in mice.
Collapse
|
30
|
Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol 2012; 33:364-72. [PMID: 22445288 DOI: 10.1016/j.it.2012.02.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/08/2012] [Accepted: 02/21/2012] [Indexed: 02/06/2023]
Abstract
Memory and effector T cells have the potential to counteract cancer progression, but often fail to control the disease, essentially because of three main stumbling blocks. First, clonal deletion leads to relatively low numbers or low-to-intermediate T cell receptor (TCR) affinity of self/tumor-specific T cells. Second, the poor innate immune stimulation by solid tumors is responsible for inefficient priming and boosting. Third, T cells are suppressed in the tumor microenvironment by inhibitory signals from other immune cells, stroma and tumor cells, which induces T cell exhaustion, as demonstrated in metastases of melanoma patients. State-of-the-art adoptive cell transfer and active immunotherapy can partially overcome the three stumbling blocks. The reversibility of T cell exhaustion and novel molecular insights provide the basis for further improvements of clinical immunotherapy.
Collapse
Affiliation(s)
- Lukas Baitsch
- Clinical Tumor Biology and Immunotherapy Unit, Ludwig Center for Cancer Research of the University of Lausanne, and Service of Radiation Oncology, Lausanne University Hospital Center, CH-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
31
|
The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells. PLoS One 2012; 7:e30713. [PMID: 22292024 PMCID: PMC3264628 DOI: 10.1371/journal.pone.0030713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 12/20/2011] [Indexed: 12/17/2022] Open
Abstract
Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1+ CD57+ CD7− phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.
Collapse
|