1
|
Li DJ, Berry CE, Wan DC, Longaker MT. Clinical, mechanistic, and therapeutic landscape of cutaneous fibrosis. Sci Transl Med 2024; 16:eadn7871. [PMID: 39321265 DOI: 10.1126/scitranslmed.adn7871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
When dysregulated, skin fibrosis can lead to a multitude of pathologies. We provide a framework for understanding the wide clinical spectrum, mechanisms, and management of cutaneous fibrosis encompassing a variety of matrix disorders, fibrohistiocytic neoplasms, injury-induced scarring, and autoimmune scleroses. Underlying such entities are common mechanistic pathways that leverage morphogenic signaling, immune activation, and mechanotransduction to modulate fibroblast function. In light of the limited array of available treatments for cutaneous fibrosis, scientific insights have opened new therapeutic and investigative avenues for conditions that still lack effective interventions.
Collapse
Affiliation(s)
- Dayan J Li
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA 94063, USA
| | - Charlotte E Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Lim C, Lim J, Choi S. Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration. Mol Cells 2023; 46:573-578. [PMID: 37650216 PMCID: PMC10590709 DOI: 10.14348/molcells.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.
Collapse
Affiliation(s)
- Chaeryeong Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jooyoung Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- School of Medical Science and Engineering, POSTECH, Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Korea
| |
Collapse
|
3
|
Long H, Lichtnekert J, Andrassy J, Schraml BU, Romagnani P, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes account for organ injury, regeneration or atrophy. Front Immunol 2023; 14:1194988. [PMID: 37868987 PMCID: PMC10587486 DOI: 10.3389/fimmu.2023.1194988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Mononuclear phagocytes (MP), i.e., monocytes, macrophages, and dendritic cells (DCs), are essential for immune homeostasis via their capacities to clear pathogens, pathogen components, and non-infectious particles. However, tissue injury-related changes in local microenvironments activate resident and infiltrating MP towards pro-inflammatory phenotypes that contribute to inflammation by secreting additional inflammatory mediators. Efficient control of injurious factors leads to a switch of MP phenotype, which changes the microenvironment towards the resolution of inflammation. In the same way, MP endorses adaptive structural responses leading to either compensatory hypertrophy of surviving cells, tissue regeneration from local tissue progenitor cells, or tissue fibrosis and atrophy. Under certain circumstances, MP contribute to the reversal of tissue fibrosis by clearance of the extracellular matrix. Here we give an update on the tissue microenvironment-related factors that, upon tissue injury, instruct resident and infiltrating MP how to support host defense and recover tissue function and integrity. We propose that MP are not intrinsically active drivers of organ injury and dysfunction but dynamic amplifiers (and biomarkers) of specific tissue microenvironments that vary across spatial and temporal contexts. Therefore, MP receptors are frequently redundant and suboptimal targets for specific therapeutic interventions compared to molecular targets upstream in adaptive humoral or cellular stress response pathways that influence tissue milieus at a contextual level.
Collapse
Affiliation(s)
- Hao Long
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Julia Lichtnekert
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplant Surgery, University Hospital of Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Barbara U. Schraml
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University (LMU), Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Paola Romagnani
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Firenze, Nephrology and Dialysis Unit, Meyer Children’s Hospital, Firenze, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
4
|
Kim CW, Yoon Y, Kim MY, Baik SK, Ryu H, Park IH, Eom YW. 12- O-tetradecanoylphorbol-13-acetate Reduces Activation of Hepatic Stellate Cells by Inhibiting the Hippo Pathway Transcriptional Coactivator YAP. Cells 2022; 12:cells12010091. [PMID: 36611885 PMCID: PMC9818550 DOI: 10.3390/cells12010091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Although protein kinase C (PKC) regulates various biological activities, including cell proliferation, differentiation, migration, tissue remodeling, gene expression, and cell death, the antifibrotic effect of PKC in myofibroblasts is not fully understood. We investigated whether 12-O-tetradecanoylphorbol-13-acetate (TPA), a PKC activator, reduced the activation of hepatic stellate cells (HSCs) and explored the involvement of the Hippo pathway transcriptional coactivator YAP. We analyzed the effect of TPA on the proliferation and expression of α-smooth muscle actin (SMA) in the LX-2 HSC line. We also analyzed the phosphorylation of the Hippo pathway molecules YAP and LATS1 and investigated YAP nuclear translocation. We examined whether Gö 6983, a pan-PKC inhibitor, restored the TPA-inhibited activities of HSCs. Administration of TPA decreased the growth rate of LX-2 cells and inhibited the expression of α-SMA and collagen type I alpha 1 (COL1A1). In addition, TPA induced phosphorylation of PKCδ, LATS1, and YAP and inhibited the nuclear translocation of YAP compared with the control. These TPA-induced phenomena were mostly ameliorated by Gö 6983. Our results indicate that PKCδ exerts an antifibrotic effect by inhibiting the Hippo pathway in HSCs. Therefore, PKCδ and YAP can be used as therapeutic targets for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Chang Wan Kim
- Department of Thoracic and Cardiovascular Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Yongdae Yoon
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Moon Young Kim
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Soon Koo Baik
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hoon Ryu
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Il Hwan Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Correspondence: (I.H.P.); (Y.W.E.); Tel.: +82-33-741-0260 (Y.W.E.)
| | - Young Woo Eom
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Correspondence: (I.H.P.); (Y.W.E.); Tel.: +82-33-741-0260 (Y.W.E.)
| |
Collapse
|
5
|
Alpinetin Suppresses Effects of TGF-β1 on Stimulating the Production and Organization of Fibrotic Markers in Human Primary Dermal Fibroblasts. Cells 2022; 11:cells11172731. [PMID: 36078140 PMCID: PMC9455016 DOI: 10.3390/cells11172731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Overgrowths of dermal fibroblasts and myofibroblast phenoconversion in response to TGF-β stimulation are the hallmarks of skin fibrosis. Constitutive activation of dermal fibroblasts by TGF-β induces the excessive production of extracellular matrix as well as certain key intracellular proteins which form a complex interaction network. Current therapies include monoclonal anti-bodies against TGF-β and surgery, but these treatments generally elicit a limited effect on certain kinds of skin fibrosis. In the current study, we investigated the effects of alpinetin (AP) on human primary dermal fibroblasts (HPDFs) stimulated with TGF-β1. Results demonstrated that AP exhibited strong inhibitory effects on TGF-β1-induced proliferation and migration of HPDFs. AP also inhibited TGF-β1-induced morphological changes of fibroblasts to myofibroblasts, and these were found to be from its effects on blocking actin stress fiber formation and organization. The expression of major fibrotic molecules including α-SMA and type I collagen upon TGF-β1 stimulation was also inhibited by AP. In addition, AP attenuated TGF-β1-induced production and organization of vimentin, β-catenin, and N-cadherin, important for the pathophysiology of skin fibrosis. In conclusion, we revealed that AP has an ability to reverse the fibrotic effects of TGF-β1 at the cellular level, and this discovery suggests the therapeutic potential of AP for skin fibrosis.
Collapse
|
6
|
Jussila AR, Zhang B, Caves E, Kirti S, Steele M, Hamburg-Shields E, Lydon J, Ying Y, Lafyatis R, Rajagopalan S, Horsley V, Atit RP. Skin Fibrosis and Recovery Is Dependent on Wnt Activation via DPP4. J Invest Dermatol 2022; 142:1597-1606.e9. [PMID: 34808238 PMCID: PMC9120259 DOI: 10.1016/j.jid.2021.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Fibrosis is the life-threatening, excessive accumulation of the extracellular matrix and is sometimes associated with a loss of lipid-filled cells in the skin and other organs. Understanding the mechanisms of fibrosis and associated lipodystrophy and their reversal may reveal new targets for therapeutic intervention. In vivo genetic models are needed to identify key targets that induce recovery from established fibrosis. Wnt signaling is activated in animal and human fibrotic diseases across organs. Here, we developed a genetically inducible and reversible Wnt activation model and showed that it is sufficient to cause fibrotic dermal remodeling, including extracellular matrix expansion and shrinking of dermal adipocytes. Upon withdrawal from Wnt activation, Wnt-induced fibrotic remodeling was reversed in mouse skin-fully restoring skin architecture. Next, we demonstrated CD26/ DPP4 is a Wnt/β-catenin-responsive gene and a functional mediator of fibrotic transformation. We provide genetic evidence that the Wnt/DPP4 axis is required to drive fibrotic dermal remodeling and is associated with human skin fibrosis severity. Remarkably, DPP4 inhibitors can be repurposed to accelerate recovery from established Wnt-induced fibrosis. Collectively, this study identifies Wnt/DPP4 axis as a key driver of extracellular matrix homeostasis and dermal fat loss, providing therapeutic avenues to manipulate the onset and reversal of tissue fibrosis.
Collapse
Affiliation(s)
- Anna R Jussila
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Zhang
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elizabeth Caves
- Department of Molecular and Cell Biology, Yale University, New Haven, Connecticut, USA
| | - Sakin Kirti
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Miarasa Steele
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Emily Hamburg-Shields
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yan Ying
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, University Hospitals Harrington Heart and Vascular Institute (HHVI), Case Cardiovascular Research Institute, Department of Internal Medicine and Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Valerie Horsley
- Department of Molecular and Cell Biology, Yale University, New Haven, Connecticut, USA
| | - Radhika P Atit
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA; Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
7
|
Qu R, Gupta K, Dong D, Jiang Y, Landa B, Saez C, Strickland G, Levinsohn J, Weng PL, Taketo MM, Kluger Y, Myung P. Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients. Dev Cell 2022; 57:1053-1067.e5. [PMID: 35421372 PMCID: PMC9050909 DOI: 10.1016/j.devcel.2022.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
Organ formation requires integrating signals to coordinate proliferation, specify cell fates, and shape tissue. Tracing these events and signals remains a challenge, as intermediate states across many critical transitions are unresolvable over real time and space. Here, we designed a unique computational approach to decompose a non-linear differentiation process into key components to resolve the signals and cell behaviors that drive a rapid transition, using the hair follicle dermal condensate as a model. Combining scRNA sequencing with genetic perturbation, we reveal that proliferative Dkk1+ progenitors transiently amplify to become quiescent dermal condensate cells by the mere spatiotemporal patterning of Wnt/β-catenin and SHH signaling gradients. Together, they deterministically coordinate a rapid transition from proliferation to quiescence, cell fate specification, and morphogenesis. Moreover, genetically repatterning these gradients reproduces these events autonomously in "slow motion" across more intermediates that resolve the process. This analysis unravels two morphogen gradients that intersect to coordinate events of organogenesis.
Collapse
Affiliation(s)
- Rihao Qu
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA; Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Khusali Gupta
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Danni Dong
- Department of Dermatology, Yale University, New Haven, CT 06520, USA
| | - Yiqun Jiang
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Boris Landa
- Applied Mathematics Program, Yale University, New Haven, CT 06511, USA
| | - Charles Saez
- Department of Dermatology, Yale University, New Haven, CT 06520, USA
| | | | - Jonathan Levinsohn
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pei-Lun Weng
- Department of Dermatology, Yale University, New Haven, CT 06520, USA
| | - M Mark Taketo
- Colon Cancer Project, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuval Kluger
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA; Applied Mathematics Program, Yale University, New Haven, CT 06511, USA; Yale Cancer Center, New Haven, CT 06520, USA
| | - Peggy Myung
- Department of Pathology, Yale University, New Haven, CT 06520, USA; Department of Dermatology, Yale University, New Haven, CT 06520, USA; Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, New Haven, CT 06520, USA; Yale Stem Cell Center, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Ankawa R, Fuchs Y. May the best wound WIHN: the hallmarks of wound-induced hair neogenesis. Curr Opin Genet Dev 2021; 72:53-60. [PMID: 34861514 DOI: 10.1016/j.gde.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023]
Abstract
The hair follicle is a unique mini organ that undergoes continuous cycles of replenishment. While hair follicle formation was long thought to occur strictly during embryogenesis, it is now becoming increasingly clear that hair follicles can regenerate from the wound bed. Here, we provide an overview of the recent advancements in the field of Wound Induced Hair Neogenesis (WIHN) in mice. We briefly outline the hair follicle morphogenic process and discuss the major features of adult hair follicle regeneration. We examine the role of distinct cell types and review the contribution of specific signaling pathways to the WIHN phenotype. The phenomenon of neogenic hair regeneration provides an important platform, which may offer new insights into mammalian regeneration in the adult setting.
Collapse
Affiliation(s)
- Roi Ankawa
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel.
| |
Collapse
|
9
|
Thulabandu V, Nehila T, Ferguson JW, Atit RP. Dermal EZH2 orchestrates dermal differentiation and epidermal proliferation during murine skin development. Dev Biol 2021; 478:25-40. [PMID: 34166654 PMCID: PMC8384472 DOI: 10.1016/j.ydbio.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Skin development and patterning is dependent on factors that regulate the stepwise differentiation of dermal fibroblasts concomitant with dermal-epidermal reciprocal signaling, two processes that are poorly understood. Here we show that dermal EZH2, the methyltransferase enzyme of the epigenetic Polycomb Repressive Complex 2 (PRC2), is a new coordinator of both these processes. Dermal EZH2 activity is present during dermal fibroblast differentiation and is required for spatially restricting Wnt/β-catenin signaling to reinforce dermal fibroblast cell fate. Later in development, dermal EZH2 regulates the expression of reticular dermal markers and initiation of secondary hair follicles. Embryos lacking dermal Ezh2 have elevated epidermal proliferation and differentiation that can be rescued by small molecule inhibition of retinoic acid (RA) signaling. Together, our study reveals that dermal EZH2 is acting like a rheostat to control the levels of Wnt/β-catenin and RA signaling to impact fibroblast differentiation cell autonomously and epidermal keratinocyte development non-cell autonomously, respectively.
Collapse
Affiliation(s)
| | - Timothy Nehila
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - James W Ferguson
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA; Dept. of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Dept. of Dermatology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Zhang R, Jiang J, Yu Y, Wang F, Gao N, Zhou Y, Wan X, Wang Z, Wei P, Mei J. Analysis of structural components of decellularized scaffolds in renal fibrosis. Bioact Mater 2021; 6:2187-2197. [PMID: 33511316 PMCID: PMC7815494 DOI: 10.1016/j.bioactmat.2020.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease has been recognized as a major public health problem worldwide and renal fibrosis is a common pathological process occurring in chronic renal failure. It is very promising to find the strategies to slow or even prevent the progression of fibrosis. This study focused on whether renal fibrosis decellularized scaffolds has the potential to be a model of cellular mechanisms of tissue fibrosis or donors for tissue engineering. In order to evaluate the feasibility of decellularized scaffolds derived from pathological kidneys, histology, proteomics and ELISA will be used to analysis the changes in the structure and main components of fibrotic tissue. The fibrosis model in this paper was induced by adenine-fed and the results showed that the structure of fibrotic scaffold was changed and some protein were up-regulated or down-regulated, but the cytokines associated with renal regeneration after injury were remained. In cell experiments, endothelial progenitor cells proliferated well, which proved that the fibrotic scaffolds have non-cytotoxic. All these conclusions indicate that the renal fibrosis decellularized scaffolds model has the ability to study fibrosis mechanism and the potential to be engineering donors as well as normal scaffolds. A study model of the mechanism of renal fibrosis from natural sources. Adenine-induced renal fibrosis with a cytopathic scaffold preserves important cytokines. There was no significant difference in cytokine content with natural scaffolds. Heat maps of differentially expressed proteins from subcellular localization.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, North Center Road, Ouhai District, Wenzhou, 325035, China.,Institute of Biomaterials, Ningbo City First Hospital, No.59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Junqun Jiang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, North Center Road, Ouhai District, Wenzhou, 325035, China.,Institute of Biomaterials, Ningbo City First Hospital, No.59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Yaling Yu
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, North Center Road, Ouhai District, Wenzhou, 325035, China.,Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China
| | - Fangfang Wang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, North Center Road, Ouhai District, Wenzhou, 325035, China.,Institute of Biomaterials, Ningbo City First Hospital, No.59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Niuniu Gao
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, North Center Road, Ouhai District, Wenzhou, 325035, China.,Institute of Biomaterials, Ningbo City First Hospital, No.59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Yingjie Zhou
- Institute of Biomaterials, Ningbo City First Hospital, No.59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Xinlong Wan
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, North Center Road, Ouhai District, Wenzhou, 325035, China
| | - Zhibin Wang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, North Center Road, Ouhai District, Wenzhou, 325035, China
| | - Peng Wei
- Institute of Biomaterials, Ningbo City First Hospital, No.59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Jin Mei
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, North Center Road, Ouhai District, Wenzhou, 325035, China.,Institute of Biomaterials, Ningbo City First Hospital, No.59 Liuting Street, Haishu District, Ningbo, 315010, China
| |
Collapse
|
11
|
Koçak A, Harmancı D, Güner Akdoğan G, Birlik M. Relationship of Wnt pathway activity and organ involvement in scleroderma types. Int J Rheum Dis 2020; 23:1558-1567. [PMID: 32996251 DOI: 10.1111/1756-185x.13973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ayşe Koçak
- Kutahya Health Sciences University Kutahya Turkey
| | | | | | | |
Collapse
|
12
|
Wang Y, Guerrero-Juarez CF, Qiu Y, Du H, Chen W, Figueroa S, Plikus MV, Nie Q. A multiscale hybrid mathematical model of epidermal-dermal interactions during skin wound healing. Exp Dermatol 2020; 28:493-502. [PMID: 30801791 DOI: 10.1111/exd.13909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
Following injury, skin activates a complex wound healing programme. While cellular and signalling mechanisms of wound repair have been extensively studied, the principles of epidermal-dermal interactions and their effects on wound healing outcomes are only partially understood. To gain new insight into the effects of epidermal-dermal interactions, we developed a multiscale, hybrid mathematical model of skin wound healing. The model takes into consideration interactions between epidermis and dermis across the basement membrane via diffusible signals, defined as activator and inhibitor. Simulations revealed that epidermal-dermal interactions are critical for proper extracellular matrix deposition in the dermis, suggesting these signals may influence how wound scars form. Our model makes several theoretical predictions. First, basal levels of epidermal activator and inhibitor help to maintain dermis in a steady state, whereas their absence results in a raised, scar-like dermal phenotype. Second, wound-triggered increase in activator and inhibitor production by basal epidermal cells, coupled with fast re-epithelialization kinetics, reduces dermal scar size. Third, high-density fibrin clot leads to a raised, hypertrophic scar phenotype, whereas low-density fibrin clot leads to a hypotrophic phenotype. Fourth, shallow wounds, compared to deep wounds, result in overall reduced scarring. Taken together, our model predicts the important role of signalling across dermal-epidermal interface and the effect of fibrin clot density and wound geometry on scar formation. This hybrid modelling approach may be also applicable to other complex tissue systems, enabling the simulation of dynamic processes, otherwise computationally prohibitive with fully discrete models due to a large number of variables.
Collapse
Affiliation(s)
- Yangyang Wang
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California
| | - Christian F Guerrero-Juarez
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California.,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| | - Yuchi Qiu
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California
| | - Huijing Du
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, Riverside, California
| | - Seth Figueroa
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California.,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California.,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| |
Collapse
|
13
|
Tian LM, Peng Y, Ke D, Li H, Chen L, Zhang C, Sen L, Tian DZ, Zhou MS, Ai XS, Wang P. The effect of Yang Yan Qing E Wan on senescent phenotypes and the expression of β-catenin and p16 INK4a in human skin fibroblasts. J Tissue Viability 2020; 29:354-358. [PMID: 32768331 DOI: 10.1016/j.jtv.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023]
Abstract
This aim of this study was to observe the effect of Yang Yan Qing E Wan (YYQEW) on senescent phenotypes and the expression of β-catenin and p16INK4a in the hydrogen peroxide (H2O2)-induced premature senescence of normal human skin fibroblasts (NHSFs). Primary normal human skin fibroblasts were randomly divided into a normal group, a blank group, a model group, and a YYQEW group. The cells of the model group and the YYQEW group were exposed to 150 μmol/L H2O2 for 2 h. The morphological changes of the cells were analyzed by microscopy and by kits used to estimate the activities of the senescence-associated β-galactosidase (SA-β-gal), reactive oxygen species (ROS), and superoxide dismutase (SOD). The outcomes revealed that dyeing rate proportion of SA-β-gal was 2.78% ± 0.22% in the normal group, 2.83% ± 0.29% in the blank group, 37.58% ± 2.56% in the model group, and 28.39% ± 0.93% in the YYQEW group. The number of SA-β-gal positive cells was thus significantly higher in the model group than in the normal or blank group. There were also fewer SA-β-gal positive cells in the YYQEW group compared with the model group. The expression of ROS and p16INK4a in the model group increased significantly compared with that in the normal or blank groups, while the expression of ROS and p16INK4a in the YYQEW group decreased significantly compared with that in the model group. The expression of SOD and β-catenin in the model group decreased significantly compared with that in the normal or blank group, and the expression of SOD and β-catenin in the YYQEW group increased significantly compared with that in the model group. Overall, it was found that YYQEW was able to delay the senescence of NHSFs induced by H2O2 treatment by alleviating oxidative stress and regulating a number of senescence-related molecules, such as β-catenin and p16INK4a.
Collapse
Affiliation(s)
- Li-Ming Tian
- Department of Dermatology, Wuhan No.1 Hospital, Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine Affiliated to Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Peng
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dan Ke
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400000, China
| | - Heng Li
- Department of Dermatology, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Long Chen
- Department of Dermatology, Wuhan No.1 Hospital, Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine Affiliated to Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chong Zhang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Lin Sen
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dai-Zhi Tian
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Mi-Si Zhou
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Shuang Ai
- Department of Dermatology, Wuhan No.1 Hospital, Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine Affiliated to Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Wang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
14
|
ONCU B, YİLMAZ A, KARADEMİR B, ALTUNOK EÇ, KURU L, AĞRALI ÖB. Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.709924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Gay D, Ghinatti G, Guerrero-Juarez CF, Ferrer RA, Ferri F, Lim CH, Murakami S, Gault N, Barroca V, Rombeau I, Mauffrey P, Irbah L, Treffeisen E, Franz S, Boissonnas A, Combadière C, Ito M, Plikus MV, Romeo PH. Phagocytosis of Wnt inhibitor SFRP4 by late wound macrophages drives chronic Wnt activity for fibrotic skin healing. SCIENCE ADVANCES 2020; 6:eaay3704. [PMID: 32219160 PMCID: PMC7083618 DOI: 10.1126/sciadv.aay3704] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/20/2019] [Indexed: 05/20/2023]
Abstract
Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity. In accordance, phagocytosis abrogation resulted in transient Wnt activity and a more regenerative healing. Phagocytosis of SFRP4 was integrin-mediated and dependent on the interaction of SFRP4 with the EDA splice variant of fibronectin. In the human skin condition hidradenitis suppurativa, phagocytosis of SFRP4 by macrophages correlated with fibrotic wound repair. These results reveal that macrophages can modulate a key signaling pathway via phagocytosis to alter the skin wound healing fate.
Collapse
Affiliation(s)
- Denise Gay
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
| | - Giulia Ghinatti
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Christian F. Guerrero-Juarez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, NSF-Simons Center for Multiscale Cell Fate Research, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Rubén A. Ferrer
- Department of Dermatology, University Leipzig Medical Center, Leipzig, Germany
| | - Federica Ferri
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Chae Ho Lim
- Ronald O. Perelman Department of Dermatology and Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Shohei Murakami
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Nathalie Gault
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Vilma Barroca
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Isabelle Rombeau
- Charles River Laboratories, 169 Bois des Oncins, 69210 Saint-Germain-Nuelles, France
| | - Philippe Mauffrey
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
| | - Lamya Irbah
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
| | - Elsa Treffeisen
- Department of Pediatrics, Cohen Children's Medical Center Northwell Health, New Hyde Park, NY 11040, USA
| | - Sandra Franz
- Department of Dermatology, University Leipzig Medical Center, Leipzig, Germany
- DFG-German Research Council Transregio 67, Leipzig-Dresden, Germany
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013, Paris, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013, Paris, France
| | - Mayumi Ito
- Ronald O. Perelman Department of Dermatology and Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, NSF-Simons Center for Multiscale Cell Fate Research, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul-Henri Romeo
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| |
Collapse
|
16
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
17
|
Cancer-associated fibroblasts: how do they contribute to metastasis? Clin Exp Metastasis 2019; 36:71-86. [PMID: 30847799 DOI: 10.1007/s10585-019-09959-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are activated fibroblasts in the tumor microenvironment. They are one of the most prominent cell types in the stroma and produce large amounts of extracellular matrix molecules, chemokines, cytokines and growth factors. Importantly, CAFs promote cancer progression and metastasis by multiple pathways. This, together with their genetic stability, makes them an interesting target for cancer therapy. However, CAF heterogeneity and limited knowledge about the function of the different CAF subpopulations in vivo, are currently major obstacles for identifying specific molecular targets that are of value for cancer treatment. In this review, we discuss recent major findings on CAF development and their metastasis-promoting functions, as well as open questions to be addressed in order to establish successful cancer therapies targeting CAFs.
Collapse
|
18
|
Tao Y, Yang Q, Wang L, Zhang J, Zhu X, Sun Q, Han Y, Luo Q, Wang Y, Guo X, Wu J, Li B, Yang X, He L, Ma G. β-catenin activation in hair follicle dermal stem cells induces ectopic hair outgrowth and skin fibrosis. J Mol Cell Biol 2018; 11:26-38. [DOI: 10.1093/jmcb/mjy032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/12/2018] [Indexed: 02/01/2023] Open
Abstract
Abstract
Hair follicle dermal sheath (DS) harbors hair follicle dermal stem cells (hfDSCs), which can be recruited to replenish DS and dermal papilla (DP). Cultured DS cells can differentiate into various cell lineages in vitro. However, it is unclear how its plasticity is modulated in vivo. Wnt/β-catenin signaling plays an important role in maintaining stem cells of various lineages and is required for HF development and regeneration. Here we report that activation of β-catenin in DS generates ectopic HF outgrowth (EF) by reprogramming HF epidermal cells and DS cells themselves, and endows DS cells with hair inducing ability. Epidermal homeostasis of pre-existing HFs is disrupted. Additionally, cell-autonomous progressive skin fibrosis is prominent in dermis, where the excessive fibroblasts largely originate from DS. Gene expression analysis of purified DS cells with activated β-catenin revealed significantly increased expression of Bmp, Fgf, and Notch ligands and administration of Bmp, Fgf, or Notch signaling inhibitor attenuates EF formation. In summary, our findings advance the current knowledge of high plasticity of DS cells and provide an insight into understanding how Wnt/β-catenin signaling controls DS cell behaviors.
Collapse
Affiliation(s)
- Yixin Tao
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Qingchun Yang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xuming Zhu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Qianqian Sun
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Yunbin Han
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Luo
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yushu Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xizhi Guo
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Ma
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Thulabandu V, Chen D, Atit RP. Dermal fibroblast in cutaneous development and healing. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29244903 DOI: 10.1002/wdev.307] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ of the body and is composed of two layers: the overlying epidermis and the underlying dermis. The dermal fibroblasts originate from distinct locations of the embryo and contain the positional identity and patterning information in the skin. The dermal fibroblast progenitors differentiate into various cell types that are fated to perform specific functions such as hair follicle initiation and scar formation during wound healing. Recent studies have revealed the heterogeneity and plasticity of dermal fibroblasts within skin, which has implications for skin disease and tissue engineering. The objective of this review is to frame our current understanding and provide new insights on the origin and differentiation of dermal fibroblasts and their function during cutaneous development and healing. WIREs Dev Biol 2018, 7:e307. doi: 10.1002/wdev.307 This article is categorized under: Birth Defects > Organ Anomalies Signaling Pathways > Cell Fate Signaling Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Venkata Thulabandu
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Demeng Chen
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
20
|
Mullin NK, Mallipeddi NV, Hamburg-Shields E, Ibarra B, Khalil AM, Atit RP. Wnt/β-catenin Signaling Pathway Regulates Specific lncRNAs That Impact Dermal Fibroblasts and Skin Fibrosis. Front Genet 2017; 8:183. [PMID: 29209359 PMCID: PMC5702388 DOI: 10.3389/fgene.2017.00183] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Wnt/β-catenin signaling is required for embryonic dermal fibroblast cell fate, and dysregulation of this pathway is sufficient to promote fibrosis in adult tissue. The downstream modulators of Wnt/β-catenin signaling required for controlling cell fate and dermal fibrosis remain poorly understood. The discovery of regulatory long non-coding RNAs (lncRNAs) and their pivotal roles as key modulators of gene expression downstream of signaling cascades in various contexts prompted us to investigate their roles in Wnt/β-catenin signaling. Here, we have identified lncRNAs and protein-coding RNAs that are induced by β-catenin activity in mouse dermal fibroblasts using next generation RNA-sequencing. The differentially expressed protein-coding mRNAs are enriched for extracellular matrix proteins, glycoproteins, and cell adhesion, and many are also dysregulated in human fibrotic tissues. We identified 111 lncRNAs that are differentially expressed in response to activation of Wnt/β-catenin signaling. To further characterize the role of mouse lncRNAs in this pathway, we validated two novel Wnt signaling- Induced Non-Coding RNA (Wincr) transcripts referred to as Wincr1 and Wincr2. These two lncRNAs are highly expressed in mouse embryonic skin and perinatal dermal fibroblasts. Furthermore, we found that Wincr1 expression levels in perinatal dermal fibroblasts affects the expression of key markers of fibrosis (e.g., Col1a1 and Mmp10), enhances collagen contraction, and attenuates collective cell migration. Our results show that β-catenin signaling-responsive lncRNAs may modulate dermal fibroblast behavior and collagen accumulation in dermal fibrosis, providing new mechanistic insights and nodes for therapeutic intervention.
Collapse
Affiliation(s)
- Nathaniel K Mullin
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Nikhil V Mallipeddi
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Emily Hamburg-Shields
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Beatriz Ibarra
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Ahmad M Khalil
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Jahoda CAB, Gilmore AC. What Lies Beneath: Wnt/β-Catenin Signaling and Cell Fate in the Lower Dermis. J Invest Dermatol 2017; 136:1084-1087. [PMID: 27212647 DOI: 10.1016/j.jid.2016.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022]
Abstract
Dermal cell populations are markedly heterogeneous, and they have the capacity to differentiate into dynamic and complex dermal cell compartments. However, the regulatory processes that govern the establishment of each dermal subset remain unknown. Mastrogiannaki et al. provide evidence of Wnt/β-catenin signaling controlling adipogenic differentiation in the developing reticular dermis. They also show that overexpression of localized Wnt converts dermal adipose cells into a distinct fibroblast subtype, which leads to fibrosis and disrupted hair follicle cycling. These findings highlight the multifaceted roles of Wnt signaling in the normal development and pathology of skin, including the establishment of dermal identity. Further understanding of Wnt involvement and uncovering the roles of specific Wnt ligands could be useful for discovering new therapeutic targets in treating fibrosis-related disorders.
Collapse
Affiliation(s)
- Colin A B Jahoda
- School of Biological and Biomedical Sciences, Durham University, Durham, UK.
| | - Adam C Gilmore
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| |
Collapse
|
22
|
Lafyatis R, Mantero JC, Gordon J, Kishore N, Carns M, Dittrich H, Spiera R, Simms RW, Varga J. Inhibition of β-Catenin Signaling in the Skin Rescues Cutaneous Adipogenesis in Systemic Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial of C-82. J Invest Dermatol 2017; 137:2473-2483. [PMID: 28807667 DOI: 10.1016/j.jid.2017.06.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/31/2017] [Accepted: 06/18/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested that Wnts might contribute to skin fibrosis in systemic sclerosis (SSc) by affecting the differentiation of pluripotent dermal cells. We tested C-82, a therapeutic that inhibits canonical Wnt signaling by blocking the interaction of the protein CBP with β-Catenin and inhibiting Wnt-activated genes. We used a trial design formulating C-82 for topical application and conducting a placebo-controlled, double-blinded clinical trial in which patients with diffuse cutaneous SSc were treated with C-82 or placebo on opposite forearms. C-82- compared with placebo-treated forearms did not show any clinical effect. Skin biopsies performed before and after treatment showed a very weak trend toward improvement in the C-82-treated skin of biomarkers of local skin disease, THBS1 and COMP. However, on microarray analysis C-82 treatment strongly up-regulated two clusters of genes that correlate negatively with the severity of SSc skin disease. These clusters are highly associated with metabolism and one gene, PLIN2, expressed only by sebocytes and subcutaneous fat cells. These changes in gene expression strongly support a role for Wnts in differentiation of pluripotent cells into profibrotic fibroblasts and the potential for C-82 with longer treatment to promote fat regeneration in SSc skin.
Collapse
Affiliation(s)
- Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Julio C Mantero
- Division of Rheumatology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Jessica Gordon
- Rheumatology Division, Hospital for Special Surgery, New York, New York, USA
| | - Nina Kishore
- Division of Rheumatology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Mary Carns
- Rheumatology Division, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Howard Dittrich
- Abboud CV Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Robert Spiera
- Rheumatology Division, Hospital for Special Surgery, New York, New York, USA
| | - Robert W Simms
- Division of Rheumatology, Boston University Medical Center, Boston, Massachusetts, USA
| | - John Varga
- Rheumatology Division, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
23
|
Lorenzon A, Calore M, Poloni G, De Windt LJ, Braghetta P, Rampazzo A. Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget 2017; 8:60640-60655. [PMID: 28948000 PMCID: PMC5601168 DOI: 10.18632/oncotarget.17457] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Wnt/β-catenin signaling pathway plays essential roles in heart development as well as cardiac tissue homoeostasis in adults. Abnormal regulation of this signaling pathway is linked to a variety of cardiac disease conditions, including hypertrophy, fibrosis, arrhythmias, and infarction. Recent studies on genetically modified cellular and animal models document a crucial role of Wnt/β-catenin signaling in the molecular pathogenesis of arrhythmogenic cardiomyopathy (AC), an inherited disease of intercalated discs, typically characterized by ventricular arrhythmias and progressive substitution of the myocardium with fibrofatty tissue. In this review, we summarize the conflicting published data regarding the Wnt/β-catenin signaling contribution to AC pathogenesis and we report the identification of a new potential therapeutic molecule that prevents myocyte injury and cardiac dysfunction due to desmosome mutations in vitro and in vivo by interfering in this signaling pathway. Finally, we underline the potential function of microRNAs, epigenetic regulatory RNA factors reported to participate in several pathological responses in heart tissue and in the Wnt signaling network, as important modulators of Wnt/β-catenin signaling transduction in AC. Elucidation of the precise regulatory mechanism of Wnt/β-catenin signaling in AC molecular pathogenesis could provide fundamental insights for new mechanism-based therapeutic strategy to delay the onset or progression of this cardiac disease.
Collapse
Affiliation(s)
| | - Martina Calore
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Giulia Poloni
- University of Padua, Department of Biology, Padua, Italy
| | - Leon J De Windt
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Paola Braghetta
- University of Padua, Department of Molecular Medicine, Padua, Italy
| | | |
Collapse
|
24
|
Chen CW, Beyer C, Liu J, Maier C, Li C, Trinh-Minh T, Xu X, Cole SH, Hsieh MH, Ng N, Althage A, Meeusen S, Pan S, Svensson EC, Seidel HM, Schett G, Gergely P, Harris JL, Distler JHW. Pharmacological inhibition of porcupine induces regression of experimental skin fibrosis by targeting Wnt signalling. Ann Rheum Dis 2017; 76:773-778. [DOI: 10.1136/annrheumdis-2016-210294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/22/2016] [Accepted: 01/08/2017] [Indexed: 11/04/2022]
Abstract
ObjectivesWnt signalling has been implicated in activating a fibrogenic programme in fibroblasts in systemic sclerosis (SSc). Porcupine is an O-acyltransferase required for secretion of Wnt proteins in mammals. Here, we aimed to evaluate the antifibrotic effects of pharmacological inhibition of porcupine in preclinical models of SSc.MethodsThe porcupine inhibitor GNF6231 was evaluated in the mouse models of bleomycin-induced skin fibrosis, in tight-skin-1 mice, in murine sclerodermatous chronic-graft-versus-host disease (cGvHD) and in fibrosis induced by a constitutively active transforming growth factor-β-receptor I.ResultsTreatment with pharmacologically relevant and well-tolerated doses of GNF6231 inhibited the activation of Wnt signalling in fibrotic murine skin. GNF6231 ameliorated skin fibrosis in all four models. Treatment with GNF6231 also reduced pulmonary fibrosis associated with murine cGvHD. Most importantly, GNF6231 prevented progression of fibrosis and showed evidence of reversal of established fibrosis.ConclusionsThese data suggest that targeting the Wnt pathway through inhibition of porcupine provides a potential therapeutic approach to fibrosis in SSc. This is of particular interest, as a close analogue of GNF6231 has already demonstrated robust pathway inhibition in humans and could be available for clinical trials.
Collapse
|
25
|
Zhou L, Yang K, Randall Wickett R, Zhang Y. Dermal fibroblasts induce cell cycle arrest and block epithelial-mesenchymal transition to inhibit the early stage melanoma development. Cancer Med 2016; 5:1566-79. [PMID: 27061029 PMCID: PMC4944884 DOI: 10.1002/cam4.707] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 02/05/2023] Open
Abstract
Stromal fibroblasts are an integral part of the tumor stroma and constantly interact with cancer cells to promote their initiation and progression. However, the role and function of dermal fibroblasts during the early stage of melanoma development remain poorly understood. We, therefore, designed a novel genetic approach to deactivate stromal fibroblasts at the onset of melanoma formation by targeted ablation of β-catenin. To our surprise, melanoma tumors formed from β-catenin-deficient group (B16F10 mixed with β-catenin-deficient fibroblasts) appeared earlier than tumors formed from control group (B16F10 mixed with normal dermal fibroblasts). At the end point when tumors were collected, mutant tumors were bigger and heavier than control tumors. Further analysis showed that there were fewer amounts of stromal fibroblasts and myofibroblasts inside mutant tumor stroma. Melanoma tumors from control group showed reduced proliferation, down-regulated expression of cyclin D1 and increased expression of cyclin-dependent kinase inhibitor p16, suggesting dermal fibroblasts blocked the onset of melanoma tumor formation by inducing a cell cycle arrest in B16F10 melanoma cells. Furthermore, we discovered that dermal fibroblasts prevented epithelial-mesenchymal transition in melanoma cells. Overall, our findings demonstrated that dermal fibroblasts crosstalk with melanoma cells to regulate in vivo tumor development via multiple mechanisms, and the outcomes of their reciprocal interactions depend on activation states of stromal fibroblasts and stages of melanoma development.
Collapse
Affiliation(s)
- Linli Zhou
- Division of Pharmaceutical SciencesCollege of PharmacyUniversity of CincinnatiCincinnatiOhio45267
| | - Kun Yang
- Division of Pharmaceutical SciencesCollege of PharmacyUniversity of CincinnatiCincinnatiOhio45267
| | - R. Randall Wickett
- Division of Pharmaceutical SciencesCollege of PharmacyUniversity of CincinnatiCincinnatiOhio45267
| | - Yuhang Zhang
- Division of Pharmaceutical SciencesCollege of PharmacyUniversity of CincinnatiCincinnatiOhio45267
| |
Collapse
|
26
|
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology that is characterized by fibrosis of the skin and several internal organs, vasculopathy, inflammation and autoimmunity. Animal models have improved our understanding of the pathogenesis of SSc. Many inducible and genetic animal models of SSc have been developed and characterized in the last years. All of these models have different strengths and limitations and mimic different aspects of the pathogenesis of SSc. The purpose of this review is to summarize the characteristics of the various animal models of SSc and to provide an outline of how to use these models to study certain aspects in the pathogenesis of SSc and to test the effects of potential therapeutic approaches.
Collapse
|
27
|
Rognoni E, Gomez C, Pisco AO, Rawlins EL, Simons BD, Watt FM, Driskell RR. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development 2016; 143:2522-35. [PMID: 27287810 PMCID: PMC4958333 DOI: 10.1242/dev.131797] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/01/2016] [Indexed: 01/05/2023]
Abstract
New hair follicles (HFs) do not form in adult mammalian skin unless epidermal Wnt signalling is activated genetically or within large wounds. To understand the postnatal loss of hair forming ability we monitored HF formation at small circular (2 mm) wound sites. At P2, new HFs formed in back skin, but HF formation was markedly decreased by P21. Neonatal tail also formed wound-associated HFs, albeit in smaller numbers. Postnatal loss of HF neogenesis did not correlate with wound closure rate but with a reduction in Lrig1-positive papillary fibroblasts in wounds. Comparative gene expression profiling of back and tail dermis at P1 and dorsal fibroblasts at P2 and P50 showed a correlation between loss of HF formation and decreased expression of genes associated with proliferation and Wnt/β-catenin activity. Between P2 and P50, fibroblast density declined throughout the dermis and clones of fibroblasts became more dispersed. This correlated with a decline in fibroblasts expressing a TOPGFP reporter of Wnt activation. Surprisingly, between P2 and P50 there was no difference in fibroblast proliferation at the wound site but Wnt signalling was highly upregulated in healing dermis of P21 compared with P2 mice. Postnatal β-catenin ablation in fibroblasts promoted HF regeneration in neonatal and adult mouse wounds, whereas β-catenin activation reduced HF regeneration in neonatal wounds. Our data support a model whereby postnatal loss of hair forming ability in wounds reflects elevated dermal Wnt/β-catenin activation in the wound bed, increasing the abundance of fibroblasts that are unable to induce HF formation. Summary: Postnatal mouse skin exhibits a decline in its ability to regenerate hair follicles in the wound bed and this can be partially reversed by inhibiting dermal β-catenin activation.
Collapse
Affiliation(s)
- Emanuel Rognoni
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Celine Gomez
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Angela Oliveira Pisco
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Ben D Simons
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Ryan R Driskell
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
28
|
Bergmann C, Distler JHW. Canonical Wnt signaling in systemic sclerosis. J Transl Med 2016; 96:151-5. [PMID: 26752744 DOI: 10.1038/labinvest.2015.154] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
Fibrosing disorders are characterized by abundant accumulation of extracellular matrix proteins such as collagen in a variety of organs, which results in structural changes and dysfunction of the affected organ. Thus fibrotic diseases are characterized by a high morbidity and mortality and also lead to major socioeconomic costs. Systemic sclerosis (SSc) is a prototypic multi-systemic fibrosing disease, which affects the skin and a variety of internal organs, including the lungs, heart and gastrointestinal tract. Targeted antifibrotic therapies are not yet available for clinical use in SSc. In recent years, canonical Wnt signaling has been profoundly characterized as an important mediator of sustained fibroblast activation in fibrotic diseases. In the present review, we will summarize current research on the canonical Wnt signaling pathway in SSc and discuss translational implications and potential limitations of prolonged Wnt inhibition.
Collapse
Affiliation(s)
- Christina Bergmann
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
29
|
Guo R, Merkel AR, Sterling JA, Davidson JM, Guelcher SA. Substrate modulus of 3D-printed scaffolds regulates the regenerative response in subcutaneous implants through the macrophage phenotype and Wnt signaling. Biomaterials 2015; 73:85-95. [PMID: 26406449 PMCID: PMC4846647 DOI: 10.1016/j.biomaterials.2015.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/31/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023]
Abstract
The growing need for therapies to treat large cutaneous defects has driven recent interest in the design of scaffolds that stimulate regenerative wound healing. While many studies have investigated local delivery of biologics as a restorative approach, an increasing body of evidence highlights the contribution of the mechanical properties of implanted scaffolds to wound healing. In the present study, we designed poly(ester urethane) scaffolds using a templated-Fused Deposition Modeling (t-FDM) process to test the hypothesis that scaffolds with substrate modulus comparable to that of collagen fibers enhance a regenerative versus a fibrotic response. We fabricated t-FDM scaffolds with substrate moduli varying from 5 to 266 MPa to investigate the effects of substrate modulus on healing in a rat subcutaneous implant model. Angiogenesis, cellular infiltration, collagen deposition, and directional variance of collagen fibers were maximized for wounds treated with scaffolds having a substrate modulus (Ks = 24 MPa) comparable to that of collagen fibers. The enhanced regenerative response in these scaffolds was correlated with down-regulation of Wnt/β-catenin signaling in fibroblasts, as well as increased polarization of macrophages toward the restorative M2 phenotype. These observations highlight the substrate modulus of the scaffold as a key parameter regulating the regenerative versus scarring phenotype in wound healing. Our findings further point to the potential use of scaffolds with substrate moduli tuned to that of the native matrix as a therapeutic approach to improve cutaneous healing.
Collapse
Affiliation(s)
- R Guo
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - A R Merkel
- Research Service, Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J A Sterling
- Research Service, Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J M Davidson
- Research Service, Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Department of Pathology, Immunology, and Microbiology, Vanderbilt University, Nashville, TN 37232, USA
| | - S A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
30
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015. [PMID: 26389119 DOI: 10.3389/fmed.2015.00059.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
31
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015; 2:59. [PMID: 26389119 PMCID: PMC4558529 DOI: 10.3389/fmed.2015.00059] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
32
|
Ramming A, Dees C, Distler JHW. From pathogenesis to therapy--Perspective on treatment strategies in fibrotic diseases. Pharmacol Res 2015; 100:93-100. [PMID: 26188266 DOI: 10.1016/j.phrs.2015.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023]
Abstract
Although fibrosis is becoming increasingly recognized as a major cause of morbidity and mortality in modern societies, there are very few treatment strategies available that specifically target the pathogenesis of fibrosis. Early in disease, inflammation and vascular changes and an increase in reactive oxygen species play pivotal roles. After inflammation has subsided, fibrosis and scarring are predominant in later phases. Fibrosis is driven by a complex, not-yet fully understood interplay between inflammatory cells on one hand and endothelium and fibroblasts on the other hand. The latter are regarded as the key players due to their extensive synthesis of extracellular matrix components which results in skin and organ fibrosis. Various cytokines orchestrate altered functions of the mentioned cell types. There are promising targets with therapeutic potential that have been extensively characterized in recent years connected with the hope to translate these preclinical results into clinical practice.
Collapse
Affiliation(s)
- Andreas Ramming
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Clara Dees
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
33
|
Wang X, Hsi TC, Guerrero-Juarez CF, Pham K, Cho K, McCusker CD, Monuki ES, Cho KWY, Gay DL, Plikus MV. Principles and mechanisms of regeneration in the mouse model for wound-induced hair follicle neogenesis. ACTA ACUST UNITED AC 2015; 2:169-181. [PMID: 26504521 PMCID: PMC4617665 DOI: 10.1002/reg2.38] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Wound‐induced hair follicle neogenesis (WIHN) describes a regenerative phenomenon in adult mammalian skin wherein fully functional hair follicles regenerate de novo in the center of large excisional wounds. Originally described in rats, rabbits, sheep, and humans in 1940−1960, the WIHN phenomenon was reinvestigated in mice only recently. The process of de novo hair regeneration largely duplicates the morphological and signaling features of normal embryonic hair development. Similar to hair development, WIHN critically depends on the activation of canonical WNT signaling. However, unlike hair development, WNT activation in WIHN is dependent on fibroblast growth factor 9 signaling generated by the immune system's γδ T cells. The cellular bases of WIHN remain to be fully characterized; however, the available evidence leaves open the possibility for a blastema‐like mechanism wherein epidermal and/or dermal wound cells undergo epigenetic reprogramming toward a more plastic, embryonic‐like state. De novo hair follicles do not regenerate from preexisting hair‐fated bulge stem cells. This suggests that hair neogenesis is not driven by preexisting lineage‐restricted progenitors, as is the case for amputation‐induced mouse digit tip regeneration, but rather may require a blastema‐like mechanism. The WIHN model is characterized by several intriguing features, which await further explanation. These include (1) the minimum wound size requirement for activating neogenesis, (2) the restriction of hair neogenesis to the wound's center, and (3) imperfect patterning outcomes, both in terms of neogenic hair positioning within the wound and in terms of their orientation. Future enquiries into the WIHN process, made possible by a wide array of available skin‐specific genetic tools, will undoubtedly expand our understanding of the regeneration mechanisms in adult mammals.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA ; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA ; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Tsai-Ching Hsi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA ; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA ; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Christian Fernando Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA ; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA ; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Kim Pham
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA ; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA ; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin Cho
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA ; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA ; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Catherine D McCusker
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Edwin S Monuki
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA ; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA ; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA ; Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA ; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Denise L Gay
- UMR 967, Cellules Souches et Radiations, CEA - INSERM - Universités Paris 7 et Paris 11, CEA/DSV/IRCM/SCSR/LRTS, 92265 Fontenay-aux-Roses Cedex, France
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA ; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA ; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
34
|
Hamburg-Shields E, DiNuoscio GJ, Mullin NK, Lafyatis R, Atit RP. Sustained β-catenin activity in dermal fibroblasts promotes fibrosis by up-regulating expression of extracellular matrix protein-coding genes. J Pathol 2015; 235:686-97. [PMID: 25385294 DOI: 10.1002/path.4481] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 12/11/2022]
Abstract
Fibrosis is an end-stage response to tissue injury that is associated with loss of organ function as a result of excess extracellular matrix (ECM) production by fibroblasts. In skin, pathological fibrosis is evident during keloid scar formation, systemic sclerosis (SSc) and morphea. Dermal fibroblasts in these fibrotic diseases exhibit increased Wnt/β-catenin signalling, a pathway that is sufficient to cause fibrosis in mice. However, in the context of this complex pathology, the precise pro-fibrotic consequences of Wnt/β-catenin signalling are not known. We found that expression of stabilized β-catenin in mouse dermal fibroblasts resulted in spontaneous, progressive skin fibrosis with thickened collagen fibres and altered collagen fibril morphology. The fibrotic phenotype was predominated by resident dermal fibroblasts. Genome-wide profiling of the fibrotic mouse dermis revealed elevated expression of matrix-encoding genes, and the promoter regions of these genes were enriched for Tcf/Lef family transcription factor binding sites. Additionally, we identified 32 β-catenin-responsive genes in our mouse model that are also over-expressed in human fibrotic tissues and poised for regulation by Tcf/Lef family transcription factors. Therefore, we have uncovered a matrix-regulatory role for stabilized β-catenin in fibroblasts in vivo and have defined a set of β-catenin-responsive genes with relevance to fibrotic disease.
Collapse
|
35
|
Dees C, Distler JHW. Canonical Wnt signalling as a key regulator of fibrogenesis - implications for targeted therapies? Exp Dermatol 2014; 22:710-3. [PMID: 24118232 DOI: 10.1111/exd.12255] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
Canonical Wnt signalling belongs to the so-called morphogen pathways and plays essential roles in development and tissue homeostasis. Being such a crucial regulatory pathway, Wnt signalling is tightly controlled at different levels. However, uncontrolled activation of canonical Wnt signalling has been implicated into the pathogenesis of various human disorders. In the last years, aberrant Wnt signalling has been demonstrated in fibrotic diseases including systemic sclerosis (SSc). In this review, we will discuss the current state of research on canonical Wnt signalling in SSc. Activation of canonical Wnt signalling induces fibroblast activation with subsequent myofibroblast differentiation and excessive collagen release resulting in tissue fibrosis. Genetic or pharmacological blockade of Wnt activation ameliorates experimental fibrosis in different preclinical models. These findings have direct translational implications because several small molecule inhibitors of Wnt signalling are currently evaluated in clinical trials and some already showed first promising results.
Collapse
Affiliation(s)
- Clara Dees
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
36
|
Lesko MH, Driskell RR, Kretzschmar K, Goldie SJ, Watt FM. Sox2 modulates the function of two distinct cell lineages in mouse skin. Dev Biol 2013; 382:15-26. [PMID: 23948231 PMCID: PMC3807655 DOI: 10.1016/j.ydbio.2013.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 02/06/2023]
Abstract
In postnatal skin the transcription factor Sox2 is expressed in the dermal papilla (DP) of guard/awl/auchene hair follicles and by mechanosensory Merkel cells in the touch domes of guard hairs. To investigate the consequences of Sox2 ablation in skin we deleted Sox2 in DP cells via Blimp1Cre and in Merkel cells via K14Cre. Loss of Sox2 from the DP did not inhibit hair follicle morphogenesis or establishment of the dermis and hypodermis. However, Sox2 expression in the DP was necessary for postnatal maintenance of awl/auchene hair follicles. Deletion of Sox2 via K14Cre resulted in a decreased number of Merkel cells but had no effect on other epithelial compartments or on the dermis. The reduced number of Merkel cells did not affect the number or patterning of guard hairs, nerve density or the interaction of nerve cells with the touch domes. We conclude that Sox2 is a marker of two distinct lineages in the skin and regulates the number of differentiated cells in the case of the Merkel cell lineage and hair follicle type in the case of the DP. Sox2 is a marker of two distinct lineages in the skin. Sox2 is required for postnatal maintenance of awl/auchene hair follicles. Loss of Sox2 results in a reduction in Merkel cells.
Collapse
Affiliation(s)
- Marta H Lesko
- Wellcome Trust - Medical Research Council Centre for Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Guy's Tower, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|