1
|
Louie L, Wise J, Berl A, Shir‐az O, Kravtsov V, Yakhini Z, Shalom A, Golberg A, Vitkin E. High-throughput lipidomic profiles sampled with electroporation-based biopsy differentiate healthy skin, cutaneous squamous cell carcinoma, and basal cell carcinoma. Skin Res Technol 2024; 30:e13706. [PMID: 38721854 PMCID: PMC11079884 DOI: 10.1111/srt.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The incidence rates of cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) skin cancers are rising, while the current diagnostic process is time-consuming. We describe the development of a novel approach to high-throughput sampling of tissue lipids using electroporation-based biopsy, termed e-biopsy. We report on the ability of the e-biopsy technique to harvest large amounts of lipids from human skin samples. MATERIALS AND METHODS Here, 168 lipids were reliably identified from 12 patients providing a total of 13 samples. The extracted lipids were profiled with ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS) providing cSCC, BCC, and healthy skin lipidomic profiles. RESULTS Comparative analysis identified 27 differentially expressed lipids (p < 0.05). The general profile trend is low diglycerides in both cSCC and BCC, high phospholipids in BCC, and high lyso-phospholipids in cSCC compared to healthy skin tissue samples. CONCLUSION The results contribute to the growing body of knowledge that can potentially lead to novel insights into these skin cancers and demonstrate the potential of the e-biopsy technique for the analysis of lipidomic profiles of human skin tissues.
Collapse
Affiliation(s)
- Leetal Louie
- Porter School of Environment and Earth SciencesTel Aviv UniversityTel AvivIsrael
| | - Julia Wise
- Porter School of Environment and Earth SciencesTel Aviv UniversityTel AvivIsrael
| | - Ariel Berl
- Department of Plastic SurgeryMeir Medical CenterKfar SavaIsrael
| | - Ofir Shir‐az
- Department of Plastic SurgeryMeir Medical CenterKfar SavaIsrael
| | | | - Zohar Yakhini
- Arazi School of Computer ScienceReichman UniversityHerzliyaIsrael
- Department of Computer ScienceTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Avshalom Shalom
- Department of Plastic SurgeryMeir Medical CenterKfar SavaIsrael
| | - Alexander Golberg
- Porter School of Environment and Earth SciencesTel Aviv UniversityTel AvivIsrael
| | - Edward Vitkin
- Porter School of Environment and Earth SciencesTel Aviv UniversityTel AvivIsrael
- Arazi School of Computer ScienceReichman UniversityHerzliyaIsrael
| |
Collapse
|
2
|
Cozma EC, Banciu LM, Soare C, Cretoiu SM. Update on the Molecular Pathology of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24076646. [PMID: 37047618 PMCID: PMC10095059 DOI: 10.3390/ijms24076646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, originating from keratinocytes of the spinous layer. Numerous risk factors have been discovered for the initiation and growth of this type of cancer, such as exposure to UV and ionizing radiation, chemical carcinogens, the presence of immunosuppression states, chronic inflammation, infections with high-risk viral strains, and, last but not least, the presence of diseases associated with genetic alterations. The important socio-economic impact, as well as the difficulty associated with therapy for advanced forms, has made the molecular mechanisms underlying this neoplasia more and more intensively studied, with the intention of achieving a better understanding and advancing the treatment of this pathology. This review aims to provide a brief foray into the molecular, genetic, and epigenetic aspects of this cancer, as well as the treatment methods, ranging from the first used to the latest targeted therapies.
Collapse
Affiliation(s)
- Elena-Codruta Cozma
- Dermatology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
- Pathophysiology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Laura Madalina Banciu
- Dermatology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cristina Soare
- Dermatology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
- Surgery Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sanda-Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073478. [PMID: 35408839 PMCID: PMC8998533 DOI: 10.3390/ijms23073478] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Non-melanoma skin cancers are cutaneous malignancies representing the most common form of cancer in the United States. They are comprised predominantly of basal cell carcinomas and squamous cell carcinomas (cSCC). The incidence of cSCC is increasing, resulting in substantial morbidity and ever higher treatment costs; currently in excess of one billion dollars, per annum. Here, we review research defining the molecular basis and development of cSCC that aims to provide new insights into pathogenesis and drive the development of novel, cost and morbidity saving therapies.
Collapse
|
4
|
Aiderus A, Newberg JY, Guzman-Rojas L, Contreras-Sandoval AM, Meshey AL, Jones DJ, Amaya-Manzanares F, Rangel R, Ward JM, Lee SC, Ban KHK, Rogers K, Rogers SM, Selvanesan L, McNoe LA, Copeland NG, Jenkins NA, Tsai KY, Black MA, Mann KM, Mann MB. Transposon mutagenesis identifies cooperating genetic drivers during keratinocyte transformation and cutaneous squamous cell carcinoma progression. PLoS Genet 2021; 17:e1009094. [PMID: 34398873 PMCID: PMC8389471 DOI: 10.1371/journal.pgen.1009094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/26/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022] Open
Abstract
The systematic identification of genetic events driving cellular transformation and tumor progression in the absence of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified both known tumor suppressor genes and novel oncogenic drivers of cuSCC. Functional analysis confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely heterogeneous genetic landscape of cuSCC initiation and progression, which can be harnessed to better understand skin oncogenic etiology and prioritize therapeutic candidates. Non-melanoma skin cancers, the most common cancers in the US, are caused by UV skin exposure. Nearly 1 million cases of cutaneous squamous cell carcinoma (cuSCC) are diagnosed in the US each year. While most cuSCCs are highly treatable, more than twice as many individuals die from this disease as from melanoma. The high burden of UV-induced DNA damage in human skin poses a challenge for identifying initiating and cooperating mutations that promote cuSCC development and for defining potential therapeutic targets. Here, we describe a genetic screen in mice using a DNA transposon system to mutagenize the genome of keratinocytes and drive squamous cell carcinoma in the absence of UV. By sequencing where the transposons selectively integrated in the genomes of normal skin, skin with pre-cancerous lesions and skin with fully developed cuSCCs from our mouse model, we were able to identify frequently mutated genes likely important for this disease. Our analysis also defined cooperation between sets of genes not previously appreciated in cuSCC. Our mouse model and ensuing data provide a framework for understanding the genetics of cuSCC and for defining the molecular changes that may lead to the future therapies for patients.
Collapse
Affiliation(s)
- Aziz Aiderus
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Liliana Guzman-Rojas
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Ana M. Contreras-Sandoval
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Amanda L. Meshey
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Devin J. Jones
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Felipe Amaya-Manzanares
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Jerrold M. Ward
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Song-Choon Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Kenneth Hon-Kim Ban
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Keith Rogers
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Susan M. Rogers
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Luxmanan Selvanesan
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Leslie A. McNoe
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Neal G. Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Nancy A. Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology & Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Michael A. Black
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Karen M. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Departments of Gastrointestinal Oncology & Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
5
|
Szabo L, Molnar R, Tomesz A, Deutsch A, Darago R, Nowrasteh G, Varjas T, Nemeth B, Budan F, Kiss I. The effects of flavonoids, green tea polyphenols and coffee on DMBA induced LINE-1 DNA hypomethylation. PLoS One 2021; 16:e0250157. [PMID: 33878138 PMCID: PMC8057585 DOI: 10.1371/journal.pone.0250157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
The intake of carcinogenic and chemopreventive compounds are important nutritional factors related to the development of malignant tumorous diseases. Repetitive long interspersed element-1 (LINE-1) DNA methylation pattern plays a key role in both carcinogenesis and chemoprevention. In our present in vivo animal model, we examined LINE-1 DNA methylation pattern as potential biomarker in the liver, spleen and kidney of mice consuming green tea (Camellia sinensis) extract (catechins 80%), a chinese bayberry (Morella rubra) extract (myricetin 80%), a flavonoid extract (with added resveratrol) and coffee (Coffee arabica) extract. In the organs examined, carcinogen 7,12-dimethylbenz(a)anthracene (DMBA)-induced hypomethylation was prevented by all test materials except chinese bayberry extract in the kidneys. Moreover, the flavonoid extract caused significant hypermethylation in the liver compared to untreated controls and to other test materials. The tested chemopreventive substances have antioxidant, anti-inflammatory properties and regulate molecular biological signaling pathways. They increase glutathione levels, induce antioxidant enzymes, which decrease free radical damage caused by DMBA, and ultimately, they are able to increase the activity of DNA methyltransferase enzymes. Furthermore, flavonoids in the liver may inhibit the procarcinogen to carcinogen activation of DMBA through the inhibition of CYP1A1 enzyme. At the same time, paradoxically, myricetin can act as a prooxidant as a result of free radical damage, which can explain that it did not prevent hypomethylation in the kidneys. Our results demonstrated that LINE-1 DNA methylation pattern is a useful potential biomarker for detecting and monitoring carcinogenic and chemopreventive effects of dietary compounds.
Collapse
Affiliation(s)
- Laszlo Szabo
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Richard Molnar
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Tomesz
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Arpad Deutsch
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Richard Darago
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Ferenc Budan
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Environmental Engineering, Faculty of Engineering, University of Pannonia, Veszprém, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
6
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Weber J, Braun CJ, Saur D, Rad R. In vivo functional screening for systems-level integrative cancer genomics. Nat Rev Cancer 2020; 20:573-593. [PMID: 32636489 DOI: 10.1038/s41568-020-0275-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
With the genetic portraits of all major human malignancies now available, we next face the challenge of characterizing the function of mutated genes, their downstream targets, interactions and molecular networks. Moreover, poorly understood at the functional level are also non-mutated but dysregulated genomes, epigenomes or transcriptomes. Breakthroughs in manipulative mouse genetics offer new opportunities to probe the interplay of molecules, cells and systemic signals underlying disease pathogenesis in higher organisms. Herein, we review functional screening strategies in mice using genetic perturbation and chemical mutagenesis. We outline the spectrum of genetic tools that exist, such as transposons, CRISPR and RNAi and describe discoveries emerging from their use. Genome-wide or targeted screens are being used to uncover genomic and regulatory landscapes in oncogenesis, metastasis or drug resistance. Versatile screening systems support experimentation in diverse genetic and spatio-temporal settings to integrate molecular, cellular or environmental context-dependencies. We also review the combination of in vivo screening and barcoding strategies to study genetic interactions and quantitative cancer dynamics during tumour evolution. These scalable functional genomics approaches are transforming our ability to interrogate complex biological systems.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Christian J Braun
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Field cancerization: Definition, epidemiology, risk factors, and outcomes. J Am Acad Dermatol 2020; 83:709-717. [PMID: 32387665 DOI: 10.1016/j.jaad.2020.03.126] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
Field cancerization was first described in 1953 when pathologic atypia was identified in clinically normal tissue surrounding oropharyngeal carcinomas. The discovery of mutated fields surrounding primary tumors raised the question of whether the development of subsequent tumors within the field represented recurrences or additional primary tumors. Since this initial study, field cancerization has been applied to numerous other epithelial tissues, including the skin. Cutaneous field cancerization occurs in areas exposed to chronic ultraviolet radiation, which leads to clonal proliferations of p53-mutated fields and is characterized by multifocal actinic keratoses, squamous cell carcinomas in situ, and cutaneous squamous cell carcinomas. In the first article in this continuing medical education series, we define field cancerization, review the available grading systems, and discuss the epidemiology, risk factors, and outcomes associated with this disease.
Collapse
|
9
|
Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities. Int J Mol Sci 2020; 21:ijms21031172. [PMID: 32050713 PMCID: PMC7036786 DOI: 10.3390/ijms21031172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity.
Collapse
|
10
|
Weinberg DN, Papillon-Cavanagh S, Chen H, Yue Y, Chen X, Rajagopalan KN, Horth C, McGuire JT, Xu X, Nikbakht H, Lemiesz AE, Marchione DM, Marunde MR, Meiners MJ, Cheek MA, Keogh MC, Bareke E, Djedid A, Harutyunyan AS, Jabado N, Garcia BA, Li H, Allis CD, Majewski J, Lu C. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 2019; 573:281-286. [PMID: 31485078 PMCID: PMC6742567 DOI: 10.1038/s41586-019-1534-3] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 08/06/2019] [Indexed: 01/11/2023]
Abstract
Enzymes catalyzing CpG methylation in DNA, including DNMT1 and DNMT3A/B, are indispensable for mammalian tissue development and homeostasis1–4. They are also implicated in human developmental disorders and cancers5–8, supporting a critical role of DNA methylation during cell fate specification and maintenance. Recent studies suggest that histone post-translational modifications (PTMs) are involved in specifying patterns of DNMT localization and DNA methylation at promoters and actively transcribed gene bodies9–11. However, mechanisms governing the establishment and maintenance of intergenic DNA methylation remain poorly understood. Germline mutations in DNMT3A define Tatton-Brown-Rahman syndrome (TBRS), a childhood overgrowth disorder that shares clinical features with Sotos syndrome caused by haploinsufficiency of NSD1, a histone methyltransferase catalyzing di-methylation on H3K36 (H3K36me2)8,12,13, pointing to a potential mechanistic link between the two diseases. Here we report that NSD1-mediated H3K36me2 is required for recruitment of DNMT3A and maintenance of DNA methylation at intergenic regions. Genome-wide analysis shows that binding and activity of DNMT3A co-localize with H3K36me2 at non-coding regions of euchromatin. Genetic ablation of NSD1 and its paralogue NSD2 in cells redistributes DNMT3A to H3K36me3-marked gene bodies and reduces intergenic DNA methylation. NSD1 mutant tumors and Sotos patient samples are also associated with intergenic DNA hypomethylation. Accordingly, the PWWP-domain of DNMT3A shows dual recognition of H3K36me2/3 in vitro with a higher binding affinity towards H3K36me2, which is abrogated by TBRS-derived missense mutations. Taken together, our study uncovers a trans-chromatin regulatory pathway that connects aberrant intergenic CpG methylation to human neoplastic and developmental overgrowth.
Collapse
Affiliation(s)
- Daniel N Weinberg
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | | | - Haifen Chen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Yuan Yue
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Kartik N Rajagopalan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Cynthia Horth
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - John T McGuire
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Xinjing Xu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Hamid Nikbakht
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Agata E Lemiesz
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Anissa Djedid
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA.
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Pan C, Izreig S, Yarbrough WG, Issaeva N. NSD1 mutations by HPV status in head and neck cancer: differences in survival and response to DNA-damaging agents. CANCERS OF THE HEAD & NECK 2019; 4:3. [PMID: 31321084 PMCID: PMC6613249 DOI: 10.1186/s41199-019-0042-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Abstract
Background Compared to HPV-negative head and neck squamous cell carcinomas (HNSCCs), HPV-positive HNSCCs are associated with a favorable prognosis in part due to their improved treatment sensitivity. Inactivating mutations in NSD1 were shown to be a favorable prognostic biomarker in laryngeal cancers. Here, we characterize NSD1 mutations from the expanded The Cancer Genome Atlas (TCGA) HNSCC cohort (n = 522) and examine their prognostic implications based on HPV status of the tumor. We also begin to examine if NSD1 regulates response to platinum-based drugs and other DNA-damaging agents. Methods TCGA HNSCC samples were segregated by HPV and NSD1 mutations using cBioPortal and patient survival was determined. Pathogenicity of mutations was predicted using UMD-Predictor. NSD1-depleted cell lines were established by transfection with control or shRNAs against NSD1, followed by puromycin selection, and confirmed by qRT-PCR. Cell sensitivity to DNA damaging agents was assessed using short-term proliferation and long-term clonogenic survival assays. Results Among 457 HPV(-) tumors, 13% contained alterations in the NSD1 gene. The majority (61.3%) of NSD1 gene alterations in HPV(-) specimens were truncating mutations within or before the enzymatic SET domain. The remaining alterations included homozygous gene deletions (6.7%), missense point mutations (30.7%) and inframe deletions (1.3%). UMD-Predictor categorized 18 of 23 missense point mutations as pathogenic. For HPV(+) HNSCC (n = 65), 6 NSD1 mutations, comprised of two truncating (33%) and 4 missense point (66%) mutations, were identified. Three of the 4 missense point mutations were predicted to be pathogenic or probably pathogenic by UMD-Predictor. Kaplan-Meier survival analysis determined significantly improved survival of HPV(-) HNSCC patients whose tumors harbored NSD1 gene alterations, as compared to patients with wild-type NSD1 tumors. Interestingly, the survival effect of NSD1 mutations observed in HPV-negative HNSCC was reversed in HPV(+) tumors. Proliferation and clonogenic survival of two HPV(-) cell lines stably expressing control or NSD1 shRNAs showed that NSD1-depleted cells were more sensitive to cisplatin and carboplatin, but not to other DNA damaging drugs. Conclusions Genetic alterations in NSD1 hold potential as novel prognostic biomarkers in HPV(-) head and neck cancers. NSD1 mutations in HPV(+) cancers may also play a prognostic role, although this effect must be examined in a larger cohort. NSD1 downregulation results in improved sensitivity to cisplatin and carboplatin, but not to other DNA-damaging agents, in epithelial cells. Increased sensitivity to platinum-based chemotherapy agents associated with NSD1 depletion may contribute to improved survival in HPV(-) HNSCCs. Further studies are needed to determine mechanisms through which NSD1 protects HPV(-) HNSCC cells from platinum-based therapy, as well as confirmation of NSD1 effect in HPV(+) HNSCC.
Collapse
Affiliation(s)
- Cassie Pan
- 1Department of Surgery, Division of Otolaryngology, Yale University, New Haven, CT USA
| | - Said Izreig
- 1Department of Surgery, Division of Otolaryngology, Yale University, New Haven, CT USA
| | - Wendell G Yarbrough
- 2Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, 170 Manning Drive, Campus Box 7070, Chapel Hill, NC 27599-7070 USA.,3Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Natalia Issaeva
- 2Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, 170 Manning Drive, Campus Box 7070, Chapel Hill, NC 27599-7070 USA.,3Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
12
|
Feddersen CR, Wadsworth LS, Zhu EY, Vaughn HR, Voigt AP, Riordan JD, Dupuy AJ. A simplified transposon mutagenesis method to perform phenotypic forward genetic screens in cultured cells. BMC Genomics 2019; 20:497. [PMID: 31208320 PMCID: PMC6580595 DOI: 10.1186/s12864-019-5888-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The introduction of genome-wide shRNA and CRISPR libraries has facilitated cell-based screens to identify loss-of-function mutations associated with a phenotype of interest. Approaches to perform analogous gain-of-function screens are less common, although some reports have utilized arrayed viral expression libraries or the CRISPR activation system. However, a variety of technical and logistical challenges make these approaches difficult for many labs to execute. In addition, genome-wide shRNA or CRISPR libraries typically contain of hundreds of thousands of individual engineered elements, and the associated complexity creates issues with replication and reproducibility for these methods. RESULTS Here we describe a simple, reproducible approach using the SB transposon system to perform phenotypic cell-based genetic screens. This approach employs only three plasmids to perform unbiased, whole-genome transposon mutagenesis. We also describe a ligation-mediated PCR method that can be used in conjunction with the included software tools to map raw sequence data, identify candidate genes associated with phenotypes of interest, and predict the impact of recurrent transposon insertions on candidate gene function. Finally, we demonstrate the high reproducibility of our approach by having three individuals perform independent replicates of a mutagenesis screen to identify drivers of vemurafenib resistance in cultured melanoma cells. CONCLUSIONS Collectively, our work establishes a facile, adaptable method that can be performed by labs of any size to perform robust, genome-wide screens to identify genes that influence phenotypes of interest.
Collapse
Affiliation(s)
- Charlotte R. Feddersen
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Lexy S. Wadsworth
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Eliot Y. Zhu
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Hayley R. Vaughn
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Andrew P. Voigt
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Jesse D. Riordan
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Adam J. Dupuy
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52246 USA
- Department of Anatomy & Cell Biology, Cancer Biology Graduate Program, University of Iowa, MERF, 375 Newton Road, Iowa City, IA 3202 USA
| |
Collapse
|
13
|
Guimaraes-Young A, Feddersen CR, Dupuy AJ. Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics. Front Oncol 2019; 9:611. [PMID: 31338332 PMCID: PMC6629774 DOI: 10.3389/fonc.2019.00611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon insertional mutagenesis system offers a streamlined approach to identify genetic drivers of cancer. With a relatively random insertion profile, SB is uniquely positioned for conducting unbiased forward genetic screens. Indeed, SB mouse models of cancer have revealed insights into the genetics of tumorigenesis. In this review, we highlight experiments that have exploited the SB system to interrogate the genetics of cancer in distinct biological contexts. We also propose experimental designs that could further our understanding of the relationship between tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Amy Guimaraes-Young
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Charlotte R Feddersen
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
14
|
The Ras-related gene ERAS is involved in human and murine breast cancer. Sci Rep 2018; 8:13038. [PMID: 30158566 PMCID: PMC6115423 DOI: 10.1038/s41598-018-31326-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/02/2018] [Indexed: 01/06/2023] Open
Abstract
Although Ras genes are frequently mutated in human tumors, these mutations are uncommon in breast cancer. However, many breast tumors show evidences of Ras pathway activation. In this manuscript, we have analyzed and characterized mouse mammary tumors generated by random Sleeping Beauty transposon mutagenesis and identify ERAS -a member of the RAS family silenced in adult tissues- as a new gene involved in progression and malignancy of breast cancer. Forced expression of ERAS in human non-transformed mammary gland cells induces a process of epithelial-to-mesenchymal transition and an increase in stem cells markers; these changes are mediated by miR-200c downregulation. ERAS expression in human tumorigenic mammary cells leads to the generation of larger and less differentiated tumors in xenotransplant experiments. Immunohistochemical, RT-qPCR and bioinformatics analysis of human samples show that ERAS is aberrantly expressed in 8–10% of breast tumors and this expression is associated with distant metastasis and reduced metastasis-free survival. In summary, our results reveal that inappropriate activation of ERAS may be important in the development of a subset of breast tumors. These findings open the possibility of new specific treatments for this subset of ERAS-expressing tumors.
Collapse
|
15
|
Choi HJ, Lee HB, Jung S, Park HK, Jo W, Cho SM, Kim WJ, Son WC. Development of a Mouse Model of Prostate Cancer Using the Sleeping Beauty Transposon and Electroporation. Molecules 2018; 23:molecules23061360. [PMID: 29874846 PMCID: PMC6100630 DOI: 10.3390/molecules23061360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2018] [Accepted: 06/01/2018] [Indexed: 01/12/2023] Open
Abstract
The Sleeping Beauty (SB) transposon system is non-viral and uses insertional mutagenesis, resulting in the permanent expression of transferred genes. Although the SB transposon is a useful method for establishing a mouse tumor model, there has been difficulty in using this method to generate tumors in the prostate. In the present study, electroporation was used to enhance the transfection efficiency of the SB transposon. To generate tumors, three constructs (a c-Myc expression cassette, a HRAS (HRas proto-oncogene, GTPase) expression cassette and a shRNA against p53) contained within the SB transposon plasmids were directly injected into the prostate. Electroporation was conducted on the injection site after the injection of the DNA plasmid. Following the tumorigenesis, the tumors were monitored by animal PET imaging and identified by gross observation. After this, the tumors were characterized by using histological and immunohistochemical techniques. The expression of the targeted genes was analyzed by Real-Time qRT-PCR. All mice subjected to the injection were found to have prostate tumors, which was supported by PSA immunohistochemistry. To our knowledge, this is the first demonstration of tumor induction in the mouse prostate using the electroporation-enhanced SB transposon system in combination with c-Myc, HRAS and p53. This model serves as a valuable resource for the future development of SB-induced mouse models of cancer.
Collapse
Affiliation(s)
- Hyun-Ji Choi
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Han-Byul Lee
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Sunyoung Jung
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Hyun-Kyu Park
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woori Jo
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Sung-Min Cho
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woo-Jin Kim
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woo-Chan Son
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| |
Collapse
|
16
|
NSD1 inactivation defines an immune cold, DNA hypomethylated subtype in squamous cell carcinoma. Sci Rep 2017; 7:17064. [PMID: 29213088 PMCID: PMC5719078 DOI: 10.1038/s41598-017-17298-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
Chromatin modifying enzymes are frequently mutated in cancer, resulting in widespread epigenetic deregulation. Recent reports indicate that inactivating mutations in the histone methyltransferase NSD1 define an intrinsic subtype of head and neck squamous cell carcinoma (HNSC) that features pronounced DNA hypomethylation. Here, we describe a similar hypomethylated subtype of lung squamous cell carcinoma (LUSC) that is enriched for both inactivating mutations and deletions in NSD1. The ‘NSD1 subtypes’ of HNSC and LUSC are highly correlated at the DNA methylation and gene expression levels, featuring ectopic expression of developmental transcription factors and genes that are also hypomethylated in Sotos syndrome, a congenital disorder caused by germline NSD1 mutations. Further, the NSD1 subtype of HNSC displays an ‘immune cold’ phenotype characterized by low infiltration of tumor-associated leukocytes, particularly macrophages and CD8+ T cells, as well as low expression of genes encoding the immunotherapy target PD-1 immune checkpoint receptor and its ligands. Using an in vivo model, we demonstrate that NSD1 inactivation results in reduced T cell infiltration into the tumor microenvironment, implicating NSD1 as a tumor cell-intrinsic driver of an immune cold phenotype. NSD1 inactivation therefore causes epigenetic deregulation across cancer sites, and has implications for immunotherapy.
Collapse
|
17
|
Bennett RL, Swaroop A, Troche C, Licht JD. The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026708. [PMID: 28193767 DOI: 10.1101/cshperspect.a026708] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies.
Collapse
Affiliation(s)
- Richard L Bennett
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Alok Swaroop
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Catalina Troche
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Jonathan D Licht
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| |
Collapse
|
18
|
de Lena PG, Paz-Gallardo A, Paramio JM, García-Escudero R. Clusterization in head and neck squamous carcinomas based on lncRNA expression: molecular and clinical correlates. Clin Epigenetics 2017; 9:36. [PMID: 28405244 PMCID: PMC5385094 DOI: 10.1186/s13148-017-0334-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have emerged as key players in a remarkably variety of biological processes and pathologic conditions, including cancer. Next-generation sequencing technologies and bioinformatics procedures predict the existence of tens of thousands of lncRNAs, from which we know the functions of only a handful of them, and very little is known in cancer types such as head and neck squamous cell carcinomas (HNSCCs). RESULTS Here, we use RNAseq expression data from The Cancer Genome Atlas (TCGA) and various statistic and software tools in order to get insight about the lncRNome in HNSCC. Based on lncRNA expression across 426 samples, we discover five distinct tumor clusters that we compare with reported clusters based on various genomic/genetic features. Results demonstrate significant associations between lncRNA-based clustering and DNA methylation, TP53 mutation, and human papillomavirus infection. Using "guilt-by-association" procedures, we infer the possible biological functions of representative lncRNAs of each cluster. Furthermore, we found that lncRNA clustering is correlated with some important clinical and pathologic features, including patient survival after treatment, tumor grade, or sub-anatomical location. CONCLUSIONS We present a landscape of lncRNAs in HNSCC and provide associations with important genotypic and phenotypic features that may help to understand the disease.
Collapse
Affiliation(s)
- Pelayo G de Lena
- Molecular Oncology Unit, CIEMAT, Ave Complutense 40 (ed70A), 28040 Madrid, Spain
| | | | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT, Ave Complutense 40 (ed70A), 28040 Madrid, Spain.,Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT, Ave Complutense 40 (ed70A), 28040 Madrid, Spain.,Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| |
Collapse
|
19
|
Suárez-Cabrera C, Quintana RM, Bravo A, Casanova ML, Page A, Alameda JP, Paramio JM, Maroto A, Salamanca J, Dupuy AJ, Ramírez A, Navarro M. A Transposon-based Analysis Reveals RASA1 Is Involved in Triple-Negative Breast Cancer. Cancer Res 2017; 77:1357-1368. [PMID: 28108518 DOI: 10.1158/0008-5472.can-16-1586] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/15/2016] [Accepted: 12/27/2016] [Indexed: 11/16/2022]
Abstract
RAS genes are mutated in 20% of human tumors, but these mutations are very rare in breast cancer. Here, we used a mouse model to generate tumors upon activation of a mutagenic T2Onc2 transposon via expression of a transposase driven by the keratin K5 promoter in a p53+/- background. These animals mainly developed mammary tumors, most of which had transposon insertions in one of two RASGAP genes, neurofibromin1 (Nf1) and RAS p21 protein activator (Rasa1). Immunohistochemical analysis of a collection of human breast tumors confirmed that low expression of RASA1 is frequent in basal (triple-negative) and estrogen receptor negative tumors. Bioinformatic analysis of human breast tumors in The Cancer Genome Atlas database showed that although RASA1 mutations are rare, allelic loss is frequent, particularly in basal tumors (80%) and in association with TP53 mutation. Inactivation of RASA1 in MCF10A cells resulted in the appearance of a malignant phenotype in the context of mutated p53. Our results suggest that alterations in the Ras pathway due to the loss of negative regulators of RAS may be a common event in basal breast cancer. Cancer Res; 77(6); 1357-68. ©2017 AACR.
Collapse
Affiliation(s)
- Cristian Suárez-Cabrera
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, Madrid, Spain
| | - Rita M Quintana
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, Madrid, Spain
| | - Ana Bravo
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - M Llanos Casanova
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, Madrid, Spain
| | - Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, Madrid, Spain
| | - Josefa P Alameda
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, Madrid, Spain
| | - Jesús M Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, Madrid, Spain
| | - Alicia Maroto
- Department of Pathology, 12 de Octubre University Hospital, Madrid, Spain
| | - Javier Salamanca
- Department of Pathology, 12 de Octubre University Hospital, Madrid, Spain
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. & Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Angel Ramírez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, Madrid, Spain.
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, Madrid, Spain
| | - Manuel Navarro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, Madrid, Spain.
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, Madrid, Spain
| |
Collapse
|
20
|
Diet phytochemicals and cutaneous carcinoma chemoprevention: A review. Pharmacol Res 2017; 119:327-346. [PMID: 28242334 DOI: 10.1016/j.phrs.2017.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/25/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
Abstract
Cutaneous carcinoma, which has occupied a peculiar place among worldwide populations, is commonly responsible for the considerably increasing morbidity and mortality rates. Currently available medical procedures fail to completely avoid cutaneous carcinoma development or to prevent mortality. Cancer chemoprevention, as an alternative strategy, is being considered to reduce the incidence and burden of cancers through chemical agents. Derived from dietary foods, phytochemicals have become safe and reliable compounds for the chemoprevention of cutaneous carcinoma by relieving multiple pathological processes, including oxidative damage, epigenetic alteration, chronic inflammation, angiogenesis, etc. In this review, we presented comprehensive knowledges, main molecular mechanisms for the initiation and development of cutaneous carcinoma as well as effects of various diet phytochemicals on chemoprevention.
Collapse
|
21
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
22
|
Hou X, Du Y, Deng Y, Wu J, Cao G. Sleeping Beauty transposon system for genetic etiological research and gene therapy of cancers. Cancer Biol Ther 2015; 16:8-16. [PMID: 25455252 DOI: 10.4161/15384047.2014.986944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Carcinogenesis is etiologically associated with somatic mutations of critical genes. Recently, a number of somatic mutations and key molecules have been found to be involved in functional networks affecting cancer progression. Suitable animal models are required to validate cancer-promoting or -inhibiting capacities of these mutants and molecules. Sleeping Beauty transposon system consists of a transposon that carries gene(s) of interest and a transposase that recognizes, excises, and reinserts genes in given location of the genome. It can create both gain-of-function and loss-of-function mutations, thus being frequently chosen to investigate the etiological mechanisms and gene therapy for cancers in animal models. In this review, we summarized current advances of Sleeping Beauty transposon system in revealing molecular mechanism of cancers and improving gene therapy. Understanding molecular mechanisms by which driver mutations contribute to carcinogenesis and metastasis may pave the way for the development of innovative prophylactic and therapeutic strategies against malignant diseases.
Collapse
Key Words
- 7, 12-dimethylbenzanthracene/12-O-tetradecanoylphorbol-13-acetate
- Alb-Cre, Albumin promoter-Cre
- CAG promoter, CMV enhancer/chicken β-actin promoter
- CAR, chimeric antigen receptor
- CIS, common insertion site
- CMV, chimeric cytomegalovirus
- CRC, colorectal cancer
- Cre, cyclization recombination enzyme
- DDE, Asp, Asp, Glu
- DMBA/TPA
- DR, direct orientation
- Fah, fumarylacetoacetate hydrolase gene
- GWAS, gnome wide analysis study
- HBV, Hepatitis B Virus
- HBx, HBV X protein
- HCC, hepatocellular carcinoma
- IRs, inverted repeat sequences
- LsL, loxP-stop-loxP
- MPNSTs, malignant peripheral nerve sheath tumor
- MSCV, murine stem cell virus
- PAI, Pro, Ala, Ile
- PBMCs, peripheral blood mononuclear cells
- RED, Arg, Glu, Asp
- RosaSBaseLsL, Cre-inducible SBase allele
- Rtl1, Retrotransposon-like 1
- SB, Sleeping Beauty
- SBase, Sleeping Beauty transposase
- Sleeping Beauty transposon system
- StatinAE, angiostatin-endostatin fusion gene
- Trp53, transformation related protein 53
- animal model
- driver
- gene function
- gene therapy
- malignant diseases
- sgRNA, single guide RNA
- shp53, short hairpin RNA against the Trp53 gene
- somatic mutation
Collapse
Affiliation(s)
- Xiaomei Hou
- a Department of Epidemiology ; Second Military Medical University ; Shanghai , China
| | | | | | | | | |
Collapse
|
23
|
Zhong R, Bao R, Faber PW, Bindokas VP, Bechill J, Lingen MW, Spiotto MT. Notch1 Activation or Loss Promotes HPV-Induced Oral Tumorigenesis. Cancer Res 2015; 75:3958-3969. [PMID: 26294213 DOI: 10.1158/0008-5472.can-15-0199] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/12/2015] [Indexed: 12/15/2022]
Abstract
Viral oncogene expression is insufficient for neoplastic transformation of human cells, so human papillomavirus (HPV)-associated cancers will also rely upon mutations in cellular oncogenes and tumor suppressors. However, it has been difficult so far to distinguish incidental mutations without phenotypic impact from causal mutations that drive the development of HPV-associated cancers. In this study, we addressed this issue by conducting a functional screen for genes that facilitate the formation of HPV E6/E7-induced squamous cell cancers in mice using a transposon-mediated insertional mutagenesis protocol. Overall, we identified 39 candidate driver genes, including Notch1, which unexpectedly was scored by gain- or loss-of-function mutations that were capable of promoting squamous cell carcinogenesis. Autochthonous HPV-positive oral tumors possessing an activated Notch1 allele exhibited high rates of cell proliferation and tumor growth. Conversely, Notch1 loss could accelerate the growth of invasive tumors in a manner associated with increased expression of matrix metalloproteinases and other proinvasive genes. HPV oncogenes clearly cooperated with loss of Notch1, insofar as its haploinsufficiency accelerated tumor growth only in HPV-positive tumors. In clinical specimens of various human cancers, there was a consistent pattern of NOTCH1 expression that correlated with invasive character, in support of our observations in mice. Although Notch1 acts as a tumor suppressor in mouse skin, we found that oncogenes enabling any perturbation in Notch1 expression promoted tumor growth, albeit via distinct pathways. Our findings suggest caution in interpreting the meaning of putative driver gene mutations in cancer, and therefore therapeutic efforts to target them, given the significant contextual differences in which such mutations may arise, including in virus-associated tumors.
Collapse
Affiliation(s)
- Rong Zhong
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Riyue Bao
- Center for Research Informatics, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Pieter W Faber
- Functional Genomics Facility, The University of Chicago, Chicago, Illinois, 60637, United States
| | | | - John Bechill
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Mark W Lingen
- Department of Pathology, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Michael T Spiotto
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois, 60637, United States
| |
Collapse
|
24
|
Nassar D, Latil M, Boeckx B, Lambrechts D, Blanpain C. Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nat Med 2015; 21:946-54. [PMID: 26168291 DOI: 10.1038/nm.3878] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Abstract
Mouse models of cancers are routinely used to study cancer biology. However, it remains unclear whether carcinogenesis in mice is driven by the same spectrum of genomic alterations found in humans. Here we conducted a comprehensive genomic analysis of 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced skin cancer, the most commonly used skin cancer model, which appears as benign papillomas that progress into squamous cell carcinomas (SCCs). We also studied genetically induced SCCs that expressed G12D mutant Kras (Kras G12D) but were deficient for p53. Using whole-exome sequencing, we uncovered a characteristic mutational signature of DMBA-induced SCCs. We found that the vast majority of DMBA-induced SCCs presented recurrent mutations in Hras, Kras or Rras2 and mutations in several additional putative oncogenes and tumor-suppressor genes. Similar genes were recurrently mutated in mouse and human SCCs that were from different organs or had been exposed to different carcinogens. Invasive SCCs, but not papillomas, presented substantial chromosomal aberrations, especially in DMBA-induced and genetically induced Trp53-mutated SCCs. Metastasis occurred through sequential spreading, with relatively few additional genetic events. This study provides a framework for future functional cancer genomic studies in mice.
Collapse
Affiliation(s)
- Dany Nassar
- Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), Université libre de Buxelles (ULB), Brussels, Belgium
| | - Mathilde Latil
- Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), Université libre de Buxelles (ULB), Brussels, Belgium
| | - Bram Boeckx
- 1] Vesalius Research Center, Vlaams Instituut voor Biotechnologie VIB, Leuven, Belgium. [2] Laboratory for Translational Genetics, Department of Oncology, Katholieke Universiteit Leuven (KUL), Leuven, Belgium
| | - Diether Lambrechts
- 1] Vesalius Research Center, Vlaams Instituut voor Biotechnologie VIB, Leuven, Belgium. [2] Laboratory for Translational Genetics, Department of Oncology, Katholieke Universiteit Leuven (KUL), Leuven, Belgium
| | - Cédric Blanpain
- 1] Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), Université libre de Buxelles (ULB), Brussels, Belgium. [2] WELBIO, Brussels, Belgium
| |
Collapse
|
25
|
Bermejo-Rodríguez C, Pérez-Mancera PA. Use of DNA transposons for functional genetic screens in mouse models of cancer. Curr Opin Biotechnol 2015; 35:103-10. [PMID: 26073851 DOI: 10.1016/j.copbio.2015.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/14/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
Abstract
Cancer is a very heterogeneous disease with complex genetic interactions. In recent years, the systematic sequencing of cancer genomes has provided information to design personalized therapeutic interventions. However, the complexity of cancer genomes commonly makes it difficult to identify specific genes involved in tumour development or therapeutic responsiveness. The generation of mouse models of cancer using transposon-mediated approaches has provided a powerful tool to unveil the role of key genes during cancer development. Here we will discuss how the use of forward and reverse genetic approaches mediated by DNA transposons can support the investigation of cancer pathogenesis, including the identification of cancer promoting mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Camino Bermejo-Rodríguez
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Pedro A Pérez-Mancera
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Department of Molecular and Clinical Cancer Medicine, National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK.
| |
Collapse
|
26
|
Moriarity BS, Largaespada DA. Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery. Curr Opin Genet Dev 2015; 30:66-72. [PMID: 26051241 DOI: 10.1016/j.gde.2015.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023]
Abstract
Large-scale genomic efforts to study human cancer, such as the cancer gene atlas (TCGA), have identified numerous cancer drivers in a wide variety of tumor types. However, there are limitations to this approach, the mutations and expression or copy number changes that are identified are not always clearly functionally relevant, and only annotated genes and genetic elements are thoroughly queried. The use of complimentary, nonbiased, functional approaches to identify drivers of cancer development and progression is ideal to maximize the rate at which cancer discoveries are achieved. One such approach that has been successful is the use of the Sleeping Beauty (SB) transposon-based mutagenesis system in mice. This system uses a conditionally expressed transposase and mutagenic transposon allele to target mutagenesis to somatic cells of a given tissue in mice to cause random mutations leading to tumor development. Analysis of tumors for transposon common insertion sites (CIS) identifies candidate cancer genes specific to that tumor type. While similar screens have been performed in mice with the PiggyBac (PB) transposon and viral approaches, we limit extensive discussion to SB. Here we discuss the basic structure of these screens, screens that have been performed, methods used to identify CIS.
Collapse
Affiliation(s)
- Branden S Moriarity
- Department of Pediatrics, University of Minnesota Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota Minneapolis, MN 55455, United States
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota Minneapolis, MN 55455, United States; Department of Genetics, Cell Biology, and Development, University of Minnesota Minneapolis, MN 55455, United States.
| |
Collapse
|
27
|
Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015; 517:576-82. [PMID: 25631445 PMCID: PMC4311405 DOI: 10.1038/nature14129] [Citation(s) in RCA: 3009] [Impact Index Per Article: 300.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCs.
Collapse
|
28
|
Riordan JD, Drury LJ, Smith RP, Brett BT, Rogers LM, Scheetz TE, Dupuy AJ. Sequencing methods and datasets to improve functional interpretation of sleeping beauty mutagenesis screens. BMC Genomics 2014; 15:1150. [PMID: 25526783 PMCID: PMC4378557 DOI: 10.1186/1471-2164-15-1150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animal models of cancer are useful to generate complementary datasets for comparison to human tumor data. Insertional mutagenesis screens, such as those utilizing the Sleeping Beauty (SB) transposon system, provide a model that recapitulates the spontaneous development and progression of human disease. This approach has been widely used to model a variety of cancers in mice. Comprehensive mutation profiles are generated for individual tumors through amplification of transposon insertion sites followed by high-throughput sequencing. Subsequent statistical analyses identify common insertion sites (CISs), which are predicted to be functionally involved in tumorigenesis. Current methods utilized for SB insertion site analysis have some significant limitations. For one, they do not account for transposon footprints - a class of mutation generated following transposon remobilization. Existing methods also discard quantitative sequence data due to uncertainty regarding the extent to which it accurately reflects mutation abundance within a heterogeneous tumor. Additionally, computational analyses generally assume that all potential insertion sites have an equal probability of being detected under non-selective conditions, an assumption without sufficient relevant data. The goal of our study was to address these potential confounding factors in order to enhance functional interpretation of insertion site data from tumors. RESULTS We describe here a novel method to detect footprints generated by transposon remobilization, which revealed minimal evidence of positive selection in tumors. We also present extensive characterization data demonstrating an ability to reproducibly assign semi-quantitative information to individual insertion sites within a tumor sample. Finally, we identify apparent biases for detection of inserted transposons in several genomic regions that may lead to the identification of false positive CISs. CONCLUSION The information we provide can be used to refine analyses of data from insertional mutagenesis screens, improving functional interpretation of results and facilitating the identification of genes important in cancer development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adam J Dupuy
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City IA 52242, USA.
| |
Collapse
|
29
|
Jee BA, Lim H, Kwon SM, Jo Y, Park MC, Lee IJ, Woo HG. Molecular classification of basal cell carcinoma of skin by gene expression profiling. Mol Carcinog 2014; 54:1605-12. [PMID: 25328065 DOI: 10.1002/mc.22233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/11/2014] [Indexed: 11/08/2022]
Abstract
Non-melanoma skin cancers (NMSC) including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are more common kinds of skin cancer. Although these tumors share common pathological and clinical features, their similarity and heterogeneity at molecular levels are not fully elaborated yet. Here, by performing comparative analysis of gene expression profiling of BCC, SCC, and normal skin tissues, we could classify the BCC into three subtypes of classical, SCC-like, and normal-like BCCs. Functional enrichment and pathway analyses revealed the molecular characteristics of each subtype. The classical BCC showed the enriched expression and transcription signature with the activation of Wnt and Hedgehog signaling pathways, which were well known key features of BCC. By contrast, the SCC-like BCC was enriched with immune-response genes and oxidative stress-related genes. Network analysis revealed the PLAU/PLAUR as a key regulator of SCC-like BCC. The normal-like BCC showed prominent activation of metabolic processes particularly the fatty acid metabolism. The existence of these molecular subtypes could be validated in an independent dataset, which demonstrated the three subgroups of BCC with distinct functional enrichment. In conclusion, we suggest a novel molecular classification of BCC providing insights on the heterogeneous progression of BCC.
Collapse
Affiliation(s)
- Byul A Jee
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Korea
| | - Hyoseob Lim
- Department of Plastic and Reconstructive surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - So Mee Kwon
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Korea
| | - Yuna Jo
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Korea
| | - Myong Chul Park
- Department of Plastic and Reconstructive Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Il Jae Lee
- Department of Plastic and Reconstructive Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
30
|
Been RA, Linden MA, Hager CJ, DeCoursin KJ, Abrahante JE, Landman SR, Steinbach M, Sarver AL, Largaespada DA, Starr TK. Genetic signature of histiocytic sarcoma revealed by a sleeping beauty transposon genetic screen in mice. PLoS One 2014; 9:e97280. [PMID: 24827933 PMCID: PMC4020815 DOI: 10.1371/journal.pone.0097280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 04/18/2014] [Indexed: 02/06/2023] Open
Abstract
Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients.
Collapse
Affiliation(s)
- Raha A. Been
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Comparative and Molecular Biosciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Michael A. Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Courtney J. Hager
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Krista J. DeCoursin
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Juan E. Abrahante
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sean R. Landman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael Steinbach
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Aaron L. Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy K. Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
31
|
NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. J Invest Dermatol 2014; 134:2630-2638. [PMID: 24662767 PMCID: PMC4753672 DOI: 10.1038/jid.2014.154] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/27/2014] [Accepted: 03/10/2014] [Indexed: 12/11/2022]
Abstract
Cutaneous SCC (cSCC) is the most frequent skin cancer with metastatic potential and can manifest rapidly as a common side effect in patients receiving systemic kinase inhibitors. Here we use massively parallel exome and targeted level sequencing 132 sporadic cSCC, 39 squamoproliferative lesions and cSCC arising in patients receiving the BRAF inhibitor vemurafenib, as well as 10 normal skin samples to identify significant NOTCH1 mutation as an early event in squamous cell carcinogenesis. Bisected vemurafenib induced lesions revealed surprising heterogeneity with different activating HRAS and NOTCH1 mutations identified in two halves of the same cSCC suggesting polyclonal origin. Immunohistochemical analysis using an antibody specific to nuclear NOTCH1 correlates with mutation status in sporadic cSCC and regions of NOTCH1 loss or down-regulation are frequently observed in normal looking skin. Our data indicate that NOTCH1 acts as a gatekeeper in human cSCC.
Collapse
|
32
|
Sleeping Beauty mutagenesis: exploiting forward genetic screens for cancer gene discovery. Curr Opin Genet Dev 2014; 24:16-22. [DOI: 10.1016/j.gde.2013.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/21/2013] [Accepted: 11/03/2013] [Indexed: 11/21/2022]
|
33
|
Howell VM, Colvin EK. Genetically engineered insertional mutagenesis in mice to model cancer: Sleeping Beauty. Methods Mol Biol 2014; 1194:367-383. [PMID: 25064115 DOI: 10.1007/978-1-4939-1215-5_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ability to accurately model human cancer in mice enables in vivo examination of the biological mechanisms related to cancer initiation and progression as well as preclinical testing of new anticancer treatments and potential targets. The emergence of the genetically engineered Sleeping Beauty system of insertional mutagenesis has led to the development of a new generation of genetic mouse models of cancer and identification of novel cancer-causing genes. This chapter reviews the published cancer models of Sleeping Beauty and strategies using available strains to generate several models of cancer.
Collapse
Affiliation(s)
- Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Level 8, Kolling Building, St Leonards, NSW, 2065, Australia,
| | | |
Collapse
|
34
|
Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet 2013; 45:756-66. [PMID: 23685747 PMCID: PMC3695033 DOI: 10.1038/ng.2641] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/25/2013] [Indexed: 12/27/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are sarcomas of Schwann cell-lineage origin that occur sporadically or in association with the inherited syndrome, Neurofibromatosis Type 1. To identify genetic drivers of MPNST development, we utilized the Sleeping Beauty (SB) transposon-based somatic mutagenesis system in mice with somatic loss of tumor protein p53 (Trp53) function and/or overexpression of epidermal growth factor receptor (EGFR). Common insertion site (CIS) analysis of 269 neurofibromas and 106 MPNSTs identified 695 and 87 sites with a statistically significant number of recurrent transposon insertions, respectively. Comparison to human data sets revealed novel and known driver genes for MPNST formation at these sites. Pairwise co-occurrence analysis of CIS-associated genes identified many cooperating mutations that are enriched for in Wnt/CTNNB1, PI3K/Akt/mTor, and growth factor receptor signaling pathways. Lastly, we identified several novel proto-oncogenes including forkhead box R2 (Foxr2), which we functionally validated as a proto-oncogene involved in MPNST maintenance.
Collapse
|
35
|
Gonzalez-Perez A, Jene-Sanz A, Lopez-Bigas N. The mutational landscape of chromatin regulatory factors across 4,623 tumor samples. Genome Biol 2013; 14:r106. [PMID: 24063517 PMCID: PMC4054018 DOI: 10.1186/gb-2013-14-9-r106] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 09/24/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chromatin regulatory factors are emerging as important genes in cancer development and are regarded as interesting candidates for novel targets for cancer treatment. However, we lack a comprehensive understanding of the role of this group of genes in different cancer types. RESULTS We have analyzed 4,623 tumor samples from thirteen anatomical sites to determine which chromatin regulatory factors are candidate drivers in these different sites. We identify 34 chromatin regulatory factors that are likely drivers in tumors from at least one site, all with relatively low mutational frequency. We also analyze the relative importance of mutations in this group of genes for the development of tumorigenesis in each site, and indifferent tumor types from the same site. CONCLUSIONS We find that, although tumors from all thirteen sites show mutations in likely driver chromatin regulatory factors, these are more prevalent in tumors arising from certain tissues. With the exception of hematopoietic, liver and kidney tumors, as a median, the mutated factors are less than one fifth of all mutated drivers across all sites analyzed. We also show that mutations in two of these genes, MLL and EP300, correlate with broad expression changes across cancer cell lines, thus presenting at least one mechanism through which these mutations could contribute to tumorigenesis in cells of the corresponding tissues.
Collapse
Affiliation(s)
- Abel Gonzalez-Perez
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona, Spain
| | - Alba Jene-Sanz
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona, Spain
| | - Nuria Lopez-Bigas
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|