1
|
Évora AS, Zhang Z, Johnson SA, Adams MJ. The effects of hydration on the topographical and mechanical properties of corneocytes. J Mech Behav Biomed Mater 2024; 150:106296. [PMID: 38141363 DOI: 10.1016/j.jmbbm.2023.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
It is well established that the biomechanical properties of the Stratum Corneum (SC) are influenced by both moisture-induced plasticization and the lipid content. This study employs Atomic Force Microscopy to investigate how hydration affects the surface topographical and elasto-viscoplastic characteristics of corneocytes from two anatomical sites. Volar forearm cells underwent swelling when immersed in water with a 50% increase in thickness and volume. Similarly, medial heel cells demonstrated significant swelling in volume, accompanied by increased cell area and reduced cell roughness. Furthermore, as the water activity was increased, they exhibited enhanced compliance, leading to a decreased Young's modulus, hardness, and relaxation times. Moreover, the swollen cells also displayed a greater tolerance to strain before experiencing permanent deformation. Despite the greater predominance of immature cornified envelopes in plantar skin, the comparable Young's modulus of medial heel and forearm corneocytes suggests that cell stiffness primarily relies on the keratin matrix rather than on the cornified envelope. The Young's moduli of the cells in distilled water are similar to those reported for the SC, which suggests that the corneodesmosomes and intercellular lamellae lipids junctions that connect the corneocytes are able to accommodate the mechanical deformations of the SC.
Collapse
Affiliation(s)
- Ana S Évora
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Simon A Johnson
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Michael J Adams
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Évora AS, Zhang Z, Johnson SA, Adams MJ. Characterisation of topographical, biomechanical and maturation properties of corneocytes with respect to anatomical location. Skin Res Technol 2023; 29:e13507. [PMID: 38009042 PMCID: PMC10591027 DOI: 10.1111/srt.13507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND The Stratum Corneum (SC) is the first barrier of the skin. The properties of individual cells are crucial in understanding how the SC at different anatomical regions maintains a healthy mechanical barrier. The aim of the current study is to present a comprehensive description of the maturation and mechanical properties of superficial corneocytes at different anatomical sites in the nominal dry state. MATERIALS AND METHODS Corneocytes were collected from five anatomical sites: forearm, cheek, neck, sacrum and medial heel of 10 healthy young participants. The surface topography was analysed using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). The level of positive-involucrin cornified envelopes (CEs) and desmoglein-1 (Dsg1) were used as indirect measures of immature CEs and corneodesmosomes, respectively. In addition, AFM nanoindentation and stress-relaxation experiments were performed to characterise the mechanical properties. RESULTS Volar forearm, neck and sacrum corneocytes presented similar topographies (ridges and valleys) and levels of Dsg1 (13-37%). In contrast, cheek cells exhibited circular nano-objects, while medial heel cells were characterized by villi-like structures. Additionally, medial heel samples also showed the greatest level of immature CEs (32-56%, p < 0.001) and Dsg1 (59-78%, p < 0.001). A large degree of inter-subject variability was found for the Young's moduli of the cells (0.19-2.03 GPa), which was correlated with the level of immature CEs at the cheek, neck and sacrum (p < 0.05). CONCLUSION It is concluded that a comprehensive study of the mechanical and maturation properties of corneocytes may be used to understand the barrier functions of the SC at different anatomical sites.
Collapse
Affiliation(s)
- Ana S. Évora
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Zhibing Zhang
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Simon A. Johnson
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Michael J. Adams
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| |
Collapse
|
3
|
Zhang Y, Li L, Wang J. Role of Ligand Distribution in the Cytoskeleton-Associated Endocytosis of Ellipsoidal Nanoparticles. MEMBRANES 2021; 11:membranes11120993. [PMID: 34940494 PMCID: PMC8705050 DOI: 10.3390/membranes11120993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
Nanoparticle (NP)–cell interaction mediated by receptor–ligand bonds is a crucial phenomenon in pathology, cellular immunity, and drug delivery systems, and relies strongly on the shape of NPs and the stiffness of the cell. Given this significance, a fundamental question is raised on how the ligand distribution may affect the membrane wrapping of non-spherical NPs under the influence of cytoskeleton deformation. To address this issue, in this work we use a coupled elasticity–diffusion model to systematically investigate the role of ligand distribution in the cytoskeleton-associated endocytosis of ellipsoidal NPs for different NP shapes, sizes, cytoskeleton stiffness, and the initial receptor densities. In this model, we have taken into account the effects of receptor diffusion, receptor–ligand binding, cytoskeleton and membrane deformations, and changes in the configuration entropy of receptors. By solving this model, we find that the uptake process can be significantly influenced by the ligand distribution. Additionally, there exists an optimal state of such a distribution, which corresponds to the fastest uptake efficiency and depends on the NP aspect ratio and cytoskeleton stiffness. We also find that the optimal distribution usually needs local ligand density to be sufficiently high at the large curvature region. Furthermore, the optimal state of NP entry into cells can tolerate slight changes to the corresponding optimal distribution of the ligands. The tolerance to such a change is enhanced as the average receptor density and NP size increase. These results may provide guidelines to control NP–cell interactions and improve the efficiency of target drug delivery systems.
Collapse
Affiliation(s)
| | - Long Li
- Correspondence: (L.L.); (J.W.)
| | | |
Collapse
|
4
|
Al-Rekabi Z, Rawlings AV, Lucas RA, Raj N, Clifford CA. Characterizing the nanomechanical properties of microcomedones after treatment with sodium salicylate ex vivo using atomic force microscopy. Int J Cosmet Sci 2021; 43:610-618. [PMID: 34338343 DOI: 10.1111/ics.12729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/22/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The treatment of acne presents a major clinical and dermatological challenge. Investigating the nanomechanical properties of the microcomedone precursor lesions using atomic force microscopy (AFM) may prove beneficial in understanding their softening, dissolution and prevention. Although the exact biochemical mechanism of NaSal on microcomedones is not fully understood at present, it appears to exhibit a significant exfoliation effect on the skin via corneodesmosome dissolution. METHODS Therefore, to support this exploration, sodium salicylate (NaSal), a common ingredient employed in skin care products, is applied ex vivo to microcomedones,collected by nose strip adhesive tape, and their nanomechanical properties are assessed using AFM. Although the exact biochemical mechanism of NaSal on microcomedones is not fully understood at present, it appears to exhibit a significant exfoliation effect on the skin via corneodesmosome dissolution. RESULTS Herein, our findings demonstrate that when microcomedones are treated with 2% NaSal, samples appeared significantly more compliant ('softer') ((1.3 ± 0.62) MPa) when compared to their pre-treated measurements ((7.2 ± 3.6) MPa; p = 0.038). Furthermore, elastic modulus maps showed that after 2% NaSal treatment, areas in the microcomedone appeared softer and swollen in some, but not in all areas, further proving the valuable impact of 2% NaSal solution in altering the biomechanical properties and morphologies in microcomedones. CONCLUSION Our results are the first of their kind to provide qualitative and quantitative mechanobiological evidence that 2% NaSal decreases the elastic modulus of microcomedones. Therefore, this study provides evidence that NaSal can be beneficial as an active ingredient in topical treatments aimed at targeting microcomedones.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | | | | | - Nidhin Raj
- GlaxoSmithKline Consumer Healthcare, Weybridge, UK
| | - Charles A Clifford
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| |
Collapse
|
5
|
Évora AS, Adams MJ, Johnson SA, Zhang Z. Corneocytes: Relationship between Structural and Biomechanical Properties. Skin Pharmacol Physiol 2021; 34:146-161. [PMID: 33780956 DOI: 10.1159/000513054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Skin is the interface between an organism and the external environment, and hence the stratum corneum (SC) is the first to withstand mechanical insults that, in certain conditions, may lead to integrity loss and the development of pressure ulcers. The SC comprises corneocytes, which are vital elements to its barrier function. These cells are differentiated dead keratinocytes, without organelles, composed of a cornified envelope and a keratin-filled interior, and connected by corneodesmosomes (CDs). SUMMARY The current review focusses on the relationship between the morphological, structural, and topographical features of corneocytes and their mechanical properties, to understand how they assist the SC in maintaining skin integrity and in responding to mechanical insults. Key Messages: Corneocytes create distinct regions in the SC: the inner SC is characterized by immature cells with a fragile cornified envelope and a uniform distribution of CDs; the upper SC has resilient cornified envelopes and a honeycomb distribution of CDs, with a greater surface area and a smaller thickness than cells from the inner layer. The literature indicates that this upward maturation process is one of the most important steps in the mechanical resistance and barrier function of the SC. The morphology of these cells is dependent on the body site: the surface area in non-exposed skin is about 1,000-1,200 μm2, while for exposed skin, for example, the cheek and forehead, is about 700-800 μm2. Corneocytes are stiff cells compared to other cellular types, for example, the Young's modulus of muscle and fibroblast cells is typically a few kPa, while that of corneocytes is reported to be about hundreds of MPa. Moreover, these skin cells have 2 distinct mechanical regions: the cornified envelope (100-250 MPa) and the keratin matrix (250-500 MPa).
Collapse
Affiliation(s)
- Ana S Évora
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Michael J Adams
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Simon A Johnson
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Changes in Skin Barrier Function after Repeated Exposition to Phospholipid-Based Surfactants and Sodium Dodecyl Sulfate In Vivo and Corneocyte Surface Analysis by Atomic Force Microscopy. Pharmaceutics 2021; 13:pharmaceutics13040436. [PMID: 33804924 PMCID: PMC8063842 DOI: 10.3390/pharmaceutics13040436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: The aim of the study was to evaluate the effect of pure lecithins in comparison to a conventional surfactant on skin in vivo. (2) Methods: Physiological skin parameters were evaluated at the beginning and the end of the study (day 1 and day 4) (n = 8, healthy forearm skin) with an Aquaflux®, skin-pH-Meter, Corneometer® and an Epsilon® sensor. Confocal Raman spectroscopy was employed to monitor natural moisturizing factor, urea and water content of the participants' skin. Tape strips of treated skin sites were taken and the collected corneocytes were subjected to atomic force microscopy. Circular nano objects were counted, and dermal texture indices were determined. (3) Results: Transepidermal water loss was increased, and skin hydration was decreased after treatment with SDS and LPC80. Natural moisturizing factor and urea concentrations within the outermost 10 µm of the stratum corneum were lower than after treatment with S75 or water. Dermal texture indices of skin treated with SDS were higher than skin treated with water (control). (4) Conclusions: Results suggest very good (S75) or good (LPC80) skin-tolerability of lecithin-based surfactants in comparison to SDS and encourage further investigation.
Collapse
|
7
|
Intracellular detection and communication of a wireless chip in cell. Sci Rep 2021; 11:5967. [PMID: 33727598 PMCID: PMC7966781 DOI: 10.1038/s41598-021-85268-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
The rapid growth and development of technology has had significant implications for healthcare, personalized medicine, and our understanding of biology. In this work, we leverage the miniaturization of electronics to realize the first demonstration of wireless detection and communication of an electronic device inside a cell. This is a significant forward step towards a vision of non-invasive, intracellular wireless platforms for single-cell analyses. We demonstrate that a 25 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μm wireless radio frequency identification (RFID) device can not only be taken up by a mammalian cell but can also be detected and specifically identified externally while located intracellularly. The S-parameters and power delivery efficiency of the electronic communication system is quantified before and after immersion in a biological environment; the results show distinct electrical responses for different RFID tags, allowing for classification of cells by examining the electrical output noninvasively. This versatile platform can be adapted for realization of a broad modality of sensors and actuators. This work precedes and facilitates the development of long-term intracellular real-time measurement systems for personalized medicine and furthering our understanding of intrinsic biological behaviors. It helps provide an advanced technique to better assess the long-term evolution of cellular physiology as a result of drug and disease stimuli in a way that is not feasible using current methods.
Collapse
|
8
|
Janel S, Popoff M, Barois N, Werkmeister E, Divoux S, Perez F, Lafont F. Stiffness tomography of eukaryotic intracellular compartments by atomic force microscopy. NANOSCALE 2019; 11:10320-10328. [PMID: 31106790 DOI: 10.1039/c8nr08955h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Precise localization and biophysical characterization of cellular structures is a key to the understanding of biological processes happening both inside the cell and at the cell surface. Atomic force microscopy is a powerful tool to study the cell surface - topography, elasticity, viscosity, interactions - and also the viscoelastic behavior of the underlying cytoplasm, cytoskeleton or the nucleus. Here, we demonstrate the ability of atomic force microscopy to also map and characterize organelles and microorganisms inside cells, at the nanoscale, by combining stiffness tomography with super-resolution fluorescence and electron microscopy. By using this correlative approach, we could both identify and characterize intracellular compartments. The validation of this approach was performed by monitoring the stiffening effect according to the metabolic status of the mitochondria in living cells in real-time.
Collapse
Affiliation(s)
- Sébastien Janel
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Univ Lille, F-59000 Lille, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Boiten W, Helder R, van Smeden J, Bouwstra J. Selectivity in cornified envelop binding of ceramides in human skin and the role of LXR inactivation on ceramide binding. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1206-1213. [PMID: 31112754 DOI: 10.1016/j.bbalip.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
The cornified lipid envelope (CLE) is a lipid monolayer covalently bound to the outside of corneocytes and is part of the stratum corneum (SC). The CLE is suggested to act as a scaffold for the unbound SC lipids. By profiling the bound CLE ceramides, a new subclass was discovered and identified as an omega-hydroxylated dihydrosphingosine (OdS) ceramide. Bound glucosylceramides were observed in superficial SC layers of healthy human skin. To investigate the relation between bound and unbound SC ceramides, the composition of both fractions was analyzed and compared. Selectivity in ceramide binding towards unsaturated ceramides and ceramides with a shorter chain length was observed. The selectivity in ceramide species bound to the cornified envelope is thought to have a physiological function in corneocyte flexibility. Next, it was examined if skin models exhibit an altered bound ceramide composition and if the composition was dependent on liver X-receptor (LXR) activation. The effects of an LXR agonist and antagonist on the bound ceramides composition of a full thickness model (FTM) were analyzed. In FTMs, a decreased amount of bound ceramides was observed compared to native human skin. Furthermore, FTMs had a bound ceramide fraction which consisted mostly of unsaturated and shorter ceramides. The LXR antagonist had a normalizing effect on the FTM bound ceramide composition. The agonist exhibited minimal effects. We show that ceramide binding is a selective process, yet, still is contingent on lipid synthesized.
Collapse
Affiliation(s)
- Walter Boiten
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Richard Helder
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Jeroen van Smeden
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Joke Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
10
|
Milani P, Chlasta J, Abdayem R, Kezic S, Haftek M. Changes in nano-mechanical properties of human epidermal cornified cells depending on their proximity to the skin surface. J Mol Recognit 2018; 31:e2722. [DOI: 10.1002/jmr.2722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Rawad Abdayem
- CNRS UMR5305, Laboratory of Tissue Biology and Therapeutic Engineering (LBTI); Lyon France
- L'Oréal, R&I, Aulnay sous Bois; France
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Marek Haftek
- CNRS UMR5305, Laboratory of Tissue Biology and Therapeutic Engineering (LBTI); Lyon France
| |
Collapse
|
11
|
Peñuela L, Negro C, Massa M, Repaci E, Cozzani E, Parodi A, Scaglione S, Quarto R, Raiteri R. Atomic force microscopy for biomechanical and structural analysis of human dermis: A complementary tool for medical diagnosis and therapy monitoring. Exp Dermatol 2018; 27:150-155. [DOI: 10.1111/exd.13468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Leonardo Peñuela
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| | - Carola Negro
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| | - Michela Massa
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Erica Repaci
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Emanuele Cozzani
- Clinic of Dermatology, DISSAL; Section of Dermatology; University of Genoa; IRCCS-AOU San Martino-IST; Genoa Italy
| | - Aurora Parodi
- Clinic of Dermatology, DISSAL; Section of Dermatology; University of Genoa; IRCCS-AOU San Martino-IST; Genoa Italy
| | - Silvia Scaglione
- Research National Council; IEIIT Institute (CNR-IEIIT) Genoa; Genoa Italy
| | - Rodolfo Quarto
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| |
Collapse
|
12
|
Shende P, Sardesai M, Gaud RS. Micro to nanoneedles: a trend of modernized transepidermal drug delivery system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:19-25. [DOI: 10.1080/21691401.2017.1304409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS University, Mumbai, India
| | - Mrunmayi Sardesai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS University, Mumbai, India
| | - R. S. Gaud
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS University, Mumbai, India
| |
Collapse
|
13
|
Uenoyama A, Kakizaki I, Shiomi A, Saito N, Hara Y, Saito T, Ohnuki H, Kato H, Takagi R, Maeda T, Izumi K. Effects of C-xylopyranoside derivative on epithelial regeneration in an in vitro 3D oral mucosa model. Biosci Biotechnol Biochem 2016; 80:1344-55. [PMID: 26966997 DOI: 10.1080/09168451.2016.1153957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Identifying substandard tissue-engineered oral mucosa grafts with a poor epithelium before clinical use is critical to ensure quality assurance/control in regenerative medicine, leading to success of grafting. This study investigated the effects of one of the C-xylopyranoside derivatives, β-D-xylopyranoside-n-propane-2-one (XPP), on oral epithelial regeneration. Using a three-dimensional oral mucosa model, we analyzed changes of the epithelial structure, glycosaminoglycan (GAG) synthesis, the expression levels of basement membrane zone markers, and substrates of Akt/mTOR signaling. Compared with the control, 2 mM XPP treatment increased the mean and minimal epithelial thickness, and reduced the variation of epithelial thickness. It also stimulated expressions of decorin and syndecan-1 with change of GAG amount and/or composition, and enhanced the expressions of integrin α6, CD44, and Akt/mTOR signaling substrates. These findings suggest that XPP supplementation contributes to consistent epithelial regeneration. Moreover, upregulation of those markers may play a role in increasing the quality of the oral mucosal epithelium.
Collapse
Affiliation(s)
- Atsushi Uenoyama
- a Division of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan.,b Division of Oral Anatomy, Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan
| | - Ikuko Kakizaki
- c Department of Glycotechnology, Center for Advanced Medical Research , Hirosaki University, Graduate School of Medicine , Hirosaski , Japan
| | - Aki Shiomi
- d Division of Dental Educational Research Development, Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan
| | - Naoaki Saito
- b Division of Oral Anatomy, Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan
| | - Yuko Hara
- a Division of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan.,e Division of Biomimetics, Graduate School of Medical and Dental Sciences , Niigata University , Niigata, Japan
| | - Taro Saito
- a Division of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan
| | - Hisashi Ohnuki
- a Division of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan
| | - Hiroko Kato
- e Division of Biomimetics, Graduate School of Medical and Dental Sciences , Niigata University , Niigata, Japan.,f Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan
| | - Ritsuo Takagi
- a Division of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan
| | - Takeyasu Maeda
- b Division of Oral Anatomy, Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan.,f Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan
| | - Kenji Izumi
- e Division of Biomimetics, Graduate School of Medical and Dental Sciences , Niigata University , Niigata, Japan
| |
Collapse
|
14
|
Wang J, Li L. Coupled elasticity-diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles. J R Soc Interface 2015; 12:20141023. [PMID: 25411410 DOI: 10.1098/rsif.2014.1023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity-diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand-receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand-receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake.
Collapse
Affiliation(s)
- Jizeng Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Long Li
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
15
|
Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy. Proc Natl Acad Sci U S A 2015; 112:7725-30. [PMID: 26056283 DOI: 10.1073/pnas.1503791112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effective treatment of diseases of the nail remains an important unmet medical need, primarily because of poor drug delivery. To address this challenge, the diffusion, in real time, of topically applied chemicals into the human nail has been visualized and characterized using stimulated Raman scattering (SRS) microscopy. Deuterated water (D2O), propylene glycol (PG-d8), and dimethyl sulphoxide (DMSO-d6) were separately applied to the dorsal surface of human nail samples. SRS microscopy was used to image D2O, PG-d8/DMSO-d6, and the nail through the O-D, -CD2, and -CH2 bond stretching Raman signals, respectively. Signal intensities obtained were measured as functions of time and of depth into the nail. It was observed that the diffusion of D2O was more than an order of magnitude faster than that of PG-d8 and DMSO-d6. Normalization of the Raman signals, to correct in part for scattering and absorption, permitted semiquantitative analysis of the permeation profiles and strongly suggested that solvent diffusion diverged from classical behavior and that derived diffusivities may be concentration dependent. It appeared that the uptake of solvent progressively undermined the integrity of the nail. This previously unreported application of SRS has permitted, therefore, direct visualization and semiquantitation of solvent penetration into the human nail. The kinetics of uptake of the three chemicals studied demonstrated that each altered its own diffusion in the nail in an apparently concentration-dependent fashion. The scale of the unexpected behavior observed may prove beneficial in the design and optimization of drug formulations to treat recalcitrant nail disease.
Collapse
|
16
|
Garvie-Cook H, Frederiksen K, Petersson K, Guy RH, Gordeev S. Characterization of topical film-forming systems using atomic force microscopy and Raman microspectroscopy. Mol Pharm 2015; 12:751-7. [PMID: 25586343 DOI: 10.1021/mp500582j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymeric film-forming systems for dermal drug delivery represent an advantageous alternative to more conventional topically applied formulations. Their mechanical properties and homogeneity can be characterized with atomic force microscopy (AFM), using both imaging and nanoindentation modes, and Raman microspectroscopy mapping. Film-forming polymers, with and without a plasticizer and/or betamethasone 17-valerate (a representative topical drug), were dissolved in absolute ethanol. Polymeric films were then cast on glass slides and examined in ambient air using AFM imaging and Raman microspectroscopy. Using nanoindentation, the elastic moduli of various films were determined and found to decrease with increasing plasticizer content. Films with 20% w/w plasticizer had elastic moduli close to that of skin. AFM images showed little difference in the topography of the films on incorporation of plasticizer. Raman microspectroscopy maps of the surface of the polymeric films, with a spatial resolution of approximately 1 μm, revealed homogeneous distributions of plasticizer and drug within the films.
Collapse
Affiliation(s)
- Hazel Garvie-Cook
- Department of Physics, ‡Department of Pharmacy & Pharmacology, University of Bath , Bath BA2 7AY, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Evans ME, Roth R. Shaping the skin: the interplay of mesoscale geometry and corneocyte swelling. PHYSICAL REVIEW LETTERS 2014; 112:038102. [PMID: 24484167 DOI: 10.1103/physrevlett.112.038102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Indexed: 06/03/2023]
Abstract
The stratum corneum, the outer layer of mammalian skin, provides a remarkable barrier to the external environment, yet it has highly variable permeability properties where it actively mediates between inside and out. On prolonged exposure to water, swelling of the corneocytes (skin cells composed of keratin intermediate filaments) is the key process by which the stratum corneum controls permeability and mechanics. As for many biological systems with intricate function, the mesoscale geometry is optimized to provide functionality from basic physical principles. Here we show that a key mechanism of corneocyte swelling is the interplay of mesoscale geometry and thermodynamics: given helical tubes with woven geometry equivalent to the keratin intermediate filament arrangement, the balance of solvation free energy and elasticity induces swelling of the system, importantly with complete reversibility. Our result remarkably replicates macroscopic experimental data of native through to fully hydrated corneocytes. This finding not only highlights the importance of patterns and morphology in nature but also gives valuable insight into the functionality of skin.
Collapse
Affiliation(s)
- Myfanwy E Evans
- Institut für Theoretische Physik, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Roland Roth
- Institut für Theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Conneely MJ, Campbell PA. What Lies Beneath? Scanning Probe Tomography May Have the Answer. J Invest Dermatol 2013; 133:1458-60. [DOI: 10.1038/jid.2013.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|