1
|
O'Reilly S, Tsou PS, Varga J. Senescence and tissue fibrosis: opportunities for therapeutic targeting. Trends Mol Med 2024; 30:1113-1125. [PMID: 38890028 DOI: 10.1016/j.molmed.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Cellular senescence is a key hallmark of aging. It has now emerged as a key mediator in normal tissue turnover and is associated with a variety of age-related diseases, including organ-specific fibrosis and systemic sclerosis (SSc). This review discusses the recent evidence of the role of senescence in tissue fibrosis, with an emphasis on SSc, a systemic autoimmune rheumatic disease. We discuss the physiological role of these cells, their role in fibrosis, and that targeting these cells specifically could be a new therapeutic avenue in fibrotic disease. We argue that targeting senescent cells, with senolytics or senomorphs, is a viable therapeutic target in fibrotic diseases which remain largely intractable.
Collapse
Affiliation(s)
- Steven O'Reilly
- Bioscience Department, Durham University, South Road, Durham, UK.
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Xue S, Lin Y, Chen H, Yang Z, Zha J, Jiang X, Han Z, Wang K. Mechanisms of autophagy and their implications in dermatological disorders. Front Immunol 2024; 15:1486627. [PMID: 39559368 PMCID: PMC11570406 DOI: 10.3389/fimmu.2024.1486627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
Autophagy is a highly conserved cellular self-digestive process that underlies the maintenance of cellular homeostasis. Autophagy is classified into three types: macrophage, chaperone-mediated autophagy (CMA) and microphagy, which maintain cellular homeostasis through different mechanisms. Altered autophagy regulation affects the progression of various skin diseases, including psoriasis (PA), systemic lupus erythematosus (SLE), vitiligo, atopic dermatitis (AD), alopecia areata (AA) and systemic sclerosis (SSc). In this review, we review the existing literature focusing on three mechanisms of autophagy, namely macrophage, chaperone-mediated autophagy and microphagy, as well as the roles of autophagy in the above six dermatological disorders in order to aid in further studies in the future.
Collapse
Affiliation(s)
- Shenghao Xue
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haoran Chen
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhengyu Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Junting Zha
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Zhongyu Han
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
3
|
Arvia R, Stincarelli MA, Manaresi E, Gallinella G, Zakrzewska K. Parvovirus B19 in Rheumatic Diseases. Microorganisms 2024; 12:1708. [PMID: 39203550 PMCID: PMC11357344 DOI: 10.3390/microorganisms12081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Parvovirus B19 (B19V) is a human pathogen belonging to the Parvoviridae family. It is widely diffused in the population and responsible for a wide range of diseases, diverse in pathogenetic mechanisms, clinical course, and severity. B19V infects and replicates in erythroid progenitor cells (EPCs) in the bone marrow leading to their apoptosis. Moreover, it can also infect, in an abortive manner, a wide set of different cell types, normally non-permissive, and modify their normal physiology. Differences in the characteristics of virus-cell interaction may translate into different pathogenetic mechanisms and clinical outcomes. Joint involvement is a typical manifestation of B19V infection in adults. Moreover, several reports suggest, that B19V could be involved in the pathogenesis of some autoimmune rheumatologic diseases such as rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), systemic sclerosis (SSc), systemic lupus erythematosus (SLE), or vasculitis. This review provides basic information on the B19 virus, highlights characteristics of viral infection in permissive and non-permissive systems, and focuses on recent findings concerning the pathogenic role of B19V in rheumatologic diseases.
Collapse
Affiliation(s)
- Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| | - Maria A. Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (E.M.); (G.G.)
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (E.M.); (G.G.)
- S. Orsola-Malpighi Hospital—Microbiology, 40138 Bologna, Italy
| | - Krystyna Zakrzewska
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| |
Collapse
|
4
|
Liu C, Guo X, Wei M, Xie J, Zhang X, Qi Q, Zhu K. Identification and validation of autophagy-related genes in SSc. Open Med (Wars) 2024; 19:20240942. [PMID: 38584837 PMCID: PMC10998681 DOI: 10.1515/med-2024-0942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Multiple organs are affected by the complex autoimmune illness known as systemic sclerosis (SSc), which has a high fatality rate. Genes linked to autophagy have been linked to the aetiology of SSc. It is yet unknown, though, whether autophagy-related genes play a role in the aetiology of SSc. After using bioinformatics techniques to examine two databases (the GSE76885 and GSE95065 datasets) and autophagy-related genes, we were able to identify 12 autophagy-related differentially expressed genes that are linked to the pathophysiology of SSc. Additional examination of the receiver operating characteristic curve revealed that SFRP4 (AUC = 0.944, P < 0.001) and CD93 (AUC = 0.904, P < 0.001) might be utilized as trustworthy biomarkers for the diagnosis of SSc. The SSc group's considerably greater CD93 and SFRP4 expression levels compared to the control group were further confirmed by qRT-PCR results. The autophagy-related genes SFRP4 and CD93 were found to be viable diagnostic indicators in this investigation. Our research sheds light on the processes by which genes linked to autophagy affect the pathophysiology of SSc.
Collapse
Affiliation(s)
- Chen Liu
- Department of Dermatology, Shenzhen People’s Hospital, Shenzhen, Guangdong Province, China
| | - Xiaofang Guo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Maoyun Wei
- Department of Dermatology, Second Hospital Affiliated to Guangzhou Medical University, Guangzhou510260, China
| | - Jiaxin Xie
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xuting Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qing Qi
- Department of Dermatology, Second Hospital Affiliated to Guangzhou Medical University, No. 250 Changgang Dong Road, Guangzhou510260, China
| | - Ke Zhu
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Airport Road No.16 Compound, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Luo L, Zhang W, You S, Cui X, Tu H, Yi Q, Wu J, Liu O. The role of epithelial cells in fibrosis: Mechanisms and treatment. Pharmacol Res 2024; 202:107144. [PMID: 38484858 DOI: 10.1016/j.phrs.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Fibrosis is a pathological process that affects multiple organs and is considered one of the major causes of morbidity and mortality in multiple diseases, resulting in an enormous disease burden. Current studies have focused on fibroblasts and myofibroblasts, which directly lead to imbalance in generation and degradation of extracellular matrix (ECM). In recent years, an increasing number of studies have focused on the role of epithelial cells in fibrosis. In some cases, epithelial cells are first exposed to external physicochemical stimuli that may directly drive collagen accumulation in the mesenchyme. In other cases, the source of stimulation is mainly immune cells and some cytokines, and epithelial cells are similarly altered in the process. In this review, we will focus on the multiple dynamic alterations involved in epithelial cells after injury and during fibrogenesis, discuss the association among them, and summarize some therapies targeting changed epithelial cells. Especially, epithelial mesenchymal transition (EMT) is the key central step, which is closely linked to other biological behaviors. Meanwhile, we think studies on disruption of epithelial barrier, epithelial cell death and altered basal stem cell populations and stemness in fibrosis are not appreciated. We believe that therapies targeted epithelial cells can prevent the progress of fibrosis, but not reverse it. The epithelial cell targeting therapies will provide a wonderful preventive and delaying action.
Collapse
Affiliation(s)
- Liuyi Luo
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Oral Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siyao You
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Xinyan Cui
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Qiao Yi
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| | - Ousheng Liu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Yang MM, Lee S, Neely J, Hinchcliff M, Wolters PJ, Sirota M. Gene expression meta-analysis reveals aging and cellular senescence signatures in scleroderma-associated interstitial lung disease. Front Immunol 2024; 15:1326922. [PMID: 38348044 PMCID: PMC10859856 DOI: 10.3389/fimmu.2024.1326922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024] Open
Abstract
Aging and cellular senescence are increasingly recognized as key contributors to pulmonary fibrosis. However, our understanding in the context of scleroderma-associated interstitial lung disease (SSc-ILD) is limited. To investigate, we leveraged previously established lung aging- and cell-specific senescence signatures to determine their presence and potential relevance to SSc-ILD. We performed a gene expression meta-analysis of lung tissues from 38 SSc-ILD and 18 healthy controls and found that markers (GDF15, COMP, and CDKN2A) and pathways (p53) of senescence were significantly increased in SSc-ILD. When probing the established aging and cellular senescence signatures, we found that epithelial and fibroblast senescence signatures had a 3.6- and 3.7-fold enrichment, respectively, in the lung tissue of SSc-ILD and that lung aging genes (CDKN2A, FRZB, PDE1A, and NAPI12) were increased in SSc-ILD. These signatures were also enriched in SSc skin and associated with degree of skin involvement (limited vs. diffuse cutaneous). To further support these findings, we examined telomere length (TL), a surrogate for aging, in the lung tissue and found that, independent of age, SSc-ILD had significantly shorter telomeres than controls in type II alveolar cells in the lung. TL in SSc-ILD was comparable to idiopathic pulmonary fibrosis, a disease of known aberrant aging. Taken together, this study provides novel insight into the possible mechanistic effects of accelerated aging and aberrant cellular senescence in SSc-ILD pathogenesis.
Collapse
Affiliation(s)
- Monica M. Yang
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Seoyeon Lee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Monique Hinchcliff
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Paul J. Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Marina Sirota
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Yang MM, Lee S, Neely J, Hinchcliff M, Wolters PJ, Sirota M. Gene Expression Meta-Analysis Reveals Aging and Cellular Senescence Signatures in Scleroderma-associated Interstitial Lung Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565810. [PMID: 37986995 PMCID: PMC10659335 DOI: 10.1101/2023.11.06.565810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Aging and cellular senescence are increasingly recognized as key contributors to pulmonary fibrosis. However, our understanding in the context of scleroderma associated interstitial lung disease (SSc-ILD) is limited. To investigate, we leveraged previously established lung aging and cell-specific senescence signatures to determine their presence and potential relevance to SSc-ILD. We performed a gene expression meta-analysis of lung tissue from 38 SSc-ILD and 18 healthy controls and found markers (GDF15, COMP, CDKN2A) and pathways (p53) of senescence were significantly increased in SSc-ILD. When probing the established aging and cellular senescence signatures, we found epithelial and fibroblast senescence signatures had a 3.6-fold and 3.7-fold enrichment respectively in the lung tissue of SSc-ILD and that lung aging genes ( CDKN2A, FRZB, PDE1A, NAPI12) were increased in SSc-ILD. These signatures were also enriched in SSc skin and associated with degree of skin involvement (limited vs. diffuse cutaneous). To further support these findings, we examined telomere length (TL), a surrogate for aging, in lung tissue and found independent of age, SSc-ILD had significantly shorter telomeres than controls in type II alveolar cells in the lung. TL in SSc-ILD was comparable to idiopathic pulmonary fibrosis, a disease of known aberrant aging. Taken together, this study provides novel insight into the possible mechanistic effects of accelerated aging and aberrant cellular senescence in SSc-ILD pathogenesis.
Collapse
|
8
|
Quan T. Human Skin Aging and the Anti-Aging Properties of Retinol. Biomolecules 2023; 13:1614. [PMID: 38002296 PMCID: PMC10669284 DOI: 10.3390/biom13111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The skin is the most-extensive and -abundant tissue in the human body. Like many organs, as we age, human skin experiences gradual atrophy in both the epidermis and dermis. This can be primarily attributed to the diminishing population of epidermal stem cells and the reduction in collagen, which is the primary structural protein in the human body. The alterations occurring in the epidermis and dermis due to the aging process result in disruptions to the structure and functionality of the skin. This creates a microenvironment conducive to age-related skin conditions such as a compromised skin barrier, slowed wound healing, and the onset of skin cancer. This review emphasizes the recent molecular discoveries related to skin aging and evaluates preventive approaches, such as the use of topical retinoids. Topical retinoids have demonstrated promise in enhancing skin texture, diminishing fine lines, and augmenting the thickness of both the epidermal and dermal layers.
Collapse
Affiliation(s)
- Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Motta F, Tonutti A, Isailovic N, Ceribelli A, Costanzo G, Rodolfi S, Selmi C, De Santis M. Proteomic aptamer analysis reveals serum biomarkers associated with disease mechanisms and phenotypes of systemic sclerosis. Front Immunol 2023; 14:1246777. [PMID: 37753072 PMCID: PMC10518467 DOI: 10.3389/fimmu.2023.1246777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background Systemic sclerosis (SSc) is an autoimmune connective tissue disease that affects multiple organs, leading to elevated morbidity and mortality with limited treatment options. The early detection of organ involvement is challenging as there is currently no serum marker available to predict the progression of SSc. The aptamer technology proteomic analysis holds the potential to correlate SSc manifestations with serum proteins up to femtomolar concentrations. Methods This is a two-tier study of serum samples from women with SSc (including patients with interstitial lung disease - ILD - at high-resolution CT scan) and age-matched healthy controls (HC) that were first analyzed with aptamer-based proteomic analysis for over 1300 proteins. Proposed associated proteins were validated by ELISA first in an independent cohort of patients with SSc and HC, and selected proteins subject to further validation in two additional cohorts. Results The preliminary aptamer-based proteomic analysis identified 33 proteins with significantly different concentrations in SSc compared to HC sera and 9 associated with SSc-ILD, including proteins involved in extracellular matrix formation and cell-cell adhesion, angiogenesis, leukocyte recruitment, activation, and signaling. Further validations in independent cohorts ultimately confirmed the association of specific proteins with early SSc onset, specific organ involvement, and serum autoantibodies. Conclusions Our multi-tier proteomic analysis identified serum proteins discriminating patients with SSc and HC or associated with different SSc subsets, disease duration, and manifestations, including ILD, skin involvement, esophageal disease, and autoantibodies.
Collapse
Affiliation(s)
- Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Natasa Isailovic
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Giovanni Costanzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Stefano Rodolfi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
10
|
Wang H, Zhang Y, Wang Z, Zhang L, Guo M, Cao C, Xiao H. Deciphering Nucleic Acid Binding Proteome of Mouse Immune Organs Reveals Hub Proteins for Aging. Mol Cell Proteomics 2023; 22:100611. [PMID: 37391046 PMCID: PMC10412848 DOI: 10.1016/j.mcpro.2023.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
Profiling the nucleic acid-binding proteins (NABPs) during aging process is critical to elucidate its roles in biological systems as well as transcriptional and translational regulation. Here, we developed a comprehensive strategy to survey the NABPs of mouse immune organs by using single cell preparation and selective capture technology-based proteomics. Our approach provided a global view of tissue NABPs from different organs under normal physiological conditions with extraction specificity of 70 to 90%. Through quantitative proteomics analysis of mouse spleen and thymus at 1, 4, 12, 24, 48, and 72 weeks, we investigated the molecular features of aging-related NABPs. A total of 2674 proteins were quantified in all six stages, demonstrating distinct and time-specific expression pattern of NABPs. Thymus and spleen exhibited unique aging signatures, and differential proteins and pathways were enriched across the mouse lifespan. Three core modules and 16 hub proteins associated with aging were revealed through weighted gene correlation network analysis. Significant candidates were screened for immunoassay verification, and six hub proteins were confirmed. The integrated strategy pertains the capability to decipher the dynamic functions of NABPs in aging physiology and benefit further mechanism research.
Collapse
Affiliation(s)
- Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Spasovski V, Andjelkovic M, Parezanovic M, Komazec J, Ugrin M, Klaassen K, Stojiljkovic M. The Role of Autophagy and Apoptosis in Affected Skin and Lungs in Patients with Systemic Sclerosis. Int J Mol Sci 2023; 24:11212. [PMID: 37446389 DOI: 10.3390/ijms241311212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune inflammatory disorder with multiple organ involvement. Skin changes present the hallmark of SSc and coincide with poor prognosis. Interstitial lung diseases (ILD) are the most widely reported complications in SSc patients and the primary cause of death. It has been proposed that the processes of autophagy and apoptosis could play a significant role in the pathogenesis and clinical course of different autoimmune diseases, and accordingly in SSc. In this manuscript, we review the current knowledge of autophagy and apoptosis processes in the skin and lungs of patients with SSc. Profiling of markers involved in these processes in skin cells can be useful to recognize the stage of fibrosis and can be used in the clinical stratification of patients. Furthermore, the knowledge of the molecular mechanisms underlying these processes enables the repurposing of already known drugs and the development of new biological therapeutics that aim to reverse fibrosis by promoting apoptosis and regulate autophagy in personalized treatment approach. In SSc-ILD patients, the molecular signature of the lung tissues of each patient could be a distinctive criterion in order to establish the correct lung pattern, which directly impacts the course and prognosis of the disease. In this case, resolving the role of tissue-specific markers, which could be detected in the circulation using sensitive molecular methods, would be an important step toward development of non-invasive diagnostic procedures that enable early and precise diagnosis and preventing the high mortality of this rare disease.
Collapse
Affiliation(s)
- Vesna Spasovski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marina Parezanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jovana Komazec
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| |
Collapse
|
12
|
Shi B, Tsou PS, Ma F, Mariani MP, Mattichak MN, LeBrasseur NK, Chini EN, Lafyatis R, Khanna D, Whitfield ML, Gudjonsson JE, Varga J. Senescent Cells Accumulate in Systemic Sclerosis Skin. J Invest Dermatol 2023; 143:661-664.e5. [PMID: 36191640 PMCID: PMC10038878 DOI: 10.1016/j.jid.2022.09.652] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Bo Shi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Feiyang Ma
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael P Mariani
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire, USA
| | - Megan N Mattichak
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic Rochester, Minnesota, USA
| | - Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire, USA
| | | | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
13
|
Fan DD, Tan PY, Jin L, Qu Y, Yu QH. Bioinformatic identification and validation of autophagy-related genes in rheumatoid arthritis. Clin Rheumatol 2023; 42:741-750. [PMID: 36220923 DOI: 10.1007/s10067-022-06399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder characterized by progressive synovial inflammation and joint destruction, with a largely unknown etiology. Studies have suggested that autophagy and its expression may be involved in the pathogenesis of RA; however, autophagy-related genes in RA are still largely unidentified. Therefore, in this study, we aimed to identify and validate autophagy-related genes in RA. METHODS We identified differentially expressed autophagy-related genes between patients with RA and healthy individuals using gene expression profiles in the GSE55235 dataset and R software. Subsequently, correlation analysis, protein-protein interaction, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out using these differentially expressed autophagy-related genes. Finally, our results were validated by examining the expression of differentially expressed autophagy-related hub genes in clinical samples using qRT-PCR. RESULTS We identified 52 potential autophagy-related genes in RA based on bioinformatic analyses. Ten hub genes, CASP8, CTSB, TNFSF10, FADD, BAX, MYC, FOS, CDKN1A, GABARAPL1, and BNIP3, were validated to be differentially expressed and may serve as valuable prognostic markers and new potential therapeutic targets for RA via the regulation of autophagy. CONCLUSIONS Our results may help improve the understanding of RA pathogenesis. Autophagy-related genes in RA could be valuable biomarkers for diagnosis and prognosis and they might be exploited clinically as therapeutic targets in the future.
Collapse
Affiliation(s)
- Dan-Dan Fan
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Peng-Yu Tan
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Li Jin
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Yuan Qu
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Qing-Hong Yu
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China.
| |
Collapse
|
14
|
Chairta PP, Nicolaou P, Christodoulou K. Enrichr in silico analysis of MS-based extracted candidate proteomic biomarkers highlights pathogenic pathways in systemic sclerosis. Sci Rep 2023; 13:1934. [PMID: 36732374 PMCID: PMC9894849 DOI: 10.1038/s41598-023-29054-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Systemic sclerosis (SSc) is a rheumatic disease characterised by vasculopathy, inflammation and fibrosis. Its aetiopathogenesis is still unknown, and the pathways/mechanisms of the disease are not clarified. This study aimed to perform in silico analysis of the already Mass Spectrometry (MS)-based discovered biomarkers of SSc to extract possible pathways/mechanisms implicated in the disease. We recorded all published candidate MS-based found biomarkers related to SSc. We then selected a number of the candidate biomarkers using specific criteria and performed pathway and cellular component analyses using Enrichr. We used PANTHER and STRING to assess the biological processes and the interactions of the recorded proteins, respectively. Pathway analysis extracted several pathways that are associated with the three different stages of SSc pathogenesis. Some of these pathways are also related to other diseases, including autoimmune diseases. We observe that these biomarkers are located in several cellular components and implicated in many biological processes. STRING analysis showed that some proteins interact, creating significant clusters, while others do not display any evidence of an interaction. All these data highlight the complexity of SSc, and further investigation of the extracted pathways/biological processes and interactions may help study the disease from a different angle.
Collapse
Affiliation(s)
- Paraskevi P Chairta
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Paschalis Nicolaou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus.
| |
Collapse
|
15
|
Alsaleh G, Richter FC, Simon AK. Age-related mechanisms in the context of rheumatic disease. Nat Rev Rheumatol 2022; 18:694-710. [PMID: 36329172 DOI: 10.1038/s41584-022-00863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Ageing is characterized by a progressive loss of cellular function that leads to a decline in tissue homeostasis, increased vulnerability and adverse health outcomes. Important advances in ageing research have now identified a set of nine candidate hallmarks that are generally considered to contribute to the ageing process and that together determine the ageing phenotype, which is the clinical manifestation of age-related dysfunction in chronic diseases. Although most rheumatic diseases are not yet considered to be age related, available evidence increasingly emphasizes the prevalence of ageing hallmarks in these chronic diseases. On the basis of the current evidence relating to the molecular and cellular ageing pathways involved in rheumatic diseases, we propose that these diseases share a number of features that are observed in ageing, and that they can therefore be considered to be diseases of premature or accelerated ageing. Although more data are needed to clarify whether accelerated ageing drives the development of rheumatic diseases or whether it results from the chronic inflammatory environment, central components of age-related pathways are currently being targeted in clinical trials and may provide a new avenue of therapeutic intervention for patients with rheumatic diseases.
Collapse
Affiliation(s)
- Ghada Alsaleh
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, UK.
| | - Felix C Richter
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Anna K Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is a chronic rheumatic disease that is characterized by immune activation, vasculopathy and fibrosis of the skin and internal organs. It has been proposed that premature onset of ageing pathways and associated senescent changes in cells contribute to the clinical and pathological features of SSc. The aim of this review is to critically review recent insights into the involvement of cellular senescence in SSc. RECENT FINDINGS Cellular senescence plays a critical role in SSc pathogenesis, particularly involving endothelial cells and fibroblasts. Immunosenescence could also contribute to SSc pathogenesis by direct alteration of cellular functions or indirect promotion of defective immune surveillance. Molecular studies have shed some light on how cellular senescence contributes to fibrosis. Recent and planned proof-of-concept trials using senotherapeutics showed promising results in fibrotic diseases, including SSc. SUMMARY There is increasing evidence implicating cellular senescence in SSc. The mechanisms underlying premature cellular senescence in SSc, and its potential role in pathogenesis, merit further investigation. Emerging drugs targeting senescence-related pathways might be potential therapeutic options for SSc.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Bo Shi
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Consequences of Autophagy Deletion on the Age-Related Changes in the Epidermal Lipidome of Mice. Int J Mol Sci 2022; 23:ijms231911110. [PMID: 36232414 PMCID: PMC9569666 DOI: 10.3390/ijms231911110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 12/02/2022] Open
Abstract
Autophagy is a controlled mechanism of intracellular self-digestion with functions in metabolic adaptation to stress, in development, in proteostasis and in maintaining cellular homeostasis in ageing. Deletion of autophagy in epidermal keratinocytes does not prevent the formation of a functional epidermis and the permeability barrier but causes increased susceptibility to damage stress and metabolic alterations and accelerated ageing phenotypes. We here investigated how epidermal autophagy deficiency using Keratin 14 driven Atg7 deletion would affect the lipid composition of the epidermis of young and old mice. Using mass spectrometric lipidomics we found a reduction of age-related accumulation of storage lipids in the epidermis of autophagy-deficient mice, and specific changes in chain length and saturation of fatty acids in several lipid classes. Transcriptomics and immunostaining suggest that these changes are accompanied by changes in expression and localisation of lipid and fatty acid transporter proteins, most notably fatty acid binding protein 5 (FABP5) in autophagy knockouts. Thus, maintaining autophagic activity at an advanced age may be necessary to maintain epidermal lipid homeostasis in mammals.
Collapse
|
18
|
Mo L, Su B, Xu L, Hu Z, Li H, Du H, Li J. MCM7 supports the stemness of bladder cancer stem-like cells by enhancing autophagic flux. iScience 2022; 25:105029. [PMID: 36111256 PMCID: PMC9468384 DOI: 10.1016/j.isci.2022.105029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Autophagy plays critical roles in the pluripotent stemness of cancer stem cells (CSCs). However, how CSCs maintain the elevated autophagy to support stemness remains elusive. Here, we demonstrate that bladder cancer stem-like cells (BCSLCs) are at slow-cycling state with enhanced autophagy and mitophagy. In these slow-cycling BCSLCs, the DNA replication initiator MCM7 is required for autophagy and stemness. MCM7 knockdown inhibits autophagic flux and reduces the stemness of BCSLCs. MCM7 can facilitate autolysosome formation through binding with dynein to promote autophagic flux. The enhanced autophagy/mitophagy helps BCSLCs to maintain mitochondrial respiration, thus inhibiting AMPK activation. AMPK activation can trigger switch from autophagy to apoptosis, through increasing BCL2/BECLIN1 interaction and inducing P53 accumulation. In summary, we find that MCM7 can promote autophagic flux to support. Enhancement of autophagy and mitophagy in bladder cancer stem-like cells (BCSLCs) The autophagy/mitophagy sustains BCSLCs stemness MCM7 facilitates autophagic flux to support BCSLCs stemness
Collapse
Affiliation(s)
- Lijun Mo
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Sha Tai Road, Guangzhou, Guangdong 510515, China
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bijia Su
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Sha Tai Road, Guangzhou, Guangdong 510515, China
| | - Lili Xu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Sha Tai Road, Guangzhou, Guangdong 510515, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Sha Tai Road, Guangzhou, Guangdong 510515, China
| | - Hongwei Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Sha Tai Road, Guangzhou, Guangdong 510515, China
| | - Hongyan Du
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Sha Tai Road, Guangzhou, Guangdong 510515, China
- Corresponding author
| | - Jinlong Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Sha Tai Road, Guangzhou, Guangdong 510515, China
- Corresponding author
| |
Collapse
|
19
|
Ring J, Tadic J, Ristic S, Poglitsch M, Bergmann M, Radic N, Mossmann D, Liang Y, Maglione M, Jerkovic A, Hajiraissi R, Hanke M, Küttner V, Wolinski H, Zimmermann A, Domuz Trifunović L, Mikolasch L, Moretti DN, Broeskamp F, Westermayer J, Abraham C, Schauer S, Dammbrueck C, Hofer SJ, Abdellatif M, Grundmeier G, Kroemer G, Braun RJ, Hansen N, Sommer C, Ninkovic M, Seba S, Rockenfeller P, Vögtle F, Dengjel J, Meisinger C, Keller A, Sigrist SJ, Eisenberg T, Madeo F. The HSP40 chaperone Ydj1 drives amyloid beta 42 toxicity. EMBO Mol Med 2022; 14:e13952. [PMID: 35373908 PMCID: PMC9081910 DOI: 10.15252/emmm.202113952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 01/22/2023] Open
Abstract
Amyloid beta 42 (Abeta42) is the principal trigger of neurodegeneration during Alzheimer's disease (AD). However, the etiology of its noxious cellular effects remains elusive. In a combinatory genetic and proteomic approach using a yeast model to study aspects of intracellular Abeta42 toxicity, we here identify the HSP40 family member Ydj1, the yeast orthologue of human DnaJA1, as a crucial factor in Abeta42-mediated cell death. We demonstrate that Ydj1/DnaJA1 physically interacts with Abeta42 (in yeast and mouse), stabilizes Abeta42 oligomers, and mediates their translocation to mitochondria. Consequently, deletion of YDJ1 strongly reduces co-purification of Abeta42 with mitochondria and prevents Abeta42-induced mitochondria-dependent cell death. Consistently, purified DnaJ chaperone delays Abeta42 fibrillization in vitro, and heterologous expression of human DnaJA1 induces formation of Abeta42 oligomers and their deleterious translocation to mitochondria in vivo. Finally, downregulation of the Ydj1 fly homologue, Droj2, improves stress resistance, mitochondrial morphology, and memory performance in a Drosophila melanogaster AD model. These data reveal an unexpected and detrimental role for specific HSP40s in promoting hallmarks of Abeta42 toxicity.
Collapse
|
20
|
Tsitsipatis D, Martindale JL, Ubaida‐Mohien C, Lyashkov A, Yanai H, Kashyap A, Shin CH, Herman AB, Ji E, Yang J, Munk R, Dunn C, Lukyanenko Y, Yang X, Chia CW, Karikkineth AC, Zukley L, D’Agostino J, Kaileh M, Cui C, Beerman I, Ferrucci L, Gorospe M. Proteomes of primary skin fibroblasts from healthy individuals reveal altered cell responses across the life span. Aging Cell 2022; 21:e13609. [PMID: 35429111 PMCID: PMC9124301 DOI: 10.1111/acel.13609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Changes in the proteome of different human tissues with advancing age are poorly characterized. Here, we studied the proteins present in primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Proteins were extracted from lysed fibroblasts and subjected to liquid chromatography-mass spectrometry analysis, and the expression levels of 9341 proteins were analyzed using linear regression models. We identified key pathways associated with skin fibroblast aging, including autophagy, scavenging of reactive oxygen species (ROS), ribosome biogenesis, DNA replication, and DNA repair. Changes in these prominent pathways were corroborated using molecular and cell culture approaches. Our study establishes a framework of the global proteome governing skin fibroblast aging and points to possible biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jennifer L. Martindale
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Ceereena Ubaida‐Mohien
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Alexey Lyashkov
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Hagai Yanai
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Amogh Kashyap
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chang Hoon Shin
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Allison B. Herman
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Eunbyul Ji
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jen‐Hao Yang
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Rachel Munk
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Christopher Dunn
- Laboratory of Molecular Biology and ImmunologyNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Yevgeniya Lukyanenko
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Xiaoling Yang
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chee W. Chia
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Ajoy C. Karikkineth
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Linda Zukley
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jarod D’Agostino
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Mary Kaileh
- Laboratory of Molecular Biology and ImmunologyNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chang‐Yi Cui
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Isabel Beerman
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Myriam Gorospe
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| |
Collapse
|
21
|
Gur C, Wang SY, Sheban F, Zada M, Li B, Kharouf F, Peleg H, Aamar S, Yalin A, Kirschenbaum D, Braun-Moscovici Y, Jaitin DA, Meir-Salame T, Hagai E, Kragesteen BK, Avni B, Grisariu S, Bornstein C, Shlomi-Loubaton S, David E, Shreberk-Hassidim R, Molho-Pessach V, Amar D, Tzur T, Kuint R, Gross M, Barboy O, Moshe A, Fellus-Alyagor L, Hirsch D, Addadi Y, Erenfeld S, Biton M, Tzemach T, Elazary A, Naparstek Y, Tzemach R, Weiner A, Giladi A, Balbir-Gurman A, Amit I. LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell 2022; 185:1373-1388.e20. [PMID: 35381199 PMCID: PMC7612792 DOI: 10.1016/j.cell.2022.03.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/26/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Systemic sclerosis (scleroderma, SSc) is an incurable autoimmune disease with high morbidity and mortality rates. Here, we conducted a population-scale single-cell genomic analysis of skin and blood samples of 56 healthy controls and 97 SSc patients at different stages of the disease. We found immune compartment dysfunction only in a specific subtype of diffuse SSc patients but global dysregulation of the stromal compartment, particularly in a previously undefined subset of LGR5+-scleroderma-associated fibroblasts (ScAFs). ScAFs are perturbed morphologically and molecularly in SSc patients. Single-cell multiome profiling of stromal cells revealed ScAF-specific markers, pathways, regulatory elements, and transcription factors underlining disease development. Systematic analysis of these molecular features with clinical metadata associates specific ScAF targets with disease pathogenesis and SSc clinical traits. Our high-resolution atlas of the sclerodermatous skin spectrum will enable a paradigm shift in the understanding of SSc disease and facilitate the development of biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Chamutal Gur
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel; Rheumatology Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Shuang-Yin Wang
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel.
| | - Fadi Sheban
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Mor Zada
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Baoguo Li
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Fadi Kharouf
- Rheumatology Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Hagit Peleg
- Rheumatology Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Suhail Aamar
- Rheumatology Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Adam Yalin
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | | | - Yolanda Braun-Moscovici
- Rheumatology Institute, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa, Israel
| | | | - Tomer Meir-Salame
- Flow Cytometry Unit, Department of Biological Services, Weizmann Institute, Rehovot, Israel
| | - Efrat Hagai
- Flow Cytometry Unit, Department of Biological Services, Weizmann Institute, Rehovot, Israel
| | | | - Batia Avni
- Department of Bone Marrow Transplantation, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Sigal Grisariu
- Department of Bone Marrow Transplantation, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | | | | | - Eyal David
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Rony Shreberk-Hassidim
- Dermatology Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Vered Molho-Pessach
- Dermatology Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Dalit Amar
- Plastic Surgery Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Tomer Tzur
- Plastic Surgery Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Rottem Kuint
- Institue of Pulmonology Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Moshe Gross
- Orthopedic Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Oren Barboy
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Adi Moshe
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | | | - Dana Hirsch
- The Department of Veterinary Resources, Weizmann Institute, Rehovot, Israel
| | - Yoseph Addadi
- Life Sciences Core Facilities, Weizmann Institute, Rehovot, Israel
| | - Shlomit Erenfeld
- Department of Bone Marrow Transplantation, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Moshe Biton
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Tehila Tzemach
- Rheumatology Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Anat Elazary
- Rheumatology Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Yaakov Naparstek
- Rheumatology Department, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Reut Tzemach
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel; Rheumatology Institute at the Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Assaf Weiner
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Amir Giladi
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Alexandra Balbir-Gurman
- Rheumatology Institute, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa, Israel
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel.
| |
Collapse
|
22
|
Chondronasiou D, Gill D, Mosteiro L, Urdinguio RG, Berenguer‐Llergo A, Aguilera M, Durand S, Aprahamian F, Nirmalathasan N, Abad M, Martin‐Herranz DE, Stephan‐Otto Attolini C, Prats N, Kroemer G, Fraga MF, Reik W, Serrano M. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 2022; 21:e13578. [PMID: 35235716 PMCID: PMC8920440 DOI: 10.1111/acel.13578] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
The expression of the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) can convert somatic differentiated cells into pluripotent stem cells in a process known as reprogramming. Notably, partial and reversible reprogramming does not change cell identity but can reverse markers of aging in cells, improve the capacity of aged mice to repair tissue injuries, and extend longevity in progeroid mice. However, little is known about the mechanisms involved. Here, we have studied changes in the DNA methylome, transcriptome, and metabolome in naturally aged mice subject to a single period of transient OSKM expression. We found that this is sufficient to reverse DNA methylation changes that occur upon aging in the pancreas, liver, spleen, and blood. Similarly, we observed reversion of transcriptional changes, especially regarding biological processes known to change during aging. Finally, some serum metabolites and biomarkers altered with aging were also restored to young levels upon transient reprogramming. These observations indicate that a single period of OSKM expression can drive epigenetic, transcriptomic, and metabolomic changes toward a younger configuration in multiple tissues and in the serum.
Collapse
Affiliation(s)
- Dafni Chondronasiou
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Diljeet Gill
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
| | | | - Rocio G. Urdinguio
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN CSIC)OviedoSpain
- Health Research Institute of Asturias (ISPA)OviedoSpain
- Institute of Oncology of Asturias (IUOPA)University of OviedoOviedoSpain
- Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- CIBER of Rare Diseases (CIBERER)OviedoSpain
| | - Antonio Berenguer‐Llergo
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Sylvere Durand
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
| | - Fanny Aprahamian
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
| | - Nitharsshini Nirmalathasan
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
| | - Maria Abad
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Camille Stephan‐Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Guido Kroemer
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Department of Women's and Children's HealthKarolinska InstituteKarolinska University HospitalStockholmSweden
| | - Mario F. Fraga
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN CSIC)OviedoSpain
- Health Research Institute of Asturias (ISPA)OviedoSpain
- Institute of Oncology of Asturias (IUOPA)University of OviedoOviedoSpain
- Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- CIBER of Rare Diseases (CIBERER)OviedoSpain
| | - Wolf Reik
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Wellcome Trust Sanger InstituteCambridgeUK
- Altos Labs Cambridge InstituteCambridgeUK
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
23
|
Usategui A, Municio C, Arias-Salgado EG, Martín M, Fernández-Varas B, Del Rey MJ, Carreira P, González A, Criado G, Perona R, Pablos JL. Evidence of telomere attrition and a potential role for DNA damage in systemic sclerosis. IMMUNITY & AGEING 2022; 19:7. [PMID: 35086525 PMCID: PMC8793167 DOI: 10.1186/s12979-022-00263-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Abstract
Background
To investigate the role of cell senescence in systemic sclerosis (SSc), we analyzed telomere shortening (TS) in SSc patients and the effect of targeting DNA damage in the bleomycin model of skin fibrosis.
Results
Telomere length (TL) in blood leukocytes of 174 SSc patients and 68 healthy controls was measured by Southern blot, and we found shorter age-standardized TL in SSc patients compared to healthy controls. TL was shorter in SSc patients with ILD compared to those without ILD and in anti-topoisomerase I positive compared to anti-centromere positive patients. To analyze the potential role of DNA damage in skin fibrosis, we evaluated the effects of the DNA protective GSE4 peptide in the bleomycin mouse model of scleroderma and the fibrotic response of cultured human dermal fibroblasts. Administration of GSE4-nanoparticles attenuated bleomycin-induced skin fibrosis as measured by Masson’s staining of collagen and reduced Acta2 and Ctgf mRNA expression, whereas transduction of dermal fibroblasts with a lentiviral GSE4 expression vector reduced COL1A1, ACTA2 and CTGF gene expression after stimulation with bleomycin or TGF-β, in parallel to a reduction of the phospho-histone H2A.X marker of DNA damage.
Conclusions
SSc is associated with TS, particularly in patients with lung disease or anti-topoisomerase I antibodies. Administration of GSE4 peptide attenuated experimental skin fibrosis and reduced fibroblast expression of profibrotic factors, supporting a role for oxidative DNA damage in scleroderma.
Collapse
|
24
|
Arvia R, Zakrzewska K, Giovannelli L, Ristori S, Frediani E, Del Rosso M, Mocali A, Stincarelli MA, Laurenzana A, Fibbi G, Margheri F. Parvovirus B19 (B19V) induces cellular senescence in human dermal fibroblasts: putative role in SSc-associated fibrosis. Rheumatology (Oxford) 2021; 61:3864-3874. [PMID: 34888638 PMCID: PMC9434300 DOI: 10.1093/rheumatology/keab904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Emerging evidence demonstrates that excessive accumulation of senescent cells is associated with some chronic diseases and suggests a pathogenic role of cellular senescence in fibrotic processes, such as that occurring in aging or in systemic sclerosis (SSc). Recently, we demonstrated that parvovirus B19 (B19V) activates normal human dermal fibroblasts and induces expression of different profibrotic/proinflammatory genes. This observation prompted us to investigate whether it is also able to induce fibroblast senescence as a potential pathogenetic mechanism in B19V-induced fibrosis. METHODS Primary cultures of fibroblasts were infected with B19V and analyzed for the acquisition of senescence markers, such as morphological modifications, senescence-associated beta-galactosidase (SA-β-gal) activity, DNA damage response (DDR) and expression of senescence-associated secretory phenotype (SASP)-related factors. RESULTS We demonstrated that B19V-infected fibroblasts develop typical senescence features such as enlarged and flat-shaped morphology and SA-β-gal activity similar to that observed in SSc skin fibroblasts. They also developed a SASP-like phenotype characterized by mRNA expression and release of some proinflammatory cytokines, along with activation of transcription factor NFkB. Moreover, we observed B19V-induced DNA damage with the comet assay: a subpopulation of fibroblasts from B19V-infected cultures showed a significant higher level of DNA strand breaks and oxidative damage compared with mock-infected cells. Increased level and nuclear localization of ɣH2AX, a hallmark of DNA damage response, were also found. CONCLUSIONS B19V-induced senescence and production of SASP-like factors in normal dermal fibroblasts could represent a new pathogenic mechanism of non-productive B19V infection, which may have a role in the fibrotic process.
Collapse
Affiliation(s)
- Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Krystyna Zakrzewska
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lisa Giovannelli
- Department NEUROFARBA-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Sara Ristori
- Department NEUROFARBA-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Elena Frediani
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Alessandra Mocali
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Maria A Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| |
Collapse
|
25
|
Wenzel D, Haddadi N, Afshari K, Richmond JM, Rashighi M. Upcoming treatments for morphea. Immun Inflamm Dis 2021; 9:1101-1145. [PMID: 34272836 PMCID: PMC8589364 DOI: 10.1002/iid3.475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 11/25/2022] Open
Abstract
Morphea (localized scleroderma) is a rare autoimmune connective tissue disease with variable clinical presentations, with an annual incidence of 0.4-2.7 cases per 100,000. Morphea occurs most frequently in children aged 2-14 years, and the disease exhibits a female predominance. Insights into morphea pathogenesis are often extrapolated from studies of systemic sclerosis due to their similar skin histopathologic features; however, clinically they are two distinct diseases as evidenced by different demographics, clinical features, disease course and prognosis. An interplay between genetic factors, epigenetic modifications, immune and vascular dysfunction, along with environmental hits are considered as the main contributors to morphea pathogenesis. In this review, we describe potential new therapies for morphea based on both preclinical evidence and ongoing clinical trials. We focus on different classes of therapeutics, including antifibrotic, anti-inflammatory, cellular and gene therapy, and antisenolytic approaches, and how these target different aspects of disease pathogenesis.
Collapse
Affiliation(s)
- Dan Wenzel
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nazgol‐Sadat Haddadi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Khashayar Afshari
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jillian M. Richmond
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Mehdi Rashighi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
26
|
Vivier S, Chepy A, Bray F, Guerrier T, Speca S, Flament S, Jendoubi M, Balden M, Rolando C, Hachulla E, Launay D, Dubucquoi S, Sobanski V. Passages in culture and stimulation conditions influence protein expression of primary fibroblasts. Proteomics 2021; 22:e2100116. [PMID: 34665929 DOI: 10.1002/pmic.202100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/13/2021] [Indexed: 11/07/2022]
Abstract
Fibroblasts (Fb) are key effector cells in systemic sclerosis (SSc). Fb stimulation with transforming growth factor beta 1 (TGF-β1) is considered as a positive control in studies assessing fibrogenesis. The lack of standardization of TGF-β1 stimulation might be responsible for discrepancies in experiments performed in different conditions. Using quantitative proteomics analysis, we evaluated the impact of changes in experimental conditions on proteomic profiles of primary Fb. Principal component analysis (PCA) identified several groups of differentially expressed proteins influenced by cell passage, culture medium, and both concentration and duration of exposure to TGF-β1 stimulation. Bioinformatics analysis revealed that late passages expressed proteins involved in senescence. TGF-β1 concentration and time of stimulation were correlated with the expression of proteins involved in the fibrogenesis and inflammatory processes. These data underline the need for standardization of culture conditions to allow inter-data comparisons in future in vitro studies, especially when using "omics" approaches.
Collapse
Affiliation(s)
- Solange Vivier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Aurélien Chepy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - Fabrice Bray
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille, France
| | - Thomas Guerrier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- Institut d'Immunologie, Centre de Biologie Pathologie, CHU Lille, Lille, France
| | - Silvia Speca
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Stéphanie Flament
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille, France
| | - Manel Jendoubi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Maïté Balden
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- Institut d'Immunologie, Centre de Biologie Pathologie, CHU Lille, Lille, France
| | - Christian Rolando
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille, France
| | - Eric Hachulla
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - Sylvain Dubucquoi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- Institut d'Immunologie, Centre de Biologie Pathologie, CHU Lille, Lille, France
| | - Vincent Sobanski
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Institut Universitaire de France (IUF), France
| |
Collapse
|
27
|
Li R, Yin H, Wang J, He D, Yan Q, Lu L. Dihydroartemisinin alleviates skin fibrosis and endothelial dysfunction in bleomycin-induced skin fibrosis models. Clin Rheumatol 2021; 40:4269-4277. [PMID: 34013490 DOI: 10.1007/s10067-021-05765-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/31/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The present study was to investigate whether dihydroartemisinin (DHA), which is a highly effective and safe drug in the treatment of malaria, could be repurposed for the treatment of skin fibrosis and vascular dysfunction in systemic sclerosis (SSc). METHODS The value of DHA was determined using a bleomycin-induced model of skin fibrosis. mRNA transcriptome analysis was performed, and the targets of DHA on fibroblasts were identified. Immunofluorescence staining was used to identify dermal vessels undergoing endothelial-to-mesenchymal transition (EndoMT). Autophagic flux was detected by western blot and mRFP-GFP-LC3 adenovirus vector transfection. RESULTS Both systemic and topical administration of DHA decreased dermal thickness and collagen deposition and alleviated EndoMT in bleomycin-induced skin fibrosis mice model. Treatment of human umbilical vein endothelial cells (HUVECs) with TGF-β1 resulted in the acquisition of the activation marker (α-SMA) and loss of endothelial markers (CD31 and VE-cadherin), a process that was restored by DHA. DHA significantly suppressed skin fibroblast activation and collagen-1 production mainly through regulating PI3K-Akt pathway. DHA also induced fibroblast autophagic flux and that autophagy dependently suppressed collagen-1 production. CONCLUSION The results of the present study revealed that oral and topical DHA administration ameliorated tissue fibrosis and protected dermal blood vessels from bleomycin-induced EndoMT. Our study has elucidated the value of repurposing DHA for the treatment of SSc. Key Points • Oral or topical usage of DHA alleviated dermal fibrosis and EndoMT in bleomycin-induced skin fibrosis mice models. • DHA autophagy dependently inhibited fibroblast activation and collagen deposition via PI3K-ATK pathway. • DHA inhibited EndoMT of HUVECs induced by TGF-β1 by the downregulation of α-SMA and the upregulation of CD31 and VE-cadherin.
Collapse
Affiliation(s)
- Rui Li
- Department of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 2000001, China
| | - Hanlin Yin
- Department of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 2000001, China
| | - Juan Wang
- Department of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 2000001, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China. .,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, China.
| | - Qingran Yan
- Department of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 2000001, China.
| | - Liangjing Lu
- Department of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 2000001, China.
| |
Collapse
|
28
|
Candidate proteomic biomarkers in systemic sclerosis discovered using mass-spectrometry: an update of a systematic review (2014-2020). ACTA ACUST UNITED AC 2021; 59:101-111. [PMID: 33565304 DOI: 10.2478/rjim-2020-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Background. Systemic sclerosis (Ssc) is an autoimmune disease characterized by graduate cutaneous and tissue fibrosis development and irreversible fibroproliferative vascular changes.The aim of the current systematic review was to update the list of proteomic candidate biomarkers identified from Ssc samples with mass spectrometry techniques.Methods. Medline and Scopus databases were searched on 1st September 2020. Relevant articles were searched from March 2014 until September 2020. Two independent reviewers evaluated the retrieved articles.Results. From a total of 97 articles, 9 articles were included in the final analysis summarizing 539 candidate proteomic biomarkers from various samples from Ssc patients (a larger number compared to the previous systematic review). Most biomarkers were identified from cutaneous biopsies. Only 5 articles included a validation step of the findings with only 13 biomarkers being validated.Conclusions. Although many candidate biomarkers were additionally identified, independent validation studies are needed in order to evaluate the importance of these biomarkers for Ssc patients.
Collapse
|
29
|
Jeong D, Qomaladewi NP, Lee J, Park SH, Cho JY. The Role of Autophagy in Skin Fibroblasts, Keratinocytes, Melanocytes, and Epidermal Stem Cells. J Invest Dermatol 2021; 140:1691-1697. [PMID: 32800183 DOI: 10.1016/j.jid.2019.11.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 10/30/2019] [Accepted: 11/09/2019] [Indexed: 12/20/2022]
Abstract
Human skin acts as a barrier to protect our bodies from UV rays and external pathogens and to prevent water loss. Phenotypes of aging, or natural aging due to chronic damage, include wrinkles and the reduction of skin thickness that occur because of a loss of skin cell function. The dysregulation of autophagy, a lysosome-related degradation pathway, can lead to cell senescence, cancer, and various human diseases due to abnormal cellular homeostasis. Here, we discuss the roles and molecular mechanisms of autophagy involved in the anti-aging effects of autophagy and the relationship between autophagy and aging in skin cells.
Collapse
Affiliation(s)
- Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | | | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
30
|
Proteomic Profiling of Fibroblasts Isolated from Chronic Wounds Identifies Disease-Relevant Signaling Pathways. J Invest Dermatol 2020; 140:2280-2290.e4. [DOI: 10.1016/j.jid.2020.02.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
|
31
|
Jia W, Xie L, Wang X, Zhang Q, Wei B, Li H, Qin S, Chen S, Liu J, Tan Y, Zheng S, Liang X, Yang X. The impact of MCM6 on hepatocellular carcinoma in a Southern Chinese Zhuang population. Biomed Pharmacother 2020; 127:110171. [PMID: 32403044 DOI: 10.1016/j.biopha.2020.110171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022] Open
Abstract
Minichromosome maintenance complex component 6 (MCM6) is involved in tumorigenesis of hepatocellular carcinoma (HCC). Because its effect on different populations remains unclear, this study investigated the impact of MCM6 on HCC in Southern Chinese Zhuang population. In addition to assessing the global mRNA levels of MCM6 based on The Cancer Genome Atlas database (TCGA) and The Gene Expression Omnibus database (GEO), associations between MCM6 mRNA levels and clinicopathological features were analyzed. High MCM6 levels were associated with high alpha-fetoprotein (AFP) (>20 ng/mL in serum) (P < 0.0001) and advanced clinical stage (III + IV) (P < 0.001). Higher MCM6 was associated with poorer outcomes (P < 0.01) in these databases. Furthermore, the mRNA and protein expression of MCM6 in the Guangxi Zhuang population was detected by quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemistry (IHC). The results showed that MCM6 levels were up-regulated in the Zhuang population with HCC. Higher MCM6 protein levels were correlated with larger tumor size (>5 cm) (P = 0.038) and advanced clinical stage (III + IV) (p = 0.023). Bioinformatic enrichment analysis of MCM6 and its interacting proteins (CDT1,WEE1,TRIM28 and MKI67) suggested that in addition to being involved in the cell cycle process, these complexes could also be involved in protein binding, pre-replication complex assemble, and nucleus metabolism. Based on the protein-protein interaction (PPI) network with module screen, the interactions between MCM6 and its potential interacting proteins were further studied through protein docking with hot spot analysis. Additionally, the results of the algorithms combining the ROC of MCM6 and its interacting proteins showed that combination biomarker analysis has better HCC diagnosis ability than the single MCM6 test. The combination of MCM6 and TRIM28 was more suitable for the Guangxi Zhuang population. Overall, our study suggests that MCM6 plays an important role in the growth of HCC. MCM6 could be an optimal biomarker for diagnosing HCC and a potential molecular target for HCC therapy in the Zhuang population.
Collapse
Affiliation(s)
- Wenxian Jia
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China; Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, The Maternal and Children Health Hospital of Guangxi, Guangxi, China
| | - Bing Wei
- College of International Education, Guilin Medical University, Guilin, Guangxi, China
| | - Hongwen Li
- Teaching and Researching Section of Human Anatomy, Guilin Medical University, Guilin, Guangxi, China
| | - Shouxu Qin
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Suixia Chen
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Jiayi Liu
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Shengfeng Zheng
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaonan Liang
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
32
|
Mori T, Tamura N, Waguri S, Yamamoto T. Autophagy is involved in the sclerotic phase of systemic sclerosis. Fukushima J Med Sci 2020; 66:17-24. [PMID: 32281584 PMCID: PMC7269879 DOI: 10.5387/fms.2019-28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an essential intracellular self-degradation system, and is known to maintain the homeostatic balance between the synthesis, degradation, and recycling of cellular proteins and organelles. Recent studies have suggested a possible role of autophagy in systemic sclerosis (SSc);however, differences in autophagy among pathological phases of SSc have not yet been examined. Therefore, in the current study we investigated the expression pattern of an autophagosome marker protein, microtubule-associated protein 1 light chain 3 (LC3) in the lesional skin of a murine model and human SSc. In bleomycin-induced mouse scleroderma skin, the number of LC3-positive puncta was significantly higher than that in phosphate buffered salts-injected control skin after 4 weeks of treatment. Such an increase, however, was not observed in the skin after 2 weeks of bleomycin treatment, in which few myofibroblasts were detected. In the sclerotic phase of SSc patients, the number of LC3-positive puncta in the lower dermis was significantly higher than in the upper dermis. It was also significantly higher than in the lower dermis of the control patients. No increase in LC3-positive puncta was observed in the skin from SSc patients in edematous phase, in which myofibroblasts were hardly detected. These results suggest that changes in the autophagic degradation system reflect a skin remodeling process that leads to fibrosis.
Collapse
Affiliation(s)
- Tatsuhiko Mori
- Department of Dermatology, School of Medicine, Fukushima Medical University
| | - Naoki Tamura
- Department of Anatomy and Histology, School of Medicine, Fukushima Medical University
| | - Satoshi Waguri
- Department of Anatomy and Histology, School of Medicine, Fukushima Medical University
| | - Toshiyuki Yamamoto
- Department of Dermatology, School of Medicine, Fukushima Medical University
| |
Collapse
|
33
|
Dumit VI, Köttgen M, Hofherr A. Mass Spectrometry-Based Analysis of TRPP2 Phosphorylation. Methods Mol Biol 2020; 1987:51-64. [PMID: 31028673 DOI: 10.1007/978-1-4939-9446-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Differential phosphorylation of proteins is a key regulatory mechanism in biology. Immunoprecipitation-coupled mass spectrometry facilitates the targeted analysis of transient receptor ion potential channel polycystin-2 (TRPP2) phosphorylation. However, empirical testing is required to optimize experimental conditions for immunoprecipitation and mass spectrometry. Here, we present a detailed workflow for the reliable analysis of endogenous TRPP2 phosphorylation in differentiated renal epithelial cells.
Collapse
Affiliation(s)
- Verónica I Dumit
- Core Facility Proteomics, Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
| | - Michael Köttgen
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
34
|
Endo K, Katsuyama Y, Taira N, Yoshioka M, Okano Y, Masaki H. Impairment of the autophagy system in repetitively UVA-irradiated fibroblasts. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2019; 36:111-117. [PMID: 31553079 DOI: 10.1111/phpp.12516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Autophagy is known as an intracellular cleanup system necessary to maintain homeostasis of the skin. Many studies have pointed out the relationship between aging and the inactivation of autophagy function, which suggests that the inactivation of autophagy occurs in aged skin. However, the aging process of the skin is complicated compared with other organs, because the skin is localized at the border between the inside of the body and the environment. Thus, skin aging is strongly affected by environmental factors, and it is well recognized that ultraviolet (UV) radiation is an important environmental factor that promotes skin aging. Therefore, characterizing the autophagic phenotypes induced by environmental factors is important to understand the process of skin aging. METHODS In order to demonstrate the status of autophagy during environment-induced aging of the skin, we investigated the autophagy profiles of normal human dermal fibroblasts (NHDFs) treated with repetitive UVA irradiation as model fibroblasts in photoaged skin. RESULTS Repetitively UVA-irradiated NHDFs showed increased numbers of autophagosomes, which coincided with the accumulation of p62 and increased levels of LAMP-1 and lysosomes. The behavior of repetitively UVA-irradiated NHDFs on autophagy was similar to that of NHDFs treated with hydroxychloroquine (HCQ), which is an inhibitor of lysosomal proteinase. CONCLUSION In summary, these results demonstrate that repetitively UVA-irradiated fibroblasts have reduced autophagy function due to the dysfunction of lysosomes.
Collapse
Affiliation(s)
- Karin Endo
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachiouji, Tokyo, Japan
| | | | | | | | - Yuri Okano
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachiouji, Tokyo, Japan
| | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachiouji, Tokyo, Japan
| |
Collapse
|
35
|
Eckhart L, Tschachler E, Gruber F. Autophagic Control of Skin Aging. Front Cell Dev Biol 2019; 7:143. [PMID: 31417903 PMCID: PMC6682604 DOI: 10.3389/fcell.2019.00143] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The skin forms the barrier to the environment. Maintenance of this barrier during aging requires orchestrated responses to variable types of stress, the continuous renewal of the epithelial compartment, and the homeostasis of long-lived cell types. Recent experimental evidence suggests that autophagy is critically involved in skin homeostasis and skin aging is associated with and partially caused by defects of autophagy. In the outer skin epithelium, autophagy is constitutively active during cornification of keratinocytes and increases the resistance to environmental stress. Experimental suppression of autophagy in the absence of stress is tolerated by the rapidly renewing epidermal epithelium, whereas long-lived skin cells such as melanocytes, Merkel cells and secretory cells of sweat glands depend on autophagy for cellular homeostasis and normal execution of their functions during aging. Yet other important roles of autophagy have been identified in the dermis where senescence of mesenchymal cells and alterations of the extracellular matrix (ECM) are hallmarks of aging. Here, we review the evidence for cell type-specific roles of autophagy in the skin and their differential contributions to aging.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
36
|
Abstract
Recently published structural and functional analyses of the CMG complex have provided insight into the mechanism of its DNA helicase function and into the distinct roles of its central six component proteins MCM2-MCM7 (MCM2-7). To activate CMG helicase, the two protein kinases CDK and DDK, as well as MCM10, are required. In addition to the initiation of DNA replication, MCM function must be regulated at the DNA replication steps of elongation and termination. Polyubiquitylation of MCM7 is involved in terminating MCM function. Reinitiation of DNA replication in a single cell cycle, which is prevented mainly by CDK, is understood at the molecular level. MCM2-7 gene expression is regulated during cellular aging and the cell cycle, and the expression depends on oxygen concentration. These regulatory processes have been described recently. Genomic structural alteration, which is an essential element in cancer progression, is mainly generated by disruptions of DNA replication fork structures. A point mutation in MCM4 that disturbs MCM2-7 function results in genomic instability, leading to the generation of cancer cells. In this review, I focus on the following points: 1) function of the MCM2-7 complex, 2) activation of MCM2-7 helicase, 3) regulation of MCM2-7 function, 4) MCM2-7 expression, and 5) the role of MCM mutation in cancer progression.
Collapse
|
37
|
Meng Q, Gao J, Zhu H, He H, Lu Z, Hong M, Zhou H. The proteomic study of serially passaged human skin fibroblast cells uncovers down-regulation of the chromosome condensin complex proteins involved in replicative senescence. Biochem Biophys Res Commun 2018; 505:1112-1120. [PMID: 30336977 DOI: 10.1016/j.bbrc.2018.10.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023]
Abstract
Dermal fibroblast is one of the major constitutive cells of skin and plays a central role in skin senescence. The replicative senescence of fibroblasts may cause skin aging, bad wound healing, skin diseases and even cancer. In this study, a label-free quantitative proteomic approach was employed to analyzing the serial passaged human skin fibroblast (CCD-1079Sk) cells, resulting in 3371 proteins identified. Of which, 280 proteins were significantly changed in early passage (6 passages, P6), middle passage (12 passages, P12) and late passage (21 passages, P21), with a time-dependent decrease or increase tendency. Bioinformatic analysis demonstrated that the chromosome condensin complex, including structural maintenance of chromosomes protein 2 (SMC2) and structural maintenance of chromosomes protein 4 (SMC4), were down-regulated in the serially passaged fibroblast cells. The qRT-PCR and Western Blot experiments confirmed that the expression of these two proteins were significantly down-regulated in a time-dependent manner in the subculture of human skin fibroblasts (HSFb cells). In summary, we used serially passaged human skin fibroblast cells coupled with quantitative proteomic approach to profile the protein expression pattern in the temporal progress of replicative senescence in HSFb cells and revealed that the down-regulation of the chromosome condensin complex subunits, such as SMC2 and SMC4, may play an important role in the fibroblast senescence.
Collapse
Affiliation(s)
- Qian Meng
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Han He
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Zhi Lu
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai, 200083, China.
| | - Minhua Hong
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai, 200083, China.
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
38
|
Xiong W, Zhai M, Yu X, Wei L, Mao J, Liu J, Xie J, Li B. Comparative RNA-sequencing analysis of ER-based HSP90 functions and signal pathways in Tribolium castaneum. Cell Stress Chaperones 2018; 23:29-43. [PMID: 28681272 PMCID: PMC5741579 DOI: 10.1007/s12192-017-0821-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
Tribolium castaneum, the red flour beetle, is a major agriculture pest that damages stored grains and cereal products. Heat-shock protein 90 of T. castaneum (Tchsp90) has been reported to play pivotal roles in heat stress response, development, reproduction, and life span. However, the signaling pathway of Tchsp90 remains unclear. Thus, the global transcriptome profiles between RNA interference (RNAi)-treated insects (ds-Tchsp90) and control insects of T. castaneum were investigated and compared by RNA sequencing. In all, we obtained 14,145,451 sequence reads, which assembled into 13,243 genes. Among these genes, 461 differentially expressed genes (DEGs) were identified between the ds-Tchsp90 and control samples. These DEGs were classified into 44 gene ontology (GO) functional groups, including the cellular process, the response to stimulus, the immune system process, the development process, and reproduction. Interestingly, knocking down the expression of Tchsp90 suppressed both the DNA replication and cell division signaling pathways, which most likely modulated the effects of Tchsp90 on development, reproduction, and life span. Moreover, the DEGs encoding AnnexinB9, frizzled-4, sno, Fem1B, TSL, and CSW might be related to the regulation of the development and reproduction of ds-Tchsp90 insects. The DEGs including TLR6, PGRP2, defensin1, and defensin2 were involved in heat stress and immune response simultaneously, which suggested that cross talk might exist between immunity and stress response. Additionally, RNAi of Tchsp90 altered large-scale serine protease (sp) gene expression patterns and amplified the SP signaling pathway to regulate the development and reproduction as well as the stress response and innate immunity in T. castaneum. All these results shed new light onto the regulatory mechanism of Tchsp90 involved in insect physiology and could further facilitate research into appropriate and sustainable pest control management.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Mengfan Zhai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xiaojuan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
39
|
Wermuth PJ, Piera-Velazquez S, Jimenez SA. Identification of novel systemic sclerosis biomarkers employing aptamer proteomic analysis. Rheumatology (Oxford) 2017; 57:1698-1706. [DOI: 10.1093/rheumatology/kex404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Peter J Wermuth
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
40
|
Tsou PS, Wren JD, Amin MA, Schiopu E, Fox DA, Khanna D, Sawalha AH. Histone Deacetylase 5 Is Overexpressed in Scleroderma Endothelial Cells and Impairs Angiogenesis via Repression of Proangiogenic Factors. Arthritis Rheumatol 2017; 68:2975-2985. [PMID: 27482699 DOI: 10.1002/art.39828] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Vascular dysfunction represents a disease-initiating event in systemic sclerosis (SSc; scleroderma). Results of recent studies suggest that epigenetic dysregulation impairs normal angiogenesis and can result in abnormal patterns of blood vessel growth. Histone deacetylases (HDACs) control endothelial cell (EC) proliferation and regulate EC migration. Specifically, HDAC-5 appears to be antiangiogenic. This study was undertaken to test whether HDAC-5 contributes to impaired angiogenesis in SSc by repressing proangiogenic factors in ECs. METHODS Dermal ECs were isolated from patients with diffuse cutaneous SSc and healthy controls. Angiogenesis was assessed using an in vitro Matrigel tube formation assay. An assay for transposase-accessible chromatin using sequencing (ATAC-seq) was performed to assess and localize the genome-wide effects of HDAC5 knockdown on chromatin accessibility. RESULTS The expression of HDAC5 was significantly increased in ECs from patients with SSc compared to healthy control ECs. Silencing of HDAC5 in SSc ECs restored normal angiogenesis. HDAC5 knockdown followed by ATAC-seq assay in SSc ECs identified key HDAC5-regulated genes involved in angiogenesis and fibrosis, such as CYR61, PVRL2, and FSTL1. Simultaneous knockdown of HDAC5 in conjunction with either CYR61, PVRL2, or FSTL1 inhibited angiogenesis in SSc ECs. Conversely, overexpression of these genes individually led to an increase in tube formation as assessed by Matrigel assay, suggesting that these genes play functional roles in the impairment of angiogenesis in SSc. CONCLUSION Several novel HDAC5-regulated target genes associated with impaired angiogenesis were identified in SSc ECs by ATAC-seq. The results of this study provide a potential link between epigenetic regulation and impaired angiogenesis in SSc, and identify a novel mechanism for the dysregulated angiogenesis that characterizes this disease.
Collapse
Affiliation(s)
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | | | | | | | | | | |
Collapse
|
41
|
Beetz N, Rommel C, Schnick T, Neumann E, Lother A, Monroy-Ordonez EB, Zeeb M, Preissl S, Gilsbach R, Melchior-Becker A, Rylski B, Stoll M, Schaefer L, Beyersdorf F, Stiller B, Hein L. Ablation of biglycan attenuates cardiac hypertrophy and fibrosis after left ventricular pressure overload. J Mol Cell Cardiol 2016; 101:145-155. [PMID: 27789290 DOI: 10.1016/j.yjmcc.2016.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 11/16/2022]
Abstract
AIMS Biglycan, a small leucine-rich proteoglycan, has been shown to play an important role in stabilizing fibrotic scars after experimental myocardial infarction. However, the role of biglycan in the development and regression of cardiomyocyte hypertrophy and fibrosis during cardiac pressure overload and unloading remains elusive. Thus, the aim of the present study was to assess the effect of biglycan on cardiac remodeling in a mouse model of left ventricular pressure overload and unloading. METHODS AND RESULTS Left ventricular pressure overload induced by transverse aortic constriction (TAC) in mice resulted in left ventricular dysfunction, fibrosis and increased biglycan expression. Fluorescence- and magnetic-assisted sorting of cardiac cell types revealed upregulation of biglycan in the fibroblast population, but not in cardiomyocytes, endothelial cells or leukocytes after TAC. Removal of the aortic constriction (rTAC) after short-term pressure overload (3weeks) improved cardiac contractility and reversed ventricular hypertrophy but not fibrosis in wild-type (WT) mice. Biglycan ablation (KO) enhanced functional recovery but did not resolve cardiac fibrosis. After long-term TAC for 9weeks, ablation of biglycan attenuated the development of cardiac hypertrophy and fibrosis. In vitro, biglycan induced hypertrophy of neonatal rat cardiomyocytes and led to activation of a hypertrophic gene program. Putative downstream mediators of biglycan signaling include Rcan1, Abra and Tnfrsf12a. These genes were concordantly induced by TAC in WT but not in biglycan KO mice. CONCLUSIONS Left ventricular pressure overload induces biglycan expression in cardiac fibroblasts. Ablation of biglycan improves cardiac function and attenuates left ventricular hypertrophy and fibrosis after long-term pressure overload. In vitro biglycan induces hypertrophy of cardiomyocytes, suggesting that biglycan may act as a signaling molecule between cell types to modulate cardiac remodeling.
Collapse
Affiliation(s)
- Nadine Beetz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Rommel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tilman Schnick
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Heart Center, Department of Congenital Heart Defects and Pediatric Cardiology, University of Freiburg, Freiburg, Germany
| | - Elena Neumann
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Heart Center, Department of Congenital Heart Defects and Pediatric Cardiology, University of Freiburg, Freiburg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Heart Center, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elsa Beatriz Monroy-Ordonez
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Zeeb
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ariane Melchior-Becker
- Institute for Pharmacology and Clinical Pharmacology, University of Düsseldorf, Düsseldorf, Germany
| | - Bartosz Rylski
- Heart Center, Department of Cardiovascular Surgery, University of Freiburg, Freiburg, Germany
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, University of Münster, Münster, Germany
| | - Liliana Schaefer
- Pharmazentrum, Allgemeine Pharmakologie und Toxikologie, Goethe Universität, Frankfurt, Germany
| | - Friedhelm Beyersdorf
- Heart Center, Department of Cardiovascular Surgery, University of Freiburg, Freiburg, Germany
| | - Brigitte Stiller
- Heart Center, Department of Congenital Heart Defects and Pediatric Cardiology, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is an autoimmune disease with fibrosis seen in multiple organs. Although not traditionally regarded as a disease of aging, SSc-associated fibrosis shares many of the hallmarks of aging seen in other age-related fibrotic disorders. Here, we review the current literature of the potential role of aging and age-related cellular processes in the development of SSc and fibrosis. RECENT FINDINGS Accumulating evidence supports a role for immune dysregulation, epigenetic modifications, cellular senescence, mitochondrial dysregulation and impaired autophagy in fibrosis that occurs in aging and SSc. SUMMARY Cellular alterations linked to aging may promote the development and/or progression of SSc-associated fibrosis.
Collapse
|
43
|
Rockel JS, Kapoor M. Autophagy: controlling cell fate in rheumatic diseases. Nat Rev Rheumatol 2016; 12:517-31. [DOI: 10.1038/nrrheum.2016.92] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Autophagy in the pathogenesis of ankylosing spondylitis. Clin Rheumatol 2016; 35:1433-6. [PMID: 27075464 DOI: 10.1007/s10067-016-3262-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 01/12/2023]
Abstract
The pathogenesis of ankylosing spondylitis (AS) is not well understood, and treatment options have met with limited success. Autophagy is a highly conserved mechanism of controlled digestion of damaged organelles within a cell. It helps in the maintenance of cellular homeostasis. The process of autophagy requires the formation of an isolation membrane. They form double-membraned vesicles called "autophagosomes" that engulf a portion of the cytoplasm. Beyond the role in maintenance of cellular homeostasis, autophagy has been demonstrated as one of the most remarkable tools employed by the host cellular defense against bacteria invasion. Autophagy also affects the immune system and thus is implicated in several rheumatic disease processes. In this article, we explore the potential role of autophagy in the pathogenesis of AS.
Collapse
|
45
|
Vascular Remodelling and Mesenchymal Transition in Systemic Sclerosis. Stem Cells Int 2016; 2016:4636859. [PMID: 27069480 PMCID: PMC4812480 DOI: 10.1155/2016/4636859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/22/2022] Open
Abstract
Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc). The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen, are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role of transforming growth factor-beta, Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition may be reversible, possibly offering novel cues for treatment.
Collapse
|
46
|
Choi YJ, Yoo WH. Pathogenic Role of Autophagy in Rheumatic Diseases. JOURNAL OF RHEUMATIC DISEASES 2016. [DOI: 10.4078/jrd.2016.23.4.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yun Jung Choi
- Division of Rheumatology, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Korea
| | - Wan-Hee Yoo
- Division of Rheumatology, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
47
|
Piera-Velazquez S, Jimenez SA. Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis. Curr Rheumatol Rep 2015; 17:473. [PMID: 25475596 DOI: 10.1007/s11926-014-0473-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Scleroderma Center, Thomas Jefferson University, 233 South 10th Street, Suite 509 BLSB, Philadelphia, PA, 19107, USA
| | | |
Collapse
|
48
|
|
49
|
Abstract
The power of proteomics in cultured skin fibroblasts from individuals
both systemic sclerosis and recessive dystrophic epidermolysis bullosa has led
to the common finding of senescence and deficiencies in autophagy. Both of these
disorders exert high demand on fibroblast activity, and without the protective
action of autophagy, cellular stress could have many adverse effects that are
further amplified by the senescent phenotype.
Collapse
|
50
|
Affiliation(s)
- Verónica I Dumit
- Freiburg Institute for Advanced Studies (FRIAS); Department of Dermatology; Medical Center; Center for Biological Systems Analysis (ZBSA); BIOSS Centre for Biological Signalling Studies; University of Freiburg; Freiburg, Germany
| | - Jörn Dengjel
- Freiburg Institute for Advanced Studies (FRIAS); Department of Dermatology; Medical Center; Center for Biological Systems Analysis (ZBSA); BIOSS Centre for Biological Signalling Studies; University of Freiburg; Freiburg, Germany
| |
Collapse
|