1
|
Khalid M, Jameel F, Jabri T, Jabbar A, Salim A, Khan I, Shah MR. α-Terpineol loaded, electron beam crosslinked polyvinyl alcohol/tapioca starch hydrogel sheets; fabrication, characterization and evaluation of wound healing potential on a full thickness acid burn wound. RSC Adv 2024; 14:28058-28076. [PMID: 39228757 PMCID: PMC11369888 DOI: 10.1039/d4ra04572f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The multifaceted challenges in treating full-thickness acid burn wounds including impaired tissue regeneration, increased risk of infection, and the pursuit of functional and aesthetically pleasing outcomes, highlights the need for innovative therapeutic approaches for their treatment. The exceptional biochemical and mechanical properties of hydrogels, particularly their extracellular matrix-like nature and their potential to incorporate functional ingredients positions them as promising materials for wound dressings, offering a potential solution to the complexities of full-thickness burn wound management. The current study has integrated functional ingredients (starch and α-terpineol), known for their angiogenic, fibroblast-adhesive, and anti-inflammatory properties into an α-terpineol loaded, electron beam crosslinked polyvinyl alcohol/tapioca pearl starch hydrogel. The hydrogel was then explored for its efficacy in treating full-thickness acid burns. The hydrogel sheets, fabricated using a 25 kGy electron beam, were characterized for structural and functional properties. Surface morphology, gel fraction, swelling ratio, moisture retention capacity and thermal stability were also evaluated. PVA/tapioca starch hydrogel demonstrated optimal macroporosity, mechanical strength, thermal stability, water retention, and moisturizing ability, making it ideal for the intended application. In vitro skin compatibility analysis of α-terpineol-loaded hydrogel confirmed its biocompatibility, demonstrating 90% fibroblast viability. In vivo sensitivity testing on normal rat skin showed no inflammatory response. Analysis of the full-thickness rat chemical burn wounds treated with the hydrogels demonstrated that α-terpineol (AT) loaded e-beam crosslinked PVA/tapioca starch hydrogels increased the rate of wound closure, promoted re-epithelialization, facilitated collagen deposition, stimulated angiogenesis, and promoted keratin deposition, ultimately leading to healing of both thick dermal and epidermal tissues, as well as partial restoration of skin appendages over a duration of 30 days as confirmed by the histological and immunohistochemistry staining. Collectively, this study indicates that α-terpineol (AT) loaded e-beam crosslinked PVA/tapioca starch hydrogel holds promise as a cost-effective and efficient wound dressing for expediting full thickness acid burn wound healing, thus expanding the practical applications of the natural polymer based sheet hydrogel dressings.
Collapse
Affiliation(s)
- Maria Khalid
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Fatima Jameel
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Tooba Jabri
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Abdul Jabbar
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Asmat Salim
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Irfan Khan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
- Center for Regenerative Medicine and Stem Cell Research, The Aga Khan University Stadium Road, P. O. Box 3500 Karachi 74800 Pakistan
| | - Muhammad Raza Shah
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| |
Collapse
|
2
|
Rata DM, Cadinoiu AN, Daraba OM, Gradinaru LM, Atanase LI, Ichim DL. Influence of ZnO Nanoparticles on the Properties of Ibuprofen-Loaded Alginate-Based Biocomposite Hydrogels with Potential Antimicrobial and Anti-Inflammatory Effects. Pharmaceutics 2023; 15:2240. [PMID: 37765209 PMCID: PMC10534553 DOI: 10.3390/pharmaceutics15092240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Hydrogels are a favorable alternative to accelerate the burn wound healing process and skin regeneration owing to their capability of absorbing contaminated exudates. The bacterial infections that occur in burn wounds might be treated using different topically applied materials, but bacterial resistance to antibiotics has become a major problem worldwide. Therefore, the use of non-antibiotic treatments represents a major interest in current research. In this study, new antibiocomposite hydrogels with anti-inflammatory and antimicrobial properties based on hyaluronic acid (HA) and sodium alginate (AG) were obtained using 4-(4,6-dimethoxy-1,3,5-triazinyl-2)-4-methylmorpholinium chloride as an activator. The combination of Ibuprofen, a non-steroidal anti-inflammatory drug commonly used to reduce inflammation, fever and pain in the body, with zinc oxide nanoparticles (ZnO NPs) was used in this study aimed at creating a complex hydrogel with anti-inflammatory and antimicrobial action and capable of improving the healing process of wounds caused by burns. FTIR spectra confirmed the cross-linking of AG with HA as well as the successful incorporation of ZnO NPs. Using electronic microscopy, it was noticed that the morphology of hydrogels is influenced by the incorporation of ZnO nanoparticles. Moreover, the incorporation of ZnO nanoparticles into hydrogels also has an influence on the swelling behavior at both pH 7.4 and 5.4. In fact, the swelling rate is lower when the amounts of the activator, HA and ZnO NPs are high. A drug release rate of almost 100% was observed for hydrogels without ZnO NPs, whereas the addition of nanoparticles to hydrogels led to a decrease in the release rate to 68% during 24 h. Cellular viability tests demonstrated the non-cytotoxic behavior of the hydrogels without the ZnO NPs, whereas a weak to moderate cytotoxic effect was noticed for hydrogels with ZnO NPs. The hydrogels containing 4% and 5% ZnO NPs, respectively, showed good antimicrobial activity against the S. aureus strain. These preliminary data prove that these types of hydrogels can be of interest as biomaterials for the treatment of burn wounds.
Collapse
Affiliation(s)
- Delia Mihaela Rata
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania; (D.M.R.); (L.I.A.); (D.L.I.)
| | - Anca Niculina Cadinoiu
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania; (D.M.R.); (L.I.A.); (D.L.I.)
| | - Oana Maria Daraba
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania; (D.M.R.); (L.I.A.); (D.L.I.)
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania; (D.M.R.); (L.I.A.); (D.L.I.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Daniela Luminita Ichim
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania; (D.M.R.); (L.I.A.); (D.L.I.)
| |
Collapse
|
3
|
Oliveira C, Sousa D, Teixeira JA, Ferreira-Santos P, Botelho CM. Polymeric biomaterials for wound healing. Front Bioeng Biotechnol 2023; 11:1136077. [PMID: 37576995 PMCID: PMC10415681 DOI: 10.3389/fbioe.2023.1136077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Skin indicates a person's state of health and is so important that it influences a person's emotional and psychological behavior. In this context, the effective treatment of wounds is a major concern, since several conventional wound healing materials have not been able to provide adequate healing, often leading to scar formation. Hence, the development of innovative biomaterials for wound healing is essential. Natural and synthetic polymers are used extensively for wound dressings and scaffold production. Both natural and synthetic polymers have beneficial properties and limitations, so they are often used in combination to overcome overcome their individual limitations. The use of different polymers in the production of biomaterials has proven to be a promising alternative for the treatment of wounds, as their capacity to accelerate the healing process has been demonstrated in many studies. Thus, this work focuses on describing several currently commercially available solutions used for the management of skin wounds, such as polymeric biomaterials for skin substitutes. New directions, strategies, and innovative technologies for the design of polymeric biomaterials are also addressed, providing solutions for deep burns, personalized care and faster healing.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Diana Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
- Department of Chemical Engineering, Faculty of Science, University of Vigo, Ourense, Spain
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| |
Collapse
|
4
|
Luo R, Liang Y, Yang J, Feng H, Chen Y, Jiang X, Zhang Z, Liu J, Bai Y, Xue J, Chao S, Xi Y, Liu X, Wang E, Luo D, Li Z, Zhang J. Reshaping the Endogenous Electric Field to Boost Wound Repair via Electrogenerative Dressing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208395. [PMID: 36681867 DOI: 10.1002/adma.202208395] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The endogenous electric field (EF) generated by transepithelial potential difference plays a decisive role in wound reepithelialization. For patients with large or chronic wounds, negative-pressure wound therapy (NPWT) is the most effective clinical method in inflammation control by continuously removing the necrotic tissues or infected substances, thus creating a proproliferative microenvironment beneficial for wound reepithelialization. However, continuous negative-pressure drainage causes electrolyte loss and weakens the endogenous EF, which in turn hinders wound reepithelialization. Here, an electrogenerative dressing (EGD) is developed by integrating triboelectric nanogenerators with NPWT. By converting the negative-pressure-induced mechanical deformation into electricity, EGD produces a stable and high-safety EF that can trigger a robust epithelial electrotactic response and drive the macrophages toward a reparative M2 phenotype in vitro. Translational medicine studies confirm that EGD completely reshapes the wound EF weakened by NPWT, and promotes wound closure by facilitating an earlier transition of inflammation/proliferation and guiding epithelial migration and proliferation to accelerate reepithelialization. Long-term EGD therapy remarkably advances tissue remodeling with mature epithelium, orderly extracellular matrix, and less scar formation. Compared with the golden standard of NPWT, EGD orchestrates all the essential wound stages in a noninvasive manner, presenting an excellent prospect in clinical wound therapy.
Collapse
Affiliation(s)
- Ruizeng Luo
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Liang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Burn and Plastic Surgery, Army 73rd Group Military Hospital, Xiamen, 361000, China
| | - Jinrui Yang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hongqing Feng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuan Bai
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, China
| | - Shengyu Chao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Xi
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Engui Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
5
|
Simpson C, Cavanagh BL, Kelly HM, Murphy CM. Simple Technique for Microscopic Evaluation of Active Cellular Invasion into 3D Hydrogel Constructs. ACS Biomater Sci Eng 2023; 9:1243-1250. [PMID: 36749897 PMCID: PMC10015425 DOI: 10.1021/acsbiomaterials.2c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Materials that are evaluated for bioengineering purposes are carefully tested to evaluate cellular interactions with respect to biocompatibility and in some cases cell differentiation. A key perspective that is often considered is the ability for decellularized synthetic or natural based matrices to facilitate cell migration or tissue ingrowth. Current methods of measuring cell migration range from simple scratch assays to Boyden chamber inserts and fluorescent imaging of seeded spheroids. Many of these methods require tissue processing for histological analysis and fixing and staining for imaging, which can be difficult and dependent on the stability of the hydrogel subject. Herein we present a simple platform that can be manufactured using 3D printing and easily applied to in vitro cell culture, allowing the researcher to image live cellular migration into a cellular materials. We found this to be an adaptable, cheap, and replicable technique to evaluate cellular interaction that has applications in the research and development of hydrogels for tissue engineering purposes.
Collapse
Affiliation(s)
- Christopher
R. Simpson
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
| | - Brenton L. Cavanagh
- Cellular
and Molecular Imaging Core, Royal College
of Surgeons in Ireland (RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
| | - Helena M. Kelly
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- School
of Pharmacy and Biomolecular Sciences, RCSI, Ardilaun House, 111 St Stephen’s Green, Dublin D02 VN51, Ireland
| | - Ciara M. Murphy
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Advanced
Materials and Bioengineering Research (AMBER) Centre, Naughton Institute, Trinity College Dublin (TCD), Dublin D02 PN40, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, 152-160
Pearse Street, Dublin D02
R590, Ireland
| |
Collapse
|
6
|
Kacvinská K, Pavliňáková V, Poláček P, Michlovská L, Blahnová VH, Filová E, Knoz M, Lipový B, Holoubek J, Faldyna M, Pavlovský Z, Vícenová M, Cvanová M, Jarkovský J, Vojtová L. Accelular nanofibrous bilayer scaffold intrapenetrated with polydopamine network and implemented into a full-thickness wound of a white-pig model affects inflammation and healing process. J Nanobiotechnology 2023; 21:80. [PMID: 36882867 PMCID: PMC9990222 DOI: 10.1186/s12951-023-01822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Treatment of complete loss of skin thickness requires expensive cellular materials and limited skin grafts used as temporary coverage. This paper presents an acellular bilayer scaffold modified with polydopamine (PDA), which is designed to mimic a missing dermis and a basement membrane (BM). The alternate dermis is made from freeze-dried collagen and chitosan (Coll/Chit) or collagen and a calcium salt of oxidized cellulose (Coll/CaOC). Alternate BM is made from electrospun gelatin (Gel), polycaprolactone (PCL), and CaOC. Morphological and mechanical analyzes have shown that PDA significantly improved the elasticity and strength of collagen microfibrils, which favorably affected swelling capacity and porosity. PDA significantly supported and maintained metabolic activity, proliferation, and viability of the murine fibroblast cell lines. The in vivo experiment carried out in a domestic Large white pig model resulted in the expression of pro-inflammatory cytokines in the first 1-2 weeks, giving the idea that PDA and/or CaOC trigger the early stages of inflammation. Otherwise, in later stages, PDA caused a reduction in inflammation with the expression of the anti-inflammatory molecule IL10 and the transforming growth factor β (TGFβ1), which could support the formation of fibroblasts. Similarities in treatment with native porcine skin suggested that the bilayer can be used as an implant for full-thickness skin wounds and thus eliminate the use of skin grafts.
Collapse
Affiliation(s)
- Katarína Kacvinská
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Veronika Pavliňáková
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Petr Poláček
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Lenka Michlovská
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Veronika Hefka Blahnová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Vídeňská142 20, 1083, Prague 4, Czech Republic
| | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Vídeňská142 20, 1083, Prague 4, Czech Republic
| | - Martin Knoz
- Department of Burns and Plastic Surgery, Faculty of Medicine, Institution Shared With University Hospital Brno, Masaryk University, Jihlavská, 20, 625 00, Brno, Czech Republic.,Department of Plastic and Aesthetic Surgery, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Pekařská, 664/53, 602 00, Brno, Czech Republic
| | - Břetislav Lipový
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic.,Department of Burns and Plastic Surgery, Faculty of Medicine, Institution Shared With University Hospital Brno, Masaryk University, Jihlavská, 20, 625 00, Brno, Czech Republic
| | - Jakub Holoubek
- Department of Burns and Plastic Surgery, Faculty of Medicine, Institution Shared With University Hospital Brno, Masaryk University, Jihlavská, 20, 625 00, Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Zdeněk Pavlovský
- Institute of Pathology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, 625 00, Czech Republic
| | - Monika Vícenová
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Michaela Cvanová
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jiří Jarkovský
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lucy Vojtová
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Polymer-based biomaterials for pharmaceutical and biomedical applications: a focus on topical drug administration. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Arai K, Okabe M, Kobashi D, Ichimura K, Fathy M, Oba J, Furuichi E, Yoshida S, Yoshida T. Importance of Housekeeping Gene Optimization for the Analysis of mRNA Expression During Wound Healing in a Third-Degree Burn Injury Model. J Burn Care Res 2023; 44:146-157. [PMID: 36309874 DOI: 10.1093/jbcr/irac161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 01/11/2023]
Abstract
Wound healing evaluation methods in a third-degree burn injury model are categorized as histological (re-epithelialization and granulation tissue formation) and molecular (quantitative polymerase chain reaction). In general, mRNA expression is normalized to those of the housekeeping gene. Although the housekeeping gene expression is generally stable, it has been reported that the stability of these genes depends on the wound healing process and treatment method. In this study, we identified the most stable housekeeping gene (TATA-binding protein) for studying gene expression in a third-degree burn injury model, in which wound healing was promoted by grafting human amnion-derived mesenchymal cells. We investigated the wound healing effect of human amnion-derived mesenchymal cells in the injury model. The formation of granulation tissue, the differentiation from fibroblasts to myofibroblasts, and functional vascular structure were promoted in the full-thickness skin excision site by treatment with these cells. The expression of angiogenic, pro-inflammatory and anti-inflammatory related mRNA was measured and normalized to that of the housekeeping gene, showing that treatment with the cells promoted the infiltration of endothelial cells and differentiation of M1 and M2 macrophages. In conclusion, wound healing in a third-degree burn injury model can be accurately analyzed using the optimized housekeeping gene.
Collapse
Affiliation(s)
- Kenichi Arai
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Motonori Okabe
- Department of Systems Function and Morphology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Daisuke Kobashi
- Emergency Department, Japanese Red Cross Haramachi Hospital, Gunma, Japan
| | - Kenji Ichimura
- Department of Emergency and Disaster Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Egypt
| | - Jiro Oba
- Department of Emergency and Disaster Medicine, Faculty of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Etsuko Furuichi
- Department of Systems Function and Morphology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Satoshi Yoshida
- Gradulate school of Medicine and pharmaceutical science for education. University of Toyama, Toyama, Japan
| | - Toshiko Yoshida
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Elliott MB, Matsushita H, Shen J, Yi J, Inoue T, Brady T, Santhanam L, Mao HQ, Hibino N, Gerecht S. Off-the-Shelf, Heparinized Small Diameter Vascular Graft Limits Acute Thrombogenicity in a Porcine Model. Acta Biomater 2022; 151:134-147. [PMID: 35933100 DOI: 10.1016/j.actbio.2022.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
Thrombogenicity poses a challenge to the clinical translation of engineered grafts. Previously, small-diameter vascular grafts (sdVG) composed of fibrin hydrogel microfiber tubes (FMT) with an external poly(ε-caprolactone) (PCL) sheath supported long-term patency in mice. Towards the development of an sdVG with off-the-shelf availability, the FMT's shelf stability, scale-up, and successful conjugation of an antithrombotic drug to the fibrin scaffold are reported here. FMTs maintain mechanical stability and high-water retention after storage for one year in a freezer, in a refrigerator, or at room temperature. Low molecular weight heparin-conjugated fibrin scaffolds enabled local and sustained delivery during two weeks of enzymatic degradation. Upscaled fabrication of sdVGs provides natural biodegradable grafts with size and mechanics suitable for human application. Implantation in a carotid artery interposition porcine model exhibited no rupture with thrombi prevented in all heparinized sdVGs (n=4) over 4-5 weeks. Remodeling of the sdVGs is demonstrated with endothelial cells on the luminal surface and initial formation of the medial layer by 4-5 weeks. However, neointimal hyperplasia at 4-5 weeks led to the stenosis and occlusion of most of the sdVGs, which must be resolved for future long-term in vivo assessments. The off-the-shelf, biodegradable heparinized fibrin sdVG layer limits acute thrombogenicity while mediating extensive neotissue formation as the PCL sheath maintains structural integrity. STATEMENT OF SIGNIFICANCE: : To achieve clinical and commercial utility of small-diameter vascular grafts as arterial conduits, these devices must have off-the-shelf availability for emergency arterial bypass applications and be scaled to a size suitable for human applications. A serious impediment to clinical translation is thrombogenicity. Treatments have focused on long-term systemic drug therapy, which increases the patient's risk of bleeding complications, or coating grafts and stents with anti-coagulants, which minimally improves patient outcomes even when combined with dual anti-platelet therapy. We systematically modified the biomaterial properties to develop anticoagulant embedded, biodegradable grafts that maintain off-the-shelf availability, provide mechanical stability, and prevent clot formation through local drug delivery.
Collapse
Affiliation(s)
- Morgan B Elliott
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Hiroshi Matsushita
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL 60637
| | - Jessica Shen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Jaeyoon Yi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Takahiro Inoue
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL 60637
| | - Travis Brady
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218; Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Narutoshi Hibino
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218; Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL 60637
| | - Sharon Gerecht
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218; Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Biomedical Engineering, Duke University, Durham, NC 27705.
| |
Collapse
|
10
|
Lukomskyj AO, Rao N, Yan L, Pye JS, Li H, Wang B, Li JJ. Stem Cell-Based Tissue Engineering for the Treatment of Burn Wounds: A Systematic Review of Preclinical Studies. Stem Cell Rev Rep 2022; 18:1926-1955. [PMID: 35150392 PMCID: PMC9391245 DOI: 10.1007/s12015-022-10341-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Burn wounds are a devastating type of skin injury leading to severe impacts on both patients and the healthcare system. Current treatment methods are far from ideal, driving the need for tissue engineered solutions. Among various approaches, stem cell-based strategies are promising candidates for improving the treatment of burn wounds. A thorough search of the Embase, Medline, Scopus, and Web of Science databases was conducted to retrieve original research studies on stem cell-based tissue engineering treatments tested in preclinical models of burn wounds, published between January 2009 and June 2021. Of the 347 articles retrieved from the initial database search, 33 were eligible for inclusion in this review. The majority of studies used murine models with a xenogeneic graft, while a few used the porcine model. Thermal burn was the most commonly induced injury type, followed by surgical wound, and less commonly radiation burn. Most studies applied stem cell treatment immediately post-burn, with final endpoints ranging from 7 to 90 days. Mesenchymal stromal cells (MSCs) were the most common stem cell type used in the included studies. Stem cells from a variety of sources were used, most commonly from adipose tissue, bone marrow or umbilical cord, in conjunction with an extensive range of biomaterial scaffolds to treat the skin wounds. Overall, the studies showed favourable results of skin wound repair in animal models when stem cell-based tissue engineering treatments were applied, suggesting that such strategies hold promise as an improved therapy for burn wounds.
Collapse
Affiliation(s)
- Alissa Olga Lukomskyj
- Kolling Institute, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia
| | - Nikitha Rao
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lei Yan
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Haiyan Li
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Bin Wang
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China.
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 315000, China.
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia.
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
11
|
Patil P, Russo KA, McCune JT, Pollins AC, Cottam MA, Dollinger BR, DeJulius CR, Gupta MK, D'Arcy R, Colazo JM, Yu F, Bezold MG, Martin JR, Cardwell NL, Davidson JM, Thompson CM, Barbul A, Hasty AH, Guelcher SA, Duvall CL. Reactive oxygen species-degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Sci Transl Med 2022; 14:eabm6586. [PMID: 35442705 PMCID: PMC10165619 DOI: 10.1126/scitranslmed.abm6586] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Porous, resorbable biomaterials can serve as temporary scaffolds that support cell infiltration, tissue formation, and remodeling of nonhealing skin wounds. Synthetic biomaterials are less expensive to manufacture than biologic dressings and can achieve a broader range of physiochemical properties, but opportunities remain to tailor these materials for ideal host immune and regenerative responses. Polyesters are a well-established class of synthetic biomaterials; however, acidic degradation products released by their hydrolysis can cause poorly controlled autocatalytic degradation. Here, we systemically explored reactive oxygen species (ROS)-degradable polythioketal (PTK) urethane (UR) foams with varied hydrophilicity for skin wound healing. The most hydrophilic PTK-UR variant, with seven ethylene glycol (EG7) repeats flanking each side of a thioketal bond, exhibited the highest ROS reactivity and promoted optimal tissue infiltration, extracellular matrix (ECM) deposition, and reepithelialization in porcine skin wounds. EG7 induced lower foreign body response, greater recruitment of regenerative immune cell populations, and resolution of type 1 inflammation compared to more hydrophobic PTK-UR scaffolds. Porcine wounds treated with EG7 PTK-UR foams had greater ECM production, vascularization, and resolution of proinflammatory immune cells compared to polyester UR foam-based NovoSorb Biodegradable Temporizing Matrix (BTM)-treated wounds and greater early vascular perfusion and similar wound resurfacing relative to clinical gold standard Integra Bilayer Wound Matrix (BWM). In a porcine ischemic flap excisional wound model, EG7 PTK-UR treatment led to higher wound healing scores driven by lower inflammation and higher reepithelialization compared to NovoSorb BTM. PTK-UR foams warrant further investigation as synthetic biomaterials for wound healing applications.
Collapse
Affiliation(s)
- Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine A Russo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua T McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mukesh K Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Richard D'Arcy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mariah G Bezold
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - John R Martin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Nancy L Cardwell
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Callie M Thompson
- Vanderbilt Burn Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adrian Barbul
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Department of Surgery, Veterans Administration Medical Center, Nashville, TN 37212, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Scott A Guelcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
12
|
Ziauddin, Hussain T, Nazir A, Mahmood U, Hameed M, Ramakrishna S, Abid S. Nanoengineered therapeutic scaffolds for burn wound management. Curr Pharm Biotechnol 2022; 23:1417-1435. [PMID: 35352649 DOI: 10.2174/1389201023666220329162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Wound healing is a complex process, and selecting an appropriate treatment is crucial and varies from one wound to another. Among injuries, burn wounds are more challenging to treat. Different dressings and scaffolds come into play when skin is injured. These scaffolds provide the optimum environment for wound healing. With the advancements of nanoengineering, scaffolds have been engineered to improve wound healing with lower fatality rates. OBJECTIVES Nanoengineered systems have emerged as one of the promising candidates for burn wound management. This review paper aims to provide an in-depth understanding of burn wounds and the role of nanoengineering in burn wound management. The advantages of nanoengineered scaffolds, their properties, and their proven effectiveness have been discussed. Nanoparticles and nanofibers-based nanoengineered therapeutic scaffolds provide optimum protection, infection management, and accelerated wound healing due to their unique characteristics. These scaffolds increase cell attachment and proliferation for desired results. RESULTS The literature review suggested that the utilization of nanoengineered scaffolds has accelerated burn wound healing. Nanofibers provide better cell attachment and proliferation among different nanoengineered scaffolds due to their 3D structure mimics the body's extracellular matrix. CONCLUSION With the application of these advanced nanoengineered scaffolds, better burn wound management is possible due to sustained drug delivery, better cell attachment, and an infection-free environment.
Collapse
Affiliation(s)
- Ziauddin
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Tanveer Hussain
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Ahsan Nazir
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Urwa Mahmood
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Misbah Hameed
- Department of Pharmaceutics, Faculty of pharmaceutical science, Government College University, Faisalabad, Pakistan
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology (CNN), National University of Singapore (NUS), Singapore
| | - Sharjeel Abid
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| |
Collapse
|
13
|
Nugud A, Alghfeli L, Elmasry M, El-Serafi I, El-Serafi AT. Biomaterials as a Vital Frontier for Stem Cell-Based Tissue Regeneration. Front Cell Dev Biol 2022; 10:713934. [PMID: 35399531 PMCID: PMC8987776 DOI: 10.3389/fcell.2022.713934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/11/2022] [Indexed: 01/01/2023] Open
Abstract
Biomaterials and tissue regeneration represent two fields of intense research and rapid advancement. Their combination allowed the utilization of the different characteristics of biomaterials to enhance the expansion of stem cells or their differentiation into various lineages. Furthermore, the use of biomaterials in tissue regeneration would help in the creation of larger tissue constructs that can allow for significant clinical application. Several studies investigated the role of one or more biomaterial on stem cell characteristics or their differentiation potential into a certain target. In order to achieve real advancement in the field of stem cell-based tissue regeneration, a careful analysis of the currently published information is critically needed. This review describes the fundamental description of biomaterials as well as their classification according to their source, bioactivity and different biological effects. The effect of different biomaterials on stem cell expansion and differentiation into the primarily studied lineages was further discussed. In conclusion, biomaterials should be considered as an essential component of stem cell differentiation strategies. An intense investigation is still required. Establishing a consortium of stem cell biologists and biomaterial developers would help in a systematic development of this field.
Collapse
Affiliation(s)
- Ahmed Nugud
- Pediatric Department, Aljalila Children Hospital, Dubai, United Arab Emirates
| | - Latifa Alghfeli
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Moustafa Elmasry
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Ibrahim El-Serafi
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Ahmed T. El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
- *Correspondence: Ahmed T. El-Serafi,
| |
Collapse
|
14
|
Weiss F, Agua K, Weinzierl A, Schuldt A, Egana JT, Schlitter AM, Steiger K, Machens HG, Harder Y, Schmauss D. A modified burn comb model with a new dorsal frame that allows for local treatment in partial-thickness burns in rats. J Burn Care Res 2022; 43:1329-1336. [PMID: 35259276 DOI: 10.1093/jbcr/irac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Burn wound progression (BWP) leads to vertical and horizontal injury extension. The "burn comb model" is commonly used, in which a full-thickness burn with intercalated unburned interspaces is induced. We aimed to establish an injury progressing to the intermediate dermis, allowing repeated wound evaluation. Furthermore, we present a new dorsal frame that enables topical drug application. 8 burn field and 6 interspaces were induced on each of 17 rats' dorsa with a 10-second burn comb application. A developed 8-panel aluminum frame was sutured onto 12 animals and combined with an Elizabethan collar. Over 14 days, macroscopic & histologic wound assessment and Laser-Speckle-Contrast-Imaging (LSCI) were performed besides evaluation of frame durability. The 10-second group was compared to 9 animals injured with a full-thickness 60-second model. Frame durability was sufficient up to day 4 with 8 of 12 frames (67%) still mounted. The 60-second burn led to an increased extent of interspace necrosis (p=0.002). The extent of necrosis increased between days 1 and 2 (p=0.001), following the 10-second burn (24%±SEM 8% to 40%±SEM 6%) and the 60-second burn (57%±SEM 6% to 76%±SEM 4%). Interspace LSCI perfusion was higher than burn field perfusion. It earlier reached baseline levels in the 10-second group (on day 1: 142%±SEM 9% vs. 60%±SEM 5%; p<0.001). Within day 1, the 10-second burn showed histological progression to the intermediate dermis, both in interspaces and burn fields. This burn comb model with its newly developed fixed dorsal frame allows investigation of topical agents to treat BWP in partial-thickness burns.
Collapse
Affiliation(s)
- Fabian Weiss
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kariem Agua
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Andrea Weinzierl
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Anna Schuldt
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jose Tomas Egana
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anna Melissa Schlitter
- Institute of Pathology, School of Medicine, Technische Universität München, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Yves Harder
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Daniel Schmauss
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
15
|
Hydrogels in Burn Wound Management-A Review. Gels 2022; 8:gels8020122. [PMID: 35200503 PMCID: PMC8872485 DOI: 10.3390/gels8020122] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Inert hydrogels are of a great importance in burn first aid. Hydrogel dressings may be an alternative to cooling burn wounds with streaming water, especially in cases of mass casualty events, lack of clean water, hypothermia, or large extent of burns. Hydrogels that contain mostly water evacuate the heat cumulating in the skin by evaporation. They not only cool the burn wound, but also reduce pain and protect the wound area from contamination and further injuries. Hydrogels are ideally used during the first hours after injury, but as they do not have antimicrobial properties per se, they might not prevent wound infection. The hydrogel matrix enables incorporating active substances into the dressing. The active forms may contain ammonium salts, nanocrystal silver, zinc, growth factor, cytokines, or cells, as well as natural agents, such as honey or herbs. Active dressings may have antimicrobial activity or stimulate wound healing. Numerous experiments on animal models proved their safety and efficiency. Hydrogels are a new dressing type that are still in development.
Collapse
|
16
|
Shu W, Wang Y, Zhang X, Li C, Le H, Chang F. Functional Hydrogel Dressings for Treatment of Burn Wounds. Front Bioeng Biotechnol 2021; 9:788461. [PMID: 34938723 PMCID: PMC8685951 DOI: 10.3389/fbioe.2021.788461] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
The therapy of burns is a challenging clinical issue. Burns are long-term injuries, and numerous patients suffer from chronic pain. Burn treatment includes management, infection control, wound debridement and escharotomy, dressing coverage, skin transplantation, and the use of skin substitutes. The future of advanced care of burn wounds lies in the development of “active dressings”. Hydrogel dressings have been employed universally to accelerate wound healing based on their unique properties to overcome the limitations of existing treatment methods. This review briefly introduces the advantages of hydrogel dressings and discusses the development of new hydrogel dressings for wound healing along with skin regeneration. Further, the treatment strategies for burns, ranging from external to clinical, are reviewed, and the functional classifications of hydrogel dressings along with their clinical value for burns are discussed.
Collapse
Affiliation(s)
- Wentao Shu
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yinan Wang
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chaoyang Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Vriend L, Sinkunas V, Camargo CP, van der Lei B, Harmsen MC, van Dongen JA. Extracellular matrix-derived hydrogels to augment dermal wound healing: a systematic review. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1093-1108. [PMID: 34693732 DOI: 10.1089/ten.teb.2021.0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic, non-healing, dermal wounds form a worldwide medical problem with limited and inadequate treatment options and high societal burden and costs. With the advent of regenerative therapies exploiting extracellular matrix (ECM) components, its efficacy to augment wound healing is to be explored. This systematic review was performed to assess and compare the current therapeutic efficacy of ECM hydrogels on dermal wound healing. METHODS The electronic databases of (Embase, Medline Ovid, Cochrane Central) were searched for in vivo and clinical studies on the therapeutic effect of ECM-composed hydrogels on dermal wound healing (13th of April 2021). Two reviewers selected studies independently. Studies were assessed based on ECM content, ECM hydrogel composition, additives and wound healing outcomes such as wound size, angiogenesis and complications. RESULTS Of the 2102 publications, nine rodent-based studies were included while clinical studies were not published at the time of the search. Procedures to decellularize tissue or cultured cells and subsequently generate hydrogels were highly variable and in demand of standardization. ECM hydrogels with or without additives reduced wound size and also seem to enhance angiogenesis. Serious complications were not reported. CONCLUSION To date, preclinical studies preclude to draw firm conclusions on the efficacy and working mechanism of ECM-derived hydrogels on dermal wound healing. The use of ECM hydrogels can be considered safe. Standardization of decellularization protocols and implementation of quality and cytotoxicity controls will enable obtaining a generic and comparable ECM product.
Collapse
Affiliation(s)
- Linda Vriend
- University Medical Centre Groningen, 10173, Plastic Surgery, Groningen, Groningen, Netherlands.,University of Groningen, 3647, Pathology & Medical Biology, Groningen, Groningen, Netherlands;
| | - Viktor Sinkunas
- University of São Paulo, São Paulo, Brazil, Department of Cardiovascular Surgery, Sao Paulo, Brazil;
| | - Cristina P Camargo
- University of Sao Paulo Hospital of Clinics, 117265, Plastic Surgery and Microsurgery and the Plastic Surgery Laboratory, Sao Paulo, São Paulo, Brazil;
| | - Berend van der Lei
- University Medical Centre Groningen, 10173, Plastic Surgery , Groningen, Groningen, Netherlands.,Bergman Clinics Heerenveen , Plastic Surgery , Heerenveen , Netherlands;
| | - Martin C Harmsen
- University Medical Centre Groningen, 10173, Pathology & Medical Biology, Groningen, Groningen, Netherlands.,University of Groningen, 3647, Pathology & Medical Biology, Groningen, Groningen, Netherlands;
| | - Joris A van Dongen
- Utrecht University, 8125, Plastic Surgery, Utrecht, Utrecht, Netherlands.,University of Groningen, 3647, Department of Pathology & Medical Biology, Groningen, Groningen, Netherlands;
| |
Collapse
|
18
|
Uppuluri VNVA, Thukani Sathanantham S, Bhimavarapu SK, Elumalai L. Polymeric Hydrogel Scaffolds: Skin Tissue Engineering and Regeneration. Adv Pharm Bull 2021; 12:437-448. [PMID: 35935050 PMCID: PMC9348527 DOI: 10.34172/apb.2022.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022] Open
Abstract
Tissue engineering is a novel regenerative approach in the medicinal field that promises the regeneration of damaged tissues. Moreover, tissue engineering involves synthetic and natural biomaterials that facilitate tissue or organ growth outside the body. Not surprisingly, the demand for polymer-based therapeutical approaches in skin tissue defects has increased at an effective rate, despite the pressing clinical need. Among the 3D scaffolds for tissue engineering and regeneration approaches, hydrogel scaffolds have shown significant importance for their use as 3D cross-linked scaffolds in skin tissue regeneration due to their ideal moisture retention property and porosity biocompatibility, biodegradable, and biomimetic characteristics. In this review, we demonstrated the choice of ideal biomaterials to fabricate the novel hydrogel scaffolds for skin tissue engineering. After a short introduction to the bioactive and drug-loaded polymeric hydrogels, the discussion turns to fabrication and characterisation techniques of the polymeric hydrogel scaffolds. In conclusion, we discuss the excellent wound healing potential of stem cell-loaded hydrogels and Nano-based approaches to designing hydrogel scaffolds for skin tissue engineering.
Collapse
Affiliation(s)
- Varuna Naga Venkata Arjun Uppuluri
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, 600 117, Tamil Nadu, India
| | - Shanmugarajan Thukani Sathanantham
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, 600 117, Tamil Nadu, India
| | - Sai Krishna Bhimavarapu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, 600 117, Tamil Nadu, India
| | - Lokesh Elumalai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, 600 117, Tamil Nadu, India
| |
Collapse
|
19
|
He JJ, McCarthy C, Camci-Unal G. Development of Hydrogel‐Based Sprayable Wound Dressings for Second‐ and Third‐Degree Burns. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jacqueline Jialu He
- Department of Chemical Engineering University of Massachusetts Lowell One University Avenue Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell One University Avenue Lowell MA 01854 USA
| | - Colleen McCarthy
- Department of Chemical Engineering University of Massachusetts Lowell One University Avenue Lowell MA 01854 USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering University of Massachusetts Lowell One University Avenue Lowell MA 01854 USA
- Department of Surgery University of Massachusetts Medical School 55 Lake Avenue Worcester MA 01655 USA
| |
Collapse
|
20
|
Maaz Arif M, Khan SM, Gull N, Tabish TA, Zia S, Ullah Khan R, Awais SM, Arif Butt M. Polymer-based biomaterials for chronic wound management: Promises and challenges. Int J Pharm 2021; 598:120270. [PMID: 33486030 DOI: 10.1016/j.ijpharm.2021.120270] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 01/13/2023]
Abstract
Chronic non-healing wounds tender a great challenge to patients, physicians, and wound care professionals. In view of the increasing prevalence of chronic wounds due to ischemia, diabetic foot, venous, and pressure ulcers, their appropriate management requires significant attention. Along with the basic techniques of medical and surgical treatments; an ideal dressing is essential for a speedy recovery and rapid healing of such wounds. Mechanistic understanding of chronic wound pathology will not only help towards future directions for an ideal dressing model but also to resonant advance research related to specific dressings for various wound types. This review provides key insights into causes, pathophysiology, and critical issues pertaining to chronic wounds and their management. It also summarizes the challenges faced for chronic wound treatment and specified factors responsible for delayed healing. Moreover, this review delivers a detailed discussion on available polymeric materials (alginate, chitosan, hyaluronic acid, collagen, polyurethane, cellulose, dextran, gelatin, silk, and polyaniline), their functional characteristics, and usage as chronic wound healing agents for polymeric wound dressing development. Incorporation and comparison of the research studies for their thermal behavior, structural analysis, and microscopic studies by Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy, respectively and swelling studies of different polymeric materials are discussed. Additionally, studies of anatomy cum physiology of wound healing, pathophysiology, tissue engineering and advance healing management approaches makes the content of this review a significant tool for future studies on chronic wounds healing by polymeric wound dressings. In this review, polymeric wound dressings have been explained in terms of their structures, function, chemistry, and key characteristics. These features are directly linked to the polymeric systems' potential in the management of chronic wounds. These polymeric systems have gained promising success in solving real word global health problems. More recently, innovative approaches to fabricate the polymer dressings have been introduced, but their commercial, sustainable, and high-scale production largely remains unexplored. This review also summarizes the promises of polymeric wound dressings and provides a future perspective on how the clinical and commercial landscape could potentially be propelled by utilizing polymers in wound care management.
Collapse
Affiliation(s)
- Muhammad Maaz Arif
- Department of Community Health Sciences, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore, Pakistan
| | - Shahzad Maqsood Khan
- Department of Polymer Engineering & Technology, University of the Punjab Lahore, Pakistan.
| | - Nafisa Gull
- Department of Polymer Engineering & Technology, University of the Punjab Lahore, Pakistan
| | - Tanveer A Tabish
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Saba Zia
- Department of Polymer Engineering & Technology, University of the Punjab Lahore, Pakistan
| | - Rafi Ullah Khan
- Department of Polymer Engineering & Technology, University of the Punjab Lahore, Pakistan
| | | | - Muhammad Arif Butt
- Institute of Chemical Engineering & Technology, University of the Punjab Lahore, Pakistan
| |
Collapse
|
21
|
Yao Z, Xue T, Xiong H, Cai C, Liu X, Wu F, Liu S, Fan C. Promotion of collagen deposition during skin healing through Smad3/mTOR pathway by parathyroid hormone-loaded microneedle. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111446. [PMID: 33321586 DOI: 10.1016/j.msec.2020.111446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 01/13/2023]
Abstract
Skin wounds are associated with huge economic and emotional burdens for millions of people annually and are a challenge for health workers worldwide. At present, for skin defects after traumatic accidents, especially large-area skin defects, newly developed strategies such as the use of emerging biomaterials and cell therapy could be considered as options besides classic skin grafts. However, the new strategies have to deal with problems such as immune rejection and high costs for patients. An insufficient understanding of the mechanisms of skin wound healing further hinders the development of innovative treatment approaches. In this study, we developed a parathyroid hormone (PTH)-loaded phase-transition microneedle (PTMN) patch to deliver PTH subcutaneously in an efficient manner and change microneedle patch daily to achieve intermittent and systematic drug administration. By evaluating wound closure, re-epithelialization, collagen deposition, and extracellular matrix (ECM) expression in a Sprague-Dawley rat model of traumatic skin wounds, we demonstrated that intermittent systemic administration of PTH using our PTMN patches accelerated skin wound healing. Further, we demonstrated that the use of the patch may accelerate skin wound healing depending on the activation of the transforming growth factor (TGF)-β/Smad3/mammalian target of rapamycin (mTOR) cascade pathway. Our results suggest that the PTH-loaded PTMN patch may be a novel therapeutic strategy for treating skin wounds.
Collapse
Affiliation(s)
- Zhixiao Yao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Tong Xue
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hao Xiong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chuandong Cai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xudong Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
22
|
Zhou F, Hong Y, Liang R, Zhang X, Liao Y, Jiang D, Zhang J, Sheng Z, Xie C, Peng Z, Zhuang X, Bunpetch V, Zou Y, Huang W, Zhang Q, Alakpa EV, Zhang S, Ouyang H. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials 2020; 258:120287. [DOI: 10.1016/j.biomaterials.2020.120287] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
23
|
Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:259-290. [PMID: 30896342 DOI: 10.1089/ten.teb.2018.0325] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPACT STATEMENT The use of autologous tissue in the reconstruction of tissue defects has been the gold standard. However, current standards still face many limitations and complications. Improving patient outcomes and quality of life by addressing these barriers remain imperative. This article provides historical perspective, covers the major limitations of current standards of care, and reviews recent advances and future prospects in applied bioengineering in the context of tissue reconstruction, replacement, and regeneration.
Collapse
Affiliation(s)
- Juan M Colazo
- 1Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,2Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian C Evans
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Angel F Farinas
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Salam Al-Kassis
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Craig L Duvall
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Wesley P Thayer
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
24
|
Abazari M, Ghaffari A, Rashidzadeh H, Momeni Badeleh S, Maleki Y. Current status and future outlook of nano-based systems for burn wound management. J Biomed Mater Res B Appl Biomater 2019; 108:1934-1952. [PMID: 31886606 DOI: 10.1002/jbm.b.34535] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/03/2019] [Accepted: 11/16/2019] [Indexed: 01/07/2023]
Abstract
Wound healing process is a natural and intricate response of the body to its injuries and includes a well-orchestrated sequence of biochemical and cellular phenomena to restore the integrity of skin and injured tissues. Complex nature and associated complications of burn wounds lead to an incomplete and prolonged recovery of these types of wounds. Among different materials and systems which have been used in treating the wounds, nanotechnology driven therapeutic systems showed a great opportunity to improvement and enhancement of the healing process of different type of wounds. The aim of this study is to provide an overview of the recent studies about the various nanotechnology-based management of burn wounds and the future outlook of these systems in this area. Laboratory and animal models for assessing the efficacy of these systems in burn wound management also discussed.
Collapse
Affiliation(s)
- Morteza Abazari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Azadeh Ghaffari
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid Rashidzadeh
- Department of pharmaceutical biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Momeni Badeleh
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yaser Maleki
- Department of Nanochemistry, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| |
Collapse
|
25
|
Sheikholeslam M, Wright MEE, Cheng N, Oh HH, Wang Y, Datu AK, Santerre JP, Amini-Nik S, Jeschke MG. Electrospun Polyurethane–Gelatin Composite: A New Tissue-Engineered Scaffold for Application in Skin Regeneration and Repair of Complex Wounds. ACS Biomater Sci Eng 2019; 6:505-516. [DOI: 10.1021/acsbiomaterials.9b00861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mohammadali Sheikholeslam
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Isfahan 81746-73461, Iran
| | | | - Nan Cheng
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Hwan Hee Oh
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Yanran Wang
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Andrea K. Datu
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | | | - Saeid Amini-Nik
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Marc G. Jeschke
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
26
|
Kalirajan C, Palanisamy T. A ZnO-curcumin nanocomposite embedded hybrid collagen scaffold for effective scarless skin regeneration in acute burn injury. J Mater Chem B 2019; 7:5873-5886. [PMID: 31512714 DOI: 10.1039/c9tb01097a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scar formation in severe burn injury is a major health concern. Herein, we developed a hybrid collagen scaffold with an incorporated ZnO-curcumin nanocomposite, which facilitates scarless wound healing. Biocompatibility and hemocompatibility studies unveiled that the hybrid scaffold is apt for in vivo wound healing studies. Histological and immunohistochemical analyses demonstrate that the hybrid scaffold accelerated scarless burn wound healing in albino rats owing to the ZnO-curcumin nanocomposite induced up-regulation of angiogenesis and TGF-β3 expression. The semi-quantitatively measured scar elevation index of the hybrid scaffold-treated animals is on a par with that of the unwounded or normal skin. The studies suggest that the prepared hybrid biomaterial could be a potential candidate for scarless healing in severe burn injuries.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Advanced Materials Laboratory, Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020, India. and University of Madras, Chepauk, Chennai 600005, India
| | - Thanikaivelan Palanisamy
- Advanced Materials Laboratory, Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020, India. and University of Madras, Chepauk, Chennai 600005, India
| |
Collapse
|
27
|
Chouhan D, Dey N, Bhardwaj N, Mandal BB. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials 2019; 216:119267. [DOI: 10.1016/j.biomaterials.2019.119267] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/25/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022]
|
28
|
Chouhan D, Lohe TU, Thatikonda N, Naidu VGM, Hedhammar M, Mandal BB. Silkworm Silk Scaffolds Functionalized with Recombinant Spider Silk Containing a Fibronectin Motif Promotes Healing of Full-Thickness Burn Wounds. ACS Biomater Sci Eng 2019; 5:4634-4645. [DOI: 10.1021/acsbiomaterials.9b00887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Tshewuzo-u Lohe
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati 781032, Assam, India
| | - Naresh Thatikonda
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden
| | - VGM Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati 781032, Assam, India
| | - My Hedhammar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden
| | | |
Collapse
|
29
|
Xiao Y, Liu C, Chen Z, Blatchley MR, Kim D, Zhou J, Xu M, Gerecht S, Fan R. Senescent Cells with Augmented Cytokine Production for Microvascular Bioengineering and Tissue Repairs. ADVANCED BIOSYSTEMS 2019; 3:1900089. [PMID: 32270028 PMCID: PMC7141414 DOI: 10.1002/adbi.201900089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 12/19/2022]
Abstract
Controlled delivery of cytokines and growth factors has been an area of intense research interest for molecular and cellular bioengineering, immunotherapy, and regenerative medicine. In this study, we show that primary human lung fibroblasts chemically induced to senescence (cell cycle arrest) can act as a living source to transiently produce factors essential for promoting vasculogenesis or angiogenesis, such as VEGF, HGF, and IL-8. Co-culture of senescent fibroblasts with HUVECs in a fibrin gel demonstrated accelerated formation and maturation of microvessel networks in as early as three days. Unlike the usage of non-senescent fibroblasts as the angiogenesis-promoting cells, this approach eliminates drawbacks related to the overproliferation of fibroblasts and the subsequent disruption of tissue architecture, integrity, or function. Co-culture of pancreatic islets with senescent fibroblasts and endothelial cells in a gel matrix maintains the viability and function of islets ex vivo for up to five days. Applying senescent fibroblasts to wound repair in vivo led to increased blood flow in a diabetic mouse model. Together, this work points to a new direction for engineering the delivery of cytokines and growth factors that promote microvascular tissue engineering and tissue repairs.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
| | - Chang Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
| | - Zhuo Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
| | - Michael R. Blatchley
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20218, U.S.A
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD 20218, U.S.A
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
| | - Jing Zhou
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
- Department of Anesthesiology, Yale University, New Haven, CT 06520, U.S.A
| | - Ming Xu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
| | - Sharon Gerecht
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20218, U.S.A
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD 20218, U.S.A
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 20218, U.S.A
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 20218, U.S.A
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
- Yale Comprehensive Cancer Center, New Haven, CT 06520, U.S.A
| |
Collapse
|
30
|
Regenerative and durable small-diameter graft as an arterial conduit. Proc Natl Acad Sci U S A 2019; 116:12710-12719. [PMID: 31182572 DOI: 10.1073/pnas.1905966116] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite significant research efforts, clinical practice for arterial bypass surgery has been stagnant, and engineered grafts continue to face postimplantation challenges. Here, we describe the development and application of a durable small-diameter vascular graft with tailored regenerative capacity. We fabricated small-diameter vascular grafts by electrospinning fibrin tubes and poly(ε-caprolactone) fibrous sheaths, which improved suture retention strength and enabled long-term survival. Using surface topography in a hollow fibrin microfiber tube, we enable immediate, controlled perfusion and formation of a confluent endothelium within 3-4 days in vitro with human endothelial colony-forming cells, but a stable endothelium is noticeable at 4 weeks in vivo. Implantation of acellular or endothelialized fibrin grafts with an external ultrathin poly(ε-caprolactone) sheath as an interposition graft in the abdominal aorta of a severe combined immunodeficient Beige mouse model supports normal blood flow and vessel patency for 24 weeks. Mechanical properties of the implanted grafts closely approximate the native abdominal aorta properties after just 1 week in vivo. Fibrin mediated cellular remodeling, stable tunica intima and media formation, and abundant matrix deposition with organized collagen layers and wavy elastin lamellae. Endothelialized grafts evidenced controlled healthy remodeling with delayed and reduced macrophage infiltration alongside neo vasa vasorum-like structure formation, reduced calcification, and accelerated tunica media formation. Our studies establish a small-diameter graft that is fabricated in less than 1 week, mediates neotissue formation and incorporation into the native tissue, and matches the native vessel size and mechanical properties, overcoming main challenges in arterial bypass surgery.
Collapse
|
31
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
32
|
Alemzadeh E, Oryan A, Mohammadi AA. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J Biomed Mater Res B Appl Biomater 2019; 108:555-567. [PMID: 31081996 DOI: 10.1002/jbm.b.34411] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/17/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023]
Abstract
Application of hydrogels can be an effective technique in transferring the adipose-derived stem cells (ASCs) to injured tissue and their protection from further complications. Besides, acellular dermal matrix (ADM) has successfully been used in treatment of wounds. In this study, a combination of hylauronic acid (HA) and ASCs (HA/ASCs) was applied on burn wounds and the injured area was then covered by an ADM dressing in a rat model (ADM-HA/ASCs). Wound healing was evaluated by histopathological, histomorphometrical, molecular, biochemical, and scanning electron microscopy assessments on days 7, 14, and 28 post-wounding. ADM-HA/ASCs stimulated healing significantly more than the ADM-HA and ADM treated wounds, as it led to reduced inflammation, and improved angiogenesis and enhanced granulation tissue formation. Expression of interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) was lower in the ADM-HA/ASCs treated wounds than the ADM-HA and ADM groups, at the seventh post-wounding day. ADM-HA/ASCs also enhanced the expression level of TGF-β1 mRNA at 14 day post-wounding that was parallel to the experimental data from histological and biochemical assessments and confirmed the positive role of ASCs in repair of burn wounds. Additionally, increase in basic fibroblast growth factor (bFGF) expression and decreased TGF-β1 level on the 28th post-wounding day indicated the anti-scarring activity of ASCs. HA loaded by adipose stem cells can represent a promising strategy in accelerating burn wound healing.
Collapse
Affiliation(s)
- Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali A Mohammadi
- Burn and Wound Healing Research Center, Plastic and Reconstructive Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Stern D, Cui H. Crafting Polymeric and Peptidic Hydrogels for Improved Wound Healing. Adv Healthc Mater 2019; 8:e1900104. [PMID: 30835960 DOI: 10.1002/adhm.201900104] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Wound healing is a multifaceted biological process involving the replacement of damaged tissues and cellular structures, restoring the skin barrier's function, and maintaining internal homeostasis. Over the past two decades, numerous approaches are undertaken to improve the quality and healing rate of complex acute and chronic wounds, including synthetic and natural polymeric scaffolds, skin grafts, and supramolecular hydrogels. In this context, this review assesses the advantages and drawbacks of various types of supramolecular hydrogels including both polymeric and peptide-based hydrogels for wound healing applications. The molecular design features of natural and synthetic polymers are examined, as well as therapeutic-based and drug-free peptide hydrogels, and the strategies for each system are analyzed to integrate key elements such as biocompatibility, bioactivity, stimuli-responsiveness, site specificity, biodegradability, and clearance.
Collapse
Affiliation(s)
- David Stern
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
- Department of Materials Science and Engineering The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine Baltimore MD 21205 USA
| |
Collapse
|
34
|
Wang T, Zeng LN, Zhu Z, Wang YH, Ding L, Luo WB, Zhang XM, He ZW, Wu HF. Effect of lentiviral vector-mediated overexpression of hypoxia-inducible factor 1 alpha delivered by pluronic F-127 hydrogel on brachial plexus avulsion in rats. Neural Regen Res 2019; 14:1069-1078. [PMID: 30762021 PMCID: PMC6404506 DOI: 10.4103/1673-5374.250629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brachial plexus avulsion often results in massive motor neuron death and severe functional deficits of target muscles. However, no satisfactory treatment is currently available. Hypoxia-inducible factor 1α is a critical molecule targeting several genes associated with ischemia-hypoxia damage and angiogenesis. In this study, a rat model of brachial plexus avulsion-reimplantation was established, in which C5–7 ventral nerve roots were avulsed and only the C6 root reimplanted. Different implants were immediately injected using a microsyringe into the avulsion-reimplantation site of the C6 root post-brachial plexus avulsion. Rats were randomly divided into five groups: phosphate-buffered saline, negative control of lentivirus, hypoxia-inducible factor 1α (hypoxia-inducible factor 1α overexpression lentivirus), gel (pluronic F-127 hydrogel), and gel + hypoxia-inducible factor 1α (pluronic F-127 hydrogel + hypoxia-inducible factor 1α overexpression lentivirus). The Terzis grooming test was performed to assess recovery of motor function. Scores were higher in the hypoxia-inducible factor 1α and gel + hypoxia-inducible factor 1α groups (in particular the gel + hypoxia-inducible factor 1α group) compared with the phosphate-buffered saline group. Electrophysiology, fluorogold retrograde tracing, and immunofluorescent staining were further performed to investigate neural pathway reconstruction and changes of neurons, motor endplates, and angiogenesis. Compared with the phosphate-buffered saline group, action potential latency of musculocutaneous nerves was markedly shortened in the hypoxia-inducible factor 1α and gel + hypoxia-inducible factor 1α groups. Meanwhile, the number of fluorogold-positive cells and ChAT-positive neurons, neovascular area (labeled by CD31 around avulsed sites in ipsilateral spinal cord segments), and the number of motor endplates in biceps brachii (identified by α-bungarotoxin) were all visibly increased, as well as the morphology of motor endplate in biceps brachil was clear in the hypoxia-inducible factor 1α and gel + hypoxia-inducible factor 1α groups. Taken together, delivery of hypoxia-inducible factor 1α overexpression lentiviral vectors mediated by pluronic F-127 effectively promotes spinal root regeneration and functional recovery post-brachial plexus avulsion. All animal procedures were approved by the Institutional Animal Care and Use Committee of Guangdong Medical University, China.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan; Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China
| | - Li-Ni Zeng
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Zhe Zhu
- Hand & Foot Surgery and Reparative & Reconstruction Surgery Center, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu-Hui Wang
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan; Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China
| | - Lu Ding
- Department of Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Wei-Bin Luo
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan; Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China
| | - Xiao-Min Zhang
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Zhi-Wei He
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Hong-Fu Wu
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
35
|
Chouhan D, Lohe TU, Samudrala PK, Mandal BB. In Situ Forming Injectable Silk Fibroin Hydrogel Promotes Skin Regeneration in Full Thickness Burn Wounds. Adv Healthc Mater 2018; 7:e1801092. [PMID: 30379407 DOI: 10.1002/adhm.201801092] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Indexed: 01/10/2023]
Abstract
Full-thickness skin wounds, associated with deep burns or chronic wounds pose a major clinical problem. Herein, the development of in situ forming hydrogel using a natural silk fibroin (SF) biomaterial for treating burn wounds is reported. Blends of SF solutions isolated from Bombyx mori and Antheraea assama show inherent self-assembly between silk proteins and lead to irreversible gelation at body temperature. Investigation of the gelation mechanism reveals crosslinking due to formation of β-sheet structures as examined by X-ray diffraction and Fourier transform infrared spectroscopy. The SF hydrogel supports proliferation of primary human dermal fibroblasts and migration of keratinocytes comparable to collagen gel (Col) as examined under in vitro conditions. The SF hydrogel also provides an instructive and supportive matrix to the full-thickness third-degree burn wounds in vivo. A 3-week comparative study with Col indicates that SF hydrogel not only promotes wound healing but also shows transitions from inflammation to proliferation stage as observed through the expression of TNF-α and CD163 genes. Further, deposition and remodeling of collagen type I and III fibers suggests an enhanced overall tissue regeneration. Comparable results with Col demonstrate the SF hydrogel as an effective and inexpensive formulation toward a potential therapeutic approach for burn wound treatment.
Collapse
Affiliation(s)
- Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati 781039 Assam India
| | - Tshewuzo-u Lohe
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research, Guwahati; Guwahati 781039 Assam India
| | - Pavan Kumar Samudrala
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research, Guwahati; Guwahati 781039 Assam India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati 781039 Assam India
| |
Collapse
|
36
|
Zeng R, Lin C, Lin Z, Chen H, Lu W, Lin C, Li H. Approaches to cutaneous wound healing: basics and future directions. Cell Tissue Res 2018; 374:217-232. [PMID: 29637308 DOI: 10.1007/s00441-018-2830-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/09/2018] [Indexed: 02/05/2023]
Abstract
The skin provides essential functions, such as thermoregulation, hydration, excretion and synthesis of vitamin D. Major disruptions of the skin cause impairment of critical functions, resulting in high morbidity and death, or leave one with life-changing cosmetic damage. Due to the complexity of the skin, diverse approaches are needed, including both traditional and advanced, to improve cutaneous wound healing. Cutaneous wounds undergo four phases of healing. Traditional management, including skin grafts and wound dressings, is still commonly used in current practice but in combination with newer technology, such as using engineered skin substitutes in skin grafts or combining traditional cotton gauze with anti-bacterial nanoparticles. Various upcoming methods, such as vacuum-assisted wound closure, engineered skin substitutes, stem cell therapy, growth factors and cytokine therapy, have emerged in recent years and are being used to assist wound healing, or even to replace traditional methods. However, many of these methods still lack assessment by large-scale studies and/or extensive application. Conceptual changes, for example, precision medicine and the rapid advancement of science and technology, such as RNA interference and 3D printing, offer tremendous potential. In this review, we focus on the basics of wound treatment and summarize recent developments involving both traditional and hi-tech therapeutic methods that lead to both rapid healing and better cosmetic results. Future studies should explore a more cost-effective, convenient and efficient approach to cutaneous wound healing. Graphical abstract Combination of various materials to create advanced wound dressings.
Collapse
Affiliation(s)
- Ruijie Zeng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| | - Chuangqiang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| | - Zehuo Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| | - Hong Chen
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| | - Weiye Lu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China.
| | - Haihong Li
- Burn and Plastic Surgery Department, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
| |
Collapse
|
37
|
Zhu Q, Jiang M, Liu Q, Yan S, Feng L, Lan Y, Shan G, Xue W, Guo R. Enhanced healing activity of burn wound infection by a dextran-HA hydrogel enriched with sanguinarine. Biomater Sci 2018; 6:2472-2486. [PMID: 30066700 DOI: 10.1039/c8bm00478a] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Burn wounds are associated with a series of risks, such as infection and pathologic scar tissue formation, which significantly delay wound healing and lead to complications. In this study, we successfully fabricated a dextran-hyaluronic acid (Dex-HA) hydrogel enriched with sanguinarine (SA) incorporated into gelatin microspheres (GMs), which had high porosity, good swelling ratio, enhanced NIH-3T3 fibroblast cell proliferation, and sustained SA release profile. The in vitro degradation results indicate that the SA/GMs/Dex-HA hydrogel can be degraded. The in vitro antibacterial tests showed that the SA/GMs/Dex-HA hydrogel can inhibit methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). We evaluated the wound-healing effects and antibacterial properties of SA/GMs/Dex-HA hydrogels in a rat full-thickness burn infection model. The hematoxylin-eosin (H&E) and Masson's trichrome staining results of the SA/GMs/Dex-HA hydrogel showed that it improved re-epithelialization and enhanced extracellular matrix remodeling, and immunohistochemistry results showed that the expression of TGF-β1 and TNF-α was decreased, while the TGF-β3 expression was increased. Our findings suggest that the SA/GMs/Dex-HA hydrogel provides a potential way for infected burn treatment with high-quality and efficient scar inhibition.
Collapse
Affiliation(s)
- Qiyu Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stone Ii R, Natesan S, Kowalczewski CJ, Mangum LH, Clay NE, Clohessy RM, Carlsson AH, Tassin DH, Chan RK, Rizzo JA, Christy RJ. Advancements in Regenerative Strategies Through the Continuum of Burn Care. Front Pharmacol 2018; 9:672. [PMID: 30038569 PMCID: PMC6046385 DOI: 10.3389/fphar.2018.00672] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023] Open
Abstract
Burns are caused by several mechanisms including flame, scald, chemical, electrical, and ionizing and non-ionizing radiation. Approximately half a million burn cases are registered annually, of which 40 thousand patients are hospitalized and receive definitive treatment. Burn care is very resource intensive as the treatment regimens and length of hospitalization are substantial. Burn wounds are classified based on depth as superficial (first degree), partial-thickness (second degree), or full-thickness (third degree), which determines the treatment necessary for successful healing. The goal of burn wound care is to fully restore the barrier function of the tissue as quickly as possible while minimizing infection, scarring, and contracture. The aim of this review is to highlight how tissue engineering and regenerative medicine strategies are being used to address the unique challenges of burn wound healing and define the current gaps in care for both partial- and full-thickness burn injuries. This review will present the current standard of care (SOC) and provide information on various treatment options that have been tested pre-clinically or are currently in clinical trials. Due to the complexity of burn wound healing compared to other skin injuries, burn specific treatment regimens must be developed. Recently, tissue engineering and regenerative medicine strategies have been developed to improve skin regeneration that can restore normal skin physiology and limit adverse outcomes, such as infection, delayed re-epithelialization, and scarring. Our emphasis will be centered on how current clinical and pre-clinical research of pharmacological agents, biomaterials, and cellular-based therapies can be applied throughout the continuum of burn care by targeting the stages of wound healing: hemostasis, inflammation, cell proliferation, and matrix remodeling.
Collapse
Affiliation(s)
- Randolph Stone Ii
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Shanmugasundaram Natesan
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Christine J Kowalczewski
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Lauren H Mangum
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States.,Extremity Trauma and Regenerative Medicine, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Nicholas E Clay
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Ryan M Clohessy
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Anders H Carlsson
- Dental and Craniofacial Trauma Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - David H Tassin
- Dental and Craniofacial Trauma Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Rodney K Chan
- Dental and Craniofacial Trauma Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Julie A Rizzo
- Burn Flight Team, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Robert J Christy
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| |
Collapse
|
39
|
Sun G, Shen YI, Harmon JW. Engineering Pro-Regenerative Hydrogels for Scarless Wound Healing. Adv Healthc Mater 2018; 7:e1800016. [PMID: 29663707 DOI: 10.1002/adhm.201800016] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/17/2018] [Indexed: 12/21/2022]
Abstract
Skin and skin appendages protect the body from harmful environment and prevent internal organs from dehydration. Superficial epidermal wounds usually heal without scarring, however, deep dermal wound healing commonly ends up with nonfunctioning scar formation with substantial loss of skin appendage. Wound healing is one of the most complex dynamic biological processes, during which a cascade of biomolecules combine with stem cell influx and matrix synthesis and synergistically contribute to wound healing at all levels. Although many approaches have been investigated to restore complete skin, the clinically effective therapy is still unavailable and the regeneration of perfect skin still remains a significant challenge. The complete mechanism behind scarless skin regeneration still requires further investigation. Fortunately, recent advancement in regenerative medicine empowers us more than ever to restore tissue in a regenerative manner. Many studies have elucidated and reviewed the contribution of stem cells and growth factors to scarless wound healing. This article focuses on recent advances in scarless wound healing, especially strategies to engineer pro-regenerative scaffolds to restore damaged skin in a regenerative manner.
Collapse
Affiliation(s)
- Guoming Sun
- Sunogel Biotechnologies Inc.; 9 W Ridgely Road Ste 270 Lutherville Timonium MD 21093 USA
| | - Yu-I Shen
- Sunogel Biotechnologies Inc.; 9 W Ridgely Road Ste 270 Lutherville Timonium MD 21093 USA
| | - John W. Harmon
- Department of Surgery and the Hendrix Burn Lab; Johns Hopkins University School of Medicine; Baltimore MD 21224 USA
| |
Collapse
|
40
|
Piaggesi A, Låuchli S, Bassetto F, Biedermann T, Marques A, Najafi B, Palla I, Scarpa C, Seimetz D, Triulzi I, Turchetti G, Vaggelas A. Advanced therapies in wound management: cell and tissue based therapies, physical and bio-physical therapies smart and IT based technologies. J Wound Care 2018; 27:S1-S137. [DOI: 10.12968/jowc.2018.27.sup6a.s1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alberto Piaggesi
- Prof, Director, EWMA Scientific Recorder (Editor), Diabetic Foot Section of the Pisa University Hospital, Department of Endocrinology and Metabolism, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Severin Låuchli
- Chief of Dermatosurgery and Woundcare, EWMA Immediate Past President (Co-editor), Department of Dermatology, University Hospital, Zurich, Råmistrasse 100, 8091 Zärich, Schwitzerland
| | - Franco Bassetto
- Prof, Head of Department, Clinic of Plastic and Reconstructive Surgery, University of Padova, Via Giustiniani, 35100 Padova
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel-Strasse 7, 8008 Zürich, Switzerland
| | - Alexandra Marques
- University of Minho, 3B's Research Group in Biomaterials, Biodegradables and Biomimetics, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
| | - Bijan Najafi
- Professor of Surgery, Director of Clinical Research, Division of Vascular Surgery and Endovascular Therapy, Director of Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, MS: BCM390, Houston, TX 77030-3411, US
| | - Ilaria Palla
- Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Carlotta Scarpa
- Clinic of Plastic and Reconstructive Surgery, University of Padova, Via Giustiniani, 35100 Padova
| | - Diane Seimetz
- Founding Partner, Biopharma Excellence, c/o Munich Technology Center, Agnes-Pockels-Bogen 1, 80992 Munich, Germany
| | - Isotta Triulzi
- Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Giuseppe Turchetti
- Fulbright Scholar, Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Annegret Vaggelas
- Consultant, Biopharma Excellence, c/o Munich Technology Center, Agnes-Pockels-Bogen 1, 80992 Munich, Germany
| |
Collapse
|
41
|
Yen YH, Pu CM, Liu CW, Chen YC, Chen YC, Liang CJ, Hsieh JH, Huang HF, Chen YL. Curcumin accelerates cutaneous wound healing via multiple biological actions: The involvement of TNF-α, MMP-9, α-SMA, and collagen. Int Wound J 2018; 15:605-617. [PMID: 29659146 DOI: 10.1111/iwj.12904] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
Curcumin, a constituent of the turmeric plant, has antitumor, anti-inflammatory, and antioxidative effects, but its effects on wound healing are unclear. We created back wounds in 72 mice and treated them with or without topical curcumin (0.2 mg/mL) in Pluronic F127 gel (20%) daily for 3, 5, 7, 9, and 12 days. Healing in wounds was evaluated from gross appearance, microscopically by haematoxylin and eosin staining, by immunohistochemistry for tumour necrosis factor alpha and alpha smooth muscle actin, and by polymerase chain reaction amplification of mRNA expression levels. Treatment caused fast wound closure with well-formed granulation tissue dominated by collagen deposition and regenerating epithelium. Curcumin increased the levels of tumour necrosis factor alpha mRNA and protein in the early phase of healing, which then decreased significantly. However, these levels remained high in controls. Levels of collagen were significantly higher in curcumin-treated wounds. Immunohistochemical staining for alpha smooth muscle actin was increased in curcumin-treated mice on days 7 and 12. Curcumin treatment significantly suppressed matrix metallopeptidase-9 and stimulated alpha smooth muscle levels in tumour necrosis factor alpha-treated fibroblasts via nuclear factor kappa B signalling. Thus, topical curcumin accelerated wound healing in mice by regulating the levels of various cytokines.
Collapse
Affiliation(s)
- Yu-Hsiu Yen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan.,Department of Tourism and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chi-Ming Pu
- Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Chen-Wei Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Chun Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Jung Liang
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-Hsien Hsieh
- Departments of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Fu Huang
- Departments of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv Drug Deliv Rev 2018; 129:95-117. [PMID: 29627369 DOI: 10.1016/j.addr.2018.03.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.
Collapse
|
43
|
Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. Biomaterials for Skin Substitutes. Adv Healthc Mater 2018; 7:10.1002/adhm.201700897. [PMID: 29271580 PMCID: PMC7863571 DOI: 10.1002/adhm.201700897] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Patients with extensive burns rely on the use of tissue engineered skin due to a lack of sufficient donor tissue, but it is a challenge to identify reliable and economical scaffold materials and donor cell sources for the generation of a functional skin substitute. The current review attempts to evaluate the performance of the wide range of biomaterials available for generating skin substitutes, including both natural biopolymers and synthetic polymers, in terms of tissue response and potential for use in the operating room. Natural biopolymers display an improved cell response, while synthetic polymers provide better control over chemical composition and mechanical properties. It is suggested that not one material meets all the requirements for a skin substitute. Rather, a composite scaffold fabricated from both natural and synthetic biomaterials may allow for the generation of skin substitutes that meet all clinical requirements including a tailored wound size and type, the degree of burn, the patient age, and the available preparation technique. This review aims to be a valuable directory for researchers in the field to find the optimal material or combination of materials based on their specific application.
Collapse
Affiliation(s)
- Mohammadali Sheikholeslam
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
| | - Meghan E E Wright
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
44
|
Hayati F, Ghamsari SM, Dehghan MM, Oryan A. Effects of carbomer 940 hydrogel on burn wounds: an in vitro and in vivo study. J DERMATOL TREAT 2018; 29:593-599. [DOI: 10.1080/09546634.2018.1426823] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Farzad Hayati
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Mehdi Ghamsari
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
45
|
Sun G. Pro-Regenerative Hydrogel Restores Scarless Skin during Cutaneous Wound Healing. Adv Healthc Mater 2017; 6. [PMID: 28945013 DOI: 10.1002/adhm.201700659] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/09/2017] [Indexed: 11/06/2022]
Abstract
The transformation of fibrotic healing process to regenerative one has great potential to fully restore wounded skin. The M2 macrophage phenotype promotes constructive tissue remodeling and instructs tissue repair in a regenerative manner. It is hypothesized that hydrogels that can establish robustness of endogenous cells to regulate M2 phenotype will promote constructive dermal remodeling. Toward this end, a series of dextran-based bioabsorbable hydrogels are developed and self-crosslinkable dextran-isocyanatoethyl methacrylate-ethylamine (DexIEME) is identified as the potential scaffold. The initial screening study revealed that DexIEME has superior biocompatibility in varying concentrations. Although DexIEME brings about low proinflammatory responses, it promotes M2 macrophage phenotype. Then the optimized hydrogel formulation is tested for acute skin injuries using both murine and porcine models. Preliminary data demonstrated that the innovative DexIEME hydrogel promotes complete skin regeneration with hair regrowth on pre-existing scars, while untreated scars remain intact. Preclinical studies further demonstrated that the DexIEME hydrogel regenerated perfect skin during deep porcine wound healing. Overall, the approach to investigate immune-modulated hydrogels yields pro-regenerative DexIEME hydrogel, which may lead to greater clinical success in treating deep dermal injury and attenuating scar formation.
Collapse
Affiliation(s)
- Guoming Sun
- Sunogel Biotechnologies Inc.; 9 W Ridgely Road Ste 270 Lutherville Timonium MD 21093 USA
| |
Collapse
|
46
|
Generation of DKK1 transgenic Tibet minipigs by somatic cell nuclear transfer (SCNT). Oncotarget 2017; 8:74331-74339. [PMID: 29088789 PMCID: PMC5650344 DOI: 10.18632/oncotarget.20604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Hairless mice have been widely applied in skin-related researches, while hairless pigs will be a useful model for skin-related study and other biomedical researches. Dickkopf-related protein 1 (DKK1) is inhibitor of Wnt signaling pathway. Transgenic mice expressing DKK1 transgene under control of a human keratin 14 (K14) promoter display hairless phenotype, which encouraged us to generate transgenic minipigs expressing pig DKK1 transgene under control of K14 promoter and finally achieve hairless minipigs. To generate transgenic cloned pigs, we constructed the lentiviral expression vector pERKDZG which contains two independent expression cassettes, the transcription of Tibet minipig DKK1 and EGFP genes are driven by K14 promoter, while mRFP is regulated under the control of Ef-1α promoter. Prior to generating the transgenic pig, the functionality of pERKDZG construct was verified by fluorescence assay and via checking pDKK1 expression. Subsequently, lentiviruses harboring ERKDZG transgene infected porcine embryonic fibroblasts (PEFs), followed by sorting RFP-positive PEFs by flow cytometry to obtain the purified PEFs carrying ERKDZG, designated DKK1-PEFs as donor cells used for somatic cell nuclear transfer (SCNT). Finally, we obtained 3 DKK1 transgenic cloned pigs with skin-specific expression of pDKK1 and EGFP transgenes, but unfortunately, DKK1 transgenic cloned pigs don't display hairless phenotype as expected. Taken together, we achieve DKK1 transgenic cloned pigs with skin-specific expression of pDKK1 transgene which provide a pig model for exploring DKK1 gene functions in pigs.
Collapse
|
47
|
Abaci HE, Guo Z, Doucet Y, Jacków J, Christiano A. Next generation human skin constructs as advanced tools for drug development. Exp Biol Med (Maywood) 2017; 242:1657-1668. [PMID: 28592171 DOI: 10.1177/1535370217712690] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many diseases, as well as side effects of drugs, manifest themselves through skin symptoms. Skin is a complex tissue that hosts various specialized cell types and performs many roles including physical barrier, immune and sensory functions. Therefore, modeling skin in vitro presents technical challenges for tissue engineering. Since the first attempts at engineering human epidermis in 1970s, there has been a growing interest in generating full-thickness skin constructs mimicking physiological functions by incorporating various skin components, such as vasculature and melanocytes for pigmentation. Development of biomimetic in vitro human skin models with these physiological functions provides a new tool for drug discovery, disease modeling, regenerative medicine and basic research for skin biology. This goal, however, has long been delayed by the limited availability of different cell types, the challenges in establishing co-culture conditions, and the ability to recapitulate the 3D anatomy of the skin. Recent breakthroughs in induced pluripotent stem cell (iPSC) technology and microfabrication techniques such as 3D-printing have allowed for building more reliable and complex in vitro skin models for pharmaceutical screening. In this review, we focus on the current developments and prevailing challenges in generating skin constructs with vasculature, skin appendages such as hair follicles, pigmentation, immune response, innervation, and hypodermis. Furthermore, we discuss the promising advances that iPSC technology offers in order to generate in vitro models of genetic skin diseases, such as epidermolysis bullosa and psoriasis. We also discuss how future integration of the next generation human skin constructs onto microfluidic platforms along with other tissues could revolutionize the early stages of drug development by creating reliable evaluation of patient-specific effects of pharmaceutical agents. Impact statement Skin is a complex tissue that hosts various specialized cell types and performs many roles including barrier, immune, and sensory functions. For human-relevant drug testing, there has been a growing interest in building more physiological skin constructs by incorporating different skin components, such as vasculature, appendages, pigment, innervation, and adipose tissue. This paper provides an overview of the strategies to build complex human skin constructs that can faithfully recapitulate human skin and thus can be used in drug development targeting skin diseases. In particular, we discuss recent developments and remaining challenges in incorporating various skin components, availability of iPSC-derived skin cell types and in vitro skin disease models. In addition, we provide insights on the future integration of these complex skin models with other organs on microfluidic platforms as well as potential readout technologies for high-throughput drug screening.
Collapse
Affiliation(s)
- H E Abaci
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Zongyou Guo
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yanne Doucet
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Joanna Jacków
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Angela Christiano
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA.,2 Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
48
|
Pedde RD, Mirani B, Navaei A, Styan T, Wong S, Mehrali M, Thakur A, Mohtaram NK, Bayati A, Dolatshahi-Pirouz A, Nikkhah M, Willerth SM, Akbari M. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606061. [PMID: 28370405 DOI: 10.1002/adma.201606061] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/16/2017] [Indexed: 05/24/2023]
Abstract
The demand for organ transplantation and repair, coupled with a shortage of available donors, poses an urgent clinical need for the development of innovative treatment strategies for long-term repair and regeneration of injured or diseased tissues and organs. Bioengineering organs, by growing patient-derived cells in biomaterial scaffolds in the presence of pertinent physicochemical signals, provides a promising solution to meet this demand. However, recapitulating the structural and cytoarchitectural complexities of native tissues in vitro remains a significant challenge to be addressed. Through tremendous efforts over the past decade, several innovative biofabrication strategies have been developed to overcome these challenges. This review highlights recent work on emerging three-dimensional bioprinting and textile techniques, compares the advantages and shortcomings of these approaches, outlines the use of common biomaterials and advanced hybrid scaffolds, and describes several design considerations including the structural, physical, biological, and economical parameters that are crucial for the fabrication of functional, complex, engineered tissues. Finally, the applications of these biofabrication strategies in neural, skin, connective, and muscle tissue engineering are explored.
Collapse
Affiliation(s)
- R Daniel Pedde
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Bahram Mirani
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Ali Navaei
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85281, USA
| | - Tara Styan
- Willerth Laboratory, Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, V8P 5C2, Canada
| | - Sarah Wong
- Willerth Laboratory, Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, V8P 5C2, Canada
| | - Mehdi Mehrali
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Ashish Thakur
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Nima Khadem Mohtaram
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Armin Bayati
- Willerth Laboratory, Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, V8P 5C2, Canada
| | - Alireza Dolatshahi-Pirouz
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85281, USA
| | - Stephanie M Willerth
- Willerth Laboratory, Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, V8P 5C2, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, V8P 5C2, Canada
- Center for Biomedical Research, University of Victoria, Victoria, V8P 5C2, Canada
| |
Collapse
|
49
|
Webb RL, Gallegos-Cárdenas A, Miller CN, Solomotis NJ, Liu HX, West FD, Stice SL. Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Parallel Human Differentiation Into Sensory Neural Subtypes. Cell Reprogram 2017; 19:88-94. [PMID: 28266869 DOI: 10.1089/cell.2016.0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pig is the large animal model of choice for study of nerve regeneration and wound repair. Availability of porcine sensory neural cells would conceptually allow for analogous cell-based peripheral nerve regeneration in porcine injuries of similar severity and size to those found in humans. After recently reporting that porcine (or pig) induced pluripotent stem cells (piPSCs) differentiate into neural rosette (NR) structures similar to human NRs, here we demonstrate that pig NR cells could differentiate into neural crest cells and other peripheral nervous system-relevant cell types. Treatment with either bone morphogenetic protein 4 or fetal bovine serum led to differentiation into BRN3A-positive sensory cells and increased expression of sensory neuron TRK receptor gene family: TRKA, TRKB, and TRKC. Porcine sensory neural cells would allow determination of parallels between human and porcine cells in response to noxious stimuli, analgesics, and reparative mechanisms. In vitro differentiation of pig sensory neurons provides a novel model system for neural cell subtype specification and would provide a novel platform for the study of regenerative therapeutics by elucidating the requirements for innervation following injury and axonal survival.
Collapse
Affiliation(s)
- Robin L Webb
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Amalia Gallegos-Cárdenas
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Colette N Miller
- 2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Nicholas J Solomotis
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Hong-Xiang Liu
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Franklin D West
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Steven L Stice
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| |
Collapse
|
50
|
Das S, Baker AB. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front Bioeng Biotechnol 2016; 4:82. [PMID: 27843895 PMCID: PMC5087310 DOI: 10.3389/fbioe.2016.00082] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin , Austin, TX , USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|