1
|
Brooks SG, Yosipovitch G. Adjunctive Management of Itch in Atopic Dermatitis. Dermatol Clin 2024; 42:577-589. [PMID: 39278711 DOI: 10.1016/j.det.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition that can be difficult to treat due to a complex etiology and diverse clinical presentations. Itch is the most common symptom associated with AD with profound negative impact on quality of life. Thus, the adjunctive management of itch in patients with AD is needed to control and reduce disease burden. Supplemental treatment options are continuously emerging and undergoing testing in clinical trials. This article summarizes the latest data on topical and systemic adjunctive therapies for AD safety and efficacy in reducing itch.
Collapse
Affiliation(s)
- Sarah G Brooks
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, 5555 Ponce de Leon Boulevard, Coral Gables, FL 33146, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, 5555 Ponce de Leon Boulevard, Coral Gables, FL 33146, USA.
| |
Collapse
|
2
|
Li C, Wan Y, Yang J, Feng C, Liu J, Cao Z, Li C, Wang P, Wang X, Zeng Q. Ultra-small platinum nano-enzymatic spray with ROS scavenging and anti-inflammatory properties for photoaging treatment. Int J Biol Macromol 2024; 280:135743. [PMID: 39304038 DOI: 10.1016/j.ijbiomac.2024.135743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Photoaging induced by ultraviolet (UV) results in oxidative stress and inflammation. Noble metal nanozymes have strong antioxidant and anti-inflammatory capacity, which are expected to eliminate the excessive reactive oxygen species (ROS) and inflammatory factors in the photoaged skin. Hence, we have synthesized ultrasmall platinum nanoparticles coated with polyvinylpyrrolidone (Pt NPs) with a diameter of nearly 5 nm for photoaging treatment. Thanks to multi-enzymatic capacities (catalase, peroxidase, and superoxide dismutase) of Pt NPs, they can effectively protect fibroblasts from UV-induced ROS attack, relieve fibroblasts from UV-induced cell cycle arrest, downregulate matrix metalloproteinases (MMPs) to regenerate type I collagen, and inhibit M1 macrophage polarization to decrease the expression of inflammatory factors. For photoaged mice treatment, we employ the concept of routine spray skincare and encapsulate Pt NPs solution in a spray bottle. In combination with roller needle, following Pt NPs nano-enzymatic spray given, UV-induced photoaged mice display reduced wrinkle formation in the collagen-depleted dermal tissue of mice and more youthful performance in both appearance and organizational structure. Consequently, multi-enzymatic functions of Pt NPs nano-spray offers a promising avenue for anti-photoaging therapy, providing potential benefits in both preventative and restorative skincare applications.
Collapse
Affiliation(s)
- Chunying Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Yilin Wan
- Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jin Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Chunmei Feng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Jia Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Chunxiao Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China.
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China.
| |
Collapse
|
3
|
Brooks SG, Mahmoud RH, Lin RR, Fluhr JW, Yosipovitch G. The Skin Acid Mantle: An Update on Skin pH. J Invest Dermatol 2024:S0022-202X(24)01971-7. [PMID: 39243251 DOI: 10.1016/j.jid.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 09/09/2024]
Abstract
The acid mantle concept refers to the buffer system located in the upper stratum corneum of the skin. By sustaining an acidic environment, the acid mantle contributes to the regulation of the microbiome, structural stability, and inflammation. Skin pH is pivotal in maintaining the integrity of the epidermal barrier. Shifts in pH can disrupt barrier properties, and recent studies have emphasized its impact on dermatologic disease processes. This review explores the complex relationship of mechanisms through which skin pH impacts dermatologic pathologies. Furthermore, we highlight the promising potential of pH-targeted therapies for advancing the management of skin conditions.
Collapse
Affiliation(s)
- Sarah G Brooks
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rami H Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rachel R Lin
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joachim W Fluhr
- Charité - Universitätsmedizin Berlin, Institute of Allergology, Berlin, Germany; Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Berlin, Germany
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
4
|
Schmuth M, Eckmann S, Moosbrugger-Martinz V, Ortner-Tobider D, Blunder S, Trafoier T, Gruber R, Elias PM. Skin Barrier in Atopic Dermatitis. J Invest Dermatol 2024; 144:989-1000.e1. [PMID: 38643989 DOI: 10.1016/j.jid.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024]
Abstract
A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.
Collapse
Affiliation(s)
- Matthias Schmuth
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria.
| | - Sonja Eckmann
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Stefan Blunder
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Trafoier
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria
| | - Peter M Elias
- Dermatology, Veteran Affairs Health Care System, San Francisco, California, USA; University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Biazus Soares G, Hashimoto T, Yosipovitch G. Atopic Dermatitis Itch: Scratching for an Explanation. J Invest Dermatol 2024; 144:978-988. [PMID: 38363270 DOI: 10.1016/j.jid.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Chronic pruritus is a cardinal symptom of atopic dermatitis (AD). The mechanisms underlying atopic itch involve intricate crosstalk among skin, immune components, and neural components. In this review, we explore these mechanisms, focusing on key players and interactions that induce and exacerbate itch. We discuss the similarities and differences between pruritus and pain in patients with AD as well as the relationship between pruritus and factors such as sweat and the skin microbiome. Furthermore, we explore novel targets that could provide significant itch relief in these patients as well as exciting future research directions to better understand atopic pruritus in darker skin types.
Collapse
Affiliation(s)
- Georgia Biazus Soares
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Gil Yosipovitch
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
6
|
Lei D, Ye L, Wen S, Zhang J, Zhang L, Man MQ. Preventive and Therapeutic Benefits of Natural Ingredients in Photo-Induced Epidermal Dysfunction. Skin Pharmacol Physiol 2024; 37:1-18. [PMID: 38615652 DOI: 10.1159/000538832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The skin, particularly the epidermis, is subjected to various external stresses, including ultraviolet (UV) irradiation. UV irradiation, mainly UVB at wavelength of 280-315 nm, can alter several epidermal functions, including cutaneous inflammation, epidermal hyperproliferation, DNA damage, disruption of epidermal permeability barrier and reduction in stratum corneum hydration levels. Because of the negative impacts of UVB irradiation on epidermal functions, great efforts have been made to develop regimens for the protection of alterations in epidermal function induced by UV irradiation. SUMMARY While sunscreen can provide physical barrier to UV light, some natural ingredients can also effectively protect the skin from UVB irradiation-induced damages. Studies have demonstrated that either topical or oral administrations of some natural ingredients attenuate UVB irradiation-induced alterations in the epidermal function. The underlying mechanisms by which natural ingredients improve epidermal functions are attributable to antioxidation, stimulation of keratinocyte differentiation, increases in the content of epidermal natural moisturizers and inhibition of inflammation. KEY MESSAGE Some natural ingredients exhibit protective and therapeutical benefits in photo-induced epidermal dysfunctions via divergent mechanisms.
Collapse
Affiliation(s)
- Dongyun Lei
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Li Ye
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Junling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Litao Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Wu J, Li L, Zhang T, Lu J, Tai Z, Zhu Q, Chen Z. The epidermal lipid-microbiome loop and immunity: Important players in atopic dermatitis. J Adv Res 2024:S2090-1232(24)00088-2. [PMID: 38460775 DOI: 10.1016/j.jare.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The promotion of epidermal barrier dysfunction is attributed to abnormalities in the lipid-microbiome positive feedback loop which significantly influences the imbalance of the epithelial immune microenvironment (EIME) in atopic dermatitis (AD). This imbalance encompasses impaired lamellar membrane integrity, heightened exposure to epidermal pathogens, and the regulation of innate and adaptive immunity. The lipid-microbiome loop is substantially influenced by intense adaptive immunity which is triggered by abnormal loop activity and affects the loop's integrity through the induction of atypical lipid composition and responses to dysregulated epidermal microbes. Immune responses participate in lipid abnormalities within the EIME by downregulating barrier gene expression and are further cascade-amplified by microbial dysregulation which is instigated by barrier impairment. AIM OF REVIEW This review examines the relationship between abnormal lipid composition, microbiome disturbances, and immune responses in AD while progressively substantiating the crosstalk mechanism among these factors. Based on this analysis, the "lipid-microbiome" positive feedback loop, regulated by immune responses, is proposed. KEY SCIENTIFIC CONCEPTS OF REVIEW The review delves into the impact of adaptive immune responses that regulate the EIME, driving AD, and investigates potential mechanisms by which lipid supplementation and probiotics may alleviate AD through the up-regulation of the epidermal barrier and modulation of immune signaling. This exploration offers support for targeting the EIME to attenuate AD.
Collapse
Affiliation(s)
- Junchao Wu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Tingrui Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| |
Collapse
|
8
|
Yang B, Man MQ. Improvement in Cutaneous Conditions Can Benefit Some Health Conditions in the Elderly. Clin Interv Aging 2023; 18:2031-2040. [PMID: 38058550 PMCID: PMC10697145 DOI: 10.2147/cia.s430552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
As we are aging, a number of cutaneous and extracutaneous disorders will be developed. Although the pathogenesis of these aging-associated disorders is not clear yet, abnormalities in the skin are linked to some aging-associated disorders at least to some extent. Inflammatory dermatoses such as psoriasis and atopic dermatitis predispose to the development of cardiovascular diseases, obesity and type 2 diabetes. In addition, both chronologically aged skin and individuals with some aging-associated systemic conditions display altered epidermal function, such as reduced stratum corneum hydration levels, which can provoke cutaneous inflammation. Because aged skin exhibits higher expression levels of inflammatory cytokines, which play a pathogenic role in a variety of aging-associated health condition, the association of the skin with some aging-associated disorders is likely mediated by inflammation. This postulation is supported by the evidence that improvement in either epidermal function or inflammatory dermatoses can mitigate some aging-associated disorders such as mild cognitive impairment and insulin sensitivity. This perspective discusses the association of the skin with aging-associated disorders and highlights the potential of improvement in cutaneous conditions in the management of some health conditions in the elderly.
Collapse
Affiliation(s)
- Bin Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, 510091, People’s Republic of China
| | - Mao-Qiang Man
- Dermatology Hospital of Southern Medical University, Guangzhou, 510091, People’s Republic of China
- Dermatology Services, Veterans Affairs Medical Center and University of California, San Francisco, CA, 94121, USA
| |
Collapse
|
9
|
Baker P, Huang C, Radi R, Moll SB, Jules E, Arbiser JL. Skin Barrier Function: The Interplay of Physical, Chemical, and Immunologic Properties. Cells 2023; 12:2745. [PMID: 38067173 PMCID: PMC10706187 DOI: 10.3390/cells12232745] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
An intact barrier function of the skin is important in maintaining skin health. The regulation of the skin barrier depends on a multitude of molecular and immunological signaling pathways. By examining the regulation of a healthy skin barrier, including maintenance of the acid mantle and appropriate levels of ceramides, dermatologists can better formulate solutions to address issues that are related to a disrupted skin barrier. Conversely, by understanding specific skin barrier disruptions that are associated with specific conditions, such as atopic dermatitis or psoriasis, the development of new compounds could target signaling pathways to provide more effective relief for patients. We aim to review key factors mediating skin barrier regulation and inflammation, including skin acidity, interleukins, nuclear factor kappa B, and sirtuin 3. Furthermore, we will discuss current and emerging treatment options for skin barrier conditions.
Collapse
Affiliation(s)
- Paola Baker
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Christina Huang
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rakan Radi
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Samara B. Moll
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Emmanuela Jules
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Jack L. Arbiser
- Metroderm/United Derm Partners, 875 Johnson Ferry Road, Atlanta, GA 30342, USA
| |
Collapse
|
10
|
Yang B, Lai Q, Chen A, Ye L, Wang X, Lai Y, Liu D, Man MQ. Body Mass Index z Scores Correlate with Epidermal Function in Chinese Children. Diabetes Metab Syndr Obes 2023; 16:3393-3401. [PMID: 37929059 PMCID: PMC10624195 DOI: 10.2147/dmso.s435512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023] Open
Abstract
Background/Objective Epidermal function is altered in a number of cutaneous and extracutaneous disorders. To determine whether epidermal function is also altered in children with obesity, we assessed the correlation between the body mass index (BMI) z score and epidermal function in children. Participants and Methods Participants were enrolled from outpatient clinic, schools and kindergartens. Epidermal biophysical properties, including transepidermal water loss rate, stratum corneum hydration and skin surface pH, were measured on the flexor forearm and shin. Correlations between epidermal biophysical properties and BMI were analyzed. In addition, the association of epidermal biophysical properties with BMI z score was also determined. Results Overall, BMI did not differ significantly between boys and girls among the age groups. BMI z scores correlated negatively with stratum corneum hydration levels and positively with skin surface pH in boys, but not in girls. The negative correlation between TEWL and BMI z score was not significant. Moreover, stratum corneum hydration levels were lower in boys with a BMI z score of ≥2 than in those with a BMI z score of -2 to 0.99. Conclusion Both stratum corneum hydration levels and skin surface pH are significantly correlated with BMI z scores in boys, but not in girls. Whether epidermal function influences BMI or vice versa remains to be determined.
Collapse
Affiliation(s)
- Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou City, Guangdong, 510091, People’s Republic of China
| | - Qingsong Lai
- Department of Dermatology, Medical Center for Public Health of Puning, Puning City, Guangdong, 515300, People’s Republic of China
| | - Aiqi Chen
- Department of Dermatology, Medical Center for Public Health of Puning, Puning City, Guangdong, 515300, People’s Republic of China
| | - Li Ye
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou City, Guangdong, 510091, People’s Republic of China
| | - Xiaohua Wang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou City, Guangdong, 510091, People’s Republic of China
| | - Yulin Lai
- Department of Dermatology, Medical Center for Public Health of Puning, Puning City, Guangdong, 515300, People’s Republic of China
| | - Dan Liu
- Department of Product Development, Dermatology Hospital, Southern Medical University, Guangzhou City, Guangdong, 510091, People’s Republic of China
| | - Mao-Qiang Man
- Department of Product Development, Dermatology Hospital, Southern Medical University, Guangzhou City, Guangdong, 510091, People’s Republic of China
| |
Collapse
|
11
|
Fluhr JW, Stevanovic K, Joshi P, Bergmann KC, Herzog LS, Alwaheed Y, Al Sowaidi S, Zuberbier T. Skin Physiology, Mucosal Functions, and Symptoms Are Modulated by Grass Pollen and Ozone Double Exposure in Allergic Patients. Skin Pharmacol Physiol 2023; 36:195-204. [PMID: 36927995 DOI: 10.1159/000530115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
INTRODUCTION Along with climate changes, we see an increase in allergic symptoms and the number of pollen-allergic patients in many countries. Increased allergic symptoms are associated with an elevated ozone exposure which may be linked by impaired epithelial barrier function. This study aimed to quantify the clinical effect of ozone and pollen double exposure (DE). We tested whether ozone impairs barrier-related skin physiology and mucosal functions under DE with pollen in grass pollen-allergic patients versus healthy controls. METHODS This case-control study included 8 grass pollen-allergic patients and 8 non-allergic healthy subjects exposed to grass pollen and ozone in the GA2LEN pollen chamber, comparing shorter and longer DE duration. Non-invasive skin physiological parameters were assessed, including stratum corneum hydration, skin redness, surface pH, and basal transepidermal water loss as a parameter for epidermal barrier function. The subjects' general well-being, bronchial, nasal, and ocular symptoms were documented. RESULTS Skin physiology tests revealed that DE in allergic patients deteriorates the epidermal barrier function and increases the surface pH and skin redness. DE significantly induced nasal secretion in pollen-allergic versus healthy subjects, which was more pronounced with longer DE. The general well-being was significantly impaired under DE versus pollen or ozone alone, with a negative influence of DE duration. No relevant bronchial symptoms were recorded. CONCLUSION Skin physiology and nasal mucosal symptoms are negatively affected by ozone and grass pollen DE in allergic patients. The negative effects showed, in some parameters, a dose (time)-response relationship. The pH can be regarded as a possible modulatory mechanism.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Charité - Universitätsmedizin Berlin, Institute of Allergology, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Katarina Stevanovic
- Charité - Universitätsmedizin Berlin, Institute of Allergology, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Priyanka Joshi
- Charité - Universitätsmedizin Berlin, Institute of Allergology, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Karl-Christian Bergmann
- Charité - Universitätsmedizin Berlin, Institute of Allergology, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Leonie S Herzog
- Charité - Universitätsmedizin Berlin, Institute of Allergology, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Yasmeen Alwaheed
- Charité - Universitätsmedizin Berlin, Institute of Allergology, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Shirina Al Sowaidi
- Charité - Universitätsmedizin Berlin, Institute of Allergology, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Torsten Zuberbier
- Charité - Universitätsmedizin Berlin, Institute of Allergology, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| |
Collapse
|
12
|
Stratum corneum hydration inversely correlates with certain serum cytokine levels in the elderly, possibly contributing to inflammaging. Immun Ageing 2023; 20:7. [PMID: 36750827 PMCID: PMC9903429 DOI: 10.1186/s12979-023-00331-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Chronic, low-grade inflammation, also termed 'inflammaging', has been linked to the development of some aging-associated disorders. Recent studies suggest that inflammaging is attributable to aging-associated epidermal dysfunction. However, abnormality in which epidermal function contributes to inflammaging is not clear. OBJECTIVE We delineated the correlation of epidermal functions with circulating levels of proinflammatory cytokines in the elderly. METHODS Blood sample was collected from a total of 255 participants aged ≥ 65 years. Epidermal biophysical properties were measured on the left forearm and the right shin. Serum cytokine levels were measured by Multiplex Luminex Assays. RESULTS Neither skin surface pH nor transepidermal water loss rates (TEWL) correlated with serum cytokine levels except TEWL on the right shin for TNFa (p < 0.05). In contrast, stratum corneum hydration levels on both the forearm and the shin correlated negatively with serum cytokine levels (p < 0.05). CONCLUSION Reduced stratum corneum hydration likely contributes to inflammaging.
Collapse
|
13
|
Thibault Greugny E, Bensaci J, Fages F, Stamatas GN. Computational modelling predicts impaired barrier function and higher sensitivity to skin inflammation following pH elevation. Exp Dermatol 2023; 32:177-185. [PMID: 36321871 DOI: 10.1111/exd.14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/04/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Skin surface pH has been identified as a key regulator of the epidermal homeostasis through its action on serine protease activity. These enzymes, like kallikreins (KLK), are responsible for the degradation of corneodesmosomes, the protein structures linking together corneocytes, and are regulated by Lympho-Epithelial Kazal-Type-related Inhibitor (LEKTI). KLK activity increases at pH levels higher than physiological. An increase in skin surface pH has been observed in patients suffering from skin diseases characterized by impaired barrier function, like atopic dermatitis. In this work, we introduce an agent-based model of the epidermis to study the impact of a change in skin surface pH on the structural and physiological properties of the epidermis, through the LEKTI-KLK mechanism. We demonstrate that a less acidic pH, compared to the slightly acidic pH observed in healthy skin, is sufficient to significantly affect the water loss at the surface and the amount of irritant permeating through the epidermis. This weakening of the skin barrier function eventually results in a more intense skin inflammation following exposure to an external irritant. This work provides additional evidence that skin surface pH and serine proteases can be therapeutic targets to improve skin barrier integrity.
Collapse
Affiliation(s)
- Eléa Thibault Greugny
- Essential Health Translational Science, Johnson & Johnson Santé Beauté France, Issy-les-Moulineaux, France.,Inria Saclay Île-de-France, Lifeware Team, Palaiseau, France
| | - Jalil Bensaci
- Essential Health Translational Science, Johnson & Johnson Santé Beauté France, Issy-les-Moulineaux, France
| | - François Fages
- Inria Saclay Île-de-France, Lifeware Team, Palaiseau, France
| | - Georgios N Stamatas
- Essential Health Translational Science, Johnson & Johnson Santé Beauté France, Issy-les-Moulineaux, France
| |
Collapse
|
14
|
An Altered Skin and Gut Microbiota Are Involved in the Modulation of Itch in Atopic Dermatitis. Cells 2022; 11:cells11233930. [PMID: 36497188 PMCID: PMC9736894 DOI: 10.3390/cells11233930] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Skin and gut microbiota play an important role in the pathogenesis of atopic dermatitis (AD). An alteration of the microbiota diversity modulates the development and course of AD, e.g., decreased microbiome diversity correlates with disease severity, particularly in lesional skin of AD. Itch is a hallmark of AD with unsatisfying treatment until now. Recent evidence suggests a possible role of microbiota in altering itch in AD through gut-skin-brain interactions. The microbial metabolites, proinflammatory cytokines, and impaired immune response lead to a modulation of histamine-independent itch, disruption of epidermal barrier, and central sensitization of itch mechanisms. The positive impact of probiotics in alleviating itch in AD supports this hypothesis, which may lead to novel strategies for managing itchy skin in AD patients. This review summarizes the emerging findings on the correlation between an altered microbiota and gut-skin-brain axis in AD, especially in modulating itchy skin.
Collapse
|
15
|
Kazandjieva J, Dimitrova J, Sankeva M, Yankov D, Bocheva V, Kircheva K, Gincheva V, Gospodinova K, Andasorova R, Milanova M, Jeleva D, Zlateva P, Vasileva I, Yankova R, Gotseva S, Dakova T, Zografova E, Marina S, Kateva M, Broshtilova V, Todeva V, Tsankov N, Mitova Z, Boyanova N, Milani M. Efficacy of a retinoid complex plus anti-inflammatory component cream alone or in combination with prebiotic food supplement in adult acne: A randomized, assessor-blinded, parallel-group, multicenter trial on 184 women. J Cosmet Dermatol 2022; 21:5716-5722. [PMID: 35545875 DOI: 10.1111/jocd.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Adult female acne (AFA) nowadays is a very common skin condition affecting mainly women aged between 25 and 40. The treatment of AFA could be challenging. STUDY AIM We evaluate and compare the efficacy and tolerability of a cream formulation containing two retinoid molecules (hydroxypinacolone/retinyl palmitate) combined with Iris Florentina root extract and a complex of three oligopeptides (C) applied twice a day (morning and evening) alone or in combination (C + O) with a food supplement containing a mixture of prebiotic molecules (FOS&GOS) zinc, lactoferrin, and niacinamide. SUBJECTS AND METHODS In a multicenter, randomized, assessor-blinded, 12-week trial, we assessed the efficacy of these two regimens in the evolution of AFA lesions (non-inflammatory: NI-L; inflammatory: IL; and total number of lesions: TL). Additional efficacy endpoints were the evolution of the 6-point (from 0 to 5) GEA and Adult Female Acne Scoring Tool (AFAST) scores. RESULTS One hundred and eighty-four women (mean age 32 ± 6 years) with AFA agreed to participate after obtaining informed consent. They were randomized (2:1) to the topical product (n = 123) (Group C) or to the combination (n = 61) (Group C + O) treatment. All enrolled patients concluded the trial with no drop-out. At baseline, NI-L, IL, and TL acne lesion count were 15 ± 9, 9 ± 5, and 24 ± 14 in the Group C and 19 ± 8, 9 ± 4, and 29 ± 10 in Group C + O. In comparison with the number of the acne lesions at the baseline, both treatment regimens induced a significant reduction (p = 0.0001, ANOVA test) at Week 12 in NI-L, IL, and TL by -54%, -63%, and - 59% in Group C and by -55%, -73%, and - 61% in the Group C + O, respectively. At Week 12, the absolute IL count reduction vs. baseline was significantly (p = 0.0158) greater in Group C + O (-7.0) in comparison with Group C (-5.5). The GEA absolute score reduction in Group C + O group was significantly greater in comparison with Group C (-1.5 vs. -1.1; p = 0.0097). In the Group C + O, a greater percentage of success treatment (defined as a GEA score of 0/1 at Week 12) was observed in comparison with Group C (39% vs. 27%; p = 0.06). AFAST score at baseline was 2.4 ± 0.5 in group C and 2.8 ± 0.6 in group C + O. AFAST score was reduced by 21% and by 51% after 6 and 12 weeks of treatment in group C and by 22% and 55% in group C + O, respectively. Both treatment regimens were well tolerated. Not relevant adverse events were recorded. CONCLUSION A cream containing retinoid molecules and Iris Florentina root extract is effective and well tolerated in the management of AFA. The treatment combination with a prebiotic and anti-inflammatory food supplement offers an additional clinical benefit mainly in reducing inflammatory lesions and improving the severity acne score.
Collapse
Affiliation(s)
| | - Jenya Dimitrova
- Acibadem City Clinic Varna, St. Marina Hospital, Varna, Bulgaria
| | | | | | | | - Kamelia Kircheva
- DERMAESTETIC Clinic, Varna, Bulgaria
- Private Practice Dermatologist, Dobrich, Bulgaria
| | | | | | | | - Maya Milanova
- Center for Skin and Venereal Diseases, Sliven, Bulgaria
| | | | - Petya Zlateva
- Diagnostic Consultative Center St. Anna, Sofia, Bulgaria
| | | | - Rumyana Yankova
- University Hospital for Active Treatment Pulmed Plovdiv, Plovdiv, Bulgaria
- Medical Center Mediderma, Plovdiv, Bulgaria
| | | | | | - Emiliya Zografova
- Dermatological Department Military Hospital, Plovdiv, Bulgaria
- Diagnostic Consultative Center 5, Plovdiv, Bulgaria
| | - Sonya Marina
- Department of Dermatology, Ministry of Interior Hospital, Sofia, Bulgaria
- Medical Center Ivan Rilski, Sofia, Bulgaria
| | - Marieta Kateva
- Medical Center Dermaspot, Sofia, Bulgaria
- Neoclinic, Sofia, Bulgaria
| | | | | | | | | | | | - Massimo Milani
- Medical Department Cantabria Labs Difa Cooper, Caronno P, Italy
| |
Collapse
|
16
|
Wen S, Elias PM, Wakefield JS, Mauro TM, Man MQ. The link between cutaneous inflammation and cognitive impairment. J Eur Acad Dermatol Venereol 2022; 36:1705-1712. [PMID: 35748522 PMCID: PMC9481668 DOI: 10.1111/jdv.18360] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022]
Abstract
Cognitive impairment is a symptom of neurological disorders, including dementia and Alzheimer's disease; and mild cognitive impairment can be a precursor of both disorders. Aged humans and animal models with other systemic disorders, such as cardiovascular diseases and diabetes, display a higher incidence of cognitive decline. Epidemiological studies have shown that the incidence of cognitive impairment also is higher in subjects with certain inflammatory skin disorders, including psoriasis and chronic eczematous dermatitis. Chronologically aged individuals exhibit increased cutaneous inflammation and elevated circulating cytokine levels, linked to alterations in epidermal function, which itself can induce cutaneous inflammation. Conversely, strategies that improve epidermal function can lower cytokine levels in both the skin and circulation. Thus, it seems likely that epidermal dysfunction could contribute, at least in part, to the development of chronic low-grade inflammation, also termed 'inflammaging', in the elderly. The evidence of cognitive impairment in patients with inflammatory dermatoses suggests a link between cutaneous inflammation and cognitive impairment. Because of the pathogenic role of epidermal dysfunction in ageing-associated cutaneous inflammation, improvements in epidermal function could be an alternative approach for mitigation of the ageing-associated decline in cognitive function.
Collapse
Affiliation(s)
- S Wen
- Dermatology Hospital, Southern Medical University, Guangdong, China
| | - P M Elias
- Dermatology Service, Veterans Affairs Medical Center San Francisco, San Francisco, California, USA
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - J S Wakefield
- Dermatology Service, Veterans Affairs Medical Center San Francisco, San Francisco, California, USA
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - T M Mauro
- Dermatology Service, Veterans Affairs Medical Center San Francisco, San Francisco, California, USA
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - M-Q Man
- Dermatology Hospital, Southern Medical University, Guangdong, China
- Dermatology Service, Veterans Affairs Medical Center San Francisco, San Francisco, California, USA
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Man M, Wakefield JS, Mauro TM, Elias PM. Alterations in epidermal function in type 2 diabetes: Implications for the management of this disease. J Diabetes 2022; 14:586-595. [PMID: 36043448 PMCID: PMC9512766 DOI: 10.1111/1753-0407.13303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 12/15/2022] Open
Abstract
Epidermal function is regulated by numerous exogenous and endogenous factors, including age, psychological stress, certain skin disorders, ultraviolet irradiation and pollution, and epidermal function itself can regulate cutaneous and extracutaneous functions. The biophysical properties of the stratum corneum reflect the status of both epidermal function and systemic conditions. Type 2 diabetes in both murine models and humans displays alterations in epidermal functions, including reduced levels of stratum corneum hydration and increased epidermal permeability as well as delayed permeability barrier recovery, which can all provoke and exacerbate cutaneous inflammation. Because inflammation plays a pathogenic role in type 2 diabetes, a therapy that improves epidermal functions could be an alternative approach to mitigating type 2 diabetes and its associated cutaneous disorders.
Collapse
Affiliation(s)
- Mao‐Qiang Man
- Dermatology Hospital of Southern Medical UniversityGuangzhouChina
- Dermatology ServicesVeterans Affairs Medical Center and University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joan S. Wakefield
- Dermatology ServicesVeterans Affairs Medical Center and University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Theodora M. Mauro
- Dermatology ServicesVeterans Affairs Medical Center and University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Peter M. Elias
- Dermatology ServicesVeterans Affairs Medical Center and University of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
18
|
An Overview of the Latest Metabolomics Studies on Atopic Eczema with New Directions for Study. Int J Mol Sci 2022; 23:ijms23158791. [PMID: 35955924 PMCID: PMC9368995 DOI: 10.3390/ijms23158791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/21/2022] Open
Abstract
Atopic eczema (AE) is an inflammatory skin disorder affecting approximately 20% of children worldwide and early onset can lead to asthma and allergies. Currently, the mechanisms of the disease are not fully understood. Metabolomics, the analysis of small molecules in the skin produced by the host and microbes, opens a window to observe the mechanisms of the disease which then may lead to new drug targets for AE treatment. Here, we review the latest advances in AE metabolomics, highlighting both the lipid and non-lipid molecules, along with reviewing the metabolites currently known to reside in the skin.
Collapse
|
19
|
Chopra D, Arens RA, Amornpairoj W, Lowes MA, Tomic-Canic M, Strbo N, Lev-Tov H, Pastar I. Innate immunity and microbial dysbiosis in hidradenitis suppurativa - vicious cycle of chronic inflammation. Front Immunol 2022; 13:960488. [PMID: 35967376 PMCID: PMC9368759 DOI: 10.3389/fimmu.2022.960488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Hidradenitis Suppurativa (HS) is a chronic multifactorial inflammatory skin disease with incompletely understood mechanisms of disease pathology. HS is characterized by aberrant activation of the innate immune system, resulting in activation of pathways that aim to protect against pathogenic microorganisms, and also contribute to failure to resolve inflammation. Imbalance in innate immunity is evident in deregulation of host antimicrobial peptides (AMPs) and the complement system associated with the microbiome dysbiosis. The pathology is further complicated by ability of pathogens associated with HS to overcome host immune response. Potential roles of major AMPs, cathelicidin, defensins, dermcidin, S100 proteins, RNAse 7 and complement proteins are discussed. Dysregulated expression pattern of innate immunity components in conjunction with bacterial component of the disease warrants consideration of novel treatment approaches targeting both host immunity and pathogenic microbiome in HS.
Collapse
Affiliation(s)
- Divya Chopra
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rachel A. Arens
- College of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Watcharee Amornpairoj
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michelle A. Lowes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hadar Lev-Tov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
20
|
A Review of Moisturizing Additives for Atopic Dermatitis. COSMETICS 2022. [DOI: 10.3390/cosmetics9040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Atopic dermatitis, the most common form of eczema, is a chronic, relapsing inflammatory skin condition that occurs with dry skin, persistent itching, and scaly lesions. This debilitating condition significantly compromises the patient’s quality of life due to the intractable itching and other associated factors such as disfigurement, sleeping disturbances, and social stigmatization from the visible lesions. The treatment mainstay of atopic dermatitis involves applying topical glucocorticosteroids and calcineurin inhibitors, combined with regular use of moisturizers. However, conventional treatments possess a certain degree of adverse effects, which raised concerns among the patients resulting in non-adherence to treatment. Hence, the modern use of moisturizers to improve barrier repair and function is of great value. One of the approaches includes incorporating bioactive ingredients with clinically proven therapeutic benefits into dermocosmetics emollient. The current evidence suggests that these dermocosmetics emollients aid in the improvement of the skin barrier and alleviate inflammation, pruritus and xerosis. We carried out a critical and comprehensive narrative review of the literature. Studies and trials focusing on moisturizers that include phytochemicals, natural moisturizing factors, essential fatty acids, endocannabinoids, and antioxidants were identified by searching electronic databases (PubMed and MEDLINE). We introduce the current knowledge on the roles of moisturizers in alleviating symptoms of atopic dermatitis. We then further summarize the science and rationale of the active ingredients in dermocosmetics and medical device emollients for treating atopic dermatitis. Finally, we highlight the limitations of the current evidence and future perspectives of cosmeceutical research on atopic dermatitis.
Collapse
|
21
|
Elias PM. Optimizing emollient therapy for skin barrier repair in atopic dermatitis. Ann Allergy Asthma Immunol 2022; 128:505-511. [PMID: 35065300 PMCID: PMC9979622 DOI: 10.1016/j.anai.2022.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We compared the principal characteristics of over-the-counter moisturizers with physiological lipid-based barrier repair therapy (BRT). DATA SOURCES An extended literature reported that moisturizers are considered standard ancillary therapy for anti-inflammatory skin disorders such as atopic dermatitis (AD). Additional studies have found that physiological lipid-based BRT can comprise effective, stand-alone therapy for pediatric AD. RESULTS Not all moisturizers are beneficial-some negatively impact skin function, and in doing so, they risk inducing or exacerbating inflammation in patients with AD. The frequent self-reported occurrences of sensitive skin in patients with AD could reflect the potential toxicity of such formulations. A still unanswered question is whether improper formulations could also prove to be counterproductive in other types of sensitive skin, such as rosacea. In contrast, we found how physiological lipid-based BRT (when comprised of the 3 key stratum corneum lipids in sufficient quantities and at an appropriate molar ratio) can correct the barrier abnormality, thereby reducing inflammation in AD and possibly in other inflammatory dermatoses, such as adult eczemas and possibly even psoriasis. CONCLUSION We provide guidelines for the appropriate dispensation of moisturizers and physiological lipid-based, BRT for the treatment of AD. Both over-the-counter (Atopalm) and prescription (EpiCeram) products are available in the United States with these characteristics.
Collapse
Affiliation(s)
- Peter M Elias
- Department of Dermatology, University of California (UC) San Francisco and Veteran Affairs (VA) Medical Center, San Francisco, California.
| |
Collapse
|
22
|
Salimian J, Salehi Z, Ahmadi A, Emamvirdizadeh A, Davoudi SM, Karimi M, Korani M, Azimzadeh Jamalkandi S. Atopic dermatitis: molecular, cellular, and clinical aspects. Mol Biol Rep 2022; 49:3333-3348. [PMID: 34989960 DOI: 10.1007/s11033-021-07081-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Atopic dermatitis (AD) is a complicated, inflammatory skin disease, which numerous genetic and environmental factors play roles in its development. AD is categorized into different phenotypes and stages, although they are mostly similar in their pathophysiological aspects. Immune response alterations and structural distortions of the skin-barrier layer are evident in AD patients. Genetic makeup, lifestyle, and environment are also significantly involved in contextual factors. Genes involved in AD-susceptibility, including filaggrin and natural moisturizing, cause considerable structural modifications in the skin's lipid bilayer and cornified envelope. Additionally, the skin's decreased integrity and altered structure are accompanied by biochemical changes in the normal skin microflora's dysbiosis. The dynamic immunological responses, genetic susceptibilities, and structural modifications associated with AD's pathophysiology will be extensively discussed in this review, each according to the latest achievements and findings.
Collapse
Affiliation(s)
- Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Masoud Davoudi
- Department of Dermatology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Korani
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Maiello N, Comberiati P, Giannetti A, Ricci G, Carello R, Galli E. New Directions in Understanding Atopic March Starting from Atopic Dermatitis. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040450. [PMID: 35455494 PMCID: PMC9029734 DOI: 10.3390/children9040450] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/12/2023]
Abstract
Recent evidence showed that the postulated linear progression of the atopic march, from atopic dermatitis to food and respiratory allergies, does not capture the heterogeneity of allergic phenotypes, which are influenced by complex interactions between environmental, genetic, and psychosocial factors. Indeed, multiple atopic trajectories are possible in addition to the classic atopic march. Nevertheless, atopic dermatitis is often the first manifestation of an atopic march. Improved understanding of atopic dermatitis pathogenesis is warranted as this could represent a turning point in the prevention of atopic march. In this review, we outline the recent findings on the pathogenetic mechanisms leading to atopic dermatitis that could be targeted by intervention strategies for the prevention of atopic march.
Collapse
Affiliation(s)
- Nunzia Maiello
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy
- Correspondence:
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy;
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Arianna Giannetti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Giampaolo Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy;
| | - Rossella Carello
- Pediatric Allergic Unit, S.Pietro Hospital FbF Roma, 00189 Rome, Italy; (R.C.); (E.G.)
| | - Elena Galli
- Pediatric Allergic Unit, S.Pietro Hospital FbF Roma, 00189 Rome, Italy; (R.C.); (E.G.)
| |
Collapse
|
24
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
25
|
Ndhlovu GON, Dube FS, Moonsamy RT, Mankahla A, Hlela C, Levin ME, Lunjani N, Shittu AO, Abdulgader SM. Skin and nasal colonization of coagulase-negative staphylococci are associated with atopic dermatitis among South African toddlers. PLoS One 2022; 17:e0265326. [PMID: 35298533 PMCID: PMC8929619 DOI: 10.1371/journal.pone.0265326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Skin colonization with coagulase-negative staphylococci (CoNS) is generally beneficial, but recent investigations suggest its association with flares and atopic dermatitis (AD) severity. However, this relationship remains unclear.
Objective
To assess patterns of staphylococcal colonization and biofilm formation in toddlers with and without AD from rural and urban South African settings.
Methods
We conducted a cross-sectional study of AD-affected and non-atopic AmaXhosa toddlers from rural Umtata and urban Cape Town, South Africa. CoNS isolates were recovered from lesional, nonlesional skin samples and the anterior nares of participants. Identification of the staphylococci was achieved by MALDI-TOF mass spectrometry. The microtiter plate assay assessed in-vitro biofilm formation.
Results
CoNS and S. aureus commonly co-colonized nonlesional skin among cases (urban: 24% vs. 3%, p = 0.037 and rural 21% vs. 6%, p<0.001), and anterior nares in urban cases (24% vs. 0%, p = 0.002) than the control group. S. capitis colonization on nonlesional skin and anterior nares was positively associated with more severe disease in rural (48.3±10.8 vs. 39.7±11.5, P = 0.045) and urban cases (74.9±10.3 vs. 38.4±13, P = 0.004), respectively. Biofilm formation was similar between cases and controls, independent of rural-urban living.
Conclusion
CoNS colonization is associated with AD and disease severity and may be implicated in AD exacerbations. Studies are needed to understand their underlying pathological contribution in AD pathogenesis.
Collapse
Affiliation(s)
- Gillian O. N. Ndhlovu
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Felix S. Dube
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rasalika T. Moonsamy
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Avumile Mankahla
- Department of Medicine and Pharmacology, Division of Dermatology, Walter Sisulu University, Umtata, South Africa
| | - Carol Hlela
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Michael E. Levin
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla Lunjani
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Adebayo O. Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Shima M. Abdulgader
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
26
|
Amar Y, Schneider E, Köberle M, Seeholzer T, Musiol S, Hölge IM, Gschwendtner S, Krappmann D, Steiger K, Biedermann T, Schmidt-Weber CB, Alessandrini F. Microbial dysbiosis in a mouse model of atopic dermatitis mimics shifts in human microbiome and correlates with the key pro-inflammatory cytokines IL-4, IL-33 and TSLP. J Eur Acad Dermatol Venereol 2022; 36:705-716. [PMID: 35015907 DOI: 10.1111/jdv.17911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cutaneous bacterial dysbiosis is a characteristic hallmark of atopic dermatitis (AD) and it decisively influences the severity of the disease. Despite this, frequently used murine models of AD have not been characterized regarding the changes in skin microbiome communities. OBJECTIVE To analyze the skin microbiome of two frequently used murine models for AD for assessing their applicability in translational research. METHODS AD was induced in mice by topical application of calcipotriol, or oxazolone. Following comparable elicitation of AD-like dermatitis, including IgE induction, the skin microbial communities were analyzed and compared with human AD. RESULTS We detected critical differences in the microbiota composition of diseased skin. In contrast to calcipotriol treatment, application of oxazolone induced significant changes of the cutaneous microbiota and a drastic drop of bacterial richness. Furthermore, an expansion of Staphylococci, particularly S. xylosus was observed in the oxazolone group, also displaying positive correlations with AD key markers including pH, TEWL, IL-4, TSLP and IL-33. CONCLUSIONS In this article we show that i) the model of choice to investigate AD needs to be characterized for the cutaneous microbiota if applicable and ii) the oxazolone-mediated mixed Th1-Th2 immune response triggers microbiota-induced alterations which share similarities to dysbiosis in human AD and represents therefore a suitable model for translational research on AD if alterations of the microbiome are in the focus of the investigation.
Collapse
Affiliation(s)
- Y Amar
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - E Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - M Köberle
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - T Seeholzer
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Center München, German Research Center for Environmental Health, Neuherberg, Germany
| | - S Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany.,Eurofins BioPharma Product Testing Munich GmbH, Planegg, Germany
| | - I M Hölge
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - S Gschwendtner
- Research Unit for Comparative Microbiome Analysis, Helmholtz Center München, German Research Center for Environmental Health, Neuherberg, Germany
| | - D Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Center München, German Research Center for Environmental Health, Neuherberg, Germany
| | - K Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - T Biedermann
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - C B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - F Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
27
|
Topical Application of Galgeunhwanggeumhwangryeon-Tang Recovers Skin-Lipid Barrier and Ameliorates Inflammation via Filaggrin-Thymic Stromal Lymphopoietin-Interleukin 4 Pathway. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57121387. [PMID: 34946332 PMCID: PMC8708970 DOI: 10.3390/medicina57121387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Background and objectives: The purpose of this study was to confirm the effect of Galgeunhwanggeumhwangryeon-tang (GGRT) on the skin barrier integrity and inflammation in an atopic dermatitis-like animal model. Materials and Methods: The model was established using lipid barrier elimination (LBE) in BALB/c mice. Ceramide 3B, a control drug, and GGRT were applied to the skin of LBE mice. Gross observation and histological examination were combined with measurement of skin score, trans-epidermal water loss, and pH. The expression of filaggrin, kallikrein-related peptidase 7 (KLK7), protease-activated receptor-2 (PAR-2), thymic stromal lymphopoietin (TSLP), and interleukin 4 (IL-4) was examined. Results: The effect of GGRT on atopic dermatitis was estimated in silico using two individual gene sets of human atopic dermatitis. In animal experiments, GGRT treatment reduced atopic dermatitis-like symptoms, as confirmed via gross and histological observations, skin score, pH change, and trans-epidermal water loss. The expression level of filaggrin increased in the skin of GGRT-treated mice compared to that in the LBE group. The expression levels of KLK7, PAR2, TSLP, and IL-4 were decreased in GGRT-treated mice skin compared to those in LBE mice. Conclusions: We demonstrated that GGRT restored the skin barrier and reduced inflammatory reactions in a murine model of atopic dermatitis.
Collapse
|
28
|
Han NR, Ko SG, Moon PD, Park HJ. Ginsenoside Rg3 attenuates skin disorders via down-regulation of MDM2/HIF1α signaling pathway. J Ginseng Res 2021; 45:610-616. [PMID: 34803431 PMCID: PMC8587510 DOI: 10.1016/j.jgr.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Thymic stromal lymphopoietin (TSLP) acts as a master switch for inflammatory responses. Ginsenoside Rg3 (Rg3) which is an active ingredient of Panax ginseng Meyer (Araliaceae) is known to possess various therapeutic effects. However, a modulatory effect of Rg3 on TSLP expression in the inflammatory responses remains poorly understood. Methods We investigated antiinflammatory effects of Rg3 on an in vitro model using HMC-1 cells stimulated by PMA plus calcium ionophore (PMACI), as well as an in vivo model using PMA-induced mouse ear edema. TSLP and vascular endothelial growth factor (VEGF) levels were detected using enzyme-linked immunosorbent assay or real-time PCR analysis. Murine double minute 2 (MDM2) and hypoxia-inducible factor 1α (HIF1α) expression levels were detected using Western blot analysis. Results Rg3 treatment restrained the production and mRNA expression levels of TSLP and VEGF in activated HMC-1 cells. Rg3 down-regulated the MDM2 expression level increased by PMACI stimulation. The HIF1α expression level was also reduced by Rg3 in activated HMC-1 cells. In addition, Rg3-administered mice showed the decreased redness and ear thickness in PMA-irritated ear edema. Rg3 inhibited the TSLP and VEGF levels in the serum and ear tissue homogenate. Moreover, the MDM2 and HIF1α expression levels in the ear tissue homogenate were suppressed by Rg3. Conclusion Taken together, the current study identifies new mechanistic evidence about MDM2/HIF1α pathway in the antiinflammatory effect of Rg3, providing a new effective therapeutic strategy for the treatment of skin inflammatory diseases.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Hülpüsch C, Weins AB, Traidl‐Hoffmann C, Reiger M. A new era of atopic eczema research: Advances and highlights. Allergy 2021; 76:3408-3421. [PMID: 34407212 DOI: 10.1111/all.15058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 01/09/2023]
Abstract
Atopic eczema (AE) is an inflammatory skin disease with involvement of genetic, immunological and environmental factors. One hallmark of AE is a skin barrier disruption on multiple, highly interconnected levels: filaggrin mutations, increased skin pH and a microbiome dysbiosis towards Staphylococcus aureus overgrowth are observed in addition to an abnormal type 2 immune response. Extrinsic factors seem to play a major role in the development of AE. As AE is a first step in the atopic march, its prevention and appropriate treatment are essential. Although standard therapy remains topical treatment, powerful systemic treatment options emerged in the last years. However, thorough endotyping of the individual patients is still required for ideal precision medicine approaches in future. Therefore, novel microbial and immunological biomarkers were described recently for the prediction of disease development and treatment response. This review summarizes the current state of the art in AE research.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
| | - Andreas B. Weins
- Department of Dermatology Faculty of Medicine University of Augsburg Augsburg Germany
| | - Claudia Traidl‐Hoffmann
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
- ZIEL Technical University of Munich Freising Germany
| | - Matthias Reiger
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
| |
Collapse
|
30
|
Blicharz L, Rudnicka L, Czuwara J, Waśkiel-Burnat A, Goldust M, Olszewska M, Samochocki Z. The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier Function in Atopic Dermatitis-An Update. Int J Mol Sci 2021; 22:ijms22168403. [PMID: 34445108 PMCID: PMC8395079 DOI: 10.3390/ijms22168403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatosis affecting up to 30% of children and 10% of adults worldwide. AD is primarily driven by an epidermal barrier defect which triggers immune dysregulation within the skin. According to recent research such phenomena are closely related to the microbial dysbiosis of the skin. There is growing evidence that cutaneous microbiota and bacterial biofilms negatively affect skin barrier function, contributing to the onset and exacerbation of AD. This review summarizes the latest data on the mechanisms leading to microbiome dysbiosis and biofilm formation in AD, and the influence of these phenomena on skin barrier function.
Collapse
Affiliation(s)
- Leszek Blicharz
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
- Correspondence:
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Anna Waśkiel-Burnat
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Małgorzata Olszewska
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Zbigniew Samochocki
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| |
Collapse
|
31
|
Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. COSMETICS 2021. [DOI: 10.3390/cosmetics8030069] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acidic pH of the skin surface has been recognized as a regulating factor for the maintenance of the stratum corneum homeostasis and barrier permeability. The most important functions of acidic pH seem to be related to the keratinocyte differentiation process, the formation and function of epidermal lipids and the corneocyte lipid envelope, the maintenance of the skin microbiome and, consequently, skin disturbances and diseases. As acknowledged extrinsic factors that affect skin pH, topically applied products could contribute to skin health maintenance via skin pH value control. The obtained knowledge on skins’ pH could be used in the formulation of more effective topical products, which would add to the development of the so-called products ‘for skin health maintenance’. There is a high level of agreement that topical products should be acidified and possess pH in the range of 4 to 6. However, formulators, dermatologists and consumers would benefit from some more precise guidance concerning favorable products pH values and the selection of cosmetic ingredients which could be responsible for acidification, together with a more extensive understanding of the mechanisms underlaying the process of skin acidification by topical products.
Collapse
|
32
|
Xu YC, Wang JP, Zhu WJ, Li P. Childhood atopic dermatitis as a precursor for developing attention deficit/hyperactivity disorder. Int J Immunopathol Pharmacol 2021; 34:2058738420962902. [PMID: 33045857 PMCID: PMC7557683 DOI: 10.1177/2058738420962902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Atopic dermatitis (AD) is a skin disease characterized by chronic inflammatory condition that shows hallmark presentations in terms of sleep disturbances, pruritus, and psychological stress, and an association with increased attention deficit/hyperactivity disorder (ADHD) risk. A number of studies have suggested for the co-occurrence of the two diseased conditions. In terms of global prevalence, AD and ADHD almost exhibit a parallel increment according to epidemiological data. In addition, recent reports indicate AD to show a temporal association with later onset of ADHD. Although several studies suggest for the potential link between AD and ADHD, currently there is no definitive answer to this regard. Furthermore, epidemiological evidence of co-occurrence does not ascertain a pathophysiological link between the two conditions. The pathophysiological basis behind the association of AD and ADHD also remain poorly elucidated. The objective of this review is to present an extensive account of AD and associated comorbidities with a special attention toward ADHD as well as to elaborate on the mechanisms underlying their association. The review can provide healthcare providers with the recent updates on AD-ADHD association and help them while dealing with such patients. In general, AD and ADHD show a positive association in majority of the cross-sectional studies. However, large longitudinal studies are required to draw any conclusion on the temporal nature of such association.
Collapse
Affiliation(s)
- Yang-Chun Xu
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jin-Peng Wang
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wen-Jing Zhu
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Li
- Department of Developmental Pediatrics, the Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
33
|
Enhanced Access to the Health-Related Skin Metabolome by Fast, Reproducible and Non-Invasive WET PREP Sampling. Metabolites 2021; 11:metabo11070415. [PMID: 34202850 PMCID: PMC8304125 DOI: 10.3390/metabo11070415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Our skin influences our physical and mental health, and its chemical composition can reflect environmental and disease conditions. Therefore, through sampling the skin metabolome, we can provide a promising window into the mechanisms of the body. However, the broad application of skin metabolomics has recently been hampered by a lack of easy and widely applicable sampling methods. Here, we present a novel rapid, simple, and, most importantly, painless and non-invasive sampling technique suitable for clinical studies of fragile or weakened skin. The method is called WET PREP and is simply a lavage of the skin which focuses on capturing the metabolome. We systematically evaluate WET PREPs in comparison with the non-invasive method of choice in skin metabolomics, swab collection, using ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS2) on two complementary chromatographic columns (C18 reversed phase and hydrophilic interaction chromatography). We also integrate targeted analyses of key metabolites of skin relevance. Overall, WET PREP provides a strikingly more stable shared metabolome across sampled individuals, while also being able to capture unique individual metabolites with a high consistency in intra-individual reproducibility. With the exception of (phospho-)lipidomic studies, we recommend WET PREPs as the preferred skin metabolome sampling technique due to the quick preparation time, low cost, and gentleness for the patient.
Collapse
|
34
|
Azouz NP, Klingler AM, Pathre P, Besse JA, Baruch-Morgenstern NB, Ballaban AY, Osswald GA, Brusilovsky M, Habel JE, Caldwell JM, Ynga-Durand MA, Abonia PJ, Hu YC, Wen T, Rothenberg ME. Functional role of kallikrein 5 and proteinase-activated receptor 2 in eosinophilic esophagitis. Sci Transl Med 2021; 12:12/545/eaaz7773. [PMID: 32461336 DOI: 10.1126/scitranslmed.aaz7773] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, food antigen-driven, inflammatory disease of the esophagus and is associated with impaired barrier function. Evidence is emerging that loss of esophageal expression of the serine peptidase inhibitor, kazal type 7 (SPINK7), is an upstream event in EoE pathogenesis. Here, we provide evidence that loss of SPINK7 mediates its pro-EoE effects via kallikrein 5 (KLK5) and its substrate, protease-activated receptor 2 (PAR2). Overexpression of KLK5 in differentiated esophageal epithelial cells recapitulated the effect of SPINK7 gene silencing, including barrier impairment and loss of desmoglein-1 expression. Conversely, KLK5 deficiency attenuated allergen-induced esophageal protease activity, modified commensal microbiome composition, and attenuated eosinophilia in a murine model of EoE. Inhibition of PAR2 blunted the cytokine production associated with loss of SPINK7 in epithelial cells and attenuated the allergen-induced esophageal eosinophilia in vivo. Clinical samples substantiated dysregulated PAR2 expression in the esophagus of patients with EoE, and delivery of the clinically approved drug α1 antitrypsin (A1AT, a protease inhibitor) inhibited experimental EoE. These findings demonstrate a role for the balance between KLK5 and protease inhibitors in the esophagus and highlight EoE as a protease-mediated disease. We suggest that antagonizing KLK5 and/or PAR2 has potential to be therapeutic for EoE.
Collapse
Affiliation(s)
- Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Andrea M Klingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Purnima Pathre
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - John A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Netali Ben Baruch-Morgenstern
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Adina Y Ballaban
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Garrett A Osswald
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Michael Brusilovsky
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Jeff E Habel
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mario A Ynga-Durand
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.,Laboratorio de Inmunidad de Mucosas, Sección de Investigación y Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Pablo J Abonia
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.
| |
Collapse
|
35
|
Baik S, Lee J, Jeon EJ, Park BY, Kim DW, Song JH, Lee HJ, Han SY, Cho SW, Pang C. Diving beetle-like miniaturized plungers with reversible, rapid biofluid capturing for machine learning-based care of skin disease. SCIENCE ADVANCES 2021; 7:7/25/eabf5695. [PMID: 34134988 PMCID: PMC8208721 DOI: 10.1126/sciadv.abf5695] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Recent advances in bioinspired nano/microstructures have received attention as promising approaches with which to implement smart skin-interfacial devices for personalized health care. In situ skin diagnosis requires adaptable skin adherence and rapid capture of clinical biofluids. Here, we report a simple, all-in-one device consisting of microplungers and hydrogels that can rapidly capture biofluids and conformally attach to skin for stable, real-time monitoring of health. Inspired by the male diving beetle, the microplungers achieve repeatable, enhanced, and multidirectional adhesion to human skin in dry/wet environments, revealing the role of the cavities in these architectures. The hydrogels within the microplungers instantaneously absorb liquids from the epidermis for enhanced adhesiveness and reversibly change color for visual indication of skin pH levels. To realize advanced biomedical technologies for the diagnosis and treatment of skin, our suction-mediated device is integrated with a machine learning framework for accurate and automated colorimetric analysis of pH levels.
Collapse
Affiliation(s)
- Sangyul Baik
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
- Department of Biomaterials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Da Wan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jin Ho Song
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Heon Joon Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Seung Yeop Han
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
- Department of Biomaterials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea.
- Center for NanoMedicine, Institute for Basic Science (IBS), 50 Yonsei-ro, Seoul 03722, Republic of Korea
- Graduate Program of NanoBiomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
- Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
36
|
Bocheva GS, Slominski RM, Slominski AT. Immunological Aspects of Skin Aging in Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms22115729. [PMID: 34072076 PMCID: PMC8198400 DOI: 10.3390/ijms22115729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
The cutaneous immune response is important for the regulation of skin aging well as for the development of immune-mediated skin diseases. Aging of the human skin undergoes immunosenescence with immunological alterations and can be affected by environmental stressors and internal factors, thus leading to various epidermal barrier abnormalities. The dysfunctional epidermal barrier, immune dysregulation, and skin dysbiosis in the advanced age, together with the genetic factors, facilitate the late onset of atopic dermatitis (AD) in the elderly, whose cases have recently been on the rise. Controversial to the healthy aged skin, where overproduction of many cytokines is found, the levels of Th2/Th22 related cytokines inversely correlated with age in the skin of older AD patients. As opposed to an endogenously aged skin, the expression of the terminal differentiation markers significantly increases with age in AD. Despite the atenuated barrier disturbances in older AD patients, the aged skin carries an impairment associated with the aging process, which reflects the persistence of AD. The chronicity of AD in older patients might not directly affect skin aging but does not allow spontaneous remission. Thus, adult- and elderly subtypes of AD are considered as a lifelong disease.
Collapse
Affiliation(s)
- Georgeta St. Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
- Correspondence: (G.S.B.); (A.T.S.)
| | - Radomir M. Slominski
- Division of Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
- Correspondence: (G.S.B.); (A.T.S.)
| |
Collapse
|
37
|
Stefanovic N, Irvine AD, Flohr C. The Role of the Environment and Exposome in Atopic Dermatitis. CURRENT TREATMENT OPTIONS IN ALLERGY 2021; 8:222-241. [PMID: 34055570 PMCID: PMC8139547 DOI: 10.1007/s40521-021-00289-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Atopic dermatitis (AD) is a chronic inflammatory skin disorder affecting up to 20% of children and up to 5% of adults worldwide, contributing to significant disease-related morbidity in this patient cohort. Its aetiopathogenesis is underpinned by multiple factors, including genetic susceptibility, skin barrier defects, a skewed cutaneous immune response and microbiome perturbation in both the skin and the gut. In this review, we aim to examine the biological effects of key environmental exposures (the sum of which is termed the "exposome") at the population, community and individual levels in order to describe their effect on AD pathogenesis. RECENT FINDINGS It is now understood that as well as considering the type of environmental exposure with regard to its effect on AD pathogenesis, the dosage and timing of the exposure are both critical domains that may lead to either exacerbation or amelioration of disease. In this review, we consider the effects of population-wide exposures such as climate change, migration and urbanization; community-specific exposures such as air pollution, water hardness and allergic sensitisation; and individual factors such as diet, microbiome alteration, psychosocial stress and the impact of topical and systemic therapy. SUMMARY This review summarises the interaction of the above environmental factors with the other domains of AD pathogenesis, namely, the inherent genetic defects, the skin barrier, the immune system and the cutaneous and gut microbiota. We specifically emphasise the timing and dosage of exposures and its effect on the cellular and molecular pathways implicated in AD.
Collapse
Affiliation(s)
| | - Alan D. Irvine
- Department of Paediatric Dermatology, Children’s Health Ireland at Crumlin, Dublin, Ireland
- National Children’s Research Centre, Crumlin and Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Carsten Flohr
- Unit for Population-Based Dermatology Research, St John’s Institute of Dermatology, Guy’s & St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| |
Collapse
|
38
|
Wang X, Lai Q, Zheng B, Ye L, Wen S, Yan Y, Yang B, Man MQ. Both Prevalence and Severity of Pruritus are Associated with Age in Chinese Patients with Skin Diseases. Clin Cosmet Investig Dermatol 2021; 14:217-223. [PMID: 33692631 PMCID: PMC7939505 DOI: 10.2147/ccid.s300458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although the characteristics of pruritus in some skin diseases are documented, characteristics of pruritus related to gender-, age-, and skin disorder have not yet been well defined. OBJECTIVE To characterize dermatosis-associated pruritus in Chinese patients. METHODS A cross-sectional study was carried out in a single center. The intensity of pruritus was evaluated using a 0-10 visual analog scale (VAS). Skin disorders were diagnosed by dermatologists. The prevalence and intensity of pruritus were compared among skin disorders, and between males and females. RESULTS Valid questionnaires were obtained from 1,246 female and 864 male patients. Patients with acne, eczematous dermatitis, and urticaria accounted for 18%, 17%, and 14%, respectively. Both the prevalence and severity of pruritus varied greatly with skin disorders (p<0.0001). Patients with either urticaria or eczematous dermatitis displayed a higher prevalence of pruritus (92% and 82%, respectively), while subjects with urticaria exhibited the highest VAS in comparison to those with other skin disorders (p<0.05 to p<0.001 vs the others). Moreover, both the prevalence and severity of pruritus were positively associated with age in both males and females (p<0.0001). Furthermore, 60 out of 77 patients (78%) with topical glucocorticoid-induced dermatitis experienced pruritus, with a VAS of 2.03±0.21. Finally, a lower VAS was found in subjects with oily skin than those with either dry or normal skin. CONCLUSION The prevalence and severity of pruritus vary with skin disorders, skin type, age, and gender in Chinese patients.
Collapse
Affiliation(s)
- Xiaohua Wang
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Qingsong Lai
- Center for Chronic Disease Prevention and Control of Puning City, Puning, Guangdong, 515300, People’s Republic of China
| | - Baoqing Zheng
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Li Ye
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Si Wen
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Yunling Yan
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| |
Collapse
|
39
|
Sotiropoulou G, Zingkou E, Pampalakis G. Redirecting drug repositioning to discover innovative cosmeceuticals. Exp Dermatol 2021; 30:628-644. [PMID: 33544970 DOI: 10.1111/exd.14299] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Skin appearance is essential for self-esteem and quality of life; consequently, skin care products represent a huge market. In particular, cosmeceuticals constitute a hybrid category of skin care formulations, at the interphase of cosmetics and pharmaceuticals, rationally designed to target (patho) physiological mechanisms aiming to enhance skin health and appearance. Cosmeceuticals are marketed as anti-ageing, anti-wrinkle, hair regrowth, skin whitening and wound healing agents with special emphasis on scar-free healing. An overview on recent cutting-edge advances concerning the discovery and development of enhanced performance cosmeceuticals by drug repositioning approaches is presented here. In this context, we propose "target repositioning," a new term, to highlight that druggable protein targets implicated in multiple diseases (hubs in the diseasome) can be exploited to accelerate the discovery of molecularly targeted cosmeceuticals that can promote skin health as an added benefit, which is a novel concept not described before. In this direction, emphasis is placed on the role of mouse models, for often untreatable skin diseases, as well as recent breakthroughs on monogenic rare skin syndromes, in promoting compound repositioning to innovative cosmeceuticals.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
40
|
Sayama K, Yuki K, Sugata K, Fukagawa S, Yamamoto T, Ikeda S, Murase T. Carbon dioxide inhibits UVB-induced inflammatory response by activating the proton-sensing receptor, GPR65, in human keratinocytes. Sci Rep 2021; 11:379. [PMID: 33431967 PMCID: PMC7801444 DOI: 10.1038/s41598-020-79519-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Carbon dioxide (CO2) is the predominant gas molecule emitted during aerobic respiration. Although CO2 can improve blood circulation in the skin via its vasodilatory effects, its effects on skin inflammation remain unclear. The present study aimed to examine the anti-inflammatory effects of CO2 in human keratinocytes and skin. Keratinocytes were cultured under 15% CO2, irradiated with ultraviolet B (UVB), and their inflammatory cytokine production was analyzed. Using multiphoton laser microscopy, the effect of CO2 on pH was observed by loading a three-dimensional (3D)-cultured epidermis with a high-CO2 concentration formulation. Finally, the effect of CO2 on UVB-induced erythema was confirmed. CO2 suppressed the UVB-induced production of tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) in keratinocytes and the 3D epidermis. Correcting medium acidification with NaOH inhibited the CO2-induced suppression of TNFα and IL-6 expression in keratinocytes. Moreover, the knockdown of H+-sensing G protein-coupled receptor 65 inhibited the CO2-induced suppression of inflammatory cytokine expression and NF-κB activation and reduced CO2-induced cyclic adenosine monophosphate production. Furthermore, the high-CO2 concentration formulation suppressed UVB-induced erythema in human skin. Hence, CO2 suppresses skin inflammation and can be employed as a potential therapeutic agent in restoring skin immune homeostasis.
Collapse
Affiliation(s)
- Keimon Sayama
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.,Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Katsuyuki Yuki
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Keiichi Sugata
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Satoko Fukagawa
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Tetsuji Yamamoto
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takatoshi Murase
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| |
Collapse
|
41
|
Tang L, Cao X, Li X, Ding H. Topical application with conjugated linoleic acid ameliorates 2, 4-dinitrofluorobenzene-induced atopic dermatitis-like lesions in BALB/c mice. Exp Dermatol 2021; 30:237-248. [PMID: 33206422 DOI: 10.1111/exd.14242] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis (AD) is a multifactorial chronic inflammatory skin disease characterized by skin barrier dysfunction, eczematous lesions, pruritus, and abnormal immune responses. In this study, we assessed the therapeutic effect of topical applied conjugated linoleic acid (CLA) on a murine AD model that was developed by repetitive applications of 2, 4-dinitrofluorobenzene (DNFB). 2% or 5% CLA could markedly ameliorate AD-like skin lesions, scratching behaviour and skin inflammation as evidenced by the reduced inflammatory blood cells, IgE and Th2-related cytokine levels, and the infiltration of mast cells and inflammatory cells to the dermal tissues. Moreover, topical application with CLA modulated skin barrier repair including maintaining a balanced skin pH and increasing skin hydration, partially mediated by upregulating skin barrier-related protein, filaggrin (FLG). In addition, topical CLA significantly dose-dependently inhibited pro-inflammatory cytokines including interleukin (IL)-6, IL-1β, tumour necrosis factor (TNF)-α and pro-inflammatory enzyme expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in inflamed mice skin. Its anti-inflammatory effect was associated with the inhibition of DNFB-stimulated IκBα and NF-κB p65 phosphorylation in mouse skin. Taken together, our results suggest that locally applied CLA exerts potentially protective effects against AD lesional skin at least in part, due to regulation of skin barrier function and inflammatory response.
Collapse
Affiliation(s)
- Liu Tang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaoqin Cao
- College of Medicine, Jianghan University, Wuhan, China
| | - Xiaolei Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Hong Ding
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Choi DI, Park JH, Choi JY, Piao M, Suh MS, Lee JB, Yun SJ, Lee SC. Keratinocytes-Derived Reactive Oxygen Species Play an Active Role to Induce Type 2 Inflammation of the Skin: A Pathogenic Role of Reactive Oxygen Species at the Early Phase of Atopic Dermatitis. Ann Dermatol 2020; 33:26-36. [PMID: 33911809 PMCID: PMC7875219 DOI: 10.5021/ad.2021.33.1.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Atopic dermatitis (AD) is characterized by chronic, relapsing skin inflammation (eczema) with itchy sensation. Keratinocytes, which are located at the outermost part of our body, are supposed to play important roles at the early phase of type 2 inflammation including AD pathogenesis. Objective The purpose of this study was to evaluate whether keratinocytes-derived reactive oxygen species (ROS) could be produced by the allergens or non-allergens, and the keratinocytes-derived ROS could modulate a set of biomarkers for type 2 inflammation of the skin. Methods Normal human epidermal keratinocytes (NHEKs) were treated with an allergen of house dust mites (HDM) or a non-allergen of compound 48/80 (C48/80). Then, biomarkers for type 2 inflammation of the skin including those for neurogenic inflammation were checked by reverse transcriptase-polymerase chain reaction and western immunoblot experiments. Results HDM or C48/80 was found to upregulate expression levels of our tested biomarkers, including type 2 T helper-driving pathway (KLK5, PAR2, and NFκB), epithelial-cell-derived cytokines (thymic stromal lymphopoietin, interleukin [IL]-25, IL-33), and neurogenic inflammation (NGF, CGRP). The HDM- or C-48/80-induced expression levels of the biomarkers could be blocked by an antioxidant treatment with 5 mM N-acetyl-cysteine. In contrast, pro-oxidant treatment with 1 mM H2O2 could upregulate expression levels of the tested biomarkers in NHEKs. Conclusion Our results reveal that keratinocytes-derived ROS, irrespective to their origins from allergens or non-allergens, have a potential to induce type 2 inflammation of AD skin.
Collapse
Affiliation(s)
- Da-In Choi
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Jun-Hyeong Park
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Jee-Young Choi
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - MeiShan Piao
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Min-Song Suh
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Jee-Bum Lee
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Sook-Jung Yun
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Chul Lee
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
43
|
Effects of Resveratrol on Thymic Stromal Lymphopoietin Expression in Mast Cells. ACTA ACUST UNITED AC 2020; 57:medicina57010021. [PMID: 33379407 PMCID: PMC7824250 DOI: 10.3390/medicina57010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022]
Abstract
Background and objectives: Cytokine thymic stromal lymphopoietin (TSLP) plays a pivotal role in the pathogenesis of atopic diseases such as atopic dermatitis, allergic rhinitis, and asthma. Resveratrol (RSV) exerts various pharmacological effects such as antioxidant, anti-inflammatory, neuroprotective, and anticancer. Although, it has been verified the beneficial effects of RSV on various subjects, the effect of RSV on thymic stromal lymphopoietin (TSLP) regulation has not been elucidated. Materials and Methods: Here, we examined how RSV regulates TSLP in HMC-1 cells. Enzyme-linked immunosorbent assay, real-time polymerase chain reaction, Western blotting, and calcium assay were performed to evaluate the effect of RSV. Results: TSLP production and mRNA expression were reduced by RSV. RSV down-regulated nuclear factor-κB activation, IκBα phosphorylation as well as activation of receptor-interacting protein2 and caspase-1 in HMC-1 cells. In addition, RSV treatment decreased the up-regulation of intracellular calcium in HMC-1 cells. Conclusions: These results suggest that RSV might be useful for the treatment of atopic diseases through blocking of TSLP.
Collapse
|
44
|
Cork MJ, Danby SG, Ogg GS. Atopic dermatitis epidemiology and unmet need in the United Kingdom. J DERMATOL TREAT 2020; 31:801-809. [PMID: 31631717 PMCID: PMC7573657 DOI: 10.1080/09546634.2019.1655137] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 01/17/2023]
Abstract
Atopic dermatitis (AD), also known as atopic eczema, is a chronic inflammatory skin condition associated with a significant health-related and socioeconomic burden, and is characterized by intense itch, disruption of the skin barrier, and upregulation of type 2-mediated immune responses. The United Kingdom (UK) has a high prevalence of AD, affecting 11-20% of children and 5-10% of adults. Approximately 2% of all cases of childhood AD in the UK are severe. Despite this, most AD treatments are performed at home, with little contact with healthcare providers or services. Here, we discuss the course of AD, treatment practices, and unmet need in the UK. Although the underlying etiology of the disease is still emerging, AD is currently attributed to skin barrier dysfunction and altered inflammatory responses. Management of AD focuses on avoiding triggers, improving skin hydration, managing exacerbating factors, and reducing inflammation through topical and systemic immunosuppressants. However, there is a significant unmet need to improve the overall management of AD and help patients gain control of their disease through safe and effective treatments. Approaches that target individual inflammatory pathways (e.g. dupilumab, anti-interleukin (IL)-4 receptor α) are emerging and likely to provide further therapeutic opportunities for patient benefit.
Collapse
Affiliation(s)
- Michael J. Cork
- Sheffield Dermatology Research, Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, The University of Sheffield, Sheffield, UK
- Sheffield Children’s Hospital and Sheffield Teaching Hospitals Clinical Research Facilities, Sheffield, UK
| | - Simon G. Danby
- Sheffield Dermatology Research, Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, The University of Sheffield, Sheffield, UK
- Sheffield Children’s Hospital and Sheffield Teaching Hospitals Clinical Research Facilities, Sheffield, UK
| | - Graham S. Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Itch: A Paradigm of Neuroimmune Crosstalk. Immunity 2020; 52:753-766. [PMID: 32433948 DOI: 10.1016/j.immuni.2020.04.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Although the medical definition of itch has been in existence for 360 years, only in the last 20 years have we begun to understand the basic mechanisms that underlie this unique sensation. Therapeutics that specifically target chronic itch as a pathologic entity are currently still not available. Recent seminal advances in itch circuitry within the nervous system have intersected with discoveries in immunology in unexpected ways to rapidly inform emerging treatment strategies. The current review aims to introduce these basic concepts in itch biology and highlight how distinct immunologic pathways integrate with recently identified itch-sensory circuits in the nervous system to inform a major new paradigm of neuroimmunology and therapeutic development for chronic itch.
Collapse
|
46
|
Conforti C, Giuffrida R, Fadda S, Fai A, Romita P, Zalaudek I, Dianzani C. Topical dermocosmetics and acne vulgaris. Dermatol Ther 2020; 34:e14436. [PMID: 33084158 DOI: 10.1111/dth.14436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Acne is a highly common skin disease especially among teenagers. Modern acne treatments are based also on the use of moisturizers, cleansers and sunscreens. In choosing the right cleanser, it is important to consider some aspects: the interaction between skin type and the cleanser, the optimal time and method of cleaning and the cosmetic perception of the patient. The aim of our review is to highlight the importance of choosing the most suitable topical dermocosmetics for the different skin types, as well as the most effective timing and method to combine dermocosmetics with the standard acne treatment. A search in literature for selected key words was performed using PubMed. Additional papers were identified based on author expertise. Treatment of acne patients should include education for proper daily skin hygiene, including protection from environmental damage. However, given the low number of clinical studies on cleansers, it is difficult to make reliable recommendations. The correct choice and use of topical dermocosmetics are fundamental in the management of acne patients. Daily use of moisturizers, cleansers and sunscreens can reduce both inflammatory and non-inflammatory acne lesion counts and may be helpful for acne treatment if combined with specific drugs.
Collapse
Affiliation(s)
- Claudio Conforti
- Dermatology Clinic, Hospital Maggiore of Trieste, University of Trieste, Trieste, Italy
| | - Roberta Giuffrida
- Department of Clinical and Experimental Medicine, Dermatology, University of Messina, Messina, Italy
| | - Sara Fadda
- Plastic Surgery Unit, Section of Dermatology, Campus Biomedico University, Rome, Italy
| | - Annatonia Fai
- Plastic Surgery Unit, Section of Dermatology, Campus Biomedico University, Rome, Italy
| | - Paolo Romita
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari, Bari, Italy
| | - Iris Zalaudek
- Dermatology Clinic, Hospital Maggiore of Trieste, University of Trieste, Trieste, Italy
| | - Caterina Dianzani
- Plastic Surgery Unit, Section of Dermatology, Campus Biomedico University, Rome, Italy
| |
Collapse
|
47
|
Matsuda K, Arkwright PD, Mori Y, Oikawa MA, Muko R, Tanaka A, Matsuda H. A Rapid Shift from Chronic Hyperoxia to Normoxia Induces Systemic Anaphylaxis via Transient Receptor Potential Ankyrin 1 Channels on Mast Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2959-2967. [PMID: 33097573 DOI: 10.4049/jimmunol.2000149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/28/2020] [Indexed: 01/11/2023]
Abstract
Extensive activation of mast cells is the major switch that triggers systemic anaphylaxis, resulting in the subsequent release of anaphylactic mediators into circulation. We previously demonstrated that rapid changes in oxygen tension lead to mast cell degranulation, and the released tryptase triggers retinal angiogenesis in a murine oxygen-induced retinopathy model. However, whether a rapid shift from hyperoxia to normoxia (relative hypoxic stress) is a risk factor for systemic anaphylaxis remains unknown. In this study, we demonstrated that the relative hypoxia stress induces systemic mast cell activation via transient receptor potential ankyrin 1 (TRPA1) channels, which immediately leads to hypothermia and increased vascular permeability in adult mice. Although mast cell-deficient or TRPA1-deficient mice did not exhibit anaphylactic symptoms following a rapid sift to normoxia, preinjection with bone marrow-derived cultured mast cells (BMCMCs) derived from wild-type TRPA1-expressing mice restored anaphylactic responses. In addition, we found that the rapid reductions in oxygen tension in a culture atmosphere triggered the degranulation of BMCMCs derived from wild-type TRPA1-expressing mice but not that of BMCMCs derived from TRPA1-deficient mice. In human LAD2 mast cells, the relative hypoxic stress led to the degranulation, which was suppressed by the addition of a TRPA1 inhibitor. Gradual reductions from hyperoxia to normoxia led to no anaphylactic symptoms. Our results demonstrated that TRPA1-triggered mast cell degranulation is a novel pathway that induces anaphylactic shock without Ag-Ab reactions. These findings introduce a potential role for oxygen in inducing mast cell-dependent anaphylaxis and highlight the need to reconsider chronic pure oxygen therapy for anoxic diseases.
Collapse
Affiliation(s)
- Kenshiro Matsuda
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Peter D Arkwright
- Lydia Becker Institute of Immunity and Inflammation, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Masa-Aki Oikawa
- Diagnostic and Research Laboratory, Equine Veterinary Medical Center, Doha, Qatar; and
| | - Ryo Muko
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Akane Tanaka
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.,Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hiroshi Matsuda
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| |
Collapse
|
48
|
Al Kindi A, Williams H, Matsuda K, Alkahtani AM, Saville C, Bennett H, Alshammari Y, Tan SY, O'Neill C, Tanaka A, Matsuda H, Arkwright PD, Pennock JL. Staphylococcus aureus second immunoglobulin-binding protein drives atopic dermatitis via IL-33. J Allergy Clin Immunol 2020; 147:1354-1368.e3. [PMID: 33011245 DOI: 10.1016/j.jaci.2020.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Staphylococcus aureus is the dominant infective trigger of atopic dermatitis (AD). How this bacterium drives type 2 allergic pathology in the absence of infection in patients with AD is unclear. OBJECTIVE We sought to identify the S aureus-derived virulence factor(s) that initiates the cutaneous type 2-promoting immune response responsible for AD. METHODS In vitro human keratinocyte cell culture, ex vivo human skin organ explants, and the eczema-prone Nishiki-nezumi Cinnamon/Tokyo University of Agriculture and Technology strain mouse were used as model systems to assess type 2-promoting immune responses to S aureus. Identification of the bioactive factor was accomplished using fast protein liquid chromatography and mass spectrometry. Bioactivity was confirmed by cloning and expression in an Escherichia coli vector system, and S aureus second immunoglobulin-binding protein (Sbi) mutant strains confirming loss of activity. RESULTS S aureus was unique among staphylococcal species in its ability to induce the rapid release of constitutive IL-33 from human keratinocytes independent of the Toll-like receptor pathway. Using the eczema-prone Nishiki-nezumi Cinnamon/Tokyo University of Agriculture and Technology strain mouse model, we showed that IL-33 was essential for inducing the immune response to S aureus in vivo. By fractionation and candidate testing, we identified Sbi as the predominant staphylococcus-derived virulence factor that directly drives IL-33 release from human keratinocytes. Immunohistology of skin demonstrated that corneodesmosin, a component of corneodesmosomes that form key intercellular adhesive structures in the stratum corneum, was disrupted, resulting in reduction of skin barrier function. CONCLUSIONS S aureus-derived Sbi is a unique type 2-promoting virulence factor capable of initiating the type 2-promoting cytokine activity underlying AD.
Collapse
Affiliation(s)
- Arwa Al Kindi
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Helen Williams
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Kenshiro Matsuda
- Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| | - Abdullah M Alkahtani
- Department of Medicine, Microbiology and Parasitology, King Khalid University, Abha, Saudi Arabia
| | - Charis Saville
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Hayley Bennett
- Genome Editing Unit, University of Manchester, Manchester, United Kingdom
| | - Yasmine Alshammari
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Soo Y Tan
- National University Health System, Singapore
| | - Catherine O'Neill
- Division of Dermatological and Musculoskeletal Sciences, University of Manchester, Manchester, United Kingdom
| | - Akane Tanaka
- Laboratory of Comparative Animal Medicine, Tokyo University of Agriculture & Technology, Tokyo, Japan
| | - Hiroshi Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Tokyo University of Agriculture & Technology, Tokyo, Japan
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.
| | - Joanne L Pennock
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
49
|
Dréno B, Araviiskaia E, Kerob D, Andriessen A, Anfilova M, Arenbergerova M, Forero Barrios OL, Bukvić Mokos Z, Haedersdal M, Hofmann MA, Khamaysi Z, Kosmadaki M, Lesiak A, Roó E, Zbranca‐Toporas A, Wiseman MC, Zimmo S, Guerin L, Fabbrocini G. Nonprescription acne vulgaris treatments: Their role in our treatment armamentarium-An international panel discussion. J Cosmet Dermatol 2020; 19:2201-2211. [PMID: 32426933 PMCID: PMC7496538 DOI: 10.1111/jocd.13497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/12/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Acne vulgaris (acne), a common inflammatory skin disorder, has its peak incidence between 14 and 19 years of age, with girls frequently developing acne earlier than boys. Over recent years, persistent acne is becoming more prevalent in adult women. OBJECTIVES This review and panel discussion addresses challenges in acne management, particularly in adult women. The role which nonprescription acne treatment can play is explored when used as monotherapy or as an adjunctive treatment for acne of all severity. METHODS The best available evidence on nonprescription acne treatment was coupled with the opinion of an international expert panel of dermatologists to adopt statements and recommendations discussed in this review. RESULTS All severity of acne has a significant burden on patients. Addressing environmental factors that are important for the individual with acne may help to educate, prevent, effectively manage, and maintain acne, as per the panel. They agreed that the adult female acne population has unique needs because of their aging skin and social environment. Nonprescription acne treatment products may help to balance the efficacy and tolerability of prescription acne treatment. Currently, there are no specific guidelines for how to use nonprescription acne treatment products in these patients. CONCLUSION The panel agreed that guidelines including nonprescription acne treatment either as monotherapy for mild acne or in combination with prescription treatments for more severe acne would address a significant unmet need.
Collapse
Affiliation(s)
- Brigitte Dréno
- Cell Therapy and Gene Therapy UnitDepartment of Dermato‐OncologyThe Faculty of MedicineUniversity of NantesNantesFrance
| | - Elena Araviiskaia
- Department of Dermatology & VenereologyFirst Pavlov State Medical University of Saint PetersburgSaint PetersburgRussia
| | - Delphine Kerob
- International Medical RelationsLaboratoire VichyChevilly‐LarueFrance
| | | | - Maryna Anfilova
- Department of Skin and Venereal DiseasesNational Pirogov Memorial Medical UniversityVinnytsyaUkraine
| | - Monika Arenbergerova
- Department of Dermato‐VenereologyThird Faculty of MedicineCharles University and University Hospital of Kralovske VinohradyPragueCzech Republic
| | | | - Zrinka Bukvić Mokos
- Department of Dermatology and VenereologySchool of Medicine University of ZagrebUniversity Hospital Center ZagrebZagrebCroatia
| | | | - Maja A. Hofmann
- Department of Dermatology, Venereology, and AllergyCharité‐UniversitätsmedizinBerlinGermany
| | - Ziad Khamaysi
- Department of DermatologyRambam Medical Center and Ruth & Bruce Rappaport Faculty of MedicineTechnionHaifaIsrael
| | | | | | - Elia Roó
- Clider‐Clínica DermatológicaMadridSpain
| | - Anca Zbranca‐Toporas
- Department of Biomedical SciencesFaculty of BioengineeringUniversity of Medicine and Pharmacy Grigore T.PopaIasiRomania
| | - Marni C. Wiseman
- Departments of Medicine and DermatologyUniversity of ManitobaWinnipegMBCanada
| | | | - Lucie Guerin
- L'Oréal Research and InnovationChevilly‐LarueFrance
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, DermatologySection of DermatologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
50
|
The Role of the Microbiome and Microbiome-Derived Metabolites in Atopic Dermatitis and Non-Histaminergic Itch. Am J Clin Dermatol 2020; 21:44-50. [PMID: 32910440 PMCID: PMC7584541 DOI: 10.1007/s40257-020-00538-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in our understanding of the pathophysiology of atopic dermatitis (AD) have revealed that skin microbiome dysbiosis plays an important role in the disease. In this review, we describe how changes in the structure and function of the microbiome are involved in the pathogenesis of AD. We highlight recent data showing that differential changes in microbial diversity, both within and across communities from different body habitats (including the skin, gut, and oral mucosa), are associated with the development and severity of AD. We also describe recent evidence demonstrating that the metabolic activity of the skin microbiome can act as a regulator of inflammation, with alterations in the level of a skin microbiome-derived tryptophan metabolite, indole-3-aldehyde (IAId), being shown to play a role in AD. The various mechanisms by which interactions between the microbiome and components of the non-histaminergic pathway result in itch in AD are also discussed.
Collapse
|