1
|
Laboyrie SL, Svensson MK, Josemans S, Sigvant B, Rotmans JI, Welander G. Vascular Access Outcomes in Patients with Autosomal Dominant Polycystic Kidney Disease. KIDNEY360 2024; 5:877-885. [PMID: 38985981 PMCID: PMC11219118 DOI: 10.34067/kid.0000000000000453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Key Points More patients with autosomal dominant polycystic kidney disease received their first intervention to re-establish vascular access patency. Patients with autosomal dominant polycystic kidney disease do not require differential monitoring and treatment of hemodialysis vascular access. Background Autosomal dominant polycystic kidney disease (ADPKD) is a leading hereditary cause of ESKD, often using hemodialysis as a form of RRT. Patients with ADPKD may also present with extrarenal manifestations, including arterial aneurysms. The gold standard for hemodialysis access is an arteriovenous vascular access (VA), such as arteriovenous fistulas (AVFs) or arteriovenous grafts (AVGs). However, limitations, such as low VA flow and inadequate AVF outward remodeling, affect VA utilization. This study aimed to explore whether ADPKD affects patency rates of AVFs/AVGs in comparison with other underlying ESKD causes. Methods We conducted a retrospective cohort study using data from the Swedish Renal Registry from 2011 to 2020, with follow-up until 2022. We included 496 patients with ADPKD and 4321 propensity score–matched controls. VA patency rates of patients with ADPKD were compared with those of non-ADPKD patients using Kaplan–Meier survival curves and Mantel–Cox log-rank test. Interventions to maintain or restore patency were also analyzed. Results Patients with ADPKD constituted 8.0% of all patients, with a higher proportion in the pre-ESKD phase during VA creation (51.6% versus 40.6%). No significant differences were observed in primary, postcannulation primary, secondary, or functional patency between patients with ADPKD and non-ADPKD patients. However, more VAs were ligated in patients with ADPKD (10.5% versus 7.7%, P = 0.03), and they underwent more first interventions to re-establish flow (49.4% versus 41.9%, P = 0.02). Conclusions These findings suggest that AVF/AVG patency remains comparable in patients with ESKD with or without ADPKD, and VA monitoring and treatment strategies for patients with ADPKD should align with those for individuals with other ESKD causes.
Collapse
Affiliation(s)
- Suzanne L. Laboyrie
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Maria K. Svensson
- Department of Medical Sciences Renal Medicine, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Centre, Uppsala University, Uppsala, Sweden
| | - Sabine Josemans
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Birgitta Sigvant
- Department of Surgical Sciences, Center of Clinical Research, Uppsala University, Uppsala, Sweden
| | - Joris I. Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gunilla Welander
- Department of Medical Sciences Renal Medicine, Uppsala University, Uppsala, Sweden
- Center of Clinical Research, Region Värmland, Sweden
| |
Collapse
|
2
|
Chen EWC, Chong J, Valluru MK, Durkie M, Simms RJ, Harris PC, Ong ACM. Combining genotype with height-adjusted kidney length predicts rapid progression of ADPKD. Nephrol Dial Transplant 2024; 39:956-966. [PMID: 38224954 DOI: 10.1093/ndt/gfad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 01/17/2024] Open
Abstract
INTRODUCTION Our main objective was to identify baseline prognostic factors predictive of rapid disease progression in a large unselected clinical autosomal dominant polycystic kidney disease (ADPKD) cohort. METHODS A cross-sectional analysis was performed in 618 consecutive ADPKD patients assessed and followed-up for over a decade. A total of 123 patients (19.9%) had reached kidney failure by the study date. Data were available for the following: baseline eGFR (n = 501), genotype (n = 549), baseline ultrasound mean kidney length (MKL, n = 424) and height-adjusted baseline MKL (HtMKL, n = 377). Rapid disease progression was defined as an annualized eGFR decline (∆eGFR) of >2.5 mL/min/year by linear regression over 5 years (n = 158). Patients were further divided into slow, rapid and very rapid ∆eGFR classes for analysis. Genotyped patients were classified into several categories: PKD1 (T, truncating; or NT, non-truncating), PKD2, other genes (non-PKD1 or -PKD2), no mutation detected or variants of uncertain significance. RESULTS A PKD1-T genotype had the strongest influence on the probability of reduced baseline kidney function by age. A multivariate logistic regression model identified PKD1-T genotype and HtMKL (>9.5 cm/m) as independent predictors for rapid disease progression. The combination of both factors increased the positive predictive value for rapid disease progression over age 40 years and of reaching kidney failure by age 60 years to 100%. Exploratory analysis in a subgroup with available total kidney volumes showed higher positive predictive value (100% vs 80%) and negative predictive value (42% vs 33%) in predicting rapid disease progression compared with the Mayo Imaging Classification (1C-E). CONCLUSION Real-world longitudinal data confirm the importance of genotype and kidney length as independent variables determining ∆eGFR. Individuals with the highest risk of rapid disease progression can be positively selected for treatment based on this combination.
Collapse
Affiliation(s)
- Eugene W C Chen
- Academic Nephrology Unit, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Beech Hill Road, Sheffield, UK
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Herries Road, Sheffield, UK
| | - Jiehan Chong
- Academic Nephrology Unit, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Beech Hill Road, Sheffield, UK
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Herries Road, Sheffield, UK
| | - Manoj K Valluru
- Academic Nephrology Unit, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Miranda Durkie
- Sheffield Diagnostics Genetic Service, North East and Yorkshire Genomic Laboratory Hub, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Roslyn J Simms
- Academic Nephrology Unit, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Beech Hill Road, Sheffield, UK
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Herries Road, Sheffield, UK
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Albert C M Ong
- Academic Nephrology Unit, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Beech Hill Road, Sheffield, UK
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Herries Road, Sheffield, UK
| |
Collapse
|
3
|
Mekahli D, Guay-Woodford LM, Cadnapaphornchai MA, Goldstein SL, Dandurand A, Jiang H, Jadhav P, Debuque L. Estimating risk of rapid disease progression in pediatric patients with autosomal dominant polycystic kidney disease: a randomized trial of tolvaptan. Pediatr Nephrol 2024; 39:1481-1490. [PMID: 38091246 PMCID: PMC10942936 DOI: 10.1007/s00467-023-06239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 03/16/2024]
Abstract
BACKGROUND Tolvaptan preserves kidney function in adults with autosomal dominant polycystic kidney disease (ADPKD) at elevated risk of rapid progression. A trial (NCT02964273) evaluated tolvaptan safety and pharmacodynamics in children (5-17 years). However, progression risk was not part of study eligibility criteria due to lack of validated criteria for risk assessment in children. As risk estimation is important to guide clinical management, baseline characteristics of the study participants were retrospectively evaluated to determine whether risk of rapid disease progression in pediatric ADPKD can be assessed and to identify parameters relevant for risk estimation. METHODS Four academic pediatric nephrologists reviewed baseline data and rated participant risk from 1 (lowest) to 5 (highest) based on clinical judgement and the literature. Three primary reviewers independently scored all cases, with each case reviewed by two primary reviewers. For cases with discordant ratings (≥ 2-point difference), the fourth reviewer provided a secondary rating blinded to the primary evaluations. Study participants with discordant ratings and/or for whom data were lacking were later discussed to clarify parameters relevant to risk estimation. RESULTS Of 90 evaluable subjects, primary reviews of 69 (77%) were concordant. The proportion considered at risk of rapid progression (final mean rating ≥ 3.5) by age group was: 15-17 years, 27/34 (79%); 12- < 15, 9/32 (28%); 4- < 12, 8/24 (33%). The panelists agreed on characteristics important for risk determination: age, kidney imaging, kidney function, blood pressure, urine protein, and genetics. CONCLUSIONS High ratings concordance and agreement among reviewers on relevant clinical characteristics support the feasibility of pediatric risk assessment.
Collapse
Affiliation(s)
- Djalila Mekahli
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium.
- Department of Pediatric Nephrology, University Hospital of Leuven, Herestraat 49, B-3000, Louvain, Belgium.
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Research Institute, Washington, DC, USA
| | - Melissa A Cadnapaphornchai
- Rocky Mountain Pediatric Kidney Center, Rocky Mountain Hospital for Children at Presbyterian/St. Luke's Medical Center, Denver, CO, USA
| | - Stuart L Goldstein
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Ann Dandurand
- Cerevel Therapeutics, Cambridge, MA, USA
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, USA
| | - Huan Jiang
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, USA
| | | | - Laurie Debuque
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, USA
| |
Collapse
|
4
|
Gitomer BY, Wang W, George D, Coleman E, Nowak KL, Struemph T, Cadnapaphornchai MA, Patel NU, Jovanovich A, Klawitter J, Farmer B, Ostrow A, You Z, Chonchol M. Statin therapy in patients with early-stage autosomal dominant polycystic kidney disease: Design and baseline characteristics. Contemp Clin Trials 2024; 137:107423. [PMID: 38151173 DOI: 10.1016/j.cct.2023.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development and continued growth of multiple cysts in the kidneys leading to ultimate loss of kidney function in most patients. Currently, tolvaptan is the only agency approved therapy to slow kidney disease advancement in patients with faster progressing disease underscoring the need for additional ADPKD therapies suitable for all patients. We previously showed that pravastatin slowed kidney disease progression in children and young adults with ADPKD. However, the intervention has not been tested in an adult cohort. AIMS The aim of the study is to conduct a single center, randomized, placebo-controlled double-blinded clinical trial to determine the efficacy of pravastatin on slowing kidney disease progression in adult patients with early stage ADPKD. METHODS One hundred and fifty adult patients with ADPKD and eGFR ≥60 ml/min/1.73m2 will be enrolled in the study and randomized to receive 40 mg/day pravastatin or placebo for a period of 2-years. OUTCOMES The primary outcome of the trial is change in total kidney volume assessed by magnetic resonance imaging (MRI). Secondary outcomes include change in kidney function by iothalamate GFR and renal blood flow and markers of inflammation and oxidative stress. CONCLUSION This study will assess the kidney therapeutic benefits of pravastatin in adult patients with ADPKD. The recruitment goal of 150 subjects was attained and the study is ongoing. REGISTRATION This study is registered on Clinicaltrials.gov # NCT03273413.
Collapse
Affiliation(s)
- Berenice Y Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Wei Wang
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Diana George
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Erin Coleman
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Kristen L Nowak
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Taylor Struemph
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Melissa A Cadnapaphornchai
- Rocky Mountain Pediatric Kidney Center, Rocky Mountain Hospital for Children at Presbyterian/St. Luke's Medical Center, 2055 N. High St., Suite 205, Denver, CO 80205, USA
| | - Nayana U Patel
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Anna Jovanovich
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA; VA Eastern Colorado Healthcare System, Aurora, CO, USA.
| | - Jelena Klawitter
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Beverly Farmer
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Anna Ostrow
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Zhiying You
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Arjune S, Späth MR, Oehm S, Todorova P, Schunk SJ, Lettenmeier K, Chon SH, Bartram MP, Antczak P, Grundmann F, Fliser D, Müller RU. DKK3 as a potential novel biomarker in patients with autosomal polycystic kidney disease. Clin Kidney J 2024; 17:sfad262. [PMID: 38186869 PMCID: PMC10768788 DOI: 10.1093/ckj/sfad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 01/09/2024] Open
Abstract
Backgound Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, and leads to a steady loss of kidney function in adulthood. The variable course of the disease makes it necessary to identify the patients with rapid disease progression who will benefit the most from targeted therapies and interventions. Currently, magnetic resonance imaging-based volumetry of the kidney is the most commonly used tool for this purpose. Biomarkers that can be easily and quantitatively determined, which allow a prediction of the loss of kidney function, have not yet been established in clinical practice. The glycoprotein Dickkopf 3 (DKK3) which is secreted in the renal tubular epithelium upon stress and contributes to tubulointerstitial fibrosis via the Wnt signaling pathway, was recently described as a biomarker for estimating risk of kidney function loss, but has not been investigated for ADPKD. This study aimed to obtain a first insight into whether DKK3 may indeed improve outcome prediction in ADPKD in the future. Methods In 184 ADPKD patients from the AD(H)PKD registry and 47 healthy controls, the urinary DKK3 (uDKK3) levels were determined using ELISA. Multiple linear regression was used to examine the potential of these values in outcome prediction. Results ADPKD patients showed significantly higher uDKK3 values compared with the controls (mean 1970 ± 5287 vs 112 ± 134.7 pg/mg creatinine). Furthermore, there was a steady increase in uDKK3 with an increase in the Mayo class (A/B 1262 ± 2315 vs class D/E 3104 ± 7627 pg/mg creatinine), the best-established biomarker of progression in ADPKD. uDKK3 also correlated with estimated glomerular filtration rate (eGFR). Patients with PKD1 mutations show higher uDKK3 levels compared with PKD2 patients (PKD1: 2304 ± 5119; PKD2: 506.6 ± 526.8 pg/mg creatinine). Univariate linear regression showed uDKK3 as a significant predictor of future eGFR slope estimation. In multiple linear regression this effect was not significant in models also containing height-adjusted total kidney volume and/or eGFR. However, adding both copeptin levels and the interaction term between copeptin and uDKK3 to the model resulted in a significant predictive value of all these three variables and the highest R2 of all models examined (∼0.5). Conclusion uDKK3 shows a clear correlation with the Mayo classification in patients with ADPKD. uDKK3 levels correlated with kidney function, which could indicate that uDKK3 also predicts a disproportionate loss of renal function in this collective. Interestingly, we found an interaction between copeptin and uDKK3 in our prediction models and the best model containing both variables and their interaction term resulted in a fairly good explanation of variance in eGFR slope compared with previous models. Considering the limited number of patients in these analyses, future studies will be required to confirm the results. Nonetheless, uDKK3 appears to be an attractive candidate to improve outcome prediction of ADPKD in the future.
Collapse
Affiliation(s)
- Sita Arjune
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Simon Oehm
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Polina Todorova
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Stefan J Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg/Saar, Germany
| | - Katharina Lettenmeier
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Malte P Bartram
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Philipp Antczak
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Danilo Fliser
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg/Saar, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
6
|
Trant J, Sanchez G, McDermott JP, Blanco G. Ouabain enhances renal cyst growth in a slowly progressive mouse model of autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2023; 325:F857-F869. [PMID: 37823195 PMCID: PMC10874652 DOI: 10.1152/ajprenal.00056.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
Renal cyst progression in autosomal dominant polycystic kidney disease (ADPKD) is highly dependent on agents circulating in blood. We have previously shown, using different in vitro models, that one of these agents is the hormone ouabain. By binding to Na+-K+-ATPase (NKA), ouabain triggers a cascade of signal transduction events that enhance ADPKD cyst progression by stimulating cell proliferation, fluid secretion, and dedifferentiation of the renal tubular epithelial cells. Here, we determined the effects of ouabain in vivo. We show that daily administration of ouabain to Pkd1RC/RC ADPKD mice for 1-5 mo, at physiological levels, augmented kidney cyst area and number compared with saline-injected controls. Also, ouabain favored renal fibrosis; however, renal function was not significantly altered as determined by blood urea nitrogen levels. Ouabain did not have a sex preferential effect, with male and female mice being affected equally. By contrast, ouabain had no significant effect on wild-type mice. In addition, the actions of ouabain on Pkd1RC/RC mice were exacerbated when another mutation that increased the affinity of NKA for ouabain was introduced to the mice (Pkd1RC/RCNKAα1OS/OS mice). Altogether, this work highlights the role of ouabain as a procystogenic factor in the development of ADPKD in vivo, that the ouabain affinity site on NKA is critical for this effect, and that circulating ouabain is an epigenetic factor that worsens the ADPKD phenotype.NEW & NOTEWORTHY This work shows that the hormone ouabain enhances the progression of autosomal dominant polycystic kidney disease (ADPKD) in vivo. Ouabain augments the size and number of renal cysts, the kidney weight to body weight ratio, and kidney fibrosis in an ADPKD mouse model. The Na+-K+-ATPase affinity for ouabain plays a critical role in these effects. In addition, these outcomes are independent of the sex of the mice.
Collapse
Affiliation(s)
- Jordan Trant
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Gladis Sanchez
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Jeffrey P McDermott
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Gustavo Blanco
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| |
Collapse
|
7
|
Zhu J, Liu F, Mao J. Clinical findings, underlying pathogenetic processes and treatment of vascular dysfunction in autosomal dominant polycystic kidney disease. Ren Fail 2023; 45:2282027. [PMID: 37970664 PMCID: PMC11001366 DOI: 10.1080/0886022x.2023.2282027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder characterized by the development of fluid-filled cysts in the kidneys. The primary cause of ADPKD is mutations in the PKD1 (polycystic kidney disease 1) or PKD2 (polycystic kidney disease 2) gene. Patients with ADPKD often develop a variety of vascular abnormalities, which have a major impact on the structure and function of the blood vessels and can lead to complications such as hypertension, intracranial aneurysm (ICAN), and atherosclerosis. The progression of ADPKD involves intricate molecular and cellular processes that lead to the development of these vascular abnormalities. Our understanding of these processes remains incomplete, and available treatment options are limited. The aim of this review is to delve into the underlying mechanisms of these vascular abnormalities and to explore potential interventions.
Collapse
Affiliation(s)
- Jinjun Zhu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
8
|
Arjune S, Oehm S, Todorova P, Gansevoort RT, Bakker SJL, Erger F, Benzing T, Burst V, Grundmann F, Antczak P, Müller RU. Copeptin in autosomal dominant polycystic kidney disease: real-world experiences from a large prospective cohort study. Clin Kidney J 2023; 16:2194-2204. [PMID: 37915893 PMCID: PMC10616446 DOI: 10.1093/ckj/sfad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 11/03/2023] Open
Abstract
Background The identification of new biomarkers in autosomal-dominant polycystic kidney disease (ADPKD) is crucial to improve and simplify prognostic assessment as a basis for patient selection for targeted therapies. Post hoc analyses of the TEMPO 3:4 study indicated that copeptin could be one of those biomarkers. Methods Copeptin was tested in serum samples from patients of the AD(H)PKD study. Serum copeptin levels were measured using a time-resolved amplified cryptate emission (TRACE)-based assay. In total, we collected 711 values from 389 patients without tolvaptan treatment and a total of 243 values (of which 64 were pre-tolvaptan) from 94 patients on tolvaptan. These were associated with rapid progression and disease-causing gene variants and their predictive capacity tested and compared with the Mayo Classification. Results As expected, copeptin levels showed a significant negative correlation with estimated glomerular filtration rate (eGFR). Measurements on tolvaptan showed significantly higher copeptin levels (9.871 pmol/L vs 23.90 pmol/L at 90/30 mg; P < .0001) in all chronic kidney disease stages. Linear regression models (n = 133) show that copeptin is an independent predictor of eGFR slope. A clinical model (including eGFR, age, gender, copeptin) was nearly as good (R2 = 0.1196) as our optimal model (including height-adjusted total kidney volume, eGFR, copeptin, R2 = 0.1256). Adding copeptin to the Mayo model improved future eGFR estimation. Conclusion Copeptin levels are associated with kidney function and independently explained future eGFR slopes. As expected, treatment with tolvaptan strongly increases copeptin levels.
Collapse
Affiliation(s)
- Sita Arjune
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Simon Oehm
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Polina Todorova
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Florian Erger
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Emergency Department, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Philipp Antczak
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
9
|
Morioka F, Nakatani S, Uedono H, Tsuda A, Mori K, Emoto M. Short-Term Dapagliflozin Administration in Autosomal Dominant Polycystic Kidney Disease-A Retrospective Single-Arm Case Series Study. J Clin Med 2023; 12:6341. [PMID: 37834985 PMCID: PMC10573882 DOI: 10.3390/jcm12196341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Treatment with sodium-glucose cotransporter-2 (SGLT2) inhibitors may have pleiotropic and beneficial effects in terms of ameliorating of risk factors for the progression of autosomal dominant polycystic kidney disease (ADPKD). However, there is insufficient evidence regarding the use of these drugs in patients with ADPKD, as they were excluded from several clinical trials conducted to explore kidney protection provided by SGLT2 inhibitors. This retrospective single-arm case series study was performed to investigate the effects of dapagliflozin, a selective SGLT2 inhibitor administered at 10 mg/day, on changes in height-adjusted kidney volume (htTKV) and estimated glomerular filtration rate (eGFR) in ADPKD patients. During a period of 102 ± 20 days (range 70-156 days), eGFR was decreased from 47.9 (39.7-56.9) to 40.8 (33.7-44.5) mL/min/1.73 m2 (p < 0.001), while htTKV was increased from 599 (423-707) to 617 (446-827) mL/m (p = 0.002) (n = 20). The annual increase in htTKV rate was significantly promoted, and urinary phosphate change was found to be correlated with the change in htTKV (rs = 0.575, p = 0.020). In the examined patients, eGFR was decreased and htTKV increased during short-term administration of dapagliflozin. To confirm the possibility of the effects of dapagliflozin on ADPKD, additional interventional studies are required.
Collapse
Affiliation(s)
- Fumiyuki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Hideki Uedono
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Katsuhito Mori
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan;
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan;
| |
Collapse
|
10
|
Kim Y, Park HC, Ryu H, Kim YC, Ahn C, Lee KB, Kim YH, Han S, Bae EH, Jeong K, Choi J, Oh KH, Oh YK. Factors Associated With the Development and Severity of Polycystic Liver in Patients With Autosomal Dominant Polycystic Kidney Disease. J Korean Med Sci 2023; 38:e296. [PMID: 37750370 PMCID: PMC10519778 DOI: 10.3346/jkms.2023.38.e296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/31/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Factors related to the development and severity of polycystic liver disease (PLD) have not been well established. We aimed to evaluate the genetic and epidemiologic risk factors of PLD in patients with autosomal dominant polycystic kidney disease (ADPKD). METHODS Adult patients with inherited cystic kidney disease were enrolled from May 2019 to May 2021. Demographic, clinical, and laboratory data were collected at the initial study visit. The severity of PLD was graded based on the height-adjusted total liver volume: < 1,000 mL/m (Gr1), 1,000-1,800 mL/m (Gr2), and > 1,800 mL/m (Gr3). Targeted exome sequencing was done by a gene panel including 89 ciliopathy-related genes. We searched out the relative factors to the presence and the severity of PLD using logistic regression analysis. RESULTS Of 602 patients with typical ADPKD, 461 (76.6%) patients had PLD. The patients with PLD showed female predominance and a higher frequency of other ADPKD-related complications. The genetic variants with truncating mutation of PKD1 (PKD1-protein-truncating [PT]) or PKD2 commonly affected the development and severity of PLD. An older age, female sex, and higher kidney volume with Mayo classification 1C-1E was significantly associated with the development of PLD, but not with the severity of PLD. On the other hand, higher body mass index, lower hemoglobin, and higher alkaline phosphatase (ALP) were the significant risk factors of severe PLD (≥ Gr2). CONCLUSION Hepatic involvement in ADPKD could be related to kidney manifestations and genetic variants including PKD1-PT or PKD2. Monitoring hemoglobin and ALP and evaluating the genetic variants might help predict severe PLD. TRIAL REGISTRATION Clinical Research Information Service Identifier: KCT0005580.
Collapse
Affiliation(s)
- Yaerim Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Hayne Cho Park
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Kyu-Beck Lee
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeong Hoon Kim
- Department of Internal Medicine, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Seungyeup Han
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Kyungjo Jeong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea.
| |
Collapse
|
11
|
Kunzelmann K, Ousingsawat J, Kraus A, Park JH, Marquardt T, Schreiber R, Buchholz B. Pathogenic Relationships in Cystic Fibrosis and Renal Diseases: CFTR, SLC26A9 and Anoctamins. Int J Mol Sci 2023; 24:13278. [PMID: 37686084 PMCID: PMC10487509 DOI: 10.3390/ijms241713278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| | - Julien H. Park
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Björn Buchholz
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| |
Collapse
|
12
|
Zhao Q, Tan Y, Xiao X, Xiang Q, Yang M, Wang H, Liu S. A novel heterozygous PKD1 variant causing alternative splicing in a Chinese family with autosomal dominant polycystic kidney disease. Mol Genet Genomic Med 2023; 11:e2217. [PMID: 37272738 PMCID: PMC10422069 DOI: 10.1002/mgg3.2217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by pathogenic variants of PKD1 and PKD2. Compared to PKD2-related patients, patients with PKD1 pathogenic variants have more severe symptoms, present a gradual decline in renal function, and finally progress to end-stage kidney disease with an earlier mean onset age. METHODS In this study, trio exome sequencing (ES) was performed to reveal the genetic etiology in a Chinese family clinically diagnosed with polycystic kidney, followed by validation through Sanger sequencing on both genomic DNA and cDNA levels. Subsequently, targeted preimplantation genetic testing was provided for the family. RESULTS A novel heterozygous PKD1 variant (c.1717_1722+11del) was detected in the proband and other clinically-affected relatives. Interestingly, cDNA sequencing demonstrated that the variant, despite being annotated as non-frameshift within exon 8, impacted the splicing of PKD1. Two abnormal transcription products were formed: one induced frameshift, while the other caused 133 amino acids to be inserted between exon 8 and exon 9. CONCLUSIONS Our study revealed a novel PKD1 variant using ES as the cause of ADPKD in a Chinese family with multiple affected members. The variant at the exon-intron boundary would induce alternative splicing, which should not be excluded from genetic analysis. Validated on the cDNA level could provide more comprehensive genetic information for disease stratification. And the novel variant expands the spectrum of PKD1 variants in ADPKD. The recurrent risk could be blocked accordingly for the families' offspring.
Collapse
Affiliation(s)
- Qianying Zhao
- Department of Medical GeneticsWest China Second University Hospital, Sichuan UniversityChengduChina
- Department of Obstetrics and GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Yu Tan
- Department of Medical GeneticsWest China Second University Hospital, Sichuan UniversityChengduChina
- Department of Obstetrics and GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Xiao Xiao
- Department of Medical GeneticsWest China Second University Hospital, Sichuan UniversityChengduChina
- Department of Obstetrics and GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Qinqin Xiang
- Department of Medical GeneticsWest China Second University Hospital, Sichuan UniversityChengduChina
- Department of Obstetrics and GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Mei Yang
- Department of Medical GeneticsWest China Second University Hospital, Sichuan UniversityChengduChina
- Department of Obstetrics and GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - He Wang
- Department of Medical GeneticsWest China Second University Hospital, Sichuan UniversityChengduChina
- Department of Obstetrics and GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Shanling Liu
- Department of Medical GeneticsWest China Second University Hospital, Sichuan UniversityChengduChina
- Department of Obstetrics and GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| |
Collapse
|
13
|
Kimura T, Kawano H, Muto S, Muramoto N, Takano T, Lu Y, Eguchi H, Wada H, Okazaki Y, Ide H, Horie S. PKD1 Mutation Is a Biomarker for Autosomal Dominant Polycystic Kidney Disease. Biomolecules 2023; 13:1020. [PMID: 37509056 PMCID: PMC10377076 DOI: 10.3390/biom13071020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) occurs in 1 in 500-4000 people worldwide. Genetic mutation is a biomarker for predicting renal dysfunction in patients with ADPKD. In this study, we performed a genetic analysis of Japanese patients with ADPKD to investigate the prognostic utility of genetic mutations in predicting renal function outcomes. METHODS Patients clinically diagnosed with ADPKD underwent a panel genetic test for germline mutations in PKD1 and PKD2. This study was conducted with the approval of the Ethics Committee of Juntendo University (no. 2019107). RESULTS Of 436 patients, 366 (83.9%) had genetic mutations. Notably, patients with PKD1 mutation had a significantly decreased ΔeGFR/year compared to patients with PKD2 mutation, indicating a progression of renal dysfunction (-3.50 vs. -2.04 mL/min/1.73 m2/year, p = 0.066). Furthermore, PKD1 truncated mutations had a significantly decreased ΔeGFR/year compared to PKD1 non-truncated mutations in the population aged over 65 years (-6.56 vs. -2.16 mL/min/1.73 m2/year, p = 0.049). Multivariate analysis showed that PKD1 mutation was a more significant risk factor than PKD2 mutation (odds ratio, 1.81; 95% confidence interval, 1.11-3.16; p = 0.020). CONCLUSIONS The analysis of germline mutations can predict renal prognosis in Japanese patients with ADPKD, and PKD1 mutation is a biomarker of ADPKD.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Haruna Kawano
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Advanced Informatics for Genetic Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Satoru Muto
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Advanced Informatics for Genetic Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Urology, Juntendo University Nerima Hospital, Tokyo 177-8521, Japan
| | - Nobuhito Muramoto
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Human Disease Models, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Toshiaki Takano
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Yan Lu
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Hiroo Wada
- Department of Public Health, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Hisamitsu Ide
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Digital Therapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Advanced Informatics for Genetic Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Digital Therapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| |
Collapse
|
14
|
Dachy A, Van Loo L, Mekahli D. Autosomal Dominant Polycystic Kidney Disease in Children and Adolescents: Assessing and Managing Risk of Progression. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:236-244. [PMID: 37088526 DOI: 10.1053/j.akdh.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 04/25/2023]
Abstract
The clinical management of autosomal dominant polycystic kidney disease (ADPKD) in adults has shifted from managing complications to delaying disease progression through newly emerging therapies. Regarding pediatric management of the disease, there are still specific hurdles related to the management of children and adolescents with ADPKD and, unlike adults, there are no specific therapies for pediatric ADPKD or stratification models to identify children and young adults at risk of rapid decline in kidney function. Therefore, early identification and management of factors that may modify disease progression, such as hypertension and obesity, are of most importance for young children with ADPKD. Many of these risk factors could promote disease progression in both ADPKD and chronic kidney disease. Hence, nephroprotective measures applied early in life can represent a window of opportunity to prevent the decline of the glomerular filtration rate especially in young patients with ADPKD. In this review, we highlight current challenges in the management of patients with pediatric ADPKD, the importance of early modifying factors in disease progression as well as the gaps and future perspectives in the pediatric ADPKD research field.
Collapse
Affiliation(s)
- Angélique Dachy
- PKD Research Group, Department of Cellular and MoleculMedar icine, KU Leuven, Leuven, Belgium; Department of Pediatrics, ULiège Academic Hospital, Liège, Belgium; Laboratory of Translational Research in Nephrology (LTRN), GIGA Cardiovascular Sciences, ULiège, Liège, Belgium
| | - Liselotte Van Loo
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
| | - Djalila Mekahli
- PKD Research Group, Department of Cellular and MoleculMedar icine, KU Leuven, Leuven, Belgium; Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Singh S, Sreenidhi HC, Das P, Devi C. Predicting the Risk of Progression in Indian ADPKD Cohort using PROPKD Score - A Single-Center Retrospective Study. Indian J Nephrol 2023; 33:195-201. [PMID: 37448904 PMCID: PMC10337231 DOI: 10.4103/ijn.ijn_69_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/01/2022] [Accepted: 04/30/2022] [Indexed: 07/18/2023] Open
Abstract
Background With the variable genotype-phenotype expression of autosomal dominant polycystic kidney disease (ADPKD) and availability of novel targeted therapies, it is important to find predictors for rapid progression. The PROPKD score, consisting of genetic and clinical parameters like sex, hypertension, and urological events, is a useful tool in predicting the risk of progression. This study was aimed to determine the risk of ADPKD progression in Indian patients using the PROPKD score. Materials and Methods A retrospective study was done from 2006 to 2021. ADPKD patients with ESRD were included in the study. Scoring was done as per the PROPKD score as follows: male sex: 1, onset of hypertension before 35 years: 2, first urological event before 35 years: 2, PKD1 truncating mutation: 4, PKD1 non-truncating mutation: 2, and PKD2 mutation: 0. Two types of risk classifications were done as follows: (a) considering the clinical variables in all 73 patients (male sex, onset of hypertension before 35 years, and first urological event before 35 years), they were classified into three risk groups: low-risk group (0-1), intermediate-risk group (2-3), and high-risk group (4-5) and (b) considering the clinical variables and type of mutation in 39 patients, they were classified into three risk groups: low-risk group (0-3), intermediate-risk group (4-6), and high-risk group (7-9). Results Total number of patients included was 73, with the median age at ESRD being 54 years. High-risk group of clinical variables with hazard ratio (HR) of 4.570 (2.302-9.075, P < 0.001) and high-risk group of the PROPKD score with HR of 6.594 (1.868-23.284, P = 0.003) were associated with early ESRD. High-risk groups of both classifications were associated with early ESRD. Conclusion High-risk groups based on the PROPKD scoring and clinical variables were associated with early progression to ESRD.
Collapse
Affiliation(s)
- Shivendra Singh
- Department of Nephrology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - HC Sreenidhi
- Department of Nephrology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chandra Devi
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
16
|
Lucchetti L, Chinali M, Emma F, Massella L. Autosomal dominant and autosomal recessive polycystic kidney disease: hypertension and secondary cardiovascular effect in children. Front Mol Biosci 2023; 10:1112727. [PMID: 37006611 PMCID: PMC10064450 DOI: 10.3389/fmolb.2023.1112727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Autosomal dominant (ADPKD) and autosomal recessive (ARPKD) polycystic kidney disease are the most widely known cystic kidney diseases. They are significantly different from each other in terms of genetics and clinical manifestations. Hypertension is one of the main symptoms in both diseases, but the age of onset and secondary cardiovascular complications are significantly different. Most ARPKD children are hypertensive in the first year of life and need high doses of hypertensive drugs. ADPKD patients with a very early onset of the disease (VEOADPKD) develop hypertension similarly to patients with ARPKD. Conversely, a significantly lower percentage of patients with classic forms of ADPKD develops hypertension during childhood, although probably more than originally thought. Data published in the past decades show that about 20%–30% of ADPKD children are hypertensive. Development of hypertension before 35 years of age is a known risk factor for more severe disease in adulthood. The consequences of hypertension on cardiac geometry and function are not well documented in ARPKD due to the rarity of the disease, the difficulties in collecting homogeneous data, and differences in the type of parameters evaluated in different studies. Overall, left ventricular hypertrophy (LVH) has been reported in 20%–30% of patients and does not always correlate with hypertension. Conversely, cardiac geometry and cardiac function are preserved in the vast majority of hypertensive ADPKD children, even in patients with faster decline of kidney function. This is probably related to delayed onset of hypertension in ADPKD, compared to ARPKD. Systematic screening of hypertension and monitoring secondary cardiovascular damage during childhood allows initiating and adapting antihypertensive treatment early in the course of the disease, and may limit disease burden later in adulthood.
Collapse
Affiliation(s)
- L. Lucchetti
- Division of Nephrology, Department of Paediatric Subspecialties, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - M. Chinali
- Department of Cardiac Surgery, Cardiology and Heart Lung Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - F. Emma
- Division of Nephrology, Department of Paediatric Subspecialties, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - L. Massella
- Division of Nephrology, Department of Paediatric Subspecialties, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: L. Massella,
| |
Collapse
|
17
|
Cyst Fraction as a Biomarker in Autosomal Dominant Polycystic Kidney Disease. J Clin Med 2022; 12:jcm12010326. [PMID: 36615123 PMCID: PMC9821598 DOI: 10.3390/jcm12010326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease. Patients at high risk of severe disease progression should be identified early in order to intervene with supportive and therapeutic measures. However, the glomerular filtration rate (GFR) may remain within normal limits for decades until decline begins, making it a late indicator of rapid progression. Kidney volumetry is frequently used in clinical practice to allow for an assessment of disease severity. Due to limited prognostic accuracy, additional imaging markers are of high interest to improve outcome prediction in ADPKD, but data from clinical cohorts are still limited. In this study, we examined cyst fraction as one of these parameters in a cohort of 142 ADPKD patients. A subset of 61 patients received MRIs in two consecutive years to assess longitudinal changes. All MRIs were analyzed by segmentation and volumetry of the kidneys followed by determination of cyst fraction. As expected, both total kidney volume (TKV) and cyst fraction correlated with estimated GFR (eGFR), but cyst fraction showed a higher R2 in a univariate linear regression. Besides, only cyst fraction remained statistically significant in a multiple linear regression including both htTKV and cyst fraction to predict eGFR. Consequently, this study underlines the potential of cyst fraction in ADPKD and encourages prospective clinical trials examining its predictive value in combination with other biomarkers to predict future eGFR decline.
Collapse
|
18
|
Jdiaa SS, Husainat NM, Mansour R, Kalot MA, McGreal K, Chebib FT, Perrone RD, Yu A, Mustafa RA. A Systematic Review of Reported Outcomes in ADPKD Studies. Kidney Int Rep 2022; 7:1964-1979. [PMID: 36090492 PMCID: PMC9459055 DOI: 10.1016/j.ekir.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
|
19
|
Hoover E, Perrone RD, Rusconi C, Benson B, Dahl NK, Gitomer B, Manelli A, Mrug M, Park M, Seliger SL, Phadnis MA, Thewarapperuma N, Watnick TJ. Design and Basic Characteristics of a National Patient-Powered Registry in ADPKD. KIDNEY360 2022; 3:1350-1358. [PMID: 36176661 PMCID: PMC9416821 DOI: 10.34067/kid.0002372022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/20/2022] [Indexed: 05/09/2023]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of inherited kidney disease worldwide. Over the past five years, the therapeutic pipeline for ADPKD has expanded, leading to a growing need for patient enrollment in clinical trials and improved understanding of patient-centered outcomes that can be used in trial design. To advance these goals, the Polycystic Kidney Disease Foundation (PKDF) established a national web-based ADPKD Registry. Methods The ADPKD Registry is hosted on a secure, HIPAA-compliant, online platform (IQVIA, oc-meridian.com/pkdcure). Participants are consented through the online system and complete a series of modules. The Core Questionnaire includes patient-reported diagnosis, latest creatinine values, and comorbidities. Additional modules include surveys of family history, diet, quality of life, extrarenal manifestations, and attitudes surrounding research participation. Results As of October 2021, 1563 ADPKD patients across the United States have registered and completed the Core Questionnaire. Participants have a median age of 44 years and are 72% women, 93% White, with 4% self-identifying as Hispanic/Latino and 2% as Black. All CKD stages are present, including post kidney transplant. To date, seven clinical studies have used the Registry as a recruitment tool. Additionally, quality-of-life burden scores revealed a correlation with disease stage as determined by kidney function. Conclusions The Registry described here is the only one of its kind and is a valuable longitudinal research tool encompassing all stages of ADPKD. The registry will allow investigators to pursue a range of research questions related to the management of ADPKD, including definition of health-related quality of life (HRQoL) outcomes and recruitment for a variety of observational and therapeutic clinical protocols.
Collapse
Affiliation(s)
| | - Ronald D. Perrone
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
| | | | | | - Neera K. Dahl
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Berenice Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Michal Mrug
- Division of Nephrology, Department of Veterans Affairs Medical Center and University of Alabama at Birmingham, Birmingham, Alabama
| | - Meyeon Park
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Stephen L. Seliger
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Milind A. Phadnis
- Department of Biostatistics. University of Kansas Medical Center, Kansas City, Kansas
| | | | - Terry J. Watnick
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Jefferis J, Pelecanos A, Catts V, Mallett A. The Heritability of Kidney Function Using an Older Australian Twin Population. Kidney Int Rep 2022; 7:1819-1830. [PMID: 35967118 PMCID: PMC9366362 DOI: 10.1016/j.ekir.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Twin studies are unique population models which estimate observed rather than inferred genetic components of complex traits. Nonmonogenic chronic kidney disease (CKD) is a complex disease process with strong genetic and environmental influences, amenable to twin studies. We aimed to assess the heritability of CKD using twin analysis and modeling within Older Australian Twin Study (OATS) data. Methods OATS had 109 dizygotic (DZ) and 126 monozygotic (MZ) twin pairs with paired serum creatinine levels. Heritability of kidney function as estimated glomerular filtration rate (eGFR CKD Epidemiology Collaboration [CKD-EPI]) was modeled using the ACE model to estimate additive heritability (A), common (C), and unique (E) environmental factors. Intratwin pair analysis using mixed effects logistic regression allowed analysis of variation in eGFR from established CKD risk factors. Results The median age was 69.71 (interquartile range 78.4-83.0) years, with 65% female, and a mean CKD-EPI of 82.8 ml/min (SD 6.7). The unadjusted ACE model determined kidney function to be 33% genetically determined (A), 18% shared genetic-environmental (C), and 49% because of unique environment (E). This remained unchanged when adjusted for age, hypertension, and sex. Hypertension was associated with eGFR; however, intertwin variance in hypertension did not explain variance in eGFR. Two or more hypertension medications were associated with decreased eGFR (P = 0.009). Conclusion This study estimates observed heritability at 33%, notably higher than inferred heritability in genome-wide association study (GWAS) (7.1%-18%). Epigenetics and other genomic phenomena may explain this heritability gap. Difference in antihypertension medications explains part of unique environmental exposures, though discordance in hypertension and diabetes does not.
Collapse
Affiliation(s)
- Julia Jefferis
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Anita Pelecanos
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Vibeke Catts
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew Mallett
- Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
- Department of Renal Medicine, Townsville University Hospital, Douglas, Queensland, Australia
- College of Medicine and Dentistry, James Cook University, Douglas, Queensland, Australia
| |
Collapse
|
21
|
Gauthier MM, Dennis MR, Morales MN, Brooks HL, Banek CT. Contribution of Afferent Renal Nerves to Cystogenesis and Arterial Pressure Regulation in a Preclinical Model of Autosomal Recessive Polycystic Kidney Disease. Am J Physiol Renal Physiol 2022; 322:F680-F691. [PMID: 35466689 PMCID: PMC9159540 DOI: 10.1152/ajprenal.00009.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polycystic kidney disease (PKD) is the most common inheritable cause of kidney failure, and the underlying mechanisms remain incompletely uncovered. Renal nerves contribute to hypertension and chronic kidney disease - frequent complications of PKD. There is limited evidence that renal nerves may contribute to cardiorenal dysfunction in PKD, and no investigations of the role of sympathetic versus afferent nerves in PKD. Afferent renal nerve activity (ARNA) is elevated in models of renal disease and fibrosis. However, it remains unknown if this is true in PKD. We tested the hypothesis that ARNA is elevated in a preclinical model of autosomal recessive PKD (ARPKD), and that targeted renal nerve ablation would attenuate cystogenesis and cardiorenal dysfunction. We tested this by performing a total (T-RDNx) or afferent (A-RDNx) denervation in 4-week-old male and female PCK rats, then quantifying renal and cardiovascular responses 6 weeks following treatment. Cystogenesis was attenuated with A-RDNx and T-RDNx vs. sham controls, highlighting a crucial role for renal afferent nerves in cystogenesis. In contrast, blood pressure was improved with T-RDNx but not A-RDNx. Importantly, treatments produced similar results in both males and females. Direct renal afferent nerve recordings revealed that ARNA was 2-fold greater in PCK rats vs. non-cystic controls and was directly correlated to cystic severity. To our knowledge, we are the first to demonstrate that PCK rats have greater ARNA than non-cystic, age-matched controls. The findings of these studies support a novel and crucial role for renal afferent innervation in cystogenesis in the PCK rat.
Collapse
Affiliation(s)
- Madeline M Gauthier
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Melissa R Dennis
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Mark N Morales
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States.,Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Hopp K, Kleczko EK, Gitomer BY, Chonchol M, Klawitter J, Christians U, Klawitter J. Metabolic reprogramming in a slowly developing orthologous model of polycystic kidney disease. Am J Physiol Renal Physiol 2022; 322:F258-F267. [PMID: 35037466 PMCID: PMC8858679 DOI: 10.1152/ajprenal.00262.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease and affects 1 in 1,000 individuals. There is accumulating evidence suggesting that there are shared cellular mechanisms responsible for cystogenesis in human and murine PKD and that reprogramming of metabolism is a key disease feature. In this study, we used a targeted metabolomics approach in an orthologous mouse model of PKD (Pkd1RC/RC) to investigate the metabolic modifications a cystic kidney undergoes during disease progression. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, we identified several biologically relevant metabolic pathways that were altered early in this disease (in 3-mo-old Pkd1RC/RC mice), the most highly represented being arginine biosynthesis and metabolism and tryptophan and phenylalanine metabolism. During the next 6 mo of disease progression, multiple uremic solutes accumulated in the kidney of cystic mice, including several established markers of oxidative stress and endothelial dysfunction (allantoin, asymmetric dimethylarginine, homocysteine, malondialdehyde, methionine sulfoxide, and S-adenosylhomocysteine). Levels of kynurenines and polyamines were also augmented in kidneys of Pkd1RC/RC versus wild-type mice, as were the levels of bacteria-produced indoles, whose increase within PKD kidneys suggests microbial dysbiosis. In summary, we confirmed previously published and identified novel metabolic markers and pathways of PKD progression that may prove helpful for diagnosis and monitoring of cystic kidney disease in patients. Furthermore, they provide targets for novel therapeutic approaches that deserve further study and hint toward currently understudied pathomechanisms.NEW & NOTEWORTHY This report delineates the evolution of metabolic changes occurring during autosomal dominant polycystic kidney disease (ADPKD) progression. Using an orthologous model, we performed kidney metabolomics and confirmed dysregulation of metabolic pathways previously found altered in nonorthologous or rapidly-progressive PKD models. Importantly, we identified novel alterations, including augmentation of kynurenines, polyamines, and indoles, suggesting increased inflammation and microbial dysbiosis that provide insights into PKD pathomechanisms and may prove helpful for diagnosing, monitoring, and treating ADPKD.
Collapse
Affiliation(s)
- Katharina Hopp
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Emily K Kleczko
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Berenice Y Gitomer
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Jelena Klawitter
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
23
|
Association of autosomal dominant polycystic kidney disease with cardiovascular disease: a US-National Inpatient Perspective. Clin Exp Nephrol 2022; 26:659-668. [PMID: 35212882 DOI: 10.1007/s10157-022-02200-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Data on the epidemiology of cardiovascular diseases (CVD) in patients with autosomal dominant polycystic kidney disease (ADPKD) are limited. In this study, we assess the prevalence of CVD in patients with ADPKD and evaluate associations between these two entities. METHODS Using the National Inpatient Sample database, we identified 71,531 hospitalizations among adults aged ≥ 18 years with ADPKD, from 2006 to 2014 and collected relevant clinical data. RESULTS The prevalence of CVD in the study population was 42.6%. The most common CVD were ischemic heart diseases (19.3%), arrhythmias (14.2%), and heart failure (13.1%). The prevalence of CVD increased with the severity of renal dysfunction (RD). We found an increase in hospitalizations of patients with ADPKD and CVD over the years (ptrend < 0.01), irrespective of the degree of RD. CVD was the greatest independent predictor of mortality in these patients (OR: 3.23; 95% CI 2.38-4.38 [p < 0.001]). In a propensity matched model of hospitalizations of patients with CKD with and without ADPKD, there was a significant increase in the prevalence of atrial fibrillation/flutter (AF), pulmonary hypertension (PHN), non-ischemic cardiomyopathy (NICM), and hemorrhagic stroke among patients with ADPKD when compared to patients with similar degree of RD without ADPKD. CONCLUSIONS The prevalence of CVD is high among patients with ADPKD, and the most important risk factor associated with CVD is severity of RD. We found an increase in the trend of hospitalizations of patients with ADPKD associated with increased risk of AF, PHN, NICM, and hemorrhagic stroke. History of CVD is the strongest predictor of mortality among patients with ADPKD.
Collapse
|
24
|
Nowak KL, Farmer-Bailey H, Wang W, You Z, Steele C, Cadnapaphornchai MA, Klawitter J, Patel N, George D, Jovanovich A, Soranno DE, Gitomer B, Chonchol M. Curcumin Therapy to Treat Vascular Dysfunction in Children and Young Adults with ADPKD: A Randomized Controlled Trial. Clin J Am Soc Nephrol 2022; 17:240-250. [PMID: 34907021 PMCID: PMC8823928 DOI: 10.2215/cjn.08950621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Clinical manifestations of autosomal dominant polycystic kidney disease (ADPKD), including evidence of vascular dysfunction, can begin in childhood. Curcumin is a polyphenol found in turmeric that reduces vascular dysfunction in rodent models and humans without ADPKD. It also slows kidney cystic progression in a murine model of ADPKD. We hypothesized that oral curcumin therapy would reduce vascular endothelial dysfunction and arterial stiffness in children/young adults with ADPKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In a randomized, placebo-controlled, double-blind trial, 68 children/young adults 6-25 years of age with ADPKD and eGFR>80 ml/min per 1.73 m2 were randomized to either curcumin supplementation (25 mg/kg body weight per day) or placebo administered in powder form for 12 months. The coprimary outcomes were brachial artery flow-mediated dilation and aortic pulse-wave velocity. We also assessed change in circulating/urine biomarkers of oxidative stress/inflammation and kidney growth (height-adjusted total kidney volume) by magnetic resonance imaging. In a subgroup of participants ≥18 years, vascular oxidative stress was measured as the change in brachial artery flow-mediated dilation following an acute infusion of ascorbic acid. RESULTS Enrolled participants were 18±5 (mean ± SD) years, 54% were girls, baseline brachial artery flow-mediated dilation was 9.3±4.1% change, and baseline aortic pulse-wave velocity was 512±94 cm/s. Fifty-seven participants completed the trial. Neither coprimary end point changed with curcumin (estimated change [95% confidence interval] for brachial artery flow-mediated dilation [percentage change]: curcumin: 1.14; 95% confidence interval, -0.84 to 3.13; placebo: 0.33; 95% confidence interval, -1.34 to 2.00; estimated difference for change: 0.81; 95% confidence interval, -1.21 to 2.84; P=0.48; aortic pulse-wave velocity [centimeters per second]: curcumin: 0.6; 95% confidence interval, -25.7 to 26.9; placebo: 6.5; 95% confidence interval, -20.4 to 33.5; estimated difference for change: -5.9; 95% confidence interval, -35.8 to 24.0; P=0.67; intent to treat). There was no curcumin-specific reduction in vascular oxidative stress or changes in mechanistic biomarkers. Height-adjusted total kidney volume also did not change as compared with placebo. CONCLUSIONS Curcumin supplementation does not improve vascular function or slow kidney growth in children/young adults with ADPKD. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Curcumin Therapy to Treat Vascular Dysfunction in Children and Young Adults with ADPKD, NCT02494141. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_02_07_CJN08950621.mp3.
Collapse
Affiliation(s)
- Kristen L. Nowak
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Heather Farmer-Bailey
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wei Wang
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zhiying You
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cortney Steele
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Melissa A. Cadnapaphornchai
- Rocky Mountain Pediatric Kidney Center, Rocky Mountain Hospital for Children at Presbyterian St. Luke’s Medical Center, Denver, Colorado
| | - Jelena Klawitter
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nayana Patel
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Diana George
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anna Jovanovich
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado,Department of Nephrology, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Danielle E. Soranno
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado,Children’s Hospital Colorado, Aurora, Colorado
| | - Berenice Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
25
|
Amirrad F, Pala R, Shamloo K, Muntean BS, Nauli SM. Arrhythmogenic Hearts in PKD2 Mutant Mice Are Characterized by Cardiac Fibrosis, Systolic, and Diastolic Dysfunctions. Front Cardiovasc Med 2021; 8:772961. [PMID: 34901233 PMCID: PMC8661014 DOI: 10.3389/fcvm.2021.772961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (PKD) is a hereditary disorder affecting multiple organs, including the heart. PKD has been associated with many cardiac abnormalities including the arrhythmogenic remodeling in clinical evaluations. In our current study, we hypothesized that Pkd2 gene mutation results in structural and functional defects in the myocardium. The structural and functional changes of Pkd2 mutant hearts were analyzed in the myocardial-specific Pkd2 knockout (KO) mouse. We further assessed a potential role of TGF-b1 signaling in the pathology of Pkd2-KO hearts. Hearts from age-matched 6-month-old MyH6•Pkd2 wt/wt (control or wild-type) and MyH6•Pkd2 flox/flox (mutant or Pkd2-KO) mice were used to study differential heart structure and function. Cardiac histology was used to study structure, and the "isolated working heart" system was adapted to mount and perfuse mouse heart to measure different cardiac parameters. We found that macrophage1 (M1) and macrophage 2 (M2) infiltration, transforming growth factor (TGF-b1) and TGF-b1 receptor expressions were significantly higher in Pkd2-KO, compared to wild-type hearts. The increase in the extracellular matrix in Pkd2-KO myocardium led to cardiac hypertrophy, interstitial and conduction system fibrosis, causing cardiac dysfunction with a predisposition to arrhythmia. Left ventricular (LV) expansion or compliance and LV filling were impaired in fibrotic Pkd2-KO hearts, resulted in diastolic dysfunction. LV systolic contractility and elastance decreased in fibrotic Pkd2-KO hearts, resulted in systolic dysfunction. Compared to wild-type hearts, Pkd2-KO hearts were less responsive to the pharmacological stress-test and changes in preload. In conclusion, Pkd2-KO mice had systolic and diastolic dysfunction with arrhythmogenic hearts.
Collapse
Affiliation(s)
- Farideh Amirrad
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States.,Department of Medicine, University of California, Irvine, Orange, CA, United States
| | - Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| | - Kiumars Shamloo
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| | - Brian S Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States.,Department of Medicine, University of California, Irvine, Orange, CA, United States
| |
Collapse
|
26
|
Bowden SA, Rodger EJ, Chatterjee A, Eccles MR, Stayner C. Recent Discoveries in Epigenetic Modifications of Polycystic Kidney Disease. Int J Mol Sci 2021; 22:ijms222413327. [PMID: 34948126 PMCID: PMC8708269 DOI: 10.3390/ijms222413327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a heritable renal disease that results in end-stage kidney disease, due to the uncontrolled bilateral growth of cysts throughout the kidneys. While it is known that a mutation within a PKD-causing gene is required for the development of ADPKD, the underlying mechanism(s) causing cystogenesis and progression of the disease are not well understood. Limited therapeutic options are currently available to slow the rate of cystic growth. Epigenetic modifications, including DNA methylation, are known to be altered in neoplasia, and several FDA-approved therapeutics target these disease-specific changes. As there are many similarities between ADPKD and neoplasia, we (and others) have postulated that ADPKD kidneys contain alterations to their epigenetic landscape that could be exploited for future therapeutic discovery. Here we summarise the current understanding of epigenetic changes that are associated with ADPKD, with a particular focus on the burgeoning field of ADPKD-specific alterations in DNA methylation.
Collapse
Affiliation(s)
- Sarah A. Bowden
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
| | - Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Correspondence: ; Tel.: +64-3-479-5060; Fax: +64-3-479-7136
| |
Collapse
|
27
|
Predictors of progression in autosomal dominant and autosomal recessive polycystic kidney disease. Pediatr Nephrol 2021; 36:2639-2658. [PMID: 33474686 PMCID: PMC8292447 DOI: 10.1007/s00467-020-04869-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are characterized by bilateral cystic kidney disease leading to progressive kidney function decline. These diseases also have distinct liver manifestations. The range of clinical presentation and severity of both ADPKD and ARPKD is much wider than was once recognized. Pediatric and adult nephrologists are likely to care for individuals with both diseases in their lifetimes. This article will review genetic, clinical, and imaging predictors of kidney and liver disease progression in ADPKD and ARPKD and will briefly summarize pharmacologic therapies to prevent progression.
Collapse
|
28
|
Lu CL, Lin CY, Lin LY, Chen PC, Zheng CM, Lu KC, Yeih DF. Primary prevention of cardiovascular disease events with renin-angiotensin system blockade in autosomal dominant polycystic kidney disease dialysis patients: A nationwide cohort study. Medicine (Baltimore) 2021; 100:e26559. [PMID: 34190195 PMCID: PMC8257834 DOI: 10.1097/md.0000000000026559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 06/12/2021] [Indexed: 01/04/2023] Open
Abstract
Although renin-angiotensin system (RAS) blockade has been shown to reduce cardiovascular disease (CVD) in the general population and high-risk subjects, their protective effect in autosomal dominant polycystic kidney disease (ADPKD) patients under dialysis was still unknown. By using the database from 1995 to 2008 Taiwan National Health Insurance Research Database (Registry for Catastrophic Illnesses), we included 387 ADPKD patients who received dialysis therapy, aged ≥ 18 year-old, and with no evidence of CVD events in 1997 and 1998. We utilized Cox proportional hazards regression analysis and propensity score matching to evaluate adjusted hazard ratios for all-cause mortality and CVD events in users (n=231) and nonusers (n = 156) of an angiotensin-converting enzymes inhibitor (ACEI) / angiotensin II receptor blocker (ARB) during the 12 years of follow-up. All study subjects were followed up for more than 3 months. There was no significant difference between the ACEI/ARB treatment group and the control group in incident CVD events except ischemic stroke and transient ischemic accident (TIA). The results remain similar between groups before and after propensity score matching. Moreover, there was no significant difference in outcomes between ACEI/ARB treatment over 50% of follow-up period and without ACEI/ARB treatment after propensity score matching. This nationwide cohort study failed to prove the protective effects of long-term ACEI or ARB on incident CVD events among APKD dialysis patients. Further larger scale, multicenter and randomized control trials are warranted to show the causal association.
Collapse
Affiliation(s)
- Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital
- School of Medicine, College of Medicine, Fu Jen Catholic University
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu
| | - Lian-Yu Lin
- Division of Cardiology, Department of Medicine, National Taiwan University Hospital
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
| | - Dong-Feng Yeih
- School of Medicine, College of Medicine, Fu Jen Catholic University
- Division of Cardiology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| |
Collapse
|
29
|
Chiu TF, Yu TM, Chiu CW, Lee BK, Lan TH, Li CY, Lin MC, Kao CH. Increased risk of pulmonary and extrapulmonary tuberculosis infection in patients with polycystic kidney disease: a nationwide population-based study with propensity score-matching analysis. J Transl Med 2021; 19:253. [PMID: 34107991 PMCID: PMC8191203 DOI: 10.1186/s12967-021-02921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/02/2021] [Indexed: 11/29/2022] Open
Abstract
Background Polycystic kidney disease (PKD) is a common renal disorder affecting approximately 1 in 1000 live births. Tuberculosis (TB) is an infectious disease worldwide. This study investigated the risk of TB infection in patients with PKD. Methods A nationwide population-based cohort study was performed using Taiwan’s National Health Insurance Research Database. We used patients’ hospitalization files for the entire analysis during 2000–2012. As per diagnosis, we divided patients into PKD and non-PKD cohorts and the major outcome was TB infection. Results A total of 13,540 participants with 6770 patients in each cohort were enrolled. The PKD cohort had a higher risk of TB infection than did the non-PKD cohort after adjusting for age, sex, and comorbidities (adjusted hazard ratio (aHR) = 1.91, 95% confidence interval [CI] = 1.51–2.43). When classifying by sites of pulmonary TB (PTB) and extrapulmonary TB (EPTB), the PKD cohort demonstrated a significantly higher risk of EPTB (aHR = 2.44, 95% CI = 1.46–4.08) as well as a risk of PTB (aHR = 1.69, 95% CI = 1.29–2.22). When stratified by the presence or absence of a comorbidity, high TB infection risk was noted in the PKD patients without any comorbidity (HR = 2.69, 95% CI = 1.69–4.30). Conclusions Taken together, our findings suggest that PKD is associated with a 1.91-fold increased risk of TB infection. Medical professionls should maintain a high index of suspicion in daily practice for patients with PKD, particularly those with EPTB infection.
Collapse
Affiliation(s)
- Ting-Fang Chiu
- Department of Pediatrics, Taipei City Hospital Zhongxiao Branch, Taipei, Taiwan.,University of Taipei, Taipei, Taiwan.,Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Tung-Min Yu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung, 404, Taiwan. .,Division of Nephrology, Taichung Veterans General Hospital, Taichung, Taiwan.
| | - Chih-Wei Chiu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung, 404, Taiwan.,Department of Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Brian K Lee
- University of Texas, Austin, Dell Seton Medical Center, Austin, USA
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan.,Department of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung, 404, Taiwan.,Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Chen Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung, 404, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung, 404, Taiwan. .,Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan. .,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan. .,Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
30
|
Gender-Dependent Phenotype in Polycystic Kidney Disease Is Determined by Differential Intracellular Ca 2+ Signals. Int J Mol Sci 2021; 22:ijms22116019. [PMID: 34199520 PMCID: PMC8199720 DOI: 10.3390/ijms22116019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by loss of function of PKD1 (polycystin 1) or PKD2 (polycystin 2). The Ca2+-activated Cl− channel TMEM16A has a central role in ADPKD. Expression and function of TMEM16A is upregulated in ADPKD which causes enhanced intracellular Ca2+ signaling, cell proliferation, and ion secretion. We analyzed kidneys from Pkd1 knockout mice and found a more pronounced phenotype in males compared to females, despite similar levels of expression for renal tubular TMEM16A. Cell proliferation, which is known to be enhanced with loss of Pkd1−/−, was larger in male when compared to female Pkd1−/− cells. This was paralleled by higher basal intracellular Ca2+ concentrations in primary renal epithelial cells isolated from Pkd1−/− males. The results suggest enhanced intracellular Ca2+ levels contributing to augmented cell proliferation and cyst development in male kidneys. Enhanced resting Ca2+ also caused larger basal chloride currents in male primary cells, as detected in patch clamp recordings. Incubation of mouse primary cells, mCCDcl1 collecting duct cells or M1 collecting duct cells with dihydrotestosterone (DHT) enhanced basal Ca2+ levels and increased basal and ATP-stimulated TMEM16A chloride currents. Taken together, the more severe cystic phenotype in males is likely to be caused by enhanced cell proliferation, possibly due to enhanced basal and ATP-induced intracellular Ca2+ levels, leading to enhanced TMEM16A currents. Augmented Ca2+ signaling is possibly due to enhanced expression of Ca2+ transporting/regulating proteins.
Collapse
|
31
|
Uchiyama K, Mochizuki T, Shimada Y, Nishio S, Kataoka H, Mitobe M, Tsuchiya K, Hanaoka K, Ubara Y, Suwabe T, Sekine A, Nutahara K, Tsuruya K, Ishimura E, Nakatani S, Sofue T, Tanaka S, Narita I, Maruyama S, Horie S, Muto S. Factors predicting decline in renal function and kidney volume growth in autosomal dominant polycystic kidney disease: a prospective cohort study (Japanese Polycystic Kidney Disease registry: J-PKD). Clin Exp Nephrol 2021; 25:970-980. [PMID: 33928479 DOI: 10.1007/s10157-021-02068-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Factors affecting decline in renal function and cyst growth in patients with autosomal polycystic kidney disease (ADPKD) are not fully described, particularly in Japan. METHODS This was the first multi-facility, prospective, observational cohort study conducted in ADPKD patients at 14 centers in Japan. Patients in the J-PKD registry were assessed from December 2009 to June 2012 (follow-up until June 2017). Patients' data including estimated glomerular filtration rate (eGFR) and total kidney volume (TKV) were assessed initially and a maximum of five times annually. Contributing factors to eGFR decline and TKV growth were identified using multiple linear regression analysis. RESULTS Of the 340 patients in the J-PKD registry, data analysis was performed for 192 patients in whom serial changes for both eGFR and TKV were obtained. eGFR slope, eGFR change, and TKV change values were as follows: - 2.7 (- 4.2 to - 1.5) (ml/min/1.73 m2/year), - 5.0 (- 9.6 to - 2.3) (%/year), and 4.78 (0.86-8.22) (%/year), respectively. Lower high-density lipoprotein (HDL) cholesterol was an independent predictor of eGFR decline, using both eGFR slope and change (P = 0.04, P = 0.02, respectively), whereas lower hemoglobin and higher uric acid were significantly associated with greater eGFR change only (P = 0.02, P = 0.002, respectively). Younger age and higher fasting blood sugar were independent predictors of greater TKV change (P = 0.01, P = 0.02, respectively). CONCLUSIONS This real-world study in Japan identified risk factors for renal function decline in ADPKD patients. These included lower HDL cholesterol, lower hemoglobin and higher uric acid for eGFR decline, and youth and higher blood sugar levels for TKV growth.
Collapse
Affiliation(s)
- Kiyotaka Uchiyama
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshio Mochizuki
- Clinical Research Division for Polycystic Kidney Disease, Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan.,Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yosuke Shimada
- Intelligent Systems Laboratory, SECOM CO., LTD., Mitaka, Tokyo, Japan.,Department of Medical Electronic Intelligence Management, Juntendo University Graduate School, Bunkyo, Tokyo, Japan
| | - Saori Nishio
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Hiroshi Kataoka
- Clinical Research Division for Polycystic Kidney Disease, Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan.,Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Michihiro Mitobe
- Clinical Research Division for Polycystic Kidney Disease, Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan.,Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Woman's Medical University, Tokyo, Japan
| | - Kazushige Hanaoka
- Department of General Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | | | - Tatsuya Suwabe
- Department of Nephrology, Toranomon Hospital, Tokyo, Japan
| | - Akinari Sekine
- Department of Nephrology, Toranomon Hospital, Tokyo, Japan
| | - Kikuo Nutahara
- Department of Urology, Kyorin University School of Medicine, Tokyo, Japan
| | - Kazuhiko Tsuruya
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Nephrology, Nara Medical University, Kashihara, Nara, Japan
| | - Eiji Ishimura
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Sofue
- Department of Cardiorenal and Cerebrovascular Medicine, Kagawa University, Kagawa, Japan
| | - Satoshi Tanaka
- Department of Nephrology, Shizuoka General Hospital, Shizuoka, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medicine and Dental Science, Niigata, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeo Horie
- Department of Advanced Informatics for Genetic Disease, Juntendo University, Tokyo, Japan.,Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Satoru Muto
- Department of Advanced Informatics for Genetic Disease, Juntendo University, Tokyo, Japan. .,Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
32
|
Underwood CF, Mcmullan S, Goodchild AK, Phillips JK, Hildreth CM. The subfornical organ drives hypertension in polycystic kidney disease via the hypothalamic paraventricular nucleus. Cardiovasc Res 2021; 118:1138-1149. [PMID: 33774660 DOI: 10.1093/cvr/cvab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/25/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Hypertension is a prevalent yet poorly understood feature of polycystic kidney disease. Previously we demonstrated that increased glutamatergic neurotransmission within the hypothalamic paraventricular nucleus produces hypertension in the Lewis Polycystic Kidney rat model of polycystic kidney disease. Here we tested the hypothesis that augmented glutamatergic drive to the paraventricular nucleus in Lewis Polycystic Kidney rats originates from the forebrain lamina terminalis, a sensory structure that relays blood-borne information throughout the brain. METHODS AND RESULTS Anatomical experiments revealed that 38% of paraventricular nucleus-projecting neurons in the subfornical organ of the lamina terminalis expressed Fos/Fra, an activation marker, in Lewis Polycystic Kidney rats while <1% of neurons were Fos/Fra+ in Lewis control rats (P = 0.01, n = 8). In anaesthetised rats, subfornical organ neuronal inhibition using isoguvacine produced a greater reduction in systolic blood pressure in the Lewis Polycystic Kidney versus Lewis rats (-21 ± 4 vs. -7 ± 2 mmHg, P < 0.01; n = 10), which could be prevented by prior blockade of paraventricular nucleus ionotropic glutamate receptors using kynurenic acid. Blockade of ionotropic glutamate receptors in the paraventricular nucleus produced an exaggerated depressor response in Lewis Polycystic Kidney relative to Lewis rats (-23 ± 4 vs. -2 ± 3 mmHg, P < 0.001; n = 13), which was corrected by prior inhibition of the subfornical organ with muscimol but unaffected by chronic systemic angiotensin II type I receptor antagonism or lowering of plasma hyperosmolality through high-water intake (P > 0.05); treatments that both nevertheless lowered blood pressure in Lewis Polycystic Kidney rats (P < 0.0001). CONCLUSION Our data reveal multiple independent mechanisms contribute to hypertension in polycystic kidney disease, and identify high plasma osmolality, angiotensin II type I receptor activation and, importantly, a hyperactive subfornical organ to paraventricular nucleus glutamatergic pathway as potential therapeutic targets. TRANSLATIONAL PERSPECTIVE Hypertension is a significant comorbidity for all forms of chronic kidney disease and for individuals with polycystic kidney disease, often an early presenting feature. Nevertheless, the cause(s) of hypertension in polycystic kidney disease are poorly defined. Here we define the contribution of a neural pathway that contributes to hypertension in polycystic kidney disease. Critically, targeting this pathway may provide an additional antihypertensive effect beyond that achieved with current conventional antihypertensive therapies. Future work identifying the drivers of this neural pathway will aid in the development of newer generation antihypertensive medication.
Collapse
Affiliation(s)
- Conor F Underwood
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA.,Department of Anatomy, School of Biomedical Sciences, University of Otago, Otago, NEW ZEALAND
| | - Simon Mcmullan
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| | - Ann K Goodchild
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| | - Jacqueline K Phillips
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| | - Cara M Hildreth
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| |
Collapse
|
33
|
Murakami T, Nishimura K, Ono H, Ueta S, Shibata E, Kishi S, Tamaki M, Miya K, Shima H, Tashiro M, Inoue T, Kawahara K, Nagai K, Abe H, Minakuchi J, Doi T. Clinical characteristics associated with 1-year tolvaptan efficacy in autosomal dominant polycystic kidney disease with a wide range of kidney functions. THE JOURNAL OF MEDICAL INVESTIGATION 2020; 67:315-320. [PMID: 33148908 DOI: 10.2152/jmi.67.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) develops into end-stage kidney disease by 65 years of age in an estimated 45%-70% of patients. Recent trials revealed that tolvaptan inhibits disease progression both in early-stage or late-stage ADPKD ; however, stratified analysis showed a difference of favorable factors correlated with tolvaptan efficacy between early-stage and late-stage ADPKD. Thus, we examined the efficacy of tolvaptan in ADPKD with a wide range of estimated glomerular filtration rates (eGFR). We enrolled 24 patients with eGFR 35.3 (28.0-65.5) ml / min / 1.73m2 and evaluated treatment effect as ΔΔeGFR (ml / min / 1.73m2 / year) or ΔΔtotal kidney volume (TKV) (% / year) that was calculated as post-treatment annual change - pre-treatment annual change. Pre ΔeGFR was significantly low in eGFR responders, defined as ΔΔeGFR > 0 ml / min / 1.73m2 / year. In eGFR responders, pre ΔeGFR, post ΔeGFR, eGFR, TKV, and proteinuria were significantly correlated with ΔΔeGFR. In TKV responders defined as ΔΔTKV > 5 % / year, we identified hypertension history, proteinuria, TKV, and post ΔTKV as significantly correlated factors with ΔΔTKV. In conclusion, pre ΔeGFR may be a predictive factor of therapeutic efficacy on kidney function. Tolvaptan may have greater efficacy in early-stage ADPKD with rapid GFR decline or with well-controlled blood pressure. J. Med. Invest. 67 : 315-320, August, 2020.
Collapse
Affiliation(s)
- Taichi Murakami
- Department of Nephrology, Ehime Prefectural Central Hospital, Ehime, Japan.,Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Kenji Nishimura
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Hiroyuki Ono
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Sayo Ueta
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Eriko Shibata
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Seiji Kishi
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Masanori Tamaki
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Keiko Miya
- Department of Internal Medicine, Kawashima Hospital, Tokushima Japan
| | - Hisato Shima
- Department of Kidney Disease, Kawashima Hospital, Tokushima Japan
| | - Manabu Tashiro
- Department of Kidney Disease, Kawashima Hospital, Tokushima Japan
| | - Tomoko Inoue
- Department of Kidney Disease, Kawashima Hospital, Tokushima Japan
| | | | - Kojiro Nagai
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Hideharu Abe
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Jun Minakuchi
- Department of Kidney Disease, Kawashima Hospital, Tokushima Japan
| | - Toshio Doi
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
34
|
McConnachie DJ, Stow JL, Mallett AJ. Ciliopathies and the Kidney: A Review. Am J Kidney Dis 2020; 77:410-419. [PMID: 33039432 DOI: 10.1053/j.ajkd.2020.08.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Primary cilia are specialized sensory organelles that protrude from the apical surface of most cell types. During the past 2 decades, they have been found to play important roles in tissue development and signal transduction, with mutations in ciliary-associated proteins resulting in a group of diseases collectively known as ciliopathies. Many of these mutations manifest as renal ciliopathies, characterized by kidney dysfunction resulting from aberrant cilia or ciliary functions. This group of overlapping and genetically heterogeneous diseases includes polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome as the main focus of this review. Renal ciliopathies are characterized by the presence of kidney cysts that develop due to uncontrolled epithelial cell proliferation, growth, and polarity, downstream of dysregulated ciliary-dependent signaling. Due to cystic-associated kidney injury and systemic inflammation, cases result in kidney failure requiring dialysis and transplantation. Of the handful of pharmacologic treatments available, none are curative. It is important to determine the molecular mechanisms that underlie the involvement of the primary cilium in cyst initiation, expansion, and progression for the development of novel and efficacious treatments. This review updates research progress in defining key genes and molecules central to ciliogenesis and renal ciliopathies.
Collapse
Affiliation(s)
- Dominique J McConnachie
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation Disease and Research, The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer L Stow
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew J Mallett
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation Disease and Research, The University of Queensland, Brisbane, QLD, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Brosnahan GM, You Z, Wang W, Gitomer BY, Chonchol M. Serum Uric Acid and Progression of Autosomal Dominant Polycystic Kidney Disease: Results from the HALT PKD Trials. Curr Hypertens Rev 2020; 17:228-237. [PMID: 32807060 DOI: 10.2174/1573402116666200817113125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/02/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epidemiological studies have suggested that elevated serum uric acid may contribute to the progression of chronic kidney disease. However, no large prospective study has examined whether hyperuricemia is an independent risk factor for the progression of autosomal dominant polycystic kidney disease (ADPKD). METHODS We measured uric acid in stored serum samples from the 2-year study visit of 671 participants from the HALT PKD multicenter trials. Participants were categorized according to uric acid tertiles. For Study A (participants aged 15-49 years with preserved kidney function, n=350), we used linear mixed effects models to examine the association between uric acid and repeated measures of height-adjusted total kidney volume (htTKV), the primary outcome for Study A. For Study B (participants aged 18-64 with decreased kidney function, n=321), we used Cox proportional hazards models to assess the hazard for the combined endpoint of 50% loss in estimated glomerular filtration rate (eGFR), end-stage kidney disease (ESKD), or death, the primary outcome for Study B. To assess the association of uric acid with the slope of eGFR decline (secondary outcome of HALT A and B), we used linear mixed effects models for the combined population of Study A and B. RESULTS In the unadjusted model, the annual change in htTKV was 2.7% higher in the highest uric acid tertile compared to the lowest (p<0.001), but this difference became insignificant after adjustment for gender. Men had faster TKV growth than women (p<0.001). There was no difference in eGFR decline between the 3 uric acid tertiles. Hazard ratios for the clinical endpoint were 2.9 (95% confidence interval, 1.9-4.4) and 1.8 (1.1-2.8) respectively in the high and medium uric acid groups in unadjusted and partially adjusted models (p<0.001), but the significance was lost after adjustment for baseline eGFR. Results were similar when uric acid was examined as a continuous variable. CONCLUSION Elevated serum uric acid is not an independent risk factor for disease progression in ADPKD.
Collapse
Affiliation(s)
- Godela M Brosnahan
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Zhiying You
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Wei Wang
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Berenice Y Gitomer
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michel Chonchol
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
36
|
Nowak KL, Farmer-Bailey H, Cadnapaphornchai MA, You Z, George D, Wang W, Jovanovich A, Soranno DE, Gitomer B, Chonchol M. Curcumin therapy to treat vascular dysfunction in children and young adults with autosomal dominant polycystic kidney disease: Design and baseline characteristics of participants. Contemp Clin Trials Commun 2020; 19:100635. [PMID: 33294724 PMCID: PMC7691667 DOI: 10.1016/j.conctc.2020.100635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
Although often considered to be a disease of adults, complications of autosomal dominant polycystic kidney disease (ADPKD) begin in childhood. While the hallmark of ADPKD is the development and continued growth of multiple renal cysts that ultimately result in loss of kidney function, cardiovascular complications are the leading cause of death among affected patients. Vascular dysfunction (endothelial dysfunction and large elastic artery stiffness) is evident very early in the course of the disease and appears to involve increased oxidative stress and inflammation. Treatment options to prevent cardiovascular disease in adults with ADPKD are limited, thus childhood may represent a key therapeutic window. Curcumin is a safe, naturally occurring polyphenol found in the Indian spice turmeric. This spice has a unique ability to activate transcription of key antioxidants, suppress inflammation, and reduce proliferation. Here we describe our ongoing randomized, placebo-controlled, double-blind clinical trial to assess the effect of curcumin therapy on vascular function and kidney growth in 68 children and young adults age 6–25 years with ADPKD. Baseline demographic, vascular, and kidney volume data are provided. This study has the potential to establish a novel, safe, and facile therapy for the treatment of arterial dysfunction, and possibly renal cystic disease, in an understudied population of children and young adults with ADPKD. Evaluating a strategy to intervene early in the course of ADPKD. Assessing two major contributors to arterial dysfunction and CVD risk in ADPKD. Curcumin is a novel nutraceutical that is an safe, naturally occurring, and facile. Using a translational approach is used to assess physiological mechanisms. Gaining exploratory evidence on the efficacy of curcumin to slow kidney growth.
Collapse
Affiliation(s)
- Kristen L. Nowak
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Corresponding author. Division of Renal Diseases and Hypertension, 12700 E 19th Ave C281, Aurora, CO, 80045, USA.
| | | | - Melissa A. Cadnapaphornchai
- Rocky Mountain Pediatric Kidney Center, Rocky Mountain Hospital for Children at Presbyterian St. Luke's Medical Center, Denver, CO, USA
| | - Zhiying You
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diana George
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Wang
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Jovanovich
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Danielle E. Soranno
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Children's Hospital Colorado, Aurora, CO, USA
| | | | - Michel Chonchol
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
37
|
Lavu S, Vaughan LE, Senum SR, Kline TL, Chapman AB, Perrone RD, Mrug M, Braun WE, Steinman TI, Rahbari-Oskoui FF, Brosnahan GM, Bae KT, Landsittel D, Chebib FT, Yu AS, Torres VE, Harris PC. The value of genotypic and imaging information to predict functional and structural outcomes in ADPKD. JCI Insight 2020; 5:138724. [PMID: 32634120 DOI: 10.1172/jci.insight.138724] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/24/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUNDA treatment option for autosomal dominant polycystic kidney disease (ADPKD) has highlighted the need to identify rapidly progressive patients. Kidney size/age and genotype have predictive power for renal outcomes, but their relative and additive value, plus associated trajectories of disease progression, are not well defined.METHODSThe value of genotypic and/or kidney imaging data (Mayo Imaging Class; MIC) to predict the time to functional (end-stage kidney disease [ESKD] or decline in estimated glomerular filtration rate [eGFR]) or structural (increase in height-adjusted total kidney volume [htTKV]) outcomes were evaluated in a Mayo Clinic PKD1/PKD2 population, and eGFR and htTKV trajectories from 20-65 years of age were modeled and independently validated in similarly defined CRISP and HALT PKD patients.RESULTSBoth genotypic and imaging groups strongly predicted ESKD and eGFR endpoints, with genotype improving the imaging predictions and vice versa; a multivariate model had strong discriminatory power (C-index = 0.845). However, imaging but not genotypic groups predicted htTKV growth, although more severe genotypic and imaging groups had larger kidneys at a young age. The trajectory of eGFR decline was linear from baseline in the most severe genotypic and imaging groups, but it was curvilinear in milder groups. Imaging class trajectories differentiated htTKV growth rates; severe classes had rapid early growth and large kidneys, but growth later slowed.CONCLUSIONThe value of imaging, genotypic, and combined data to identify rapidly progressive patients was demonstrated, and reference values for clinical trials were provided. Our data indicate that differences in kidney growth rates before adulthood significantly define patients with severe disease.FUNDINGNIDDK grants: Mayo DK058816 and DK090728; CRISP DK056943, DK056956, DK056957, and DK056961; and HALT PKD DK062410, DK062408, DK062402, DK082230, DK062411, and DK062401.
Collapse
Affiliation(s)
| | - Lisa E Vaughan
- Department of Biomedical Statistics and Informatics, and
| | | | - Timothy L Kline
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Arlene B Chapman
- Division of Nephrology, University of Chicago School of Medicine, Chicago, Illinois, USA.,Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ronald D Perrone
- Division of Nephrology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michal Mrug
- Division of Nephrology, University of Alabama and Department of Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - William E Braun
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio, USA
| | - Theodore I Steinman
- Renal Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Godela M Brosnahan
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Douglas Landsittel
- Center of Research on Health Care, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Alan Sl Yu
- Jared Grantham Kidney Institute, Kansas University Medical Center, Kansas, Kansas, USA
| | | | | | | |
Collapse
|
38
|
McBride L, Wilkinson C, Jesudason S. Management of Autosomal Dominant Polycystic Kidney Disease (ADPKD) During Pregnancy: Risks and Challenges. Int J Womens Health 2020; 12:409-422. [PMID: 32547249 PMCID: PMC7261500 DOI: 10.2147/ijwh.s204997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/20/2020] [Indexed: 01/29/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects up to 1 in 1000 people. The disease is characterized by the progressive development of cysts throughout the renal parenchyma due to inherited pathogenic variants in genes including PKD1 or PKD2 and eventually leads to gradual loss of renal function, along with manifestations in other organ systems such as hepatic cysts and intracranial aneurysms. ADPKD management has advanced considerably in recent years due to genetic testing availability, pre-implantation genetic diagnosis technology and new therapeutic agents. Renal disease in pregnancy is recognised as an important risk factor for adverse maternal and fetal outcome. Women with ADPKD and health professionals face multiple challenges in optimising outcomes during the pre-pregnancy, pregnancy and post-partum periods.
Collapse
Affiliation(s)
- Lucy McBride
- Women’s and Babies’ Division, Women’s and Children’s Hospital, Adelaide, SA, Australia
| | - Catherine Wilkinson
- Central and Northern Adelaide Renal and Transplantation Services (CNARTS), Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Shilpanjali Jesudason
- Central and Northern Adelaide Renal and Transplantation Services (CNARTS), Royal Adelaide Hospital, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
39
|
Etiology and impact on outcomes of polycystic kidney disease in abdominal aortic aneurysm. Surg Today 2020; 50:1213-1222. [PMID: 32253513 DOI: 10.1007/s00595-020-01997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE We investigated the etiology and impact on outcomes of polycystic kidney disease in patients with abdominal aortic aneurysm. METHODS Eight-hundred patients who underwent open (n = 603) or endovascular aortic repair (n = 197) were divided into three groups: no cyst (n = 204), non-polycystic kidney (n = 503), and polycystic kidney (≥ 5 cysts in the bilateral kidneys, n = 93). The characteristics and outcomes were compared among the groups. RESULTS In the polycystic kidney group, the age was increased and the proportions of patients with male sex, hypertension, and estimated glomerular filtration rate < 30 mL/min/1.73 m2 were greater. The overall hospital mortality rates were similar. The incidence of acute kidney injury after elective open aortic repair was increased in the polycystic kidney group (12%, 17%, and 29%, P = 0.020). In the polycystic kidney group, 80 patients did not have renal enlargement or a family history of renal disease, while 13 (corresponding to 1.6% [13/800] of the overall patients), had renal enlargement, suggesting the possibility of hereditary polycystic kidney disease. CONCLUSIONS In our cohort, 1.6% of the patients with abdominal aortic aneurysm who underwent surgery were at risk of hereditary polycystic kidney disease. Polycystic kidney disease was associated with acute kidney injury after open aortic repair.
Collapse
|
40
|
Akbari A, Tangri N, Brown PA, Biyani M, Rhodes E, Kumar T, Shabana W, Sood MM. Prediction of Progression in Polycystic Kidney Disease Using the Kidney Failure Risk Equation and Ultrasound Parameters. Can J Kidney Health Dis 2020; 7:2054358120911274. [PMID: 32215214 PMCID: PMC7081470 DOI: 10.1177/2054358120911274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/21/2020] [Indexed: 11/16/2022] Open
Abstract
Background The kidney failure risk equation (KFRE) is a validated risk algorithm for predicting the risk of kidney failure in chronic kidney disease (CKD) patients regardless of etiology. Patients with autosomal dominant polycystic kidney disease (AD-PCKD) experience long disease trajectories and as such identifying individuals at risk of kidney failure would aid in intervention. Objective To examine the utility of the KFRE in predicting adverse kidney outcomes compared with existing risk factors in a cohort of patients with AD-PCKD. Methods Retrospective cohort study of AD-PCKD patients referred to a tertiary care center with a baseline kidney ultrasound and a KFRE calculation. Cox proportional hazards were used to examine the association of the KFRE and composite of an eGFR decline of >30% or the need for dialysis/transplantation. Discrimination and calibration of a parsimonious fully adjusted model and a model containing only total kidney volume (TKV) with and without the addition of the KFRE was determined. Results Of 340 patients with AD-PCKD eligible, 221 (65%) met inclusion criteria. Older age, cardiac disease, cancer, higher systolic blood pressure, albuminuria, lower eGFR and a higher initial TKV were more common in patients with a higher KFRE. A total of 120 events occurred over a median patient follow-up time of 3.2 years. KFRE was independently associated with the composite kidney outcome. Addition of the KFRE significantly improved discrimination and calibration in a TKV only model and a fully adjusted model. Conclusions In a diverse, referral population with AD-PCKD, the KFRE was associated with adverse kidney outcomes and improved risk prediction.
Collapse
Affiliation(s)
- Ayub Akbari
- Department of Medicine, Division of Nephrology, Kidney Research Centre, University of Ottawa, ON, Canada.,The Ottawa Hospital Research Institute, ON, Canada
| | | | - Pierre A Brown
- Department of Medicine, Division of Nephrology, Kidney Research Centre, University of Ottawa, ON, Canada.,The Ottawa Hospital Research Institute, ON, Canada
| | - Mohan Biyani
- Department of Medicine, Division of Nephrology, Kidney Research Centre, University of Ottawa, ON, Canada.,The Ottawa Hospital Research Institute, ON, Canada
| | - Emily Rhodes
- Institute for Clinical Evaluative Sciences, Ottawa, ON, Canada
| | - Teerath Kumar
- Department of Medicine, Division of Nephrology, Kidney Research Centre, University of Ottawa, ON, Canada
| | - Wael Shabana
- Department of Radiology, University of Ottawa, ON, Canada
| | - Manish M Sood
- Department of Medicine, Division of Nephrology, Kidney Research Centre, University of Ottawa, ON, Canada.,The Ottawa Hospital Research Institute, ON, Canada
| |
Collapse
|
41
|
Zahid R, Akram M, Rafique E. Prevalence, risk factors and disease knowledge of polycystic kidney disease in Pakistan. Int J Immunopathol Pharmacol 2020; 34:2058738420966083. [PMID: 33125856 PMCID: PMC7607775 DOI: 10.1177/2058738420966083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Polycystic kidneys disease refers to cyst(s) formation in kidneys with severe consequences of end stage renal disease thus have higher mortality. It is a common genetic disease occurring either as autosomal dominant polycystic kidney (ADPKD) or autosomal recessive polycystic kidney disease (ARPKD) with prevalence rates of 1/1000 and 1/40,000 respectively. Dominant forms presenting in later (>30) while recessive in earlier ages (infancy) and affecting both sexes and almost all race. The patient experiences many renal as well as extra-renal manifestations with marked hypertension and cyst formation in other organs predominantly in liver. Due to genetic basis, positive family history is considered as major risk factor. Ultrasonography remains the main stay of diagnosis along with family history, by indicating increased renal size and architectural modifications. Initially disease remains asymptomatic, later on symptomatic treatment is suggested with surgical interventions like cyst decortications or drainage. Dialysis proved to be beneficial in end stage renal disease. However renal transplantation is the treatment of choice.
Collapse
Affiliation(s)
- Rabia Zahid
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ejaz Rafique
- Department of Microbiology, University of Lahore, Lahore, Pakistan
| |
Collapse
|
42
|
Wang K, Zelnick LR, Chen Y, Hoofnagle AN, Watnick T, Seliger S, Kestenbaum B. Alterations of Proximal Tubular Secretion in Autosomal Dominant Polycystic Kidney Disease. Clin J Am Soc Nephrol 2019; 15:80-88. [PMID: 31628117 PMCID: PMC6946073 DOI: 10.2215/cjn.05610519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES In autosomal dominant polycystic kidney disease (ADPKD), the GFR often remains normal despite significant nephron loss. Proximal tubular secretory clearance may be reduced in ADPKD before detectable changes in GFR. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We used targeted mass spectrometry to quantify secretory solutes from blood and urine samples from 31 patients with ADPKD and preserved GFR (mean eGFR =111±11 ml/min per 1.73 m2) and 25 healthy control individuals as well as from 95 patients with ADPKD and reduced GFR (mean eGFR =53±21 ml/min per 1.73 m2) and 92 individuals with non-ADPKD CKD. We used linear regression to compare the fractional excretion of each solute between ADPKD and control groups. Among 112 patients with ADPKD, we used linear regression to determine associations of solute fractional excretion with height-adjusted total kidney volume. RESULTS After adjusting for demographics, clinical characteristics, and kidney function measures, the fractional excretions of three secretory solutes were lower in patients with ADPKD and preserved GFR compared with healthy individuals: 52% lower cinnamoylglycine excretion (95% confidence interval, 24% to 70%), 53% lower tiglylglycine excretion (95% confidence interval, 23% to 71%), and 91% lower xanthosine excretion (95% confidence interval, 83% to 95%). In addition to lower excretions of tiglylglycine and xanthosine, patients with ADPKD and reduced GFR also demonstrated 37% lower dimethyluric acid excretion (95% confidence interval, 21% to 50%), 58% lower hippurate excretion (95% confidence interval, 48% to 66%), 48% lower isovalerylglycine excretion (95% confidence interval, 37% to 56%), and 31% lower pyridoxic acid excretion (95% confidence interval, 16% to 42%) compared with patients with non-ADPKD CKD and comparable eGFR. Among patients with ADPKD, solute fractional excretions were not associated with differences in kidney volume. CONCLUSIONS Patients with ADPKD and preserved and reduced GFR demonstrate lower tubular secretory solute excretion compared with healthy controls and patients with non-ADPKD CKD. Our results suggest that tubular secretion is impaired in ADPKD independent of GFR.
Collapse
Affiliation(s)
- Ke Wang
- Division of Nephrology, Department of Medicine and .,Division of Nephrology, Kidney Research Institute, Kidney Research Institute, Seattle, Washington; and
| | - Leila R Zelnick
- Division of Nephrology, Department of Medicine and.,Division of Nephrology, Kidney Research Institute, Kidney Research Institute, Seattle, Washington; and
| | - Yan Chen
- Division of Nephrology, Kidney Research Institute, Kidney Research Institute, Seattle, Washington; and.,Departments of Epidemiology and
| | - Andrew N Hoofnagle
- Division of Nephrology, Kidney Research Institute, Kidney Research Institute, Seattle, Washington; and.,Laboratory Medicine, University of Washington, Seattle, Washington
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland, Baltimore, Maryland
| | - Stephen Seliger
- Division of Nephrology, Department of Medicine, University of Maryland, Baltimore, Maryland
| | - Bryan Kestenbaum
- Division of Nephrology, Department of Medicine and.,Division of Nephrology, Kidney Research Institute, Kidney Research Institute, Seattle, Washington; and
| |
Collapse
|
43
|
Hopp K, Cornec-Le Gall E, Senum SR, Te Paske IBAW, Raj S, Lavu S, Baheti S, Edwards ME, Madsen CD, Heyer CM, Ong ACM, Bae KT, Fatica R, Steinman TI, Chapman AB, Gitomer B, Perrone RD, Rahbari-Oskoui FF, Torres VE, Harris PC. Detection and characterization of mosaicism in autosomal dominant polycystic kidney disease. Kidney Int 2019; 97:370-382. [PMID: 31874800 DOI: 10.1016/j.kint.2019.08.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/05/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited, progressive nephropathy accounting for 4-10% of end stage renal disease worldwide. PKD1 and PKD2 are the most common disease loci, but even accounting for other genetic causes, about 7% of families remain unresolved. Typically, these unsolved cases have relatively mild kidney disease and often have a negative family history. Mosaicism, due to de novo mutation in the early embryo, has rarely been identified by conventional genetic analysis of ADPKD families. Here we screened for mosaicism by employing two next generation sequencing screens, specific analysis of PKD1 and PKD2 employing long-range polymerase chain reaction, or targeted capture of cystogenes. We characterized mosaicism in 20 ADPKD families; the pathogenic variant was transmitted to the next generation in five families and sporadic in 15. The mosaic pathogenic variant was newly discovered by next generation sequencing in 13 families, and these methods precisely quantified the level of mosaicism in all. All of the mosaic cases had PKD1 mutations, 14 were deletions or insertions, and 16 occurred in females. Analysis of kidney size and function showed the mosaic cases had milder disease than a control PKD1 population, but only a few had clearly asymmetric disease. Thus, in a typical ADPKD population, readily detectable mosaicism by next generation sequencing accounts for about 1% of cases, and about 10% of genetically unresolved cases with an uncertain family history. Hence, identification of mosaicism is important to fully characterize ADPKD populations and provides informed prognostic information.
Collapse
Affiliation(s)
- Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Emilie Cornec-Le Gall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Department of Nephrology, Centre Hospitalier Universitaire de Brest, Université de Brest, Brest, France; National Institute of Health and Medical Sciences, INSERM U1078, Brest, France
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Iris B A W Te Paske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonam Raj
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sravanthi Lavu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Marie E Edwards
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles D Madsen
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Christina M Heyer
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield, Sheffield, UK
| | - Kyongtae T Bae
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Richard Fatica
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio, USA
| | - Theodore I Steinman
- Renal Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Arlene B Chapman
- Division of Nephrology, University of Chicago School of Medicine, Chicago, Illinois, USA; Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Berenice Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ronald D Perrone
- Division of Nephrology, Tufts University Medical Center, Boston, Massachusetts, USA
| | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
44
|
Eroglu E, Kocyigit I, Cetin M, Zararsiz G, Imamoglu H, Bayramov R, Tastan S, Sipahioglu MH, Tokgoz B, Oymak O. Multiple urinary tract infections are associated with genotype and phenotype in adult polycystic kidney disease. Clin Exp Nephrol 2019; 23:1188-1195. [PMID: 31165946 DOI: 10.1007/s10157-019-01752-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Urinary tract infections (UTI) are one of the important clinical presentations in patients with autosomal dominant polycystic kidney disease (ADPKD). The association between UTI among genotypic and phonotypic properties of ADPKD patients is still obscure. Thus, we investigated the relationship between UTI and polycystin gene mutation with total kidney volume. METHODS Forty patients with ADPKD patients with a history of more than two UTI and age-gender-matched 40 ADPKD patients without UTI history enrolled in the study. Ambulatory blood pressure monitoring was performed in all participants. Magnetic resonance imaging (MRI) was performed with a 1.5-T system, and total kidney volumes were calculated using mid-slice technique. To determine PKD1 and PKD2 genotype, we performed molecular and genetic tests involving the following steps: DNA isolation, next-generation sequencing (NGS) and data analysis. RESULTS ADPKD patients with UTI had lower eGFR values than those without UTI [64.9 (32.2-100.8) vs 89.5 (59.0-110.0) (p = 0.041)]. In addition, patients with UTI had significantly increased height-adjusted total kidney volume than patients without UTI [950 (290-1350) vs 345 (243-780.0) (p = 0.005)]. Multiple logistic regression analysis showed that the PKD1-truncating mutation and hTKV independently predicted UTI. The sensitivity and specificity of hTKV were 65% and 77% (cutoff > 727 cm3) with an area of under the ROC curve of 0.70 (95% CI 0.56-0.85, p = 005). CONCLUSIONS ADPKD patients with larger kidneys and PKD1 mutation are susceptible to increased risk of multiple UTI. Additionally, renal function decreased in ADPKD patients with multiple UTI history.
Collapse
Affiliation(s)
- Eray Eroglu
- Division of Nephrology, Department of Internal Medicine, Erciyes University Medical Faculty, 38039, Kayseri, Turkey.
| | - Ismail Kocyigit
- Division of Nephrology, Department of Internal Medicine, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
| | - Mustafa Cetin
- Department of Internal Medicine, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Hakan Imamoglu
- Department of Radiology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Ruslan Bayramov
- Department of Genetics, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Sinem Tastan
- Department of Infectious Disease, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Murat Hayri Sipahioglu
- Division of Nephrology, Department of Internal Medicine, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
| | - Bulent Tokgoz
- Division of Nephrology, Department of Internal Medicine, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
| | - Oktay Oymak
- Division of Nephrology, Department of Internal Medicine, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
| |
Collapse
|
45
|
Weydert C, Decuypere JP, De Smedt H, Janssens P, Vennekens R, Mekahli D. Fundamental insights into autosomal dominant polycystic kidney disease from human-based cell models. Pediatr Nephrol 2019; 34:1697-1715. [PMID: 30215095 DOI: 10.1007/s00467-018-4057-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/23/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Several animal- and human-derived models are used in autosomal dominant polycystic kidney disease (ADPKD) research to gain insight in the disease mechanism. However, a consistent correlation between animal and human ADPKD models is lacking. Therefore, established human-derived models are relevant to affirm research results and translate findings into a clinical set-up. In this review, we give an extensive overview of the existing human-based cell models. We discuss their source (urine, nephrectomy and stem cell), immortalisation procedures, genetic engineering, kidney segmental origin and characterisation with nephron segment markers. We summarise the most studied pathways and lessons learned from these different ADPKD models. Finally, we issue recommendations for the derivation of human-derived cell lines and for experimental set-ups with these cell lines.
Collapse
Affiliation(s)
- Caroline Weydert
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, GPURE, KU Leuven, Leuven, Belgium
| | - Jean-Paul Decuypere
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, GPURE, KU Leuven, Leuven, Belgium
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter Janssens
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, GPURE, KU Leuven, Leuven, Belgium
- Department of Nephrology, University Hospitals Brussels, Brussels, Belgium
| | - Rudi Vennekens
- VIB Center for Brain and Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Djalila Mekahli
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, GPURE, KU Leuven, Leuven, Belgium.
- Department of Pediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
46
|
Kocyigit I, Taheri S, Eroglu E, Sener EF, Zararsız G, Uzun I, Tufan E, Mehmetbeyoglu E, Korkmaz Bayramov K, Sipahioglu MH, Ozkul Y, Tokgoz B, Oymak O, Axelsson J. Systemic Succinate, Hypoxia-Inducible Factor-1 Alpha, and IL-1β Gene Expression in Autosomal Dominant Polycystic Kidney Disease with and without Hypertension. Cardiorenal Med 2019; 9:370-381. [PMID: 31319406 DOI: 10.1159/000500478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/09/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cyst pressure induces renin-angiotensin-aldosterone system activation and kidney hypoxia in autosomal dominant polycystic kidney disease (ADPKD). Lipopolysaccharide-induced Toll-like receptor activation causes metabolic disturbances that are triggered by increased succinate levels and hypoxia inducible factors, which results in inflammation via IL-1β activation. Since we aimed to investigate the role of both inflammation and hypoxia in the clinical course of ADPKD, via succinate levels from sera samples, HIF-1α gene expression from whole blood and urine samples and IL-1βgene expression from whole blood were measured. METHODS One hundred ADPKD patients and 100 matched healthy controls were enrolled to this cross-sectional study. Twenty-four-hour ambulatory blood pressure monitoring was conducted in all participants. Blood, serum, and urine samples were taken after 12-h fasting for the measurement of biochemical parameters and succinate levels. Whole blood and urine samples were used for HIF-1α and IL-1β geneexpression by using quantitative real-time PCR. RESULTS There were significant differences in whole blood HIF-1α, IL-1β geneexpression, and serumsuccinate levels between the ADPKD patients and the control subjects. Whole blood HIF-1αgene expression, IL-1β geneexpression, and serumsuccinate levels were also significantly different in ADPKD patients with hypertension in comparison with normotensive ones (p < 0.05). Serum succinate levels and blood IL-1β geneexpression were increased in ADPKD patients with high levels of HIF-1α geneexpression (p = 0.018 and p = 0.029, respectively). CONCLUSIONS Increased age,low eGFR, and HIF-1α and IL-1β geneexpressions were also independently associated with hypertension in ADPKD patients. Inflammation and hypoxia are both relevant factors that might be associated with hypertension in ADPKD.
Collapse
Affiliation(s)
- Ismail Kocyigit
- Department of Nephrology, Erciyes University Medical Faculty, Kayseri, Turkey,
| | - Serpil Taheri
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Eray Eroglu
- Department of Nephrology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Elif Funda Sener
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Gokmen Zararsız
- Department of Biostatistics, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Ilknur Uzun
- Department of Internal Medicine, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Esra Tufan
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Ecmel Mehmetbeyoglu
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Kezban Korkmaz Bayramov
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University Medical Faculty, Kayseri, Turkey
| | | | - Yusuf Ozkul
- Department of Genetics, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Bulent Tokgoz
- Department of Nephrology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Oktay Oymak
- Department of Nephrology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Jonas Axelsson
- Transplant Immunology Division, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology, Karolinska University Hospital, Stockholm, Sweden.,Clinical Research Center, Lund University, Lund, Sweden
| |
Collapse
|
47
|
Grochowsky A, Gunay-Aygun M. Clinical characteristics of individual organ system disease in non-motile ciliopathies. TRANSLATIONAL SCIENCE OF RARE DISEASES 2019; 4:1-23. [PMID: 31763176 PMCID: PMC6864414 DOI: 10.3233/trd-190033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-motile ciliopathies (disorders of the primary cilia) include autosomal dominant and recessive polycystic kidney diseases, nephronophthisis, as well as multisystem disorders Joubert, Bardet-Biedl, Alström, Meckel-Gruber, oral-facial-digital syndromes, and Jeune chondrodysplasia and other skeletal ciliopathies. Chronic progressive disease of the kidneys, liver, and retina are common features in non-motile ciliopathies. Some ciliopathies also manifest neurological, skeletal, olfactory and auditory defects. Obesity and type 2 diabetes mellitus are characteristic features of Bardet-Biedl and Alström syndromes. Overlapping clinical features and molecular heterogeneity of these ciliopathies render their diagnoses challenging. In this review, we describe the clinical characteristics of individual organ disease for each ciliopathy and provide natural history data on kidney, liver, retinal disease progression and central nervous system function.
Collapse
Affiliation(s)
- Angela Grochowsky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pediatrics and The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
48
|
Modelling the long-term benefits of tolvaptan therapy on renal function decline in autosomal dominant polycystic kidney disease: an exploratory analysis using the ADPKD outcomes model. BMC Nephrol 2019; 20:136. [PMID: 31014270 PMCID: PMC6480528 DOI: 10.1186/s12882-019-1290-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 03/11/2019] [Indexed: 01/06/2023] Open
Abstract
Background The short-term efficacy of tolvaptan in patients with autosomal dominant polycystic kidney disease (ADPKD) has been demonstrated across several phase 3 trials, while the ADPKD Outcomes Model (ADPKD-OM) represents a validated approach to predict natural disease progression over a lifetime horizon. This study describes the implementation of a tolvaptan treatment effect within the ADPKD-OM and explores the potential long-term benefits of tolvaptan therapy in ADPKD. Methods The effect of tolvaptan on ADPKD progression was modelled by applying a constant treatment effect to the rate of renal function decline, consistent with that observed in the Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and Its Outcomes trial (TEMPO 3:4; ClinicalTrials.gov identifier NCT00428948). Predictions generated by the ADPKD-OM were compared against aggregated data from a subsequent extension trial (TEMPO 4:4; ClinicalTrials.gov identifier NCT01214421) and the Replicating Evidence of Preserved Renal Function an Investigation of Tolvaptan Safety Efficacy in ADPKD trial (REPRISE; ClinicalTrials.gov identifier NCT02160145). Following validation, an application of the ADPKD-OM sought to estimate the benefit of tolvaptan therapy on time to end-stage renal disease (ESRD), in a range of ADPKD populations. Results Model validation against TEMPO 4:4 and REPRISE demonstrated the accuracy and generalisability of the tolvaptan treatment effect applied within the ADPKD-OM. In simulated patients matched to the overall TEMPO 3:4 trial population at baseline, tolvaptan therapy was predicted to delay the mean age of ESRD onset by five years, compared to natural disease progression (57 years versus 52 years, respectively). In subgroup and sensitivity analyses, the estimated delay to ESRD was greatest among patients with CKD stage 1 at baseline (6.6 years), compared to CKD 2 and 3 subgroups (4.7 and 2.7 years, respectively); and ADPKD patients in Mayo subclasses 1C–1E. Conclusions This study demonstrated the potential for tolvaptan therapy to delay time to ESRD, particularly among patients with early-stage CKD and evidence of rapidly progressing disease. Data arising from this study highlight the value to be gained by early intervention and long-term treatment with tolvaptan, which may alleviate the economic and societal costs of providing care to patients who progress to ESRD.
Collapse
|
49
|
Kim H, Park S, Jhee JH, Yun HR, Park JT, Han SH, Lee J, Kim SW, Kim YH, Oh YK, Kang SW, Choi KH, Yoo TH. Urinary angiotensinogen level is associated with potassium homeostasis and clinical outcome in patients with polycystic kidney disease: a prospective cohort study. BMC Nephrol 2019; 20:104. [PMID: 30909873 PMCID: PMC6434770 DOI: 10.1186/s12882-019-1292-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 03/11/2019] [Indexed: 01/13/2023] Open
Abstract
Background Guidelines for general hypertension treatment do not recommend the combined use of renin-angiotensin-aldosterone system (RAAS) inhibitors due to the risk of hyperkalemia. However, a recent clinical trial showed that polycystic kidney disease (PKD) patients had infrequent episodes of hyperkalemia despite receiving combined RAAS inhibitors. Because intrarenal RAAS is a main component for renal potassium handling, we further investigated the association between intrarenal RAAS activity and serum potassium level in patients with chronic kidney disease, particularly in PKD patients, and examined whether intrarenal RAAS activity has a prognostic role in patients with PKD. Methods A total of 1788 subjects from the KoreaN cohort study for Outcome in patients With Chronic Kidney Disease (KNOW-CKD) were enrolled in this study. Intrarenal RAAS activity was assessed by the measurement of urinary angiotensinogen (AGT). The primary outcome was the composite of all-cause mortality and renal function decline. Results Patients with PKD had a significantly lower serum potassium level in chronic kidney disease stages 1 to 3b than non-PKD patients. In logistic regression analysis, after adjusting for multiple confounders, PKD patients had a significantly lower risk of hyperkalemia than non-PKD patients. In multivariable linear regression analysis, the urinary AGT/creatinine (Cr) ratio was negatively correlated with the serum potassium level (β = − 0.058, P = 0.017) and positively correlated with the transtubular potassium gradient (TTKG, β = 0.087, P = 0.001). In propensity score matching analysis, after matching factors associated with serum potassium and TTKG, PKD patients had a significantly higher TTKG (P = 0.021) despite a lower serum potassium level (P = 0.004). Additionally, the urinary AGT/Cr ratio was significantly higher in PKD patients than in non-PKD patients (P = 0.011). In 293 patients with PKD, high urinary AGT/Cr ratio was associated with increased risk of the composite outcome (hazard ratio 1.29; 95% confidence interval, 1.07–1.55; P = 0.007). Conclusions High activity of intrarenal RAAS is associated with increased urinary potassium excretion and low serum potassium level in patients with PKD. In addition, intrarenal RAAS activity can be a prognostic marker for mortality and renal function decline in these patients.
Collapse
Affiliation(s)
- Hyoungnae Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, 03722, Republic of Korea.,Division of Nephrology, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Seohyun Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong Hyun Jhee
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Hae-Ryong Yun
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joongyub Lee
- Medical Research Collaborating Center, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yeong Hoon Kim
- Department of Internal Medicine, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Boramae Medical Center, Seoul, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu Hun Choi
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, 03722, Republic of Korea.
| | | |
Collapse
|
50
|
Gansevoort RT, van Gastel MDA, Chapman AB, Blais JD, Czerwiec FS, Higashihara E, Lee J, Ouyang J, Perrone RD, Stade K, Torres VE, Devuyst O. Plasma copeptin levels predict disease progression and tolvaptan efficacy in autosomal dominant polycystic kidney disease. Kidney Int 2019; 96:159-169. [PMID: 30898339 DOI: 10.1016/j.kint.2018.11.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
In the TEMPO 3:4 Trial, treatment with tolvaptan, a vasopressin V2 receptor antagonist, slowed the increase in total kidney volume and decline in estimated glomerular filtration rate (eGFR) in autosomal dominant polycystic kidney disease (ADPKD). We investigated whether plasma copeptin levels, a marker of plasma vasopressin, are associated with disease progression, and whether pre-treatment copeptin and treatment-induced change in copeptin are associated with tolvaptan treatment efficacy. This post hoc analysis included 1,280 TEMPO 3:4 participants (aged 18-50 years, estimated creatinine clearance ≥60 ml/min and total kidney volume ≥750 mL) who had plasma samples available at baseline for measurement of copeptin using an automated immunofluorescence assay. In placebo-treated subjects, baseline copeptin predicted kidney growth and eGFR decline over 3 years. These associations were independent of sex, age, and baseline eGFR, but were no longer statistically significant after additional adjustment for baseline total kidney volume. In tolvaptan-treated subjects, copeptin increased from baseline to week 3 (6.3 pmol/L versus 21.9 pmol/L, respectively). In tolvaptan-treated subjects with higher baseline copeptin levels, a larger treatment effect was noted with respect to kidney growth rate and eGFR decline. Tolvaptan-treated subjects with a larger percentage increase in copeptin from baseline to week 3 had a better disease outcome, with less kidney growth and eGFR decline after three years. Copeptin holds promise as a biomarker to predict outcome and tolvaptan treatment efficacy in ADPKD.
Collapse
Affiliation(s)
- Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Maatje D A van Gastel
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arlene B Chapman
- Section of Nephrology, University of Chicago, Chicago, Illinois, USA
| | - Jaime D Blais
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - Frank S Czerwiec
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - Eiji Higashihara
- Department of ADPKD Research, Kyorin University School of Medicine, Tokyo, Japan
| | - Jennifer Lee
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - John Ouyang
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - Ronald D Perrone
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and Division of Nephrology, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|