1
|
Shankar AS, Du Z, Mora HT, van den Bosch TPP, Korevaar SS, Van den Berg-Garrelds IM, Bindels E, Lopez-Iglesias C, Clahsen-van Groningen MC, Gribnau J, Baan CC, Danser AHJ, Hoorn EJ, Hoogduijn MJ. Human kidney organoids produce functional renin. Kidney Int 2020; 99:134-147. [PMID: 32918942 DOI: 10.1016/j.kint.2020.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 01/31/2023]
Abstract
Renin production by the kidney is of vital importance for salt, volume, and blood pressure homeostasis. The lack of human models hampers investigation into the regulation of renin and its relevance for kidney physiology. To develop such a model, we used human induced pluripotent stem cell-derived kidney organoids to study the role of renin and the renin-angiotensin system in the kidney. Extensive characterization of the kidney organoids revealed kidney-specific cell populations consisting of podocytes, proximal and distal tubular cells, stromal cells and endothelial cells. We examined the presence of various components of the renin-angiotensin system such as angiotensin II receptors, angiotensinogen, and angiotensin-converting enzymes 1 and 2. We identified by single-cell sequencing, immunohistochemistry, and functional assays that cyclic AMP stimulation induces a subset of pericytes to increase the synthesis and secretion of enzymatically active renin. Renin production by the organoids was responsive to regulation by parathyroid hormone. Subcutaneously implanted kidney organoids in immunodeficient IL2Ry-/-Rag2-/- mice were successfully vascularized, maintained tubular and glomerular structures, and retained capacity to produce renin two months after implantation. Thus, our results demonstrate that kidney organoids express renin and provide insights into the endocrine potential of human kidney organoids, which is important for regenerative medicine in the context of the endocrine system.
Collapse
Affiliation(s)
- Anusha S Shankar
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Zhaoyu Du
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hector Tejeda Mora
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Sander S Korevaar
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ingrid M Van den Berg-Garrelds
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eric Bindels
- Department of Haematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Carmen Lopez-Iglesias
- Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | | | - Joost Gribnau
- Department of Developmental Biology and iPS Core Facility, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martin J Hoogduijn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Raison D, Coquard C, Hochane M, Steger J, Massfelder T, Moulin B, Karaplis AC, Metzger D, Chambon P, Helwig JJ, Barthelmebs M. Knockdown of parathyroid hormone related protein in smooth muscle cells alters renal hemodynamics but not blood pressure. Am J Physiol Renal Physiol 2013; 305:F333-42. [PMID: 23720345 DOI: 10.1152/ajprenal.00503.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) belongs to vasoactive factors that regulate blood pressure and renal hemodynamics both by reducing vascular tone and raising renin release. PTHrP is expressed in systemic and renal vasculature. Here, we wanted to assess the contribution of vascular smooth muscle cell endogenous PTHrP to the regulation of cardiovascular and renal functions. We generated a mouse strain (SMA-CreERT2/PTHrPL2/L2 or premutant PTHrPSM-/-), which allows temporally controlled, smooth muscle-targeted PTHrP knockdown in adult mice. Tamoxifen treatment induced efficient recombination of PTHrP-floxed alleles and decreased PTHrP expression in vascular and visceral smooth muscle cells of PTHrPSM-/- mice. Blood pressure remained unchanged in PTHrPSM-/- mice, but plasma renin concentration and creatinine clearance were reduced. Renal hemodynamics were further analyzed during clearance measurements in anesthetized mice. Conditional knockdown of PTHrP decreased renal plasma flow and glomerular filtration rate with concomitant reduction in filtration fraction. Similar measurements were repeated during acute saline volume expansion. Saline volume expansion induced a rise in renal plasma flow and reduced filtration fraction; both were blunted in PTHrPSM-/- mice leading to impaired diuresis. These findings show that endogenous vascular smooth muscle PTHrP controls renal hemodynamics under basal conditions, and it is an essential factor in renal vasodilation elicited by saline volume expansion.
Collapse
Affiliation(s)
- Denis Raison
- Institut National de la Santé et de la Recherche Médicale (INSERM), U682, Equipe Cancer du rein et Physiopathologie rénale, Faculté de Médecine, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Atchison DK, Harding P, Cecilia Ortiz-Capisano M, Peterson EL, Beierwaltes WH. Parathyroid hormone stimulates juxtaglomerular cell cAMP accumulation without stimulating renin release. Am J Physiol Renal Physiol 2012; 303:F1157-65. [PMID: 22896038 PMCID: PMC3469678 DOI: 10.1152/ajprenal.00269.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/08/2012] [Indexed: 11/22/2022] Open
Abstract
Parathyroid hormone (PTH) is positively coupled to the generation of cAMP via its actions on the PTH1R and PTH2R receptors. Renin secretion from juxtaglomerular (JG) cells is stimulated by elevated intracellular cAMP, and every stimulus that increases renin secretion is thought to do so via increasing cAMP. Thus we hypothesized that PTH increases renin release from primary cultures of mouse JG cells by elevating intracellular cAMP via the PTH1R receptor. We found PTH1R, but not PTH2R, mRNA expressed in JG cells. While PTH increased JG cell cAMP content from (log(10) means ± SE) 3.27 ± 0.06 to 3.92 ± 0.12 fmol/mg protein (P < 0.001), it did not affect renin release. The PTH1R-specific agonist, parathyroid hormone-related protein (PTHrP), also increased JG cell cAMP from 3.13 ± 0.09 to 3.93 ± 0.09 fmol/mg protein (P < 0.001), again without effect on renin release. PTH2R receptor agonists had no effect on cAMP or renin release. PTHrP increased cAMP in the presence of both low and high extracellular calcium from 3.31 ± 0.17 to 3.83 ± 0.20 fmol/mg protein (P < 0.01) and from 3.29 ± 0.18 to 3.63 ± 0.22 fmol/mg protein (P < 0.05), respectively, with no effect on renin release. PTHrP increased JG cell cAMP in the presence of adenylyl cyclase-V inhibition from 2.85 ± 0.17 to 3.44 ± 0.14 fmol/mg protein (P < 0.001) without affecting renin release. As a positive control, forskolin increased JG cell cAMP from 3.39 ± 0.13 to 4.48 ± 0.07 fmol/mg protein (P < 0.01) and renin release from 2.96 ± 0.10 to 3.29 ± 0.08 ng ANG I·mg prot(-1)·h(-1) (P < 0.01). Thus PTH increases JG cell cAMP via non-calcium-sensitive adenylate cyclases without affecting renin release. These data suggest compartmentalization of cAMP signaling in JG cells.
Collapse
Affiliation(s)
- Douglas K Atchison
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 2799 W. Grand Blvd., Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
4
|
Atchison DK, Westrick E, Szandzik DL, Gordish KL, Beierwaltes WH. Parathyroid hormone-related protein stimulates plasma renin activity via its anorexic effects on sodium chloride intake. Am J Physiol Endocrinol Metab 2012; 303:E457-63. [PMID: 22649069 PMCID: PMC3423101 DOI: 10.1152/ajpendo.00020.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) increases renin release from isolated perfused kidneys and may act as an autacoid regulator of renin secretion, but its effects on renin in vivo are unknown. In vivo, PTHrP causes hypercalcemia and anorexia, which may affect renin. We hypothesized that chronically elevated PTHrP would increase plasma renin activity (PRA) indirectly via its anorexic effects, reducing sodium chloride (NaCl) intake and causing NaCl restriction. We infused male Sprague-Dawley rats with the vehicle (control) or 125 μg PTHrP/day (PTHrP) via subcutaneous osmotic minipumps for 5 days. To replenish NaCl consumption, a third group of PTHrP-infused rats received 0.3% NaCl (PTHrP + NaCl) in their drinking water. PTHrP increased PRA from a median control value of 3.68 to 18.4 ng Ang I·ml(-1)·h(-1) (P < 0.05), whereas the median PTHrP + NaCl PRA value was normal (7.82 ng Ang I·ml(-1)·h(-1), P < 0.05 vs. PTHrP). Plasma Ca(2+) (median control: 10.2 mg/dl; PTHrP: 13.7 mg/dl; PTHrP + NaCl: 14.1 mg/dl; P < 0.05) and PTHrP (median control: 0.03 ng/ml; PTHrP: 0.12 ng/ml; PTHrP + NaCl: 0.15 ng/ml; P < 0.05) were elevated in PTHrP- and PTHrP + NaCl-treated rats. Body weights and caloric consumption were lower in PTHrP- and PTHrP + NaCl-treated rats. NaCl consumption was lower in PTHrP-treated rats (mean Na(+): 28.5 ± 4.1 mg/day; mean Cl(-): 47.8 mg/day) compared with controls (Na(+): 67.3 ± 2.7 mg/day; Cl(-): 112.8 ± 4.6 mg/day; P < 0.05). NaCl consumption was comparable with control in the PTHrP + NaCl group; 0.3% NaCl in the drinking water had no effect on PRA in normal rats. Thus, our data support the hypothesis that PTHrP increases PRA via its anorexic effects, reducing NaCl intake and causing NaCl restriction.
Collapse
Affiliation(s)
- Douglas K Atchison
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
5
|
Atchison DK, Beierwaltes WH. The influence of extracellular and intracellular calcium on the secretion of renin. Pflugers Arch 2012; 465:59-69. [PMID: 22538344 DOI: 10.1007/s00424-012-1107-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/03/2012] [Indexed: 12/29/2022]
Abstract
Changes in plasma, extracellular, and intracellular calcium can affect renin secretion from the renal juxtaglomerular (JG) cells. Elevated intracellular calcium directly inhibits renin release from JG cells by decreasing the dominant second messenger intracellular cyclic adenosine monophosphate (cAMP) via actions on calcium-inhibitable adenylyl cyclases and calcium-activated phosphodiesterases. Increased extracellular calcium also directly inhibits renin release by stimulating the calcium-sensing receptor (CaSR) on JG cells, resulting in parallel changes in the intracellular environment and decreasing intracellular cAMP. In vivo, acutely elevated plasma calcium inhibits plasma renin activity (PRA) via parathyroid hormone-mediated elevations in renal cortical interstitial calcium that stimulate the JG cell CaSR. However, chronically elevated plasma calcium or CaSR activation may actually stimulate PRA. This elevation in PRA may be a compensatory mechanism resulting from calcium-mediated polyuria. Thus, changing the extracellular calcium in vitro or in vivo results in inversely related acute changes in cAMP, and therefore renin release, but chronic changes in calcium may result in more complex interactions dependent upon the duration of changes and the integration of the body's response to these changes.
Collapse
Affiliation(s)
- Douglas K Atchison
- Hypertension and Vascular Research Division, Department Internal Medicine, Henry Ford Hospital, 7121 E&R Bldg., 2799 W. Grand Blvd., Detroit, MI 48202, USA
| | | |
Collapse
|
6
|
Abstract
OBJECTIVE The presence of parathyroid hormone receptor mRNA in a wide variety of tissues, including the endothelium, suggests that parathyroid hormone has potentially important effects in addition to the maintenance of calcium and phosphate homeostasis. We conducted a prospective study to examine the association between plasma intact parathyroid hormone levels and the subsequent risk of developing hypertension. METHODS We measured intact parathyroid hormone in 481 men without hypertension from the Health Professionals Follow-up Study. During 10 years of follow-up, we observed 142 cases of incident hypertension. Cox proportional hazards regression was used to adjust for age, race, body mass index, alcohol use, smoking, physical activity, predicted plasma 25-hydroxyvitamin D level, and other factors. RESULTS Median baseline levels of intact parathyroid hormone were 40.1 pg/ml in individuals who developed hypertension and 36.3 pg/ml in those who did not (P = 0.01). After multivariate adjustment, the relative risk for incident hypertension in men in the highest quartile of parathyroid hormone (median 56.0 pg/ml) compared with the lowest quartile of parathyroid hormone (median 26.3 pg/ml) was 1.83 (95% confidence interval 1.10-3.03; P for trend = 0.01). Analyses restricted to men in the lowest 90th percentage of the parathyroid hormone distribution (< or =58 pg/ml) yielded similar results. Further adjustment for the intake of calcium and sodium, as well as for season and fasting status at time of blood draw, did not materially change the results. CONCLUSION Plasma levels of intact parathyroid hormone, even within ranges considered normal, are positively and independently associated with a higher risk of incident hypertension.
Collapse
|
7
|
Abstract
Among factors related to disturbed calcium-phosphate metabolism in chronic kidney disease, the following must be mainly considered as potential culprits in the progression of renal dysfunction: hyperphosphatemia, hyperparathyroidism, lack of active vitamin D, and possibly excess of the phosphaturic hormone FGF 23. Early experimental work suggested a parathyroid hormone (PTH)-independent beneficial role of phosphate restriction on progression in rats (animals with physiologic hyperphosphatemia), so that the generalization of the data is uncertain. Recent observational studies also found a correlation between S-phosphate and progression, but it remains uncertain whether the relationship is causal. There is very little direct experimental or clinical evidence for a role of PTH in accelerating progression, although the PTH1 receptor is expressed in podocytes and PTH affects podocyte function (i.e., Kf). It is undoubtedly a candidate that requires more sophisticated investigation. Recently, it has been shown that progression is significantly attenuated by calcimimetics (and equally by parathyroidectomy), but it is currently impossible to exclude a confounding effect of lower blood pressure values. The most solid evidence for an impact on progression exists for active vitamin D. In the past, it was widely assumed that vitamin D was "nephrotoxic." In retrospect, nephrotoxicity was the result of hypercalcemia. Recent evidence is overwhelming that 1,25(OH)2D3 and its analogues attenuate progression in noninflammatory and inflammatory models of chronic kidney disease. The main target cells identified so far are podocytes and mesangial cells. It is currently unknown whether the novel phosphaturic hormones have an impact on progression.
Collapse
Affiliation(s)
- Eberhard Ritz
- Department of Internal Medicine, Ruperto Carola University, Heidelberg, Germany.
| | | | | |
Collapse
|
8
|
Massfelder T, Taesch N, Fritsch S, Eichinger A, Barthelmebs M, Stewart AF, Helwig JJ. Type 1 parathyroid hormone receptor expression level modulates renal tone and plasma renin activity in spontaneously hypertensive rat. J Am Soc Nephrol 2002; 13:639-648. [PMID: 11856767 DOI: 10.1681/asn.v133639] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
These studies examine whether PTHrP(1-36), a vasodilator, modulates BP and renal vascular resistance (RVR) in spontaneously hypertensive rat (SHR). Within the kidney of normotensive rats, PTHrP(1-36) was enriched in vessels. In vessels of SHR, PTHrP was upregulated by 40% and type 1 PTH receptor (PTH1R) was downregulated by 65% compared with normotensive rats. To investigate the role of endogenous PTHrP in the regulation of BP and RVR, SHR were subjected to somatic human (h)PTH1R gene delivery. Three weeks after a single intravenous injection of pcDNA1.1 plasmid containing the hPTH1R gene under the control of the cytomegalovirus promoter, hPTH1R mRNA was detected in all of the main organs. Within the kidney, the transgene was enriched in vessels. In the isolated perfused kidney, RVR was reduced by 23% and PTHrP(1-36)-induced vasodilation, which is depressed in SHR, was restored and a vasoconstrictory response to PTH(3-34), a PTH1R antagonist, was revealed. These effects were not observed in control SHR treated with empty plasmid. BP remained unchanged, and plasma renin activity increased by 60%. Thus, in SHR renal vessels, a reduced number of PTH1R contributes to the high RVR, despite the higher expression of vasodilatory PTHrP. Moreover, these studies provide evidence for a direct link between the density of PTH1R and plasma renin activity, which might be responsible for the absence of effect of PTH1R gene delivery on BP in SHR. Overall, PTHrP significantly contributes to the homeostasis of renal and systemic hemodynamics in SHR.
Collapse
Affiliation(s)
- Thierry Massfelder
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Nathalie Taesch
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Samuel Fritsch
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anne Eichinger
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mariette Barthelmebs
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrew F Stewart
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jean-Jacques Helwig
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Clemens TL, Cormier S, Eichinger A, Endlich K, Fiaschi-Taesch N, Fischer E, Friedman PA, Karaplis AC, Massfelder T, Rossert J, Schlüter KD, Silve C, Stewart AF, Takane K, Helwig JJ. Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 2001; 134:1113-36. [PMID: 11704631 PMCID: PMC1573066 DOI: 10.1038/sj.bjp.0704378] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2001] [Accepted: 09/10/2001] [Indexed: 11/09/2022] Open
Abstract
The cloning of the so-called 'parathyroid hormone-related protein' (PTHrP) in 1987 was the result of a long quest for the factor which, by mimicking the actions of PTH in bone and kidney, is responsible for the hypercalcemic paraneoplastic syndrome, humoral calcemia of malignancy. PTHrP is distinct from PTH in a number of ways. First, PTHrP is the product of a separate gene. Second, with the exception of a short N-terminal region, the structure of PTHrP is not closely related to that of PTH. Third, in contrast to PTH, PTHrP is a paracrine factor expressed throughout the body. Finally, most of the functions of PTHrP have nothing in common with those of PTH. PTHrP is a poly-hormone which comprises a family of distinct peptide hormones arising from post-translational endoproteolytic cleavage of the initial PTHrP translation products. Mature N-terminal, mid-region and C-terminal secretory forms of PTHrP are thus generated, each of them having their own physiologic functions and probably their own receptors. The type 1 PTHrP receptor, binding both PTH(1-34) and PTHrP(1-36), is the only cloned receptor so far. PTHrP is a PTH-like calciotropic hormone, a myorelaxant, a growth factor and a developmental regulatory molecule. The present review reports recent aspects of PTHrP pharmacology and physiology, including: (a) the identification of new peptides and receptors of the PTH/PTHrP system; (b) the recently discovered nuclear functions of PTHrP and the role of PTHrP as an intracrine regulator of cell growth and cell death; (c) the physiological and developmental actions of PTHrP in the cardiovascular and the renal glomerulo-vascular systems; (d) the role of PTHrP as a regulator of pancreatic beta cell growth and functions, and, (e) the interactions of PTHrP and calcium-sensing receptors for the control of the growth of placental trophoblasts. These new advances have contributed to a better understanding of the pathophysiological role of PTHrP, and will help to identify its therapeutic potential in a number of diseases.
Collapse
Affiliation(s)
- Thomas L Clemens
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, U.S.A
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Sarah Cormier
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Anne Eichinger
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Karlhans Endlich
- Institut für Anatomie und Zellbiologie 1, Universität Heidelberg, Heidelberg, Germany
| | - Nathalie Fiaschi-Taesch
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Evelyne Fischer
- Department of Nephrology, University Hospital of Strasbourg, Strasbourg, France
| | - Peter A Friedman
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
| | | | - Thierry Massfelder
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Jérôme Rossert
- INSERM U489 and Departments of Nephrology and Pathology, Paris VI University, France
| | | | - Caroline Silve
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Andrew F Stewart
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Karen Takane
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Jean-Jacques Helwig
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| |
Collapse
|
10
|
Santos S, Bosch RJ, Ortega A, Largo R, Fernández-Agulló T, Gazapo R, Egido J, Esbrit P. Up-regulation of parathyroid hormone-related protein in folic acid-induced acute renal failure. Kidney Int 2001; 60:982-95. [PMID: 11532093 DOI: 10.1046/j.1523-1755.2001.060003982.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Parathyroid hormone (PTH)-related protein (PTHrP) is present in many normal tissues, including the kidney. Current evidence supports that PTHrP is involved in renal pathophysiology, although its role on the mechanisms of renal damage and/or repair is unclear. Our present study examined the changes in PTHrP and the PTH/PTHrP receptor (type 1) in folic acid-induced acute renal failure in rats. The possible role of PTHrP on the process of renal regeneration following folic acid administration, and potential interaction between angiotensin II (Ang II) and endothelin-1, and PTHrP, were examined in this animal model. METHODS PTHrP, PTH/PTHrP receptor, ACE, and preproendothelin-1 (preproET-1) mRNA levels in the rat kidney were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and/or RNase protection assay. Immunohistochemistry also was performed for PTHrP, the PTH/PTHrP receptor, and Ang II in the renal tissue of folic acid-injected rats. The role of PTHrP on tubular cell proliferation following folic acid injury was investigated in vitro in rat renal epithelial cells (NRK 52E). PTHrP secretion in the medium conditioned by these cells was measured by an immunoradiometric assay specific for the 1-36 sequence. RESULTS Using RT-PCR, PTHrP mRNA was rapidly (1 hour) and maximally increased (3-fold) in the rat kidney after folic acid, decreasing after six hours. At 72 hours, renal function was maximally decreased in these rats, associated with an increased PTHrP immunostaining in both renal tubules and glomeruli. In contrast, the PTH/PTHrP receptor mRNA (RNase protection assay) decreased shortly after folic acid administration. Moreover, PTH/PTHrP receptor immunostaining dramatically decreased in renal tubular cell membranes after folic acid. A single subcutaneous administration of PTHrP (1-36), 3 or 50 microg/kg body weight, shortly after folic acid injection increased the number of tubular cells staining for proliferating cell nuclear antigen by 30% (P < 0.05) or 50% (P < 0.01), respectively, in these rats at 24 hours, without significant changes in either renal function or calcemia. On the other hand, this peptide failed to modify the increase (2-fold over control) in ACE mRNA, associated with a prominent Ang II staining into tubular cell nuclei, in the kidney of folic acid-treated rats at this time period. The addition of 10 mmol/L folic acid to NRK 52E cells caused a twofold increase in PTHrP mRNA at six hours, without significant changes in the PTH/PTHrP receptor mRNA. The presence of two anti-PTHrP antibodies, with or without folic acid, in the cell-conditioned medium decreased (40%, P < 0.01) cell growth. CONCLUSIONS Renal PTHrP was rapidly and transiently increased in rats with folic acid-induced acute renal failure, featuring as an early response gene. In addition, changes in ACE and Ang II expression were also found in these animals. PTHrP induces a mitogenic response in folic acid-damaged renal tubular cells both in vivo and in vitro. Our results support the notion that PTHrP up-regulation participates in the regenerative process in this model of acute renal failure and is a common event associated with the mechanisms of renal injury and repair.
Collapse
Affiliation(s)
- S Santos
- Bone and Mineral Metabolism Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Escande B, Lindner V, Massfelder T, Helwig JJ, Simeoni U. Developmental aspects of parathyroid hormone-related protein biology. Semin Perinatol 2001; 25:76-84. [PMID: 11339669 DOI: 10.1053/sper.2001.23194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) has been discovered as a parathyroid hormone (PTH)-like factor responsible for the humoral hypercalcaemia of malignancies. Further studies revealed that PTHrP is ubiquitously expressed, in mature as well as in developing normal tissues from various species. Although not completely understood, the biological roles of PTHrP concern a variety of domains, including calcium phosphorus metabolism and bone mineralization, smooth muscle relaxation, cell growth and differentiation, and embryonic development. As a poly-hormone, PTHrP is now acknowledged to act via the paracrine, autocrine, and even the intracrine pathways. This review focuses on the main developmental features of the biology of PTHrP. During embryonic development, PTHrP is considered to be involved as a growth factor that promotes cell proliferation and delays cell terminal maturation. PTHrP has been shown to intervene in the development of various tissues and organs such as the skeleton, skin, hair follicles, tooth, pancreas, and the kidney. In addition, through its midregion sequence, which is able to promote an active transplacental calcium transport, PTHrP may intervene indirectly in the mineralization of the foetal skeleton. PTHrP has also been shown to be necessary for the normal development of the mammary gland, while huge amounts of PTHrP are found in the human milk. Finally, observations of physiologic, vasodilating effects of PTHrP in the kidney suggest its involvment in the control of renal hemodynamics, especially in the perinatal period.
Collapse
Affiliation(s)
- B Escande
- Section of Renovascular Pharmacology & Physiology (INSERM-MENRT), Louis Pasteur University School of Medicine, Strasbourg, France
| | | | | | | | | |
Collapse
|
12
|
Massfelder T, Taesch N, Endlich N, Eichinger A, Escande B, Endlich K, Barthelmebs M, Helwig JJ. Paradoxical actions of exogenous and endogenous parathyroid hormone-related protein on renal vascular smooth muscle cell proliferation: reversion in the SHR model of genetic hypertension. FASEB J 2001; 15:707-18. [PMID: 11259389 DOI: 10.1096/fj.00-0053com] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In previous studies, added parathyroid hormone-related protein (PTHrP) inhibits whereas transfected PTHrP stimulates the proliferation of A10 aortic smooth muscle cells by nuclear translocation of the peptide. In the present studies, we asked whether these paradoxical trophic actions of PTHrP occur in smooth muscle cells (SMC) cultured from small intrarenal arteries of, and whether they are altered in, 12-wk-old spontaneously hypertensive rats (SHR) as compared to normotensive Wistar-Kyoto (WKY) rats. SHR cells grew faster than WKY cells. PTHrP transcript was increased in SHR-derived cells whereas PTH1 receptor (PTH1R) transcripts were similar in both cell lines. In both strains of cells, stable transfection with human PTHrP(1-139) cDNA did not further induce proliferation, suggesting maximal effect of endogenous PTHrP in wild cells. In contrast, transfection with antisense hPTHrP(1-139) cDNA, which abolished PTHrP mRNA, decreased WKY but increased SHR cell proliferation. Added PTHrP(1-36) (1-100 pM) decreased WKY and increased SHR cell proliferation. Additional studies indicated that the preferential coupling of PTH1-R to G-protein Gi was responsible for the proliferative effect of exogenous PTHrP in SHR cells. Moreover, PTHrP was detected in the nucleolus of a fraction of WKY and SHR renal SMC, in vitro as well as in situ, suggesting that the nucleolar translocation of PTHrP might be involved in the proliferative effects of endogenous PTHrP. In renovascular SMC, added PTHrP is antimitogenic, whereas endogenously produced PTHrP is mitogenic. These paradoxical effects of PTHrP on renovascular SMC proliferation appear to be reversed in the SHR model of genetic hypertension. A new concept emerges from these results, according to which a single molecule may have opposite effects on VSMC proliferation under physiological and pathophysiological conditions.
Collapse
MESH Headings
- Animals
- Arteries/anatomy & histology
- Blotting, Western
- Cell Division/drug effects
- Cells, Cultured
- Cholera Toxin/pharmacology
- Cloning, Molecular
- Disease Models, Animal
- Humans
- Hypertension/pathology
- Immunohistochemistry
- Kidney/blood supply
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Parathyroid Hormone-Related Protein
- Proteins/genetics
- Proteins/metabolism
- Proteins/pharmacology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Parathyroid Hormone, Type 1
- Receptors, Parathyroid Hormone/genetics
- Receptors, Parathyroid Hormone/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- T Massfelder
- Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Esbrit P, Egido J. The emerging role of parathyroid hormone-related protein as a renal regulating factor. Nephrol Dial Transplant 2000; 15:1109-11. [PMID: 10910428 DOI: 10.1093/ndt/15.8.1109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Bernini G, Moretti A, Lonzi S, Bendinelli C, Miccoli P, Salvetti A. Renin-angiotensin-aldosterone system in primary hyperparathyroidism before and after surgery. Metabolism 1999; 48:298-300. [PMID: 10094103 DOI: 10.1016/s0026-0495(99)90075-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Twenty consecutive unselected patients with proven primary hyperparathyroidism (PH), 26 essential hypertensive (EH) patients, and 13 normotensives were studied. Blood pressure (BP) and, under constant salt intake, plasma renin activity (PRA), parathyroid hormone (PTH), urinary and plasma sodium, potassium, aldosterone (ALD), creatinine, total calcium, and phosphate were measured. Patients with PH were also studied 1 and 6 months after successful surgery. In patients with PH, systolic and diastolic BP was significantly lower (P < .001) than in EH patients and higher (P < .005) than in controls. Eight patients with PH (40%) had BP levels greater than 140/90 mm Hg. PTH and plasma and urinary calcium in patients with PH were significantly (P < .01) higher than in controls, while PRA, ALD, phosphate, potassium, and sodium were superimposable in the three groups. PTH in patients with PH was weakly correlated with PRA (positively) and with plasma potassium (negatively) and was not associated with ALD, calcium, sodium, and BP levels. Surgery was followed by a significant reduction (P < .01) in PTH, calcium, and urinary phosphate and an increase (P < .02) in plasma phosphate, potassium, and sodium, whereas PRA, ALD, urinary potassium and sodium, and BP showed no change. In hypertensive patients with PH, PTH, PRA, and plasma and urinary ALD, calcium, and sodium did not differ from the values in normotensive PH patients, and variations in these humoral parameters after surgery were comparable in the two groups. In conclusion, our results show that hypertension is frequently associated with PH. However, the present data raise doubts about the assumption of a renin-mediated causal relationship between hyperparathyroidism and high BP. Indeed, as a unique finding in favor of the hypothesis of a stimulating role of PTH in renin secretion, we observed only a weak relation between PTH and PRA. Thus, unknown and/or unassessed factors related to parathyroid disease cannot be ruled out to explain the hypertension observed in some patients with PH.
Collapse
Affiliation(s)
- G Bernini
- Department of Internal Medicine, University of Pisa, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Largo R, Gómez-Garre D, Santos S, Peñaranda C, Blanco J, Esbrit P, Egido J. Renal expression of parathyroid hormone-related protein (PTHrP) and PTH/PTHrP receptor in a rat model of tubulointerstitial damage. Kidney Int 1999; 55:82-90. [PMID: 9893116 DOI: 10.1046/j.1523-1755.1999.00241.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND PTHrP, which appears to act as a growth/differentiation factor in a variety of tissues, is present in the kidney; however, its role is unclear. METHODS The expression of PTHrP and the PTH/PTHrP receptor were investigated by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry in the remnant kidney of uninephrectomized (UNX) rats after protein overloading [1 g/day of bovine serum albumin (BSA)]. RESULTS Compared with UNX-control rats, proteinuria in BSA-overloaded animals was detected within the first 24 hours and increased during the entire study period (28 days). Kidney examination by light microscopy showed no significant renal lesions at day 1 of BSA treatment, whereas at days 8 and 28, tubular lesions, infiltration of mononuclear cells, and mesangial expansion were observed. PTHrP mRNA expression in the renal cortex was already increased at day 1 (fourfold) and plateaued between days 8 and 28 (12- and 15-fold, respectively) in BSA-overloaded animals compared with UNX-control rats. At day 8, immunohistochemical analysis with two different anti-PTHrP antibodies showed a dramatic increase of PTHrP staining in the damaged proximal and distal tubules from BSA-overloaded rats with respect to UNX-control rats. Moreover, intense PTHrP immunostaining was also observed in glomerular mesangial and endothelial cells in BSA-overloaded rats, but not in the UNX-control rats. A reciprocal decrease of PTH/PTHrP receptor mRNA and immunostaining, without significant changes in the cellular localization (proximal and distal tubule, and glomerular mesangial and epithelial cells) of the PTH/PTHrP receptor positivity was found to occur in the renal cortex of BSA-overloaded rats. At day 8, coinciding with the up-regulation of PTHrP, an increase in the angiotensin converting enzyme and preproendothelin-1 gene expression was observed in the renal cortex of BSA-overloaded rats compared with UNX-control rats. CONCLUSIONS These results indicate that PTHrP can be added to the group of genes that are up-regulated in proximal tubular cells in response to intense proteinuria. Our results, together with previous findings, suggest that the vasoactive hormones angiotensin II and endothelin-1 could participate in the PTHrP production in the renal cortex of BSA-overloaded rats. Further experiments are required to clarify the mechanisms of PTHrP up-regulation and its possible role in the response to renal damage in this animal model.
Collapse
Affiliation(s)
- R Largo
- Renal Research Laboratory and Metabolic Research Unit, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Hospital Clínico, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Fiaschi-Taesch N, Endlich N, Massfelder T, Endlich K, Stewart AF, Helwig JJ. Renovascular parathyroid hormone-related protein in spontaneously hypertensive rats: dilator or trophic factor? KIDNEY INTERNATIONAL. SUPPLEMENT 1998; 67:S207-10. [PMID: 9736292 DOI: 10.1046/j.1523-1755.1998.06749.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is expressed throughout the renovascular system, and it dilates renal vessels, increases renal blood flow and glomerular filtration rate, and stimulates renin release. Mechanical forces and experimental hypertension have been shown to stimulate PTHrP expression in smooth muscles, suggesting a negative feedback control of vascular tone by PTHrP in hypertension. In this study, we compared the impact of a PTHrP receptor antagonist, PTHrP (7-34), and a PTHrP receptor agonist, PTHrP (1-36), on the vascular resistance of perfused kidneys isolated from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). Endogenous PTHrP appears not to act as a renal vasodilator in either WKY or SHR. However, the vasodilation following infused PTHrP (1-36) is blunted markedly in SHR, possibly due to desensitization or down-regulation of PTH/PTHrP receptors. Negative feedback control of vascular tone by PTHrP in SHR thus appears unlikely. The results raise the question of whether endogenous renovascular PTHrP behaves rather as a growth factor than as a vasodilator.
Collapse
Affiliation(s)
- N Fiaschi-Taesch
- Pharmacology Department, University Louis Pasteur School of Medicine, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
17
|
Massfelder T, Fiaschi-Taesch N, Stewart AF, Helwig JJ. Parathyroid hormone-related peptide--a smooth muscle tone and proliferation regulatory protein. Curr Opin Nephrol Hypertens 1998; 7:27-32. [PMID: 9442359 DOI: 10.1097/00041552-199801000-00005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) appears to play crucial roles in the cardiovascular system. Over the past few years it has become apparent that there is more than one receptor recognizing parathyroid hormone or PTHrP, or both, and that PTHrP is not only a potent vasodilator of vascular smooth muscle cell tone, but is also a regulator of vascular smooth muscle cell proliferation and a secretagogue of renin and vasopressin. Investigators in several laboratories have started to query whether PTHrP intervenes in vascular diseases such as hypertension, (re)stenosis-atherosclerosis and endotoxaemia.
Collapse
Affiliation(s)
- T Massfelder
- Pharmacology Department, University Louis Pasteur School of Medicine, Strasbourg, France
| | | | | | | |
Collapse
|
18
|
Muller C, Endlich K, Barthelmebs M, Helwig JJ. AT2-antagonist sensitive potentiation of angiotensin II-induced vasoconstrictions by blockade of nitric oxide synthesis in rat renal vasculature. Br J Pharmacol 1997; 122:1495-501. [PMID: 9421301 PMCID: PMC1565068 DOI: 10.1038/sj.bjp.0701505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Although the actions of angiotensin II (Ang II) on renal haemodynamics appear to be mediated by activation of the AT1 receptor subtype, AT2 binding sites have also been evidenced in the adult kidney vasculature. As NO is known to mask part of the renal effects of vasoconstrictor drugs, we queried whether the Ang II-induced vasoconstrictions could occur via multiple receptor subtypes during inhibition of NO synthesis. We explored the effect of AT1 and AT2 receptor (AT-R) antagonists on Ang II-induced pressure increases during NO synthase or soluble guanylyl cyclase inhibition in rat isolated kidneys perfused in the presence of indomethacin at constant flow in a single-pass circuit. 2. In the absence of NO blockade, the AT1-R antagonist L-158809 (500 nM) antagonized the Ang II-induced vasoconstrictions, while the AT2-R antagonist PD-123319 (500 nM) had no effect. 3. Perfusing kidneys in the presence of either NO synthase inhibitors, L-NAME (100 microM) or L-NOARG (1 mM), or soluble guanylyl cyclase inhibitor, LY-83583 (10 microM), significantly increased both molar pD2 (from 9.40+/-0.25 to 10.36+/-0.11) and Emax values (from 24.9+/-3.1 to 79.9+/-4.9 mmHg) of the concentration-response curve for Ang II-induced vasoconstriction. 4. In the presence of L-NAME, 500 nM L158809 abolished the Ang II-induced vasoconstrictions whatever the concentration tested. On the other hand, 500 nM PD-123319 reversed the left shift of the concentration-response curve for Ang II (molar pD2 value 9.72+/-0.13) leaving Emax value unaffected (91.3+/-7.6 mmHg). 5. In the presence of L-NAME, the potentiated vasoconstriction induced by 0.1 nM and the augmented vasoconstriction induced by 10 nM Ang II were fully inhibited in a concentration-dependent manner by L-158809 (0.05-500 nM). By contrast, PD-123319 (0.5-500 nM) did not affect the 10 nM Ang II-induced vasoconstriction and concentration-dependently decreased the 0.1 nM Ang II-induced vasoconstriction plateauing at 65% inhibition above 5 nM antagonist. 6. Similar to PD-123319, during NO blockade the AT2-R antagonist CGP-42112A at 5 nM decreased by 50% the 0.1 nM Ang II-induced vasoconstriction and at 500 nM had no effect on 10 nM Ang II-induced vasoconstriction. 7. In conclusion, the renal Ang II-induced vasoconstriction, which is antagonized only by AT1-R antagonist in the presence of endogenous NO, becomes sensitive to both AT1- and AT2-R antagonists during NO synthesis inhibition. While AT1-R antagonist inhibited both L-NAME-potentiated and -augmented components of Ang II-induced vasoconstriction, AT2-R antagonists inhibited only the L-NAME-potentiated component.
Collapse
Affiliation(s)
- C Muller
- Institut de Pharmacologie, CJF INSERM 94-09, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
19
|
Wolzt M, Schmetterer L, Dorner G, Zelger G, Entlicher J, Kapiotis S, Eichler HG. Hemodynamic effects of parathyroid hormone-related peptide-(1-34) in humans. J Clin Endocrinol Metab 1997; 82:2548-51. [PMID: 9253332 DOI: 10.1210/jcem.82.8.4120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been suggested that PTH-related peptide-(1-34) (PTHrP) is a regulator or modulator of regional or systemic cardiovascular function with varying vasodilating actions in different species. We have studied the cardiovascular pharmacodynamic profile of PTHrP in healthy humans. In a double blind, placebo-controlled, cross-over study design, eight healthy subjects were assigned to stepwise increased i.v. doses of PTHrP. In addition, a dose-response curve to PTHrP was constructed in a dorsal hand vein in eight subjects. PTHrP dose-dependently increased pulse rate and renal plasma flow by more than 50% (P < 0.0001 for both parameters, by ANOVA), but only a small venodilating response was seen in hand vein experiments, and no effect was noted on mean arterial blood pressure or cardiac inotropic performance. Although it is unlikely that PTHrP regulates systemic hemodynamics, its chronotropic effect and its potent action on renal plasma flow may represent the primary cardiovascular physiological targets of action.
Collapse
Affiliation(s)
- M Wolzt
- Department of Clinical Pharmacology, Vienna University, Austria
| | | | | | | | | | | | | |
Collapse
|
20
|
Massfelder T, Stewart AF, Endlich K, Soifer N, Judes C, Helwig JJ. Parathyroid hormone-related protein detection and interaction with NO and cyclic AMP in the renovascular system. Kidney Int 1996; 50:1591-603. [PMID: 8914026 DOI: 10.1038/ki.1996.475] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The presence of parathyroid hormone-related protein (PTHrP) in human kidney vasculature and the signal transduction pathways stimulated during PTHrP-induced vasodilation of the rabbit kidney were investigated. Immunostaining of human kidney revealed the abundant presence of PTHrP in media and intima of all microvessels as well as in macula densa. In isolated perfused rabbit kidney preconstricted with noradrenaline, 10(-5) M Rp-cAMPS, a direct inhibitor of protein kinase A, produced comparable inhibition of 2.5 x 10(-7) M forskolin- and 10(-7) M PTHrP-induced vasorelaxations. Renal vasorelaxation and renal microvessel adenylyl cyclase stimulation underwent comparable desensitization following exposure to PTHrP. Nitric oxide (NO)-synthase inhibition by L-NAME (10(-4) M), NO scavenging by an imidazolineoxyl N-oxide (10(-4) M) and guanylyl cyclase inhibition by methylene blue (10(-4) M) decreased PTHrP-induced vasorelaxation by 27 to 53%, abolished bradykinin-induced vasorelaxation and did not affect forskolin-induced vasorelaxation. The effects of Rp-cAMPS and L-NAME were not additive on PTHrP-induced vasorelaxation. Damaging endothelium by treating the kidney with either anti-factor VIII-related antibody and complement, gossypol or detergent, did not affect PTHrP- or forskolin-induced vasorelaxations but reduced bradykinin-induced vasorelaxation by 53 to 92%. Conversely, endothelial damage did not alter the inhibitory action of L-NAME on PTHrP-induced vasorelaxation. In conclusion, PTHrP is present throughout the human renovascular tree and juxtaglomerular apparatus. Activation of both adenylyl cyclase/protein kinase A and NO-synthase/guanylyl cyclase pathways are directly linked to the renodilatory action of PTHrP in a way that does not require an intact endothelium in the isolated rabbit kidney.
Collapse
Affiliation(s)
- T Massfelder
- Laboratoire de Physiologie Cellulaire Rénale, Faculté de Médicine, Université Louis Pasteur, CJF INSERM 9409, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
21
|
Massfelder T, Parekh N, Endlich K, Saussine C, Steinhausen M, Helwig JJ. Effect of intrarenally infused parathyroid hormone-related protein on renal blood flow and glomerular filtration rate in the anaesthetized rat. Br J Pharmacol 1996; 118:1995-2000. [PMID: 8864534 PMCID: PMC1909869 DOI: 10.1111/j.1476-5381.1996.tb15635.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Parathyroid hormone-related protein (PTHrP) is expressed in the kidney and acts on vascular PTH/ PTHrP receptors to vasodilate the isolated kidney and to stimulate renin release. However, effects of PTHrP on renal blood flow (RBF) and glomerular filtration rate (GFR) in vivo have not been assessed in the absence of its cardiac, peripheral and central effects. We investigated the renal effects of PTH and PTHrP infused into the left renal artery of anaesthetized rats. 2. Intrarenal infusions, adjusted to generate increasing concentrations of human PTHrP(1-34) and rat PTH(1-34) in renal plasma (2 x 10(-11) to 6 x 10(-9) M) produced a comparable dose-dependent increase in RBF. The rise was 4% at the lowest and 34% at the highest concentrations of peptides. Up to a concentration of 2 x 10(-9) M, mean arterial pressure (MAP) and heart rate were not affected, but at 6 x 10(-9) M, intrarenally infused peptides reached the peripheral circulation, and caused a fall in MAP within a few minutes. While MAP returned to basal value after the last peptide infusion, RBF remained more than 10% above control for at least 30 min. 3. Two competitive PTH/PTHrP receptor antagonists, [Nle8,18, Tyr34]-bPTH(3-34)amide and [Leu11, D-Trp12]-hPTHrP(7-34)amide (2 x 10(-8) M) were devoid of agonist activity, but markedly antagonized the dose-dependent increase in RBF elicited by PTHrP. 4. GFR and urine flow were measured in left PTHrP-infused experimental kidney and right control kidney. Renal PTHrP concentration of 10(-10) M elevated left RBF by 10%, and GFR by 20% without significantly increasing filtration fraction, and increased urine flow by 57%. In the right control kidney GFR and diuresis did not change. 5. The results indicate that PTHrP has similar renal haemodynamic effects as PTH and increases RBF, GFR and diuresis in anaesthetized rats.
Collapse
Affiliation(s)
- T Massfelder
- Laboratoire de Physiologie Cellulaire Rénale, Faculté de Médecine, Université Louis Pasteur, CJF INSERM 9409, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
22
|
Endlich K, Massfelder T, Helwig JJ, Steinhausen M. Vascular effects of parathyroid hormone and parathyroid hormone-related protein in the split hydronephrotic rat kidney. J Physiol 1995; 483 ( Pt 2):481-90. [PMID: 7650615 PMCID: PMC1157858 DOI: 10.1113/jphysiol.1995.sp020599] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The effects of locally applied parathyroid hormone-related protein (PTHRP), a putative autocrine/paracrine hormone, on vascular diameters and glomerular blood flow (GBF) in the split hydronephrotic rat kidney were studied. As PTHRP interacts with parathyroid hormone (PTH) receptors in all tissues tested so far, the effects of PTHRP were compared with those of PTH. 2. Preglomerular vessels dilated in a concentration- and time-dependent manner that was almost identical for PTH and PTHRP. A significant preglomerular vasodilation (5-17%) occurred at a threshold concentration of 10(-10) mol l-1 PTH or PTHRP, which raised GBF by 20 +/- 2 and 31 +/- 4%, respectively (means +/- S.E.M., n = 6). PTH or PTHRP (10(-7) mol l-1) increased preglomerular diameters (11-36%) and GBF (60 +/- 10 and 70 +/- 8%, respectively) to near maximum. The most prominent dilatation was located at the interlobular artery and at the proximal afferent arteriole. 3. Efferent arterioles were not affected by either PTH or PTHRP. 4. Estimated concentrations of half-maximal response (EC50) for preglomerular vasodilatation and GBF increase were in the nanomolar to subnanomolar range. 5. After inhibition of angiotensin I-converting enzyme by 2 x 10(-6) mol kg-1 quinapril I.V. (n = 6), 10(-8) mol l-1 PTHRP dilated preglomerular vessels and efferent arterioles (9 +/- 1% proximal and 6 +/- 1% distal). 6. We conclude that the renal vasculature of the hydronephrotic kidney is highly sensitive to vasodilatation by PTH and PTHRP, which, in addition, may constrict efferent arterioles by stimulating renin release.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Endlich
- I Physiologisches Institut, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|