1
|
Ontawong A, Aida CJ, Vivithanaporn P, Amornlerdpison D, Vaddhanaphuti CS. Cladophora glomerata Kützing extract exhibits antioxidant, anti-inflammation, and anti-nitrosative stress against impairment of renal organic anion transport in an in vivo study. Nutr Res Pract 2024; 18:633-646. [PMID: 39398884 PMCID: PMC11464274 DOI: 10.4162/nrp.2024.18.5.633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cladophora glomerata extract (CGE), rich in polyphenols, was reported to exhibit antidiabetic and renoprotective effects by modulating the functions of protein kinases-mediated organic anion transporter 1 (Oat1) and 3 (Oat3) in rats with type 2 diabetes mellitus (T2DM). Nevertheless, the antioxidant effects of CGE on such renoprotection have not been investigated. This study examined the mechanisms involved in the antioxidant effects of CGE on renal organic anion transport function in an in vivo study. MATERIALS/METHODS Diabetes was induced in the rats through a high-fat diet combined with a single dose of 40 mg/kg body weight (BW) streptozotocin. Subsequently, normal-diet rats were supplemented with a vehicle or 1,000 mg/kg BW of CGE, while T2DM rats were supplemented with a vehicle, CGE, or 200 mg/kg BW of vitamin C for 12 weeks. The study evaluated the general characteristics of T2DM and renal oxidative stress markers. The renal organic transport function was assessed by measuring the para-aminohippurate (PAH) uptake using renal cortical slices and renal inflammatory cytokine expression in the normal diet (ND) and ND + CGE treated groups. RESULTS CGE supplementation significantly reduced hyperglycemia, hypertriglyceridemia, insulin resistance, and renal lipid peroxidation in T2DM rats. This was accompanied by the normalization of high expressions of renal glutathione peroxidase and nuclear factor kappa B by CGE and vitamin C. The renal anti-inflammation of CGE was evidenced by the reduction of tumor necrosis factor-1α and interleukin-1β. CGE directly blunted sodium nitroprusside-induced renal oxidative/nitrosative stresses and mediated the PAH uptake in the normally treated CGE in rats was particularly noteworthy. These data also correlated with reduced nitric oxide production, highlighting the potential of CGE as a therapeutic agent for managing T2DM-related renal complications. CONCLUSION These findings suggest that CGE has antidiabetic effects and directly prevents diabetic nephropathy through oxidative/nitrosative stress pathways.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chaliya J. Aida
- Office of Educational Affairs, Faculty of Abhaibhubejhr Thai Traditional Medicine, Burapha University, Chon Buri 20131, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Doungporn Amornlerdpison
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneurs and Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand
| | - Chutima S. Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Di Tomo P, Alessio N, Falone S, Pietrangelo L, Lanuti P, Cordone V, Santini SJ, Di Pietrantonio N, Marchisio M, Protasi F, Di Pietro N, Formoso G, Amicarelli F, Galderisi U, Pandolfi A. Endothelial cells from umbilical cord of women affected by gestational diabetes: A suitable in vitro model to study mechanisms of early vascular senescence in diabetes. FASEB J 2021; 35:e21662. [PMID: 34046935 DOI: 10.1096/fj.202002072rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Human umbilical cord endothelial cells (HUVECs) obtained from women affected by gestational diabetes (GD-HUVECs) display durable pro-atherogenic modifications and might be considered a valid in vitro model for studying chronic hyperglycemia effects on early endothelial senescence. Here, we demonstrated that GD- compared to C-HUVECs (controls) exhibited oxidative stress, altered both mitochondrial membrane potential and antioxidant response, significant increase of senescent cells characterized by a reduced NAD-dependent deacetylase sirtuin-1 (SIRT1) activity together with an increase in cyclin-dependent kinase inhibitor-2A (P16), cyclin-dependent kinase inhibitor-1 (P21), and tumor protein p53 (P53) acetylation. This was associated with the p300 activation, and its silencing significantly reduced the GD-HUVECs increased protein levels of P300 and Ac-P53 thus indicating a persistent endothelial senescence via SIRT1/P300/P53/P21 pathway. Overall, our data suggest that GD-HUVECs can represent an "endothelial hyperglycemic memory" model to investigate in vitro the early endothelium senescence in cells chronically exposed to hyperglycemia in vivo.
Collapse
Affiliation(s)
- Pamela Di Tomo
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Valeria Cordone
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvano Junior Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Di Pietrantonio
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Marco Marchisio
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Natalia Di Pietro
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Gloria Formoso
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Assunta Pandolfi
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| |
Collapse
|
3
|
Li Z, Jiang L, Toyokuni S. Role of carbonic anhydrases in ferroptosis-resistance. Arch Biochem Biophys 2020; 689:108440. [PMID: 32485154 DOI: 10.1016/j.abb.2020.108440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Iron is essential for all the lives on earth but may trigger a switch toward ferroptosis, a novel form of regulated necrosis. Carbonic anhydrases (CAs) are ubiquitous enzymes from microbes to humans. The primary function of CAs is to regulate cellular pH by hydrating carbon dioxide (CO2) to protons (H+) and bicarbonate ions (HCO3-). Furthermore, CAs play roles in biosynthetic reactions, such as gluconeogenesis, lipogenesis, ureagenesis and are also associated with tumor metabolism, suggesting that CAs may be a potential target for the treatment of cancers. We have recently revealed a novel function of CA IX in ferroptosis-resistance by using human malignant mesothelioma cells. Herein, we aim to review the potential molecular association between ferroptosis and CAs, from the viewpoint of iron-metabolism, lipogenesis and signaling pathways both under physiological and pathological contexts.
Collapse
Affiliation(s)
- Zan Li
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; Sydney Medical School, The University of Sydney, NSW, Australia.
| |
Collapse
|
4
|
Affiliation(s)
- Hunjoo Ha
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung H. Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Santini SJ, Cordone V, Mijit M, Bignotti V, Aimola P, Dolo V, Falone S, Amicarelli F. SIRT1-Dependent Upregulation of Antiglycative Defense in HUVECs Is Essential for Resveratrol Protection against High Glucose Stress. Antioxidants (Basel) 2019; 8:antiox8090346. [PMID: 31480513 PMCID: PMC6770647 DOI: 10.3390/antiox8090346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Uncontrolled accumulation of methylglyoxal (MG) and reactive oxygen species (ROS) occurs in hyperglycemia-induced endothelial dysfunction associated with diabetes. Resveratrol (RSV) protects the endothelium upon high glucose (HG); however, the mechanisms underlying such protective effects are still debated. Here we identified key molecular players involved in the glycative/oxidative perturbations occurring in endothelial cells exposed to HG. In addition, we determined whether RSV essentially required SIRT1 to trigger adaptive responses in HG-challenged endothelial cells. We used primary human umbilical vein endothelial cells (HUVECs) undergoing a 24-h treatment with HG, with or without RSV and EX527 (i.e., SIRT1 inhibitor). We found that HG-induced glycative stress (GS) and oxidative stress (OS), by reducing SIRT1 activity, as well as by diminishing the efficiency of MG- and ROS-targeting protection. RSV totally abolished the HG-dependent cytotoxicity, and this was associated with SIRT1 upregulation, together with increased expression of GLO1, improved ROS-scavenging efficiency, and total suppression of HG-related GS and OS. Interestingly, RSV failed to induce effective response to HG cytotoxicity when EX527 was present, thus suggesting that the upregulation of SIRT1 is essential for RSV to activate the major antiglycative and antioxidative defense and avoid MG- and ROS-dependent molecular damages in HG environment.
Collapse
Affiliation(s)
- Silvano Jr Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Mahmut Mijit
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Virginio Bignotti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Pierpaolo Aimola
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| |
Collapse
|
6
|
Gurbanov R, Bilgin M, Severcan F. Restoring effect of selenium on the molecular content, structure and fluidity of diabetic rat kidney brush border cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:845-54. [DOI: 10.1016/j.bbamem.2016.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 02/02/2023]
|
7
|
Srimaroeng C, Ontawong A, Saowakon N, Vivithanaporn P, Pongchaidecha A, Amornlerdpison D, Soodvilai S, Chatsudthipong V. Antidiabetic and renoprotective effects of Cladophora glomerata Kützing extract in experimental type 2 diabetic rats: a potential nutraceutical product for diabetic nephropathy. J Diabetes Res 2015; 2015:320167. [PMID: 25883984 PMCID: PMC4391723 DOI: 10.1155/2015/320167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/02/2015] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
Cladophora glomerata extract (CGE) has been shown to exhibit antigastric ulcer, anti-inflammatory, analgesic, hypotensive, and antioxidant activities. The present study investigated antidiabetic and renoprotective effects of CGE in type 2 diabetes mellitus (T2DM) rats. The rats were induced by high-fat diet and streptozotocin and supplemented daily with 1 g/kg BW of CGE for 12 weeks. The renal transport function was assessed by the uptake of para-aminohippurate mediated organic anion transporters 1 (Oat1) and 3 (Oat3), using renal cortical slices. These two transporters were known to be upregulated by insulin and PKCζ while they were downregulated by PKCα activation. Compared to T2DM, CGE supplemented rats had significantly improved hyperglycaemia, hypertriglyceridemia, insulin resistance, and renal morphology. The baseline uptake of para-aminohippurate was not different among experimental groups and was correlated with Oat1 and 3 mRNA expressions. Nevertheless, while insulin-stimulated Oat1 and 3 functions in renal slices were blunted in T2DM rats, they were improved by CGE supplementation. The mechanism of CGE-restored insulin-stimulated Oat1 and 3 functions was clearly shown to be associated with upregulated PKCζ and downregulated PKCα expressions and activations. These findings indicate that CGE has antidiabetic effect and suggest it may prevent diabetic nephropathy through PKCs in a T2DM rat model.
Collapse
Affiliation(s)
- Chutima Srimaroeng
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- *Chutima Srimaroeng:
| | - Atcharaporn Ontawong
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Naruwan Saowakon
- School of Anatomy, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pornpun Vivithanaporn
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Doungporn Amornlerdpison
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Varanuj Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
8
|
Ontawong A, Saowakon N, Vivithanaporn P, Pongchaidecha A, Lailerd N, Amornlerdpison D, Lungkaphin A, Srimaroeng C. Antioxidant and renoprotective effects of Spirogyra neglecta (Hassall) Kützing extract in experimental type 2 diabetic rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:820786. [PMID: 23862157 PMCID: PMC3686068 DOI: 10.1155/2013/820786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 12/24/2022]
Abstract
Spirogyra neglecta extract (SNE) has shown antihyperglycemia and antihyperlipidemia in type 2 diabetic mellitus (T2DM) rats. This study investigated the antioxidant and renoprotective effects of SNE in T2DM rats induced by high-fat diet with low-single dose streptozotocin. T2DM rats were fed daily with SNE (0.25, 0.5, and 1 g/kg BW) for 12 weeks. Renal morphology, malondialdehyde levels, qPCR, and western blotting were analyzed. Renal cortical slices were used to determine renal transport of organic anions, which are estrone sulfate and para-aminohippurate, mediated through organic anion transporter 3-Oat3. Insulin and PKCζ were known to activate Oat3 function while it was inhibited by PKCα. Compared to T2DM, plasma glucose, triglyceride, insulin resistance, renal morphology, and malondialdehyde levels were significantly improved by SNE supplementation. Reduced glutathione peroxidase and nuclear factor κB expressions were related to antioxidant effect of SNE. Oat3 mRNA and protein were not different among groups, but insulin-stimulated rOat3 followed by anion uptakes was abolished in T2DM. This was restored in the slices from SNE treatment. The mechanism of SNE-improved Oat3 was associated with PKCα and PKCζ expressions and activities. These findings indicate that SNE has beneficial effects on renal transport through antioxidant enzymes and PKCs in T2DM rats.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Naruwan Saowakon
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pornpun Vivithanaporn
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Doungporn Amornlerdpison
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chutima Srimaroeng
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Pathological significance of mitochondrial glycation. Int J Cell Biol 2012; 2012:843505. [PMID: 22778743 PMCID: PMC3388455 DOI: 10.1155/2012/843505] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/01/2012] [Indexed: 01/08/2023] Open
Abstract
Glycation, the nonenzymatic glycosylation of biomolecules, is commonly observed in diabetes and ageing. Reactive dicarbonyl species such as methylglyoxal and glyoxal are thought to be major physiological precursors of glycation. Because these dicarbonyls tend to be formed intracellularly, the levels of advanced glycation end products on cellular proteins are higher than on extracellular ones. The formation of glycation adducts within cells can have severe functional consequences such as inhibition of protein activity and promotion of DNA mutations. Although several lines of evidence suggest that there are specific mitochondrial targets of glycation, and mitochondrial dysfunction itself has been implicated in disease and ageing, it is unclear if glycation of biomolecules specifically within mitochondria induces dysfunction and contributes to disease pathology. We discuss here the possibility that mitochondrial glycation contributes to disease, focussing on diabetes, ageing, cancer, and neurodegeneration, and highlight the current limitations in our understanding of the pathological significance of mitochondrial glycation.
Collapse
|
10
|
Frey RS, Ushio-Fukai M, Malik AB. NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal 2009; 11:791-810. [PMID: 18783313 PMCID: PMC2790033 DOI: 10.1089/ars.2008.2220] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) including superoxide (O(2)(.-)) and hydrogen peroxide (H(2)O(2)) are produced endogenously in response to cytokines, growth factors; G-protein coupled receptors, and shear stress in endothelial cells (ECs). ROS function as signaling molecules to mediate various biological responses such as gene expression, cell proliferation, migration, angiogenesis, apoptosis, and senescence in ECs. Signal transduction activated by ROS, "oxidant signaling," has received intense investigation. Excess amount of ROS contribute to various pathophysiologies, including endothelial dysfunction, atherosclerosis, hypertension, diabetes, and acute respiratory distress syndrome (ARDS). The major source of ROS in EC is a NADPH oxidase. The prototype phagaocytic NADPH oxidase is composed of membrane-bound gp91phox and p22hox, as well as cytosolic subunits such as p47(phox), p67(phox) and small GTPase Rac. In ECs, in addition to all the components of phagocytic NADPH oxidases, homologues of gp91(phox) (Nox2) including Nox1, Nox4, and Nox5 are expressed. The aim of this review is to provide an overview of the emerging area of ROS derived from NADPH oxidase and oxidant signaling in ECs linked to physiological and pathophysiological functions. Understanding these mechanisms may provide insight into the NADPH oxidase and oxidant signaling components as potential therapeutic targets.
Collapse
Affiliation(s)
- Randall S Frey
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
11
|
Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 2008; 9:315-27. [PMID: 18654858 DOI: 10.1007/s11154-008-9090-4] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Retinopathy is one of the most severe ocular complications of diabetes and is a leading cause of acquired blindness in young adults. The cellular components of the retina are highly coordinated but very susceptible to the hyperglycemic environment. The microvasculature of the retina responds to hyperglycemic milieu through a number of biochemical changes, including increased oxidative stress and polyol pathway, PKC activation and advanced glycation end product formation. Oxidative stress is considered as one of the crucial contributors in the pathogenesis of diabetic retinopathy, but oxidative stress appears to be highly interrelated with other biochemical imbalances that lead to structural and functional changes and accelerated loss of capillary cells in the retinal microvasculature and, ultimately, pathological evidence of the disease. One such potential connection that links oxidative stress to metabolic alterations is gyceraldehyde-3-phosphate dehydrogenase whose activity is impaired in diabetes, and that results in activation of other major pathways implicated in the pathogenesis of diabetic retinopathy. Alterations associated with oxidative stress offer many potential therapeutic targets making this an area of great interest to the development of safe and effective treatments for diabetic retinopathy. Animal models of diabetic retinopathy have shown beneficial effects of antioxidants on the development of retinopathy, but clinical trials (though very limited in numbers) have provided somewhat ambiguous results. Although antioxidants are being used for other chronic diseases, controlled clinical trials are warranted to investigate potential beneficial effects of antioxidants in the development of retinopathy in diabetic patients.
Collapse
Affiliation(s)
- Sally A Madsen-Bouterse
- K-404, Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI, 48201, USA
| | | |
Collapse
|
12
|
So EJ, Kim HJ, Kim CW. Proteomic analysis of human proximal tubular cells exposed to high glucose concentrations. Proteomics Clin Appl 2008; 2:1118-26. [DOI: 10.1002/prca.200780151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Indexed: 11/06/2022]
|
13
|
Kang ES, Lee GT, Kim BS, Kim CH, Seo GH, Han SJ, Hur KY, Ahn CW, Ha H, Jung M, Ahn YS, Cha BS, Lee HC. Lithospermic acid B ameliorates the development of diabetic nephropathy in OLETF rats. Eur J Pharmacol 2008; 579:418-25. [DOI: 10.1016/j.ejphar.2007.10.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
|
14
|
Xu Y, Osborne BW, Stanton RC. Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am J Physiol Renal Physiol 2005; 289:F1040-7. [PMID: 15956780 DOI: 10.1152/ajprenal.00076.2005] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The incidence of diabetic nephropathy has been increasing. Studies have shown that oxidative stress (due to increased oxidant production and/or decreased antioxidant activity) is a critical underlying mechanism. The principal intracellular reductant is NADPH whose production is mainly dependent on glucose-6-phosphate dehydrogenase (G6PD) activity. Our work in cultured cells previously showed that high glucose caused activation of protein kinase A (PKA) and subsequent phosphorylation and inhibition of G6PD activity and hence decreased NADPH (Zhang Z, Apse K, Pang J, and Stanton RC. J Biol Chem 275:40042-40047, 2000). The purpose of this study was to determine whether these findings occur in diabetic rats (induced by streptozotocin) compared with control. G6PD activity and accordingly NADPH levels and glutathione levels were significantly decreased in diabetic kidneys compared with control kidneys. Lipid peroxidation was significantly increased, which correlated with decreased G6PD activity (r = 0.48). G6PD expression was significantly reduced, which correlated with decreased G6PD activity (r = 0.72). PKA activity and serine phosphorylation of G6PD were significantly increased and were closely correlated with decreased G6PD activity (r = 0.51 for PKA activity; r = 0.93 for serine phosphorylation of G6PD). Insulin treatment and/or correction of hyperglycemia ameliorated the changes caused by diabetes. In conclusion, chronic hyperglycemia caused inhibition of G6PD activity via decreased expression and increased phosphorylation of G6PD, which therefore led to increased oxidative stress.
Collapse
Affiliation(s)
- Yizhen Xu
- Renal Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
15
|
Cam M, Yavuz O, Guven A, Ercan F, Bukan N, Ustündag N. Protective effects of chronic melatonin treatment against renal injury in streptozotocin-induced diabetic rats. J Pineal Res 2003; 35:212-20. [PMID: 12932206 DOI: 10.1034/j.1600-079x.2003.00082.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the effects of melatonin as an antioxidant, on prevention and treatment of streptozotocin (STZ)-induced diabetic renal injury in rats. Male Wistar rats were divided into four groups: (1) untreated, (2) melatonin-treated, (3) untreated diabetic (UD), (4) melatonin-treated diabetic (MD). Experimental diabetes was induced by single dose (60 mg/kg, i.p.) STZ injection. For 3 days prior to administration of STZ, melatonin was injected (200 microg/kg/day, i.p.); these injections were continued until the end of the study (4 weeks). Malondialdehyde (MDA) levels as a marker of lipid peroxidation were significantly increased in the renal homogenates of UD animals and decreased after melatonin administration. The activity of the antioxidative enzyme glutathione peroxidase (GSH-Px) was significantly reduced in UD rats. Melatonin treatment reversed STZ-induced reduction of GSH-Px activity without having an effect on blood glucose. Upon histopathological examination, it was observed that the melatonin treatment prevented the renal morphological damage caused by diabetes. Upon immunohistochemical investigation, glomerular anti-laminin beta1 staining decreased in MD rats. Additionally, no tubular anti-IGF-1 staining was observed in melatonin-treated rats. In conclusion, chronically administered melatonin reduced renal injury in STZ-induced diabetic rats and thus it may provide a useful therapeutic option in humans to reduce oxidative stress and the associated renal injury in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Meryem Cam
- Department of Histology and Embryology, Abant Izzet Baysal University, School of Medicine, Duzce, Turkey
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Myoglobinuria is a complication of crush injury as well as substance abuse. This study examined whether pyruvate modified myoglobin in vitro renal toxicity. Renal slices from Fischer-344 rats were incubated for 120 min with 0-12 mg/ml myoglobin. In an initial study, gluconeogenesis was stimulated by the addition of 10 mM pyruvate during the final 30 min. In all other studies, renal slices were incubated with myoglobin in the presence of 0 or 10 mM pyruvate for 120 min. Myoglobin increased lactate dehydrogenase (LDH) release and this was not modified by the presence of pyruvate for the last 30 min of the incubation. Myoglobin toxicity was reduced by coincubation of myoglobin with pyruvate for 120 min. LDH leakage was increased 1.2-, 1.7-, and 1.8-fold above control by 4, 10, and 12 mg/ml myoglobin, compared to 1.2, 1.3, and 1.3 fold in slices coincubated with 10 mM pyruvate, respectively. Myoglobin diminished adenosine triphosphate (ATP) levels but pyruvate maintained a 5x higher level of ATP within the slices. Glucose (10 mM) provided protection only for the low concentration (4 mg/ml) of myoglobin. Myoglobin induced oxidative stress while pyruvate prevented the rise in lipid peroxidation and glutathione disulfides by myoglobin. Myoglobin diminished total glutathione levels in pyruvate-treated tissue, but glutathione levels remained higher than tissues incubated in the absence of pyruvate. These results indicate that pyruvate reduced toxicity by preventing oxidative stress and via a supply of an energy substrate.
Collapse
Affiliation(s)
- Monica A Valentovic
- Department of Pharmacology, Marshall University School of Medicine, 1542 Spring Valley Drive, Huntington, West Virginia 25704-9388, USA.
| | | |
Collapse
|
17
|
Aksoy N, Vural H, Sabuncu T, Aksoy S. Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem Funct 2003; 21:121-5. [PMID: 12736900 DOI: 10.1002/cbf.1006] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In view of the antioxidant properties of melatonin, the effects of melatonin on the oxidative-antioxidative status of tissues affected by diabetes, e.g. liver, heart and kidneys, were investigated in streptozotocin (STZ)-induced diabetic rats in the present study. Concentrations of malondialdehyde (MDA) and reduced glutathione (GSH), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the tissues were compared in three groups of 10 rats each (control non-diabetic rats (group I), untreated diabetic rats (group II) and diabetic rats treated with melatonin (group III)). In the study groups, diabetes developed 3 days after intraperitoneal (i.p.) administration of a single 60 mg kg(-1) dose of STZ. Thereafter, while the rats in group II received no treatment, the rats in group III began to receive a 10 mg kg(-1) i.p. dose of melatonin per day. After 6 weeks, the rats in groups II and III had significantly lower body weights and higher blood glucose levels than the rats in group I (p < 0.001 and p < 0.001, respectively). MDA levels in the liver, kidney and heart of group II rats were higher than that of the control group (p < 0.01, p < 0.05, p < 0.01, respectively) and diabetic rats treated with melatonin (p < 0.05). The GSH, GSH-Px and SOD levels increased in diabetic rats. Treatment with melatonin changed them to near control values. Our results confirm that diabetes increases oxidative stress in many organs such as liver, kidney and heart and indicate the role of melatonin in combating the oxidative stress via its free radical-scavenging and antioxidant properties.
Collapse
Affiliation(s)
- Nurten Aksoy
- Department of Biochemistry, Harran University, Faculty of Medicine, Sanliurfa, Turkey.
| | | | | | | |
Collapse
|
18
|
Lee GT, Ha H, Jung M, Li H, Hong SW, Cha BS, Lee HC, Cho YD. Delayed treatment with lithospermate B attenuates experimental diabetic renal injury. J Am Soc Nephrol 2003; 14:709-20. [PMID: 12595507 DOI: 10.1097/01.asn.0000051660.82593.19] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Extracellular matrix (ECM) accumulation in the glomerular mesangium is a characteristic feature of diabetic nephropathy. While transforming growth factor-beta1 (TGF-beta1) is the final mediator of ECM accumulation, reactive oxygen species (ROS) and protein kinase C (PKC) are the upstream signaling molecules that mediate hyperglycemia-induced ECM expansion. Magnesium lithospermate B (LAB) is an active component isolated from Salvia miltiorrhizae with known renoprotective properties due to its antioxidative effects. Thus, the present study examined the effects of LAB on renal injury in streptozotocin-induced diabetic rats (STZR) and on the activation of mesangial cells cultured under high glucose conditions. Ten micrtograms of LAB/kg per day was started 8 wk after streptozotocin injection and continued for a period of 8 wk. It significantly suppressed renal malondialdehyde (MDA), microalbuminuria, glomerular hypertrophy, mesangial expansion, and the upregulation of renal TGF-beta1, fibronectin, and collagen in STZR without significantly affecting plasma glucose. Both 30 mM of glucose and 100 uM of H(2)O(2) significantly increased TGF-beta1 and fibronectin protein secretion by mesangial cells. LAB at 10 micro g/ml inhibited high glucose- and H(2)O(2)-induced TGF-beta1 and fibronectin secretion. LAB also inhibited glucose-induced intracellular ROS generation and PKC activation in mesangial cells, but it did not directly inhibit PKC activity at dosages that inhibited ROS generation. The in vitro data of this study show that LAB inhibits ROS generation leading to PKC activation and TGF-beta1 and fibronectin upregulation in mesangial cells cultured under high glucose conditions. Moreover, delayed treatment with LAB was found to significantly suppress the progression of renal injury in STZR. LAB may become a new therapeutic agent for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Geun Taek Lee
- Yonsei University, College of Science, Department of Biochemistry, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jain AK, Lim G, Langford M, Jain SK. Effect of high-glucose levels on protein oxidation in cultured lens cells, and in crystalline and albumin solution and its inhibition by vitamin B6 and N-acetylcysteine: its possible relevance to cataract formation in diabetes. Free Radic Biol Med 2002; 33:1615-21. [PMID: 12488130 DOI: 10.1016/s0891-5849(02)01109-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diabetic patients have elevated levels of glucose in their blood and other body fluids. This project studied the effect of high-glucose concentrations (HG) on the protein oxidation in cultured lens cells and in crystalline protein solution. In addition, we also examined the effect of HG on the oxidation and turbidity (aggregation) of albumin protein solution. This study also examined whether vitamin B6 [pyridoxine (P), pyridoxamine (PM)] or n-acetylcysteine (NAC) is capable of preventing protein oxidation similar to that seen in cataracts. For cell culture studies, rabbit lens cells were cultured in control or HG medium at 37 degrees C for 2 d. For studies with protein solution, a buffered solution of serum albumin or crystalline protein was incubated with normal glucose (5 mM) or HG (50-100 mM) in a water bath at 37 degrees C for 4 d. All treatments were carried out with and without the addition of P, PM, or NAC. We found significantly higher levels of carbonyl protein (an index of protein oxidation) in HG-treated compared with normal glucose-treated lens cells and in crystalline protein solution. P, PM, and NAC significantly decreased the protein oxidation in lens cells and crystalline protein solution. We also found significantly higher levels of protein oxidation and turbidity (an index of protein aggregation) and its inhibition by P, PM, and NAC in HG-treated compared with normal glucose-treated albumin solution. This suggests that HG can cause the oxidation and modification of proteins in the lens, and that vitamin B6 and NAC supplementation may be helpful in slowing the oxidation of lens proteins. This study explains the cause of early cataract development and the potential benefit of supplementation with vitamin B6 and NAC in the prevention of the development of cataract among the diabetic population.
Collapse
Affiliation(s)
- Aman K Jain
- Caddo Magnet High School, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
20
|
Ujihara N, Sakka Y, Takeda M, Hirayama M, Ishii A, Tomonaga O, Babazono T, Takahashi C, Yamashita K, Iwamoto Y. Association between plasma oxidized low-density lipoprotein and diabetic nephropathy. Diabetes Res Clin Pract 2002; 58:109-14. [PMID: 12213352 DOI: 10.1016/s0168-8227(02)00134-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the association of oxidized low-density lipoprotein (ox-LDL) with the development of diabetic nephropathy, plasma levels of ox-LDL were measured in 70 patients with type 2 diabetes mellitus. A sandwich enzyme-linked immunoadsorbent assay (ELISA) using the mouse monoclonal antibody FOH1a/DLH3, which specifically recognizes oxidized phosphatidylcholine, and a horseradish peroxidase (HRP)-labeled goat anti-human apolipoprotein B IgG was used to measure ox-LDL levels. The mean age of the patients was 57.0+/-1 3.4 years, and the mean duration of diabetes was 13.4+/-8.5 years. Plasma ox-LDL levels were similar in patients with normoalbuminuria (13.7+/-3.9 U/ml), patients with microalbuminuria (12.8+/-3.9 U/ml), and normal controls (12.5+/-4.2 U/ml). However, the plasma ox-LDL level in patients with macroalbuminuria (16.8+/-7.5 U/ml) was significantly higher than those in the other groups (P<0.05). Hemoglobin A1c (HbA1c) levels were similar in diabetic patients with normoalbuminuria (8.2+/-2.2%), microalbuminuria (7.8+/-1.3%), or macroalbuminuria (7.2+/-1.4%). There was no significant correlation between the ox-LDL level and the HbA1c level. The significantly elevated plasma ox-LDL levels in patients with macroalbuminuria suggest that ox-LDL may play an important role in the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Noriko Ujihara
- Diabetes Center and Institute of Geriatrics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chiarelli F, Cipollone F, Mohn A, Marini M, Iezzi A, Fazia M, Tumini S, De Cesare D, Pomilio M, Pierdomenico SD, Di Gioacchino M, Cuccurullo F, Mezzetti A. Circulating monocyte chemoattractant protein-1 and early development of nephropathy in type 1 diabetes. Diabetes Care 2002; 25:1829-34. [PMID: 12351486 DOI: 10.2337/diacare.25.10.1829] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To investigate the possible role of hyperglycemia-dependent monocyte chemoattractant protein (MCP)-1 biosynthesis in the pathophysiology of early nephropathy in type 1 diabetes. RESEARCH DESIGN AND METHODS We studied 30 patients with type 1 diabetes (15 with and 15 without microalbuminuria) compared with matched healthy control subjects. Plasma MCP-1 and plasma oxidant status (vitamin E, fluorescent products of lipid peroxidation [FPLPs], malondialdehyde [MDA]), HbA(1c), and albumin excretion rate [AER]) were evaluated at baseline. Furthermore, MCP-1, vitamin E, AER, and HbA(1c) were also analyzed in the microalbuminuric diabetic patients and in the healthy volunteers after 8 weeks of high-dose (600 mg b.i.d.) vitamin E treatment. RESULTS FPLPs, MDA, and MCP-1 were significantly higher, whereas vitamin E was significantly lower in patients with microalbuminuria and poorer glycemic control as compared with normoalbuminuric patients and healthy control subjects. Plasma MCP-1 was positively correlated with HbA(1c), FPLPs, MDA, and AER, whereas plasma MCP-1 showed an inverse correlation with vitamin E. Interestingly, both MCP-1 and AER decreased significantly after vitamin E treatment, despite no changes in HbA(1c) values. CONCLUSIONS This study suggests that prolonged hyperglycemia may lead to early renal complications in type 1 diabetes by inducing MCP-1 biosynthesis via enhanced oxidative stress. Long-term treatment of high-dose vitamin E significantly decreased MCP-1, thus providing a rationale basis for evaluating vitamin E supplementation as therapy adjuvant to conventional insulin treatment in type 1 diabetic patients in whom an acceptable glycemic control is difficult to achieve despite appropriate insulin treatment.
Collapse
Affiliation(s)
- Francesco Chiarelli
- Clinica Pediatrica, University of Chieti, Chieti, Italy. Patologia Medica, University of Chieti, Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hsieh TJ, Zhang SL, Filep JG, Tang SS, Ingelfinger JR, Chan JSD. High glucose stimulates angiotensinogen gene expression via reactive oxygen species generation in rat kidney proximal tubular cells. Endocrinology 2002; 143:2975-85. [PMID: 12130563 DOI: 10.1210/endo.143.8.8931] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present studies investigated whether the effect of high glucose levels on angiotensinogen (ANG) gene expression in kidney proximal tubular cells is mediated via reactive oxygen species (ROS) generation and p38 MAPK activation. Rat immortalized renal proximal tubular cells (IRPTCs) were cultured in monolayer. Cellular ROS generation and p38 MAPK phosphorylation were assessed by lucigenin assay and Western blot analysis, respectively. The levels of immunoreactive rat ANG secreted into the media and cellular ANG mRNA were determined by a specific RIA and RT-PCR, respectively. High glucose (25 mM) evoked ROS generation and p38 MAPK phosphorylation as well as stimulated immunoreactive rat ANG secretion and ANG mRNA expression in IRPTCs. These effects of high glucose were blocked by antioxidants (taurine and tiron), inhibitors of mitochondrial electron transport chain complex I (rotenone) and II (thenoyltrifluoroacetone), an inhibitor of glycolysis-derived pyruvate transport into mitochondria (alpha-cyano-4-hydroxycinnamic acid), an uncoupler of oxidative phosphorylation (carbonyl cyanide m-chlorophenylhydrazone), a manganese superoxide dismutase mimetic, catalase, and a specific inhibitor of p38 MAPK (SB 203580), but were not affected by an inhibitor of the malate-aspartate shuttle (aminooxyacetate acid). Hydrogen peroxide (>/=10(-5) M) also stimulated p38 MAPK phosphorylation, ANG secretion, and ANG mRNA gene expression, but its stimulatory effect was blocked by catalase and SB 203580. These studies demonstrate that the stimulatory action of high glucose on ANG gene expression in IRPTCs is mediated at least in part via ROS generation and subsequent p38 MAPK activation.
Collapse
Affiliation(s)
- Tusty-Jiuan Hsieh
- Université de Montréal, Centre Hospitalier de l'Univerisité de Montréal, Hôtel-Dieu Hospital, Research Centre, 3850 Saint Urbain Street, Montréal, Québec, Canada H2W 1T8
| | | | | | | | | | | |
Collapse
|
23
|
Kitching AR, RÜGER1 BM, DAVIS1 PF. Oxidant stress is increased within the glomerulus in experimental diabetic nephropathy. Nephrology (Carlton) 2001. [DOI: 10.1046/j.1440-1797.2000.00011.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- A Richard Kitching
- Department of Medicine, Wellington School of Medicine, Wellington, New Zealand, and
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Center, Clayton, Australia
| | - Beate M RÜGER1
- Department of Medicine, Wellington School of Medicine, Wellington, New Zealand, and
| | - Paul F DAVIS1
- Department of Medicine, Wellington School of Medicine, Wellington, New Zealand, and
| |
Collapse
|
24
|
Kowluru RA, Kennedy A. Therapeutic potential of anti-oxidants and diabetic retinopathy. Expert Opin Investig Drugs 2001; 10:1665-76. [PMID: 11772276 DOI: 10.1517/13543784.10.9.1665] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retinopathy, a severely disabling complication of diabetes mellitus, is today the leading cause of acquired blindness among young adults in developed countries. Good glycaemic control can attenuate the development of diabetic retinopathy but such metabolic control is often difficult to achieve and maintain and additional therapies need to be identified by which retinopathy can be prevented or arrested. Hyperglycaemia plays a critical role in the development and progression of retinopathy, but the mechanism by which hyperglycaemia results in the development of retinopathy is not clear. Oxidative stress is increased in the retina in diabetes. The possible sources of increased oxidative stress might include increased generation of free radicals or impaired anti-oxidant defence system. Dietary supplementation with anti-oxidants in animal models of diabetic retinopathy inhibits retinal metabolic abnormalities and retinal histopathology, suggesting that oxidative stress is associated with the development of retinopathy. The mechanism by which anti-oxidants inhibit retinopathy in diabetes warrants further investigation, but animal studies show that increasing the diversity of anti-oxidants provides significantly more protection than using any single anti-oxidant. Thus, supplementation with anti-oxidants represents an achievable adjunct therapy to help preserve vision in diabetic patients.
Collapse
Affiliation(s)
- R A Kowluru
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA.
| | | |
Collapse
|
25
|
Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes 2001; 50:1938-42. [PMID: 11473058 DOI: 10.2337/diabetes.50.8.1938] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antioxidants were administered to diabetic rats and experimentally galactosemic rats to evaluate the ability of these agents to inhibit the development of diabetic retinopathy. Alloxan diabetic rats and nondiabetic rats that were fed 30% galactose randomly received standard diets or the diets supplemented with ascorbic acid and alpha-tocopherol (vitamins C+E diet) or a more comprehensive mixture of antioxidants (multi-antioxidant diet), including Trolox, alpha-tocopherol, N-acetyl cysteine, ascorbic acid, beta-carotene, and selenium. Diabetes or galactose feeding of at least 12 months resulted in pericyte loss, acellular capillaries, and basement membrane thickening. Compared with diabetic controls, the development of acellular capillaries was inhibited by 50% (P < 0.05) in diabetic rats that received supplemental vitamins C+E, and the number of pericyte ghosts tended to be reduced. The vitamins C+E supplement had no beneficial effect in galactosemic rats, but these rats consumed only approximately half as much of the antioxidants as the diabetic rats. The multi-antioxidant diet significantly inhibited ( approximately 55-65%) formation of both pericyte ghosts and acellular capillaries in diabetic rats and galactosemic rats (P < 0.05 vs. controls), without affecting the severity of hyperglycemia. Parameters of retinal oxidative stress, protein kinase C activity, and nitric oxides remained elevated for at least 1 year of hyperglycemia, and these abnormalities were normalized by multi-antioxidant therapy. Thus, long-term administration of antioxidants can inhibit the development of the early stages of diabetic retinopathy, and the mechanism by which this action occurs warrants further investigation. Supplementation with antioxidants can offer an achievable and inexpensive adjunct therapy to help inhibit the development of retinopathy in diabetes.
Collapse
Affiliation(s)
- R A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
26
|
Reddi AS, Bollineni JS. Selenium-deficient diet induces renal oxidative stress and injury via TGF-beta1 in normal and diabetic rats. Kidney Int 2001; 59:1342-53. [PMID: 11260395 DOI: 10.1046/j.1523-1755.2001.0590041342.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Oxidative stress has been implicated in the pathogenesis of diabetic nephropathy. Although glucose itself can initiate oxidative stress, deficiency of essential trace elements such as selenium (Se) may exacerbate this oxidative stress in diabetic rats. The mechanism by which Se deficiency causes oxidative stress and renal injury is not completely understood. This study tested the hypothesis that Se deficiency induces renal oxidative stress and renal injury via transforming growth factor-beta1 (TGF-beta1). METHODS Fifty-four male Wistar rats were used. Diabetes was induced in 27 rats by streptozotocin, and the other 27 rats received buffer only. Ten weeks after induction of diabetes, both normal and diabetic rats were killed, their kidneys removed, and glomeruli were isolated. Glomeruli from normal and diabetic rats were incubated in the presence of TGF-beta1 alone or its neutralizing antibody. Antioxidant enzyme (Cu-Zn) superoxide dismutase (Cu-Zn SOD), catalase, and glutathione peroxidase (GSH-Px) activities; total glutathione; and lipid peroxidation were determined. For Se studies, 15 normal and 15 diabetic rats were divided into groups of five each and fed either a regular, Se-deficient, or Se-supplemented diet one week after induction of diabetes. Ten weeks after feeding these diets, rats were killed and glomeruli were isolated. Oxidative stress was examined by determining the mRNA expressions for antioxidant enzymes and also for TGF-beta1. Plasma glucose and albuminuria were determined. Histology of the kidney and interlobular artery was evaluated by light microscopy. RESULTS In vitro studies showed that TGF-beta1 significantly reduced glomerular catalase and GSH-Px activities as well as total glutathione levels with an increase in lipid peroxidation in both normal and diabetic rats. Antibody to TGF-beta abrogated these changes. There was no effect of TGF-beta1 on Cu-Zn SOD. Like TGF-beta1, a Se-deficient diet caused a significant decrease in glomerular mRNA expression for Cu-Zn SOD, catalase, and GSH-Px, but a significant increase in TGF-beta1 mRNA expression. Also, a Se-deficient diet caused an increase in albuminuria, glomerular sclerosis, and plasma glucose levels in both normal and diabetic rats. The deficient diet caused a decrease in the lumen size of the interlobular artery. Se supplementation to diabetic rats up-regulated mRNA expression for antioxidant enzymes, and significantly reduced but did not normalize that of TGF-beta1. Glomerular sclerosis was normalized and the interlobular artery lumen size was greatly enlarged in diabetic rats by Se supplementation. Also, the tubulointerstitium was preserved by Se supplementation in diabetic rats. CONCLUSIONS The data show that TGF-beta1 is a pro-oxidant and Se deficiency increases oxidative stress via this growth factor. In addition, Se deficiency may simulate hyperglycemic conditions. Se supplementation to diabetic rats prevents not only oxidative stress but renal structural injury, as well.
Collapse
Affiliation(s)
- A S Reddi
- Division of Nephrology and Hypertension, Department of Medicine, UMD-New Jersey Medical School, Newark, New Jersey 07103, USA.
| | | |
Collapse
|
27
|
Zhang Z, Apse K, Pang J, Stanton RC. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J Biol Chem 2000; 275:40042-7. [PMID: 11007790 DOI: 10.1074/jbc.m007505200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent studies have shown that hyperglycemia is a principal cause of cellular damage in patients with diabetes mellitus. A major consequence of hyperglycemia is increased oxidative stress. Glucose-6-phosphate dehydrogenase (G6PD) plays an essential role in the regulation of oxidative stress by primarily regulating NADPH, the main intracellular reductant. In this paper we show that increased glucose (10-25 mm) caused inhibition of G6PD resulting in decreased NADPH levels in bovine aortic endothelial cells (BAEC). Inhibition was seen within 15 min. High glucose-induced inhibition of G6PD predisposed cells to cell death. High glucose via increased activity of adenylate cyclase also stimulated an increase in cAMP levels in BAEC. Agents that increased cAMP caused a decrease in G6PD activity. Inhibition of cAMP-dependent protein kinase A ameliorated the high glucose-induced inhibition of G6PD. Finally, high glucose stimulated phosphorylation of G6PD. These results suggest that, in BAEC, high glucose stimulated increased cAMP, which led to increased protein kinase A activity, phosphorylation of G6PD, and inhibition of G6PD activity. We conclude that these changes in G6PD activity play an important role in high glucose-induced cell damage/death.
Collapse
Affiliation(s)
- Z Zhang
- Renal Division and Department of Medicine, Joslin Diabetes Center, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
28
|
Kędziora-Kornatowska K, Luciak M, Błaszczyk J, Pawlak W, Kędziora J. Effect of AT1 angiotensin receptor antagonist on lipid peroxidation and antioxidative defense in diabetic kidney. PATHOPHYSIOLOGY 2000. [DOI: 10.1016/s0928-4680(99)00028-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
29
|
|
30
|
Kowluru RA, Engerman RL, Kern TS. Diabetes-induced metabolic abnormalities in myocardium: effect of antioxidant therapy. Free Radic Res 2000; 32:67-74. [PMID: 10625218 DOI: 10.1080/10715760000300071] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Effects of hyperglycemia (both diabetes and experimental galactosemia) on cardiac metabolism have been determined. In addition, the effect of supplemental antioxidants on these hyperglycemia-induced abnormalities of cardiac metabolism has been investigated. Diabetes or experimental galactosemia of 2 months duration in rats significantly increased oxidative stress in myocardium, as demonstrated by elevation of thiobarbituric acid reactive substances (TBARS) and lipid fluorescent products in left ventricle. Activity of protein kinase C (PKC) was elevated in the myocardium, and the activities of (Na,K)-ATPase and calcium ATPases were subnormal. Administration of supplemental antioxidants containing a mixture of ascorbic acid, Trolox; alpha-tocopherol acetate, N-acetyl cysteine, beta-carotene, and selenium prevented both the diabetes-induced and galactosemia-induced elevation of oxidative stress and PKC activity, and inhibited the decreases of myocardial (Na,K)-ATPase and calcium ATPases. The results show that these metabolic abnormalities are not unique to diabetes per se, but are secondary to elevated blood hexose levels, and supplemental antioxidants inhibit these metabolic abnormalities. Our findings suggest that antioxidants inhibit abnormal metabolic processes that may contribute to the development of cardiac disease in diabetes, and offer a potential clinical means to inhibit cardiac abnormalities in diabetes.
Collapse
Affiliation(s)
- R A Kowluru
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison 57306, USA.
| | | | | |
Collapse
|
31
|
Pugliese G, Pricci F, Romeo G, Leto G, Amadio L, Iacobini C, Di Mario U. Autocrine and paracrine mechanisms in the early stages of diabetic nephropathy. J Endocrinol Invest 1999; 22:708-35. [PMID: 10595837 DOI: 10.1007/bf03343635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- G Pugliese
- Dipartimento di Scienze Cliniche, Endocrinologia III, La Sapienza University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Oxidative stress occurs in diabetic patients and experimental models of diabetes. We examined whether two antioxidants, melatonin and taurine, can ameliorate diabetic nephropathy. Enhanced expression of glomerular TGF-beta1 and fibronectin mRNAs and proteinuria were employed as indices of diabetic nephropathy. Experimental diabetes was induced by intravenous injection of streptozotocin 50 mg/kg. Two days after streptozotocin, diabetic rats were assigned to one of the following groups: i) untreated; ii) melatonin supplement by 0.02% in drinking water; or iii) taurine supplement by 1% in drinking water. Four weeks after streptozotocin, diabetic rats (n = 6: plasma glucose 516+/-12 mg/dl) exhibited 6.1 fold increase in urinary protein excretion, 1.4 fold increase in glomerular TGF-beta1 mRNA, 1.7 fold increase in glomerular fibronectin mRNA, 2.2 fold increase in plasma lipid peroxides (LPO), and 44 fold increase in urinary LPO excretion above the values in control rats (n = 6: plasma glucose 188+/-14 mg/dl). Chronic administration of melatonin (n = 6) and taurine (n = 6) prevented increases in glomerular TGF-beta1 and fibronectin mRNAs and proteinuria without having effect on blood glucose. Both treatments reduced lipid peroxidation by nearly 50%. The present data demonstrate beneficial effects of melatonin and taurine on early changes in diabetic kidney and suggest that diabetic nephropathy associated with hyperglycemia is largely mediated by oxidative stress.
Collapse
Affiliation(s)
- H Ha
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea.
| | | | | |
Collapse
|
33
|
Kowluru RA, Engerman RL, Kern TS. Abnormalities of retinal metabolism in diabetes or experimental galactosemia. VI. Comparison of retinal and cerebral cortex metabolism, and effects of antioxidant therapy. Free Radic Biol Med 1999; 26:371-8. [PMID: 9895229 DOI: 10.1016/s0891-5849(98)00210-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metabolic abnormalities observed in retina and in cerebral cortex were compared in diabetic rats and experimentally galactosemic rats. Diabetes or experimental galactosemia of 2 months duration significantly increased oxidative stress in retina, as shown by elevation of retinal thiobarbituric acid reactive substances (TBARS) and subnormal activities of antioxidant defense enzymes, but had no such effect in the cerebral cortex. Activities of sodium potassium adenosine triphosphatase [(Na,K)-ATPase] and calcium ATPase became subnormal in retina as well as in cerebral cortex. In contrast, protein kinase C (PKC) activity was elevated in retina but not in cerebral cortex in the same hyperglycemic rats. Dietary supplementation with an antioxidant mixture (containing ascorbic acid, Trolox, alpha-tocopherol acetate, N-acetyl cysteine, beta-carotene, and selenium) prevented the diabetes-induced and galactosemia-induced elevation of retinal oxidative stress, the elevation of retinal PKC activity and the decrease of retinal ATPases. In cerebral cortex, administration of the antioxidant diet also prevented the diabetes-induced decreases in (Na,K)-ATPase and calcium ATPases, but had no effect on TBARS and activities of PKC and antioxidant-defense enzymes. The results indicate that retina and cerebral cortex differ distinctly in their response to elevation of tissue hexose, and that cerebral cortex is more resistant than retina to diabetes-induced oxidative stress. The greater resistance to oxidative stress in cerebral cortex, as compared to retina, is consistent with the resistance of cerebral cortex to microvascular disease in diabetes, and with a hypothesis that oxidative stress contributes to microvascular disease in diabetes. Dietary supplementation with these antioxidants offers a means to inhibit multiple hyperglycemia-induced retinal metabolic abnormalities.
Collapse
Affiliation(s)
- R A Kowluru
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison 53706-1532, USA.
| | | | | |
Collapse
|
34
|
Rodríguez-Soriano J, Vallo A, Ariceta G, Martul P, de la Rica I. Renal tubular handling of potassium in children with insulin-dependent diabetes mellitus. Pediatr Nephrol 1996; 10:1-6. [PMID: 8611334 DOI: 10.1007/bf00863425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To clarify the mechanism by which renal potassium (K) excretion is reduced in children with insulin-dependent diabetes mellitus, we studied two groups of patients: (A) at diagnosis and (B) after at least 1 year of follow-up. Group A (15 children) was studied twice: on the day of admission and after 1 month of insulin therapy. On admission, urinary K excretion, fractional K excretion, and transtubular K concentration gradient (TTKG) were significantly decreased, but became normal after extended insulin therapy. TTKG was inversely correlated with blood glucose (P < 0.001) and hemoglobin A1c (HbA1c, P < 0.001). Group B (73 children with a mean follow-up of 54 +/- 36 months) was subdivided according to the TTKG: 30 patients had a low TTKG < 4.0 (median 3.2) and 43 patients had a normal TTKG > or = 4.0 (median 5.2). Patients had a low TTKG and those with a normal TTKG had an identical duration of follow-up and similar values for plasma renin activity, aldosterone concentration, calciuria, magnesiuria, albumin excretion rate, and creatinine clearance. However, those with a low TTKG had significantly higher blood HbA1c levels, urine volume, and glucosuria. Logistic regression analysis showed that the only independent variables predicting a low TTKG were blood HbA1c and glucosuria (P < 0.001). These data confirm that a reduced renal K excretion is a characteristic feature of diabetic children; this is reversible with appropriate insulin therapy, largely depends on the metabolic control of the disease, and, specifically, on the degree of hyperglycemia and/or glucosuria.
Collapse
|