1
|
Dutta P, Hakimi S, Layton AT. How the kidney regulates magnesium: a modelling study. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231484. [PMID: 38511086 PMCID: PMC10951724 DOI: 10.1098/rsos.231484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
The kidneys are crucial for maintaining Mg2+ homeostasis. Along the proximal tubule and thick ascending limb, Mg2+ is reabsorbed paracellularly, while along the distal convoluted tubule (DCT), Mg2+ is reabsorbed transcellularly via transient receptor potential melastatin 6 (TRPM6). TRPM6 and other renal transporter expressions are regulated by sex hormones. To investigate renal Mg2 handling, we have developed sex-specific computational models of electrolyte transport along rat superficial nephron. Model simulations indicated that along the proximal tubule and thick ascending limb, Mg2+ and Na+ transport occur parallelly, but they are dissociated along the DCT. In addition, our models predicted higher paracellular Mg2+ permeability in females to attain similar cortical thick ascending limb fractional Mg2+ reabsorption in both sexes. Furthermore, DCT fractional Mg2+ reabsorption is higher in females than in males, allowing females to better fine-tune Mg2+ excretion. We validated our models by simulating the administration of three classes of diuretics. The model predicted significantly increased, marginally increased and significantly decreased Mg2+ excretions for loop, thiazide and K-sparing diuretics, respectively, aligning with experimental findings. The models can be used to conduct in silico studies on kidney adaptations to Mg2+ homeostasis alterations during conditions such as pregnancy, diabetes and chronic kidney disease.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Shervin Hakimi
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
- Department of Biology, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
- School of Pharmacology, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| |
Collapse
|
2
|
Hirota K, Yamashita A, Abe E, Yamaji T, Azushima K, Tanaka S, Taguchi S, Tsukamoto S, Wakui H, Tamura K. miR-125a-5p/miR-125b-5p contributes to pathological activation of angiotensin II-AT1R in mouse distal convoluted tubule cells by the suppression of Atrap. J Biol Chem 2023; 299:105478. [PMID: 37981211 PMCID: PMC10755798 DOI: 10.1016/j.jbc.2023.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
The renin-angiotensin system plays a crucial role in the regulation of blood pressure. Activation of the angiotensin II (Ang II)-Ang II type 1 receptor (AT1R) signaling pathway contributes to the pathogenesis of hypertension and subsequent organ damage. AT1R-associated protein (ATRAP) has been identified as an endogenous inhibitory protein of the AT1R pathological activation. We have shown that mouse Atrap (Atrap) represses various Ang II-AT1R-mediated pathologies, including hypertension in mice. The expression of human ATRAP (ATRAP)/Atrap can be altered in various pathological states in humans and mice, such as Ang II stimulation and serum starvation. However, the regulatory mechanisms of ATRAP/Atrap are not yet fully elucidated. miRNAs are 21 to 23 nucleotides of small RNAs that post-transcriptionally repress gene expression. Single miRNA can act on hundreds of target mRNAs, and numerous miRNAs have been identified as the Ang II-AT1R signaling-associated disease phenotype modulator, but nothing is known about the regulation of ATRAP/Atrap. In the present study, we identified miR-125a-5p/miR-125b-5p as the evolutionarily conserved miRNAs that potentially act on ATRAP/Atrap mRNA. Further analysis revealed that miR-125a-5p/miR-125b-5p can directly repress both ATRAP and Atrap. In addition, the inhibition of miR-125a-5p/miR-125b-5p resulted in the suppression of the Ang II-AT1R signaling in mouse distal convoluted tubule cells. Taken together, miR-125a-5p/miR-125b-5p activates Ang II-AT1R signaling by the suppression of ATRAP/Atrap. Our results provide new insights into the potential approaches for achieving the organ-protective effects by the repression of the miR-125 family associated with the enhancement of ATRAP/Atrap expression.
Collapse
Affiliation(s)
- Keigo Hirota
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Eriko Abe
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shohei Tanaka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shinya Taguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
3
|
Hanna RM, Ahdoot RS, Kalantar-Zadeh K, Ghobry L, Kurtz I. Calcium Transport in the Kidney and Disease Processes. Front Endocrinol (Lausanne) 2022; 12:762130. [PMID: 35299844 PMCID: PMC8922474 DOI: 10.3389/fendo.2021.762130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Calcium is a key ion involved in cardiac and skeletal muscle contractility, nerve function, and skeletal structure. Global calcium balance is affected by parathyroid hormone and vitamin D, and calcium is shuttled between the extracellular space and the bone matrix compartment dynamically. The kidney plays an important role in whole-body calcium balance. Abnormalities in the kidney transport proteins alter the renal excretion of calcium. Various hormonal and regulatory pathways have evolved that regulate the renal handling of calcium to maintain the serum calcium within defined limits despite dynamic changes in dietary calcium intake. Dysregulation of renal calcium transport can occur pharmacologically, hormonally, and via genetic mutations in key proteins in various nephron segments resulting in several disease processes. This review focuses on the regulation transport of calcium in the nephron. Genetic diseases affecting the renal handling of calcium that can potentially lead to changes in the serum calcium concentration are reviewed.
Collapse
Affiliation(s)
- Ramy M. Hanna
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Rebecca S. Ahdoot
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Lena Ghobry
- School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ira Kurtz
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- University of California Los Angeles (UCLA) Brain Research Center, Los Angeles, CA, United States
| |
Collapse
|
4
|
Harmacek D, Blanchard A, Wuerzner G, Maillard M, Jeunemaitre X, Azizi M, Bonny O. Acute decrease of urine calcium by amiloride in healthy volunteers under high sodium diet. Nephrol Dial Transplant 2021; 37:298-303. [PMID: 33914065 DOI: 10.1093/ndt/gfab159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Amiloride is a competitive blocker of the epithelial sodium channel (ENaC) in the renal collecting duct. It is a less potent diuretic than thiazides or loop diuretics, but is often used in association for its potassium-sparing profile. Whether amiloride has hypocalciuric effect similar to thiazides remains unclear. Animal studies and experiments on cell lines suggested that amiloride increases calcium reabsorption in the distal nephron, but human studies are scarce. METHODS We performed a post hoc analysis of a study with 48 healthy males (age, 23.2 ± 3.9 years) who were assigned to a high sodium (Na)/low potassium (K) diet for 7 days before receiving 20 mg of amiloride p.o. Urinary excretions of electrolytes were measured at 3 and 6 hours afterward; we calculated the relative changes in urinary excretion rates after amiloride administration. RESULTS The high Na/low K diet led to an expected suppression of plasma renin and aldosterone. Amiloride showed a mild natriuretic effect associated with a decreased kaliuresis. Urinary calcium excretion dropped substantially (by 80%) 3 hours after amiloride administration and remained low at the 6th hour. At the same time, fractional excretion of lithium decreased by a third, reflecting an increased proximal tubular reabsorption. CONCLUSION During a high Na/low K diet, amiloride had a strong acute hypocalciuric effect, most probably mediated by increased proximal calcium reabsorption, even though distal effect cannot be excluded. Further studies should establish if chronic amiloride or combined amiloride/thiazide treatment may decrease calciuria more efficiently and be useful in preventing kidney stones.
Collapse
Affiliation(s)
- Dusan Harmacek
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Anne Blanchard
- INSERM, CIC1418, F-75015, Paris, France; Université de Paris, F-75006, Paris, France; AP-HP, Hôpital Européen Georges-Pompidou, DMU CARTE, F-75015, Paris, France
| | - Gregoire Wuerzner
- Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Marc Maillard
- Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Xavier Jeunemaitre
- Université de Paris, Inserm U970 PARCC, F-75006, Paris, France and APHP, Service de Génétique, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Michel Azizi
- Université de Paris, F-75006, Paris, France; AP-HP, Hôpital Européen Georges-Pompidou, Hypertension Department and DMU CARTE, F-75015, Paris, France; INSERM, CIC1418, F-75015, Paris, France
| | - Olivier Bonny
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
5
|
Olde Hanhof CJA, Yousef Yengej FA, Rookmaaker MB, Verhaar MC, van der Wijst J, Hoenderop JG. Modeling Distal Convoluted Tubule (Patho)Physiology: An Overview of Past Developments and an Outlook Toward the Future. Tissue Eng Part C Methods 2021; 27:200-212. [PMID: 33544049 DOI: 10.1089/ten.tec.2020.0345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The kidneys are essential for maintaining electrolyte homeostasis. Blood electrolyte composition is controlled by active reabsorption and secretion processes in dedicated segments of the kidney tubule. Specifically, the distal convoluted tubule (DCT) and connecting tubule are important for regulating the final excretion of sodium, magnesium, and calcium. Studies unravelling the specific function of these segments have greatly improved our understanding of DCT (patho)physiology. Over the years, experimental models used to study the DCT have changed and the field has advanced from early dissection studies with rats and rabbits to the use of various transgenic mouse models. Developments in dissection techniques and cell culture methods have resulted in immortalized mouse DCT cell lines and made it possible to specifically obtain DCT fragments for ex vivo studies. However, we still do not fully understand the complex (patho)physiology of this segment and there is need for advanced human DCT models. Recently, kidney organoids and tubuloids have emerged as new complex cell models that provide excellent opportunities for physiological studies, disease modeling, drug discovery, and even personalized medicine in the future. This review presents an overview of cell models used to study the DCT and provides an outlook on kidney organoids and tubuloids as model for DCT (patho)physiology. Impact statement This study provides a detailed overview of past and future developments on cell models used to study kidney (patho)physiology and specifically the distal convoluted tubule (DCT) segment. Hereby, we highlight the need for an advanced human cell model of this segment and summarize recent advances in the field of kidney organoids and tubuloids with a focus on DCT properties. The findings reported in this review are significant for future developments toward an advanced human model of the DCT that will help to increase our understanding of DCT (patho)physiology.
Collapse
Affiliation(s)
- Charlotte J A Olde Hanhof
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fjodor A Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Belkacemi L, Darmani NA. Dopamine receptors in emesis: Molecular mechanisms and potential therapeutic function. Pharmacol Res 2020; 161:105124. [PMID: 32814171 DOI: 10.1016/j.phrs.2020.105124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Dopamine is a member of the catecholamine family and is associated with multiple physiological functions. Together with its five receptor subtypes, dopamine is closely linked to neurological disorders such as schizophrenia, Parkinson's disease, depression, attention deficit-hyperactivity, and restless leg syndrome. Unfortunately, several dopamine receptor-based agonists used to treat some of these diseases cause nausea and vomiting as impending side-effects. The high degree of cross interactions of dopamine receptor ligands with many other targets including G-protein coupled receptors, transporters, enzymes, and ion-channels, add to the complexity of discovering new targets for the treatment of nausea and vomiting. Using activation status of signaling cascades as mechanism-based biomarkers to foresee drug sensitivity combined with the development of dopamine receptor-based biased agonists may hold great promise and seems as the next step in drug development for the treatment of such multifactorial diseases. In this review, we update the present knowledge on dopamine and dopamine receptors and their potential roles in nausea and vomiting. The pre- and clinical evidence provided in this review supports the implication of both dopamine and dopamine receptor agonists in the incidence of emesis. Besides the conventional dopaminergic antiemetic drugs, potential novel antiemetic targeting emetic protein signaling cascades may offer superior selectivity profile and potency.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
7
|
Yang H, Ahn C, Shin EK, Lee JS, An BS, Jeung EB. NCKX3 was compensated by calcium transporting genes and bone resorption in a NCKX3 KO mouse model. Mol Cell Endocrinol 2017; 454:93-102. [PMID: 28602864 DOI: 10.1016/j.mce.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/18/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023]
Abstract
Gene knockout is the most powerful tool for determination of gene function or permanent modification of the phenotypic characteristics of an animal. Existing methods for gene disruption are limited by their efficiency, time required for completion and potential for confounding off-target effects. In this study, a rapid single-step approach to knockout of a targeted gene in mice using zinc-finger nucleases (ZFNs) was demonstrated for generation of mutant (knockout; KO) alleles. Specifically, ZFNs to target the sodium/calcium/potassium exchanger3 (NCKX3) gene in C57bl/6j were designed using the concept of this approach. NCKX3 KO mice were generated and the phenotypic characterization and molecular regulation of active calcium transporting genes was assessed when mice were fed different calcium diets during growth. General phenotypes such as body weight and plasma ion level showed no distinct abnormalities. Thus, the potassium/sodium/calcium exchanger of NCKX3 KO mice proceeded normally in this study. As a result, the compensatory molecular regulation of this mechanism was elucidated. Renal TRPV5 mRNA of NCKX3 KO mice increased in both male and female mice. Expression of TRPV6 mRNA was only down-regulated in the duodenum of male KO mice. Renal- and duodenal expression of PTHR and VDR were not changed; however, GR mRNA expression was increased in the kidney of NCKX3 KO mice. Depletion of the NCKX3 gene in a KO mouse model showed loss of bone mineral contents and increased plasma parathyroid hormone, suggesting that NCKX3 may play a role in regulating calcium homeostasis.
Collapse
Affiliation(s)
- Hyun Yang
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea; Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Eun-Kyeong Shin
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Sun Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science, College of National Resources & Life Science, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
8
|
Alexander RT, Dimke H. Effect of diuretics on renal tubular transport of calcium and magnesium. Am J Physiol Renal Physiol 2017; 312:F998-F1015. [DOI: 10.1152/ajprenal.00032.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023] Open
Abstract
Calcium (Ca2+) and Magnesium (Mg2+) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca2+ and Mg2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca2+ and Mg2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca2+ and Mg2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca2+ and Mg2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca2+ and Mg2+ transport. Acetazolamide, osmotic diuretics, Na+/H+ exchanger (NHE3) inhibitors, and antidiabetic Na+/glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca2+ transport predominates. Loop diuretics and renal outer medullary K+ (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca2+ and Mg2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na+ transport at distal sites, can also affect divalent cation transport.
Collapse
Affiliation(s)
- R. Todd Alexander
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada; and
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Matsuda M, Tamura K, Wakui H, Maeda A, Ohsawa M, Kanaoka T, Azushima K, Uneda K, Haku S, Tsurumi-Ikeya Y, Toya Y, Maeshima Y, Yamashita A, Umemura S. Upstream stimulatory factors 1 and 2 mediate the transcription of angiotensin II binding and inhibitory protein. J Biol Chem 2013; 288:19238-49. [PMID: 23653383 PMCID: PMC3696694 DOI: 10.1074/jbc.m113.451054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The angiotensin II type 1 receptor (AT1R)-associated protein (ATRAP/Agtrap) promotes constitutive internalization of the AT1R so as to specifically inhibit the pathological activation of its downstream signaling yet preserve the base-line physiological signaling activity of the AT1R. Thus, tissue-specific regulation of Agtrap expression is relevant to the pathophysiology of cardiovascular and renal disease. However, the regulatory mechanism of Agtrap gene expression has not yet been fully elucidated. In this study, we show that the proximal promoter region from −150 to +72 of the mouse Agtrap promoter, which contains the X-box, E-box, and GC-box consensus motifs, is able to elicit substantial transcription of the Agtrap gene. Among these binding motifs, we showed that the E-box specifically binds upstream stimulatory factor (Usf) 1 and Usf2, which are known E-box-binding transcription factors. It is indicated that the E-box-Usf1/Usf2 binding regulates Agtrap expression because of the following: 1) mutation of the E-box to prevent Usf1/Usf2 binding reduces Agtrap promoter activity; 2) knockdown of Usf1 or Usf2 affects both endogenous Agtrap mRNA and Agtrap protein expression, and 3) the decrease in Agtrap mRNA expression in the afflicted kidney by unilateral ureteral obstruction is accompanied by changes in Usf1 and Usf2 mRNA. Furthermore, the results of siRNA transfection in mouse distal convoluted tubule cells and those of unilateral ureteral obstruction in the afflicted mouse kidney suggest that Usf1 decreases but Usf2 increases the Agtrap gene expression by binding to the E-box. The results also demonstrate a functional E-box-USF1/USF2 interaction in the human AGTRAP promoter, thereby suggesting that a strategy of modulating the E-box-USF1/USF2 binding has novel therapeutic potential.
Collapse
Affiliation(s)
- Miyuki Matsuda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang H, Choi KC, Jung EM, An BS, Hyun SH, Jeung EB. Expression and regulation of sodium/calcium exchangers, NCX and NCKX, in reproductive tissues: do they play a critical role in calcium transport for reproduction and development? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:109-21. [PMID: 23224874 DOI: 10.1007/978-1-4614-4756-6_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Plasma membrane sodium/calcium (Na(+)/Ca(2+)) exchangers are an important component of intracellular calcium [Ca(2+)](i) homeostasis and electrical conduction. Na(+)/Ca(2+) exchangers, NCX and NCKX, play a critical role in the transport of one [Ca(2+)](i) and potassium ion across the cell membrane in exchange for four extracellular sodium ions [Na(+)](e). Mammalian plasma membrane Na(+)/Ca(2+) exchange proteins are divided into two families: one in which Ca(2+) flux is dependent only on sodium (NCX1-3) and another in which Ca(2+) flux is also dependent on potassium (NCKX1-4). Both molecules are capable of forward- and reverse-mode exchange. In cells and tissues, Na(+)/Ca(2+) (and K(+)) gradients localize to the cell membrane; thus, the exchangers transport ions across a membrane potential. Uterine NCKX3 has been shown to be involved in the regulation of endometrial receptivity by [Ca(2+)](i). In the uterus and placenta, NCKX3 expression is regulated by the sex steroid hormone estrogen (E2) and hypoxia stress, respectively. In this chapter, we described the expression and regulation of these proteins for reproductive functions in various tissues including uterus, placenta, and kidney of humans and rodents. Evidence to date suggests that NCKX3 and NCX1 may be regulated in a tissue-specific manner. In addition, we focused on the molecular mechanism involved in the regulation of NCKX3 and NCX1 in mammals, based upon our recent results and those of others.
Collapse
Affiliation(s)
- Hyun Yang
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Bonny O, Edwards A. Calcium reabsorption in the distal tubule: regulation by sodium, pH, and flow. Am J Physiol Renal Physiol 2012; 304:F585-600. [PMID: 23152295 DOI: 10.1152/ajprenal.00493.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We developed a mathematical model of Ca(2+) transport along the late distal convoluted tubule (DCT2) and the connecting tubule (CNT) to investigate the mechanisms that regulate Ca(2+) reabsorption in the DCT2-CNT. The model accounts for apical Ca(2+) influx across transient receptor potential vanilloid 5 (TRPV5) channels and basolateral Ca(2+) efflux via plasma membrane Ca(2+)-ATPase pumps and type 1 Na(+)/Ca(2+) exchangers (NCX1). Model simulations reproduce experimentally observed variations in Ca(2+) uptake as a function of extracellular pH, Na(+), and Mg(2+) concentration. Our results indicate that amiloride enhances Ca(2+) reabsorption in the DCT2-CNT predominantly by increasing the driving force across NCX1, thereby stimulating Ca(2+) efflux. They also suggest that because aldosterone upregulates both apical and basolateral Na(+) transport pathways, it has a lesser impact on Ca(2+) reabsorption than amiloride. Conversely, the model predicts that full NCX1 inhibition and parathyroidectomy each augment the Ca(2+) load delivered to the collecting duct severalfold. In addition, our results suggest that regulation of TRPV5 activity by luminal pH has a small impact, per se, on transepithelial Ca(2+) fluxes; the reduction in Ca(2+) reabsorption induced by metabolic acidosis likely stems from decreases in TRPV5 expression. In contrast, elevations in luminal Ca(2+) are predicted to significantly decrease TRPV5 activity via the Ca(2+)-sensing receptor. Nevertheless, following the administration of furosemide, the calcium-sensing receptor-mediated increase in Ca(2+) reabsorption in the DCT2-CNT is calculated to be insufficient to prevent hypercalciuria. Altogether, our model predicts complex interactions between calcium and sodium reabsorption in the DCT2-CNT.
Collapse
Affiliation(s)
- Olivier Bonny
- Department of Toxicology and Pharmacology, University of Lausanne, France
| | | |
Collapse
|
12
|
Vidal-Petiot E, Cheval L, Faugeroux J, Malard T, Doucet A, Jeunemaitre X, Hadchouel J. A new methodology for quantification of alternatively spliced exons reveals a highly tissue-specific expression pattern of WNK1 isoforms. PLoS One 2012; 7:e37751. [PMID: 22701532 PMCID: PMC3365125 DOI: 10.1371/journal.pone.0037751] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/27/2012] [Indexed: 02/03/2023] Open
Abstract
Mutations in the WNK1 gene, encoding a serine-threonine kinase of the WNK (With No lysine (K)) family, have been implicated in two rare human diseases, Familial Hyperkalemic Hypertension (FHHt) and Hereditary Sensory and Autonomic Neuropathy type 2 (HSAN2). Alternative promoters give rise to a ubiquitous isoform, L-WNK1, and a kidney-specific isoform, KS-WNK1. Several other isoforms are generated through alternative splicing of exons 9, 11 and 12 but their precise tissue distribution is not known. Two additional exons, 8b and HSN2, involved in HSAN2, are thought to be specifically expressed in the nervous system. The purpose of this study was to establish an exhaustive description of all WNK1 isoforms and to quantify their relative level of expression in a panel of human and mouse tissues and in mouse nephron segments. For the latter purpose, we developed a new methodology allowing the determination of the proportions of the different isoforms generated by alternative splicing. Our results evidenced a striking tissue-specific distribution of the different isoforms and the unexpected presence of exon HSN2 in many tissues other than the nervous system. We also found exon 26 to be alternatively spliced in human and identified two new exons, 26a and 26b, within intron 26, specifically expressed in nervous tissues both in humans and mice. WNK1 should therefore no longer be designated as a 28- but as a 32-exon gene, with 8 of them - 8b, HSN2, 9, 11, 12, 26, 26a and 26b - alternatively spliced in a tissue-specific manner. These tissue-specific isoforms must be considered when studying the different roles of this ubiquitous kinase.
Collapse
Affiliation(s)
- Emmanuelle Vidal-Petiot
- INSERM UMR970 - Paris Cardiovascular Research Center - Paris, France
- University Paris-Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
| | - Lydie Cheval
- University Paris-Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
- UPMC Univ Paris 06 and INSERM UMRS 872 and CNRS ERL726 - Cordeliers Research Center - Paris, France
| | - Julie Faugeroux
- INSERM UMR970 - Paris Cardiovascular Research Center - Paris, France
- University Paris-Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
| | | | - Alain Doucet
- University Paris-Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
- UPMC Univ Paris 06 and INSERM UMRS 872 and CNRS ERL726 - Cordeliers Research Center - Paris, France
| | - Xavier Jeunemaitre
- INSERM UMR970 - Paris Cardiovascular Research Center - Paris, France
- University Paris-Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
- AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France
| | - Juliette Hadchouel
- INSERM UMR970 - Paris Cardiovascular Research Center - Paris, France
- University Paris-Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
- * E-mail:
| |
Collapse
|
13
|
KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 2012; 44:456-60, S1-3. [PMID: 22406640 DOI: 10.1038/ng.2218] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/09/2012] [Indexed: 01/11/2023]
Abstract
Familial hyperkalemic hypertension (FHHt) is a Mendelian form of arterial hypertension that is partially explained by mutations in WNK1 and WNK4 that lead to increased activity of the Na(+)-Cl(-) cotransporter (NCC) in the distal nephron. Using combined linkage analysis and whole-exome sequencing in two families, we identified KLHL3 as a third gene responsible for FHHt. Direct sequencing of 43 other affected individuals revealed 11 additional missense mutations that were associated with heterogeneous phenotypes and diverse modes of inheritance. Polymorphisms at KLHL3 were not associated with blood pressure. The KLHL3 protein belongs to the BTB-BACK-kelch family of actin-binding proteins that recruit substrates for Cullin3-based ubiquitin ligase complexes. KLHL3 is coexpressed with NCC and downregulates NCC expression at the cell surface. Our study establishes a role for KLHL3 as a new member of the complex signaling pathway regulating ion homeostasis in the distal nephron and indirectly blood pressure.
Collapse
|
14
|
Matsuda M, Tamura K, Wakui H, Dejima T, Maeda A, Ohsawa M, Kanaoka T, Haku S, Azushima K, Yamasaki H, Saito D, Hirose T, Maeshima Y, Nagashima Y, Umemura S. Involvement of Runx3 in the basal transcriptional activation of the mouse angiotensin II type 1 receptor-associated protein gene. Physiol Genomics 2011; 43:884-94. [PMID: 21586669 DOI: 10.1152/physiolgenomics.00005.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously cloned a molecule that interacts with angiotensin II type 1 (AT1) receptor to exert an inhibitory function on AT1 receptor signaling that we named ATRAP/Agtrap (for AT1 receptor-associated protein). In the present study we examined the regulation of basal ATRAP gene expression using renal distal convoluted tubule cells. We found that serum starvation upregulated basal expression of ATRAP gene, a response that required de novo mRNA and protein synthesis. Luciferase assay revealed that the proximal promoter region directs transcription and that a putative binding site of runt-related transcription factors (RBE) is important for transcriptional activation. The results of RBE-decoy transfection and endogenous knockdown by small interference RNA showed that the runt-related transcription factor Runx3 is involved in ATRAP gene expression. Chromatin immunoprecipitation assay also supported the binding of Runx3 to the ATRAP promoter in renal distal convoluted tubule cells. Immunohistochemistry demonstrated the expression of Runx3 and ATRAP proteins in the distal convoluted and connecting tubules of the kidney in consecutive sections. Furthermore, the Runx3 immunostaining was decreased together with a concomitant suppression of ATRAP expression in the affected kidney after 7 days of unilateral ureteral obstruction. These findings indicate that Runx3 plays a role in ATRAP gene expression in renal distal tubular cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Miyuki Matsuda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Limke TL, Atchison WD. Application of single-cell microfluorimetry to neurotoxicology assays. ACTA ACUST UNITED AC 2011; Chapter 12:Unit 12.15. [PMID: 20960422 DOI: 10.1002/0471140856.tx1215s42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intracellular signaling events play fundamental roles in regulating physiological function. In neurons, these include inducing growth and differentiation, secretion, gene expression, and controlling processes associated with learning and memory. All of these processes have in common the vital dependence on changes in intracellular Ca²(+) [Ca²(+)](i). Numerous toxicants, including metals, polychlorinated biphenyls, and biological neurotoxins, can disrupt [Ca²(+)](i). Understanding how toxicants disrupt Ca²(+)-dependent neuronal signaling, and thus induce neuronal death or dysfunction, requires the ability to monitor [Ca²(+)](i) at the level of individual cells. A series of fluorophores that can report on changes in [Ca²(+)](i) has been pivotal in this process. This section describes how to use these fluorophores to study effects of neurotoxicants on two types of processes: changes in [Ca²(+)](i) in individual cells and changes in mitochondrial membrane potential. Similar techniques using distinct fluorophores can be applied to other physiological processes.
Collapse
Affiliation(s)
- Tobi L Limke
- Millipore Corporation, Billerica, Massachusetts, USA
| | | |
Collapse
|
16
|
Sarafidis PA, Georgianos PI, Lasaridis AN. Diuretics in clinical practice. Part II: electrolyte and acid-base disorders complicating diuretic therapy. Expert Opin Drug Saf 2010; 9:259-73. [PMID: 20095916 DOI: 10.1517/14740330903499257] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD As with all potent therapeutic agents, the use of diuretic compounds has been linked with several adverse effects that may reduce quality of life and patient compliance and, in some cases, may be associated with considerable morbidity and mortality. Among the various types of adverse effects, disturbances of electrolyte and acid-base balance are perhaps the most common, and some of them are the aetiological factors of other side effects (i.e., hypokalaemia causing ventricular arrhythmias or glucose intolerance). The mechanism and site of action and, therefore, the pharmacological effects of each diuretic class largely determine the specific electrolyte or acid-base abnormalities that will accompany the use of each diuretic agent. AREAS COVERED IN THE REVIEW This article reviews the major electrolyte disturbances (hypokalaemia, hyperkalaemia, hyponatraemia, disorders of magnesium and calcium balance), as well as the acid-base abnormalities complicating the use of the various diuretic agents. WHAT THE READER WILL GAIN The reader will gain insights into the pathogenesis of the diuretic-induced electrolyte and acid-base disorders together with considerations for their prevention and treatment. TAKE HOME MESSAGE Knowledge of the pharmacologic properties of each diuretic class and appropriate monitoring of patients under diuretic treatment represent the most important strategies to prevent the development of diuretic-related adverse events and their consequences.
Collapse
Affiliation(s)
- Pantelis A Sarafidis
- Section of Nephrology and Hypertension, 1st Department of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, St Kiriakidi 1, 54636, Thessaloniki, Greece.
| | | | | |
Collapse
|
17
|
Masuda SI, Tamura K, Wakui H, Maeda A, Dejima T, Hirose T, Toyoda M, Azuma K, Ohsawa M, Kanaoka T, Yanagi M, Yoshida SI, Mitsuhashi H, Matsuda M, Ishigami T, Toya Y, Suzuki D, Nagashima Y, Umemura S. Expression of angiotensin II type 1 receptor-interacting molecule in normal human kidney and IgA nephropathy. Am J Physiol Renal Physiol 2010; 299:F720-31. [PMID: 20685825 DOI: 10.1152/ajprenal.00667.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The intrarenal renin-angiotensin system plays a crucial role in the regulation of renal circulation and sodium reabsorption through the activation of vascular, glomerular, and tubular angiotensin II type 1 (AT(1)) receptor signaling. We previously cloned a molecule that specifically interacted with the murine AT(1) receptor to inhibit AT(1) receptor signaling, which we named ATRAP (for AT(1) receptor-associated protein). Since murine ATRAP was shown to be highly expressed in the kidney, in the present study we investigated expression and distribution of human ATRAP in normal kidney and renal biopsy specimens from patients with IgA nephropathy. In the normal human kidney, both ATRAP mRNA and protein were widely and abundantly distributed along the renal tubules from Bowman's capsule to the medullary collecting ducts. In all renal tubular epithelial cells, the ATRAP protein colocalized with the AT(1) receptor. In renal biopsy specimens with IgA nephropathy, a significant positive correlation between ATRAP and AT(1) receptor gene expression was observed. There was also a positive relationship between tubulointerstitial ATRAP expression and the estimated glomerular filtration rate in patients with IgA nephropathy. Furthermore, we examined the function of the tubular AT(1) receptor using an immortalized cell line of mouse distal convoluted tubule cells (mDCT) and found that overexpression of ATRAP by adenoviral gene transfer suppressed the angiotensin II-mediated increases in transforming growth factor-β production in mDCT cells. These findings suggest that ATRAP might play a role in balancing the renal renin-angiotensin system synergistically with the AT(1) receptor by counterregulatory effects in IgA nephropathy and propose an antagonistic effect of tubular ATRAP on AT(1) receptor signaling.
Collapse
Affiliation(s)
- Shin-ichiro Masuda
- Dept. of Medical Science and Cardiorenal Medicine, Yokohama City Univ. Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Antihypertensive pharmacologic treatment may be associated with diverse disturbances of electrolyte homeostasis. These drug-induced disorders are relatively common, typically including hyponatraemia, hypokalaemia, hyperkalaemia, hypomagnesaemia, hypophosphataemia and hypercalcaemia. Diuretics, beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are particularly likely to cause these complications. Recognised risk factors include high-dosage regimens (especially diuretics), old age, diabetes and impairment of renal function. Strategies to prevent these adverse drug reactions involve careful consideration of risk factors and clinical and laboratory evaluation in the course of treatment.
Collapse
Affiliation(s)
- G Liamis
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | | | | |
Collapse
|
19
|
Vormfelde SV, Sehrt D, Toliat MR, Schirmer M, Meineke I, Tzvetkov M, Nürnberg P, Brockmöller J. Genetic Variation in the Renal Sodium Transporters NKCC2, NCC, and ENaC in Relation to the Effects of Loop Diuretic Drugs. Clin Pharmacol Ther 2007; 82:300-9. [PMID: 17460608 DOI: 10.1038/sj.clpt.6100131] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is little data on genetic predictors of loop diuretic efficacy in humans. Therefore, we investigated the diuretic effects of single oral doses of bumetanide, frusemide, and torsemide in a crossover study in 97 healthy Caucasians in relation to genetic variation in the renal sodium transporters NKCC2 (coded by SLC12A1), NCC (SLC12A3), and ENaC (three subunits coded by SCNN1A, SCNN1B, and SCNN1G). The NCC alanine 264 allele (Gly264Ala) and the most frequent SCNN1B haplotype were associated with stronger diuresis, indicating lower reabsorbing function of these alleles. The variant alleles of the tightly coupled polymorphisms rs5723 (Leu649Leu) and rs5729 in SCNN1G were associated with weaker diuresis, indicating higher activity. Extended haplotype homozygosity implied evolutionary selection of the NCC alanine 264 allele. In conclusion, acute diuretic effects of loop diuretics were affected by genetic variation in sodium transporters that, in the nephron, are located distally from NKCC2.
Collapse
Affiliation(s)
- S V Vormfelde
- Department of Clinical Pharmacology, University Medical Centre, Georg-August-University Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sakai M, Tamura K, Tsurumi Y, Tanaka Y, Koide Y, Matsuda M, Ishigami T, Yabana M, Tokita Y, Hiroi Y, Komuro I, Umemura S. Expression of MAK-V/Hunk in renal distal tubules and its possible involvement in proliferative suppression. Am J Physiol Renal Physiol 2007; 292:F1526-36. [PMID: 17299141 DOI: 10.1152/ajprenal.00451.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MAK-V/Hunk is an SNF1-related serine/threonine kinase which was previously shown to be highly expressed in the mammary gland and central nervous system. In this study, we found MAK-V/Hunk is abundantly and specifically expressed in the thick ascending limbs and distal convoluted tubules (DCT) of the kidney from the embryonic stage to the adult stage. We demonstrated that dietary salt depletion significantly enhances renal MAK-V/Hunk mRNA levels compared with a normal-salt diet. To analyze the possible renal cellular function of this kinase, we employed mouse distal convoluted tubule (mDCT) cells. The results of reverse transcriptase-polymerase chain reaction and Western blot analysis revealed that MAK-V/Hunk is expressed endogenously in mDCT cells. Overexpression of MAK-V/Hunk by adenoviral gene transfer significantly inhibited the ANG II-induced stimulation of c-fos gene transcription and suppressed the ANG II-mediated increases in transforming growth factor-beta production into the medium. This phenomenon was accompanied by inhibition of ANG II-induced activation of BrdU incorporation. On the other hand, the MAK-V/Hunk knockdown by siRNA activated the ANG II-induced c-fos gene expression. In the consecutive sections stained for MAK-V/Hunk and AT(1) receptor, MAK-V/Hunk-immunopositive distal tubules expressed the AT(1) receptor. This is the first report on the intrarenal localization of MAK-V/Hunk and its cellular function in renal tubular cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adenoviridae/genetics
- Animals
- Cell Proliferation
- Diet, Sodium-Restricted
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Gene Transfer Techniques
- Genetic Vectors
- Immunohistochemistry
- Kidney/embryology
- Kidney/metabolism
- Kidney Tubules, Distal/cytology
- Kidney Tubules, Distal/enzymology
- Male
- Mice
- Mice, Inbred C57BL
- Promoter Regions, Genetic
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins c-fos/genetics
- RNA Interference
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Recombinant Proteins/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Masashi Sakai
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
22
|
Peter J, Armstrong D, Lyman CA, Walsh TJ. Use of fluorescent probes to determine MICs of amphotericin B and caspofungin against Candida spp. and Aspergillus spp. J Clin Microbiol 2005; 43:3788-92. [PMID: 16081911 PMCID: PMC1233965 DOI: 10.1128/jcm.43.8.3788-3792.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the utility of mechanism-based fluorescent probes for determination of MICs (FMICs) of amphotericin B and caspofungin against Candida spp. and Aspergillus spp. Amphotericin B was selected as a membrane-active antifungal agent, and caspofungin was selected as a cell wall-active agent. FMICs were also compared to the MIC determined by CLSI (formerly NCCLS) methods. Five isolates per species of Candida albicans, Candida glabrata, Candida parapsilosis, Aspergillus fumigatus, and Aspergillus terreus were studied with either amphotericin B or caspofungin. The fluorescent probes, carboxyfluorescein diacetate (CFDA) for cytoplasmic esterase activity and dihexyloxacarbocyanine iodide (DiOC6) for cell membrane potential, were each added to their respective plates. MICs and FMICs were determined in at least three separate experiments (in duplicate). Fluorescence was measured using a 96-well plate fluorometer. For amphotericin B and caspofungin, the FMIC end point was the lowest concentration of drug at which the percent growth inhibition from treated organisms versus control organisms displayed 80% inhibition for amphotericin B and 50% inhibition for caspofungin as measured by a fluorescent signal. The MIC for amphotericin B was defined as the lowest concentration of antifungal displaying no visible growth for both Aspergillus and Candida spp. The MIC for caspofungin was the lowest concentration of drug that displayed a minimum effective concentration for Aspergillus spp. For Candida spp., the MIC for caspofungin was defined as the concentration at which the antifungal agent significantly inhibits the organism. The FMICs of both antifungals, as measured by the DiOC6 membrane probe, showed good agreement (83% to 100%), within one well dilution, with the MICs against amphotericin B and caspofungin for all species. Also, the FMICs measured by the CFDA cytoplasmic esterase probe reflecting damage due to cell wall or cell membrane showed strong agreement (79 to 100%) with the MICs of both amphotericin B and caspofungin for all species. There was no significant difference in comparisons of MIC and FMIC values (P > or = 0.05). The use of fluorescent probes provides a mechanism-based method of determination of MICs of amphotericin B and caspofungin against Candida spp. and Aspergillus spp. that correlates well with standard methods.
Collapse
Affiliation(s)
- Joanne Peter
- Immunocompromised Host Section, National Cancer Institute, Bethesda, Maryland
| | - Derek Armstrong
- Immunocompromised Host Section, National Cancer Institute, Bethesda, Maryland
| | - Caron A. Lyman
- Immunocompromised Host Section, National Cancer Institute, Bethesda, Maryland
| | - Thomas J. Walsh
- Immunocompromised Host Section, National Cancer Institute, Bethesda, Maryland
- Corresponding author. Mailing address: Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute, Building 10, Room 13N240, 10 Center Drive, Bethesda, MD 20892-1928. Phone: (301) 496-7103. Fax: (301) 480-2308. E-mail:
| |
Collapse
|
23
|
Lim LS, Fink HA, Kuskowski MA, Cauley JA, Ensrud KE. Diuretic use and bone mineral density in older USA men: the osteoporotic fractures in men (MrOS) study. Age Ageing 2005; 34:504-7. [PMID: 16107456 PMCID: PMC1963467 DOI: 10.1093/ageing/afi133] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lionel S Lim
- Division of Preventive and Occupational Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Ca(2+) is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function. The Ca(2+) balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on average 1 g Ca(2+) daily from which 0.35 g is absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca(2+) balance, the kidney must excrete the same amount of Ca(2+) that the small intestine absorbs. This is accomplished by a combination of filtration of Ca(2+) across the glomeruli and subsequent reabsorption of the filtered Ca(2+) along the renal tubules. Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca(2+) fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D(3)) and parathyroid hormone. Until recently, the mechanism by which Ca(2+) enter the absorptive epithelia was unknown. A major breakthrough in completing the molecular details of these pathways was the identification of the epithelial Ca(2+) channel family consisting of two members: TRPV5 and TRPV6. Functional analysis indicated that these Ca(2+) channels constitute the rate-limiting step in Ca(2+)-transporting epithelia. They form the prime target for hormonal control of the active Ca(2+) flux from the intestinal lumen or urine space to the blood compartment. This review describes the characteristics of epithelial Ca(2+) transport in general and highlights in particular the distinctive features and the physiological relevance of the new epithelial Ca(2+) channels accumulating in a comprehensive model for epithelial Ca(2+) absorption.
Collapse
Affiliation(s)
- Joost G J Hoenderop
- Department of Physiology, Nijmegen Center for Moecular Life Sciences, University Medical Center Nijmegen, The Netherlands
| | | | | |
Collapse
|
25
|
Belkacemi L, Bédard I, Simoneau L, Lafond J. Calcium channels, transporters and exchangers in placenta: a review. Cell Calcium 2005; 37:1-8. [PMID: 15541458 DOI: 10.1016/j.ceca.2004.06.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 06/28/2004] [Accepted: 06/29/2004] [Indexed: 11/25/2022]
Abstract
Calcium (Ca2+) entry in cells is crucial for development and physiology of virtually all cell types. It acts as an intracellular (second) messenger to regulate a diverse array of cellular functions, from cell division and differentiation to cell death. Among candidates for Ca2+ entry in cells are-voltage-dependant Ca2+ channels (VDCCs), transient receptor potential (TRP)-related Ca2+ channels and store-operated Ca2+ (SOC) channels. Plasma membrane Ca2+-ATPases (PMCA) and Na+/Ca2+ exchanger (NCX) are mainly responsible for Ca2+ extrusion. These different Ca2+channels/transporters and exchangers exhibit specific distribution and physiological properties. During pregnancy, the syncytiotrophoblast layer of the human placenta transfers as much as 30 g of Ca2+ from the mother to the fetus, especially in late gestation where Ca2+ transport through different channels must increase in response to the demands of accelerating bone mineralization of the fetus. The identification and characterization of the different Ca2+ channels/transporters and exchangers on the brush-border membrane (BBM) facing the maternal circulation, and the basal plasma membrane (BPM) facing the fetal circulation; placental membrane of the syncytiotrophoblasts have been the focus of numerous studies. This review discusses current views in this field regarding localization and functions during transcellular Ca2+ entry and extrusion from cells particularly in the placenta.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Laboratoire de Physiologie Materno-Foetale, Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale 'Centre-Ville'Montréal, Montréal, Québec, Canada H3C 3P8
| | | | | | | |
Collapse
|
26
|
Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev 2001; 81:51-84. [PMID: 11152754 DOI: 10.1152/physrev.2001.81.1.51] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The distal tubule reabsorbs approximately 10% of the filtered Mg(2+), but this is 70-80% of that delivered from the loop of Henle. Because there is little Mg(2+) reabsorption beyond the distal tubule, this segment plays an important role in determining the final urinary excretion. The distal convoluted segment (DCT) is characterized by a negative luminal voltage and high intercellular resistance so that Mg(2+) reabsorption is transcellular and active. This review discusses recent evidence for selective and sensitive control of Mg(2+) transport in the DCT and emphasizes the importance of this control in normal and abnormal renal Mg(2+) conservation. Normally, Mg(2+) absorption is load dependent in the distal tubule, whether delivery is altered by increasing luminal Mg(2+) concentration or increasing the flow rate into the DCT. With the use of microfluorescent studies with an established mouse distal convoluted tubule (MDCT) cell line, it was shown that Mg(2+) uptake was concentration and voltage dependent. Peptide hormones such as parathyroid hormone, calcitonin, glucagon, and arginine vasopressin enhance Mg(2+) absorption in the distal tubule and stimulate Mg(2+) uptake into MDCT cells. Prostaglandin E(2) and isoproterenol increase Mg(2+) entry into MDCT cells. The current evidence indicates that cAMP-dependent protein kinase A, phospholipase C, and protein kinase C signaling pathways are involved in these responses. Steroid hormones have significant effects on distal Mg(2+) transport. Aldosterone does not alter basal Mg(2+) uptake but potentiates hormone-stimulated Mg(2+) entry in MDCT cells by increasing hormone-mediated cAMP formation. 1,25-Dihydroxyvitamin D(3), on the other hand, stimulates basal Mg(2+) uptake. Elevation of plasma Mg(2+) or Ca(2+) inhibits hormone-stimulated cAMP accumulation and Mg(2+) uptake in MDCT cells through activation of extracellular Ca(2+)/Mg(2+)-sensing mechanisms. Mg(2+) restriction selectively increases Mg(2+) uptake with no effect on Ca(2+) absorption. This intrinsic cellular adaptation provides the sensitive and selective control of distal Mg(2+) transport. The distally acting diuretics amiloride and chlorothiazide stimulate Mg(2+) uptake in MDCT cells acting through changes in membrane voltage. A number of familial and acquired disorders have been described that emphasize the diversity of cellular controls affecting renal Mg(2+) balance. Although it is clear that many influences affect Mg(2+) transport within the DCT, the transport processes have not been identified.
Collapse
Affiliation(s)
- L J Dai
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Hudson CA, Rojas JD, Sarvazyan N, Wesson DE, Martínez-Zaguilán R. Interactions between benzylamiloride and fura-2: studies in vitro and in cardiac myocytes. Arch Biochem Biophys 1998; 356:25-34. [PMID: 9681987 DOI: 10.1006/abbi.1998.0749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amiloride derivatives are commonly used inhibitors of Na+/H+- and Na+/Ca2+-exchange. Because they are fluorescent molecules the use of benzylamiloride (BZA), an inhibitor of Na+/Ca2+ exchange, in conjunction with Fura-2, a commonly used fluorescent Ca2+ indicator, might complicate interpretation of fluorescence data obtained. In vitro data show that BZA decreases the Fura-2 fluorescence at all useful wavelengths in a concentration-dependent manner. The Fura-2 ratio 340/380 (used to estimate intracellular Ca2+ ([Ca2+]in)) also decreased with increasing BZA concentrations. The Stern-Volmer relation suggests that this phenomenon is due to either static or dynamic quenching. Varying temperatures from 4 to 37 degreesC did not alter Stern-Volmer constants, consistent instead with fluorescence resonance energy transfer (FRET). The in situ relevance of these interactions was evaluated in adult rat cardiac myocytes which exhibit Na+/Ca2+ exchange reflected by rapid [Ca2+]in increase following Na+ removal. Pretreatment with BZA >/= 25 microM decreased the magnitude of Fura-2 changes induced by Na+ removal. Analysis of the individual Fura-2 useful wavelengths indicated that >/= 25 microM BZA altered the Fura-2 signal in a manner consistent with the quenching effects noted in vitro. Together, these data show that BZA interacts with Fura-2 in vitro and in situ and suggest caution when interpreting Fura-2 fluorescence data derived in conjunction with BZA.
Collapse
Affiliation(s)
- C A Hudson
- Department of Physiology, Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, Texas, 79430, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Calcium and sodium absorption by the kidney normally proceed in parallel. However, a number of physiological, pharmacological, pathological, and genetic conditions dissociate this relation. In each instance, the dissociation can be traced to the distal convoluted tubule, where calcium and sodium transport are inversely related. Based on the identification of the relevant sodium transporters in these cells and on analysis of the mechanism of calcium transport, an explanation for this inverse relation can be developed. Apical membrane calcium entry is mediated by voltage-sensitive calcium channels that are activated upon membrane hyperpolarization. Basolateral calcium efflux is effected primarily by Na+/Ca2+ exchange. According to the model, inhibition of sodium entry through either the Na-Cl cotransporter or the Na+ channel hyperpolarizes the cell, as does parathyroid hormone, thereby activating the calcium entry channel and increasing the driving force for diffusional entry. Membrane hyperpolarization also increases the driving force of calcium efflux through the Na+/Ca2+ exchanger. Thus sodium-dependent changes of calcium transport are indirect and occur secondarily through effects on membrane voltage.
Collapse
Affiliation(s)
- P A Friedman
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
29
|
Abstract
Recent research has provided new concepts in our understanding of renal magnesium handling. Although the majority of the filtered magnesium is reabsorbed within the loop of Henle, it is now recognized that the distal tubule also plays an important role in magnesium conservation. Magnesium absorption within the cTAL segment of the loop is passive and dependent on the transepithelial voltage. Magnesium transport in the DCT is active and transcellular in nature. Many of the hormonal (PTH, calcitonin, glucagon, AVP) and nonhormonal (magnesium-restriction, acid-base changes, potassium-depletion) influences that affect magnesium transport within the cTAL similarly alter magnesium absorption within the DCT. However, the cellular mechanisms are different. Actions within the loop affect either the transepithelial voltage or the paracellular permeability. Influences acting in the DCT involve changes in active transcellular transport either Mg2+ entry across the apical membrane or Mg2+ exit from the basolateral side. These transport processes are fruitful areas for future research. An additional regulatory control has recently been recognized that involves an extracellular Ca2+/Mg(2+)-sensing receptor. This receptor is present in the basolateral membrane of the TAL and DCT and modulates magnesium and calcium conservation with elevation in plasma divalent cation concentration. Further studies are warranted to determine the physiological role of the Ca2+/Mg(2+)-sensing receptor, but activating and inactivating mutations have been described that result in renal magnesium-wasting and hypermagnesemia, respectively. All of these receptor-mediated controls change calcium absorption in addition to magnesium transport. Selective magnesium control is through intrinsic control of Mg2+ entry into distal tubule cells. The cellular mechanisms that intrinsically regulate magnesium transport have yet to be described. Familial diseases associated with renal magnesium-wasting provide a unique opportunity to study these intrinsic controls. Loop diuretics such as furosemide increase magnesium excretion by virtue of its effects on the transepithelial voltage thereby inhibiting passive magnesium absorption. Distally acting diuretics, like amiloride and chlorothiazide, enhance Mg2+ entry into DCT cells. Amiloride may be used as a magnesium-conserving diuretic whereas chlorothiazide may lead to potassium-depletion that compromises renal magnesium absorption. Patients with Bartter's and Gitelman's syndromes, diseases of salt transport in the loop and distal tubule, respectively, are associated with disturbances in renal magnesium handling. These may provide useful lessons in understanding segmental control of magnesium reabsorption. Metabolic acidosis diminishes magnesium absorption in MDCT cells by protonation of the Mg2+ entry pathway. Metabolic alkalosis increases magnesium permeability across the cTAL paracellular pathway and stimulates Mg2+ entry into DCT cells. Again, these changes are likely due to protonation of charges along the paracellular pathway of the cTAL and the putative Mg2+ channel of the DCT. Cellular potassium-depletion diminishes the voltage-dependent magnesium absorption in the TAL and Mg2+ entry into MDCT cells. However, the relationship between potassium and magnesium balance is far from clear. For instance, magnesium-wasting is more commonly found in patients with Gitelman's disease than Bartter's but both have hypokalemia. Further studies are needed to sort out these discrepancies. Phosphate deficiency also decreases Mg2+ uptake in distal cells but it apparently does so by mechanisms other than those observed in potassium depletion. Accordingly, potassium depletion, phosphate deficiency, and metabolic acidosis may be additive. The means by which cellular potassium and phosphate alter magnesium handling are unclear. Research in the nineties has increased our understanding of renal magnesium transport and regulation, but there are many in
Collapse
Affiliation(s)
- G A Quamme
- Department of Medicine, University of British Columbia, University Hospital, Vancouver, Canada
| |
Collapse
|