1
|
Tabibzadeh N, Klein M, Try M, Poupon J, Houillier P, Klein C, Cheval L, Crambert G, Lasaad S, Chevillard L, Megarbane B. Low exposition to lithium prevents nephrogenic diabetes insipidus but not microcystic dilations of the collecting ducts in long-term rat model. Arch Pharm (Weinheim) 2024; 357:e2400063. [PMID: 38704748 DOI: 10.1002/ardp.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Lithium induces nephrogenic diabetes insipidus (NDI) and microcystic chronic kidney disease (CKD). As previous clinical studies suggest that NDI is dose-dependent and CKD is time-dependent, we investigated the effect of low exposition to lithium in a long-term experimental rat model. Rats were fed with a normal diet (control group), with the addition of lithium (Li+ group), or with lithium and amiloride (Li+/Ami group) for 6 months, allowing obtaining low plasma lithium concentrations (0.25 ± 0.06 and 0.43 ± 0.16 mmol/L, respectively). Exposition to low concentrations of plasma lithium levels prevented NDI but not microcystic dilations of kidney tubules, which were identified as collecting ducts (CDs) on immunofluorescent staining. Both hypertrophy, characterized by an increase in the ratio of nuclei per tubular area, and microcystic dilations were observed. The ratio between principal cells and intercalated cells was higher in microcystic than in hypertrophied tubules. There was no correlation between AQP2 messenger RNA levels and cellular remodeling of the CD. Additional amiloride treatment in the Li+/Ami group did not allow consistent morphometric and cellular composition changes compared to the Li+ group. Low exposition to lithium prevented overt NDI but not microcystic dilations of the CD, with differential cellular composition in hypertrophied and microcystic CDs, suggesting different underlying cellular mechanisms.
Collapse
MESH Headings
- Animals
- Diabetes Insipidus, Nephrogenic/chemically induced
- Diabetes Insipidus, Nephrogenic/prevention & control
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/pathology
- Kidney Tubules, Collecting/metabolism
- Male
- Rats
- Aquaporin 2/metabolism
- Amiloride/pharmacology
- Disease Models, Animal
- Rats, Wistar
- Time Factors
- Renal Insufficiency, Chronic/prevention & control
- Renal Insufficiency, Chronic/chemically induced
- Lithium/pharmacology
- Dose-Response Relationship, Drug
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Mathieu Klein
- Inserm UMRS-1144, Université Paris Cité, Paris, France
| | - Mélanie Try
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Joël Poupon
- Department of Biological Toxicology, AP-HP, Lariboisière Hospital, University Paris VII, Paris, France
| | - Pascal Houillier
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
| | - Christophe Klein
- Centre d'Histologie, d'Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lydie Cheval
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Samia Lasaad
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | | | - Bruno Megarbane
- Inserm UMRS-1144, Université Paris Cité, Paris, France
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology, APHP, Paris, France
| |
Collapse
|
2
|
Mom R, Mocquet V, Auguin D, Réty S. Aquaporin Modulation by Cations, a Review. Curr Issues Mol Biol 2024; 46:7955-7975. [PMID: 39194687 DOI: 10.3390/cimb46080470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Aquaporins (AQPs) are transmembrane channels initially discovered for their role in water flux facilitation through biological membranes. Over the years, a much more complex and subtle picture of these channels appeared, highlighting many other solutes accommodated by AQPs and a dense regulatory network finely tuning cell membranes' water permeability. At the intersection between several transduction pathways (e.g., cell volume regulation, calcium signaling, potassium cycling, etc.), this wide and ancient protein family is considered an important therapeutic target for cancer treatment and many other pathophysiologies. However, a precise and isoform-specific modulation of these channels function is still challenging. Among the modulators of AQPs functions, cations have been shown to play a significant contribution, starting with mercury being historically associated with the inhibition of AQPs since their discovery. While the comprehension of AQPs modulation by cations has improved, a unifying molecular mechanism integrating all current knowledge is still lacking. In an effort to extract general trends, we reviewed all known modulations of AQPs by cations to capture a first glimpse of this regulatory network. We paid particular attention to the associated molecular mechanisms and pinpointed the residues involved in cation binding and in conformational changes tied up to the modulation of the channel function.
Collapse
Affiliation(s)
- Robin Mom
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Vincent Mocquet
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Daniel Auguin
- Laboratoire de Physiologie, Ecologie et Environnement (P2E), UPRES EA 1207/USC INRAE-1328, UFR Sciences et Techniques, Université d'Orléans, F-45067 Orléans, France
| | - Stéphane Réty
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| |
Collapse
|
3
|
Yousef Yengej FA, Pou Casellas C, Ammerlaan CME, Olde Hanhof CJA, Dilmen E, Beumer J, Begthel H, Meeder EMG, Hoenderop JG, Rookmaaker MB, Verhaar MC, Clevers H. Tubuloid differentiation to model the human distal nephron and collecting duct in health and disease. Cell Rep 2024; 43:113614. [PMID: 38159278 DOI: 10.1016/j.celrep.2023.113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Organoid technology is rapidly gaining ground for studies on organ (patho)physiology. Tubuloids are long-term expanding organoids grown from adult kidney tissue or urine. The progenitor state of expanding tubuloids comes at the expense of differentiation. Here, we differentiate tubuloids to model the distal nephron and collecting ducts, essential functional parts of the kidney. Differentiation suppresses progenitor traits and upregulates genes required for function. A single-cell atlas reveals that differentiation predominantly generates thick ascending limb and principal cells. Differentiated human tubuloids express luminal NKCC2 and ENaC capable of diuretic-inhibitable electrolyte uptake and enable disease modeling as demonstrated by a lithium-induced tubulopathy model. Lithium causes hallmark AQP2 loss, induces proliferation, and upregulates inflammatory mediators, as seen in vivo. Lithium also suppresses electrolyte transport in multiple segments. In conclusion, this tubuloid model enables modeling of the human distal nephron and collecting duct in health and disease and provides opportunities to develop improved therapies.
Collapse
Affiliation(s)
- Fjodor A Yousef Yengej
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carla Pou Casellas
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carola M E Ammerlaan
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Charlotte J A Olde Hanhof
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Emre Dilmen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Joep Beumer
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands; Institute of Human Biology, Roche Pharma Research and Early Development, 4058 Basel, Switzerland
| | - Harry Begthel
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands
| | - Elise M G Meeder
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Joost G Hoenderop
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute-KNAW, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
4
|
Fiorillo A, Sampogna G, Albert U, Maina G, Perugi G, Pompili M, Rosso G, Sani G, Tortorella A. Facts and myths about the use of lithium for bipolar disorder in routine clinical practice: an expert consensus paper. Ann Gen Psychiatry 2023; 22:50. [PMID: 38057894 DOI: 10.1186/s12991-023-00481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Bipolar disorder is one of the most burdensome severe mental disorders, characterized by high levels of personal and social disability. Patients often need an integrated pharmacological and non-pharmacological approach. Lithium is one of the most effective treatments available not only in psychiatry, but in the whole medicine, and its clinical efficacy is superior to that of other mood stabilizers. However, a declining trend on lithium prescriptions has been observed worldwide in the last 20 years, supporting the notion that lithium is a 'forgotten drug' and highlighting that the majority of patients with bipolar disorder are missing out the best available pharmacological option. Based on such premises, a narrative review has been carried out on the most common "misconceptions" and "stereotypes" associated with lithium treatment; we also provide a list of "good reasons" for using lithium in ordinary clinical practice to overcome those false myths. MAIN TEXT A narrative search of the available literature has been performed entering the following keywords: "bipolar disorder", "lithium", "myth", "mythology", "pharmacological treatment", and "misunderstanding". The most common false myths have been critically revised and the following statements have been proposed: (1) Lithium should represent the first choice for the treatment of patients with bipolar disorder; (2) lithium treatment is effective in different patients' groups suffering from bipolar disorder; (3) Drug-drug interaction risk can be easily managed during lithium treatment; (4) The optimal management of lithium treatment includes periodical laboratory tests; (5) Slow-release lithium formulation has advantages compared to immediate release formulation; (6) Lithium treatment has antisuicidal properties; (7) Lithium can be carefully managed during pregnancy. CONCLUSIONS In recent years, a discrepancy between evidence-based recommendations and clinical practice in using lithium treatment for patients with bipolar disorder has been highlighted. It is time to disseminate clear and unbiased information on the clinical efficacy, effectiveness, tolerability and easiness to use of lithium treatment in patients with bipolar disorder. It is necessary to reinvigorate the clinical and academic discussion about the efficacy of lithium, to counteract the decreasing prescription trend of one of the most effective drugs available in the whole medicine.
Collapse
Affiliation(s)
- Andrea Fiorillo
- Department of Psychiatry, University of Campania "L. Vanvitelli", Largo Madonna delle Grazie, Naples, Italy
| | - Gaia Sampogna
- Department of Psychiatry, University of Campania "L. Vanvitelli", Largo Madonna delle Grazie, Naples, Italy.
| | - Umberto Albert
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Maina
- San Luigi Gonzaga Hospital, University of Turin, Turin, Italy
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Giulio Perugi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital - Sapienza University of Rome, Rome, Italy
| | - Gianluca Rosso
- San Luigi Gonzaga Hospital, University of Turin, Turin, Italy
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | | |
Collapse
|
5
|
Bosi A, Ceriani L, Elinder CG, Bellocco R, Clase CM, Landen M, Carrero JJ, Runesson B. Quality of laboratory biomarker monitoring during treatment with lithium in patients with bipolar disorder. Bipolar Disord 2023; 25:499-506. [PMID: 36651925 DOI: 10.1111/bdi.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Clinical guidelines recommend monitoring of creatinine and lithium throughout treatment with lithium. We here assessed the extent to which this occurs in healthcare in Sweden. METHODS This is an observational study of all adults with bipolar disorder starting lithium therapy in Stockholm, Sweden, during 2007-2018. The main outcome was monitoring of blood lithium and creatinine at therapy initiation and/or once annually. The secondary outcome was monitoring of calcium and thyroid-stimulating hormone (TSH). Patients were followed up until therapy cessation, death, out-migration, or to the end of 2018. RESULTS We identified 4428 adults with bipolar disorder who started lithium therapy and were followed up for up to 11 years. Their median age was 39 years, and 63% were women. The median duration on lithium therapy was 4.3 (IQR: 1.9-7.45) years, and the majority who discontinued therapy started another mood stabilizer soon after. Overall, 21% started lithium therapy without assessing the serum/plasma concentration of creatinine. The proportion of people who did not have both lithium and creatinine measured increased from 21% in the first year to 33% in the eleventh year. The proportion with annual testing for TSH or calcium was slightly lower. As few as 16% of patients had both lithium and creatinine tested once annually during their complete time on lithium. CONCLUSIONS In a Swedish community sample, lithium and creatinine monitoring was inconsistent with guideline recommendations that call for measurement of annual biomarker levels.
Collapse
Affiliation(s)
- Alessandro Bosi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Laura Ceriani
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- University of Milano-Bicocca, Milan, Italy
| | | | - Rino Bellocco
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- University of Milano-Bicocca, Milan, Italy
| | - Catherine M Clase
- Department of Medicine and Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Mikael Landen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Juan-Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Division of Nephrology, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Björn Runesson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Sørtvedt X, Nielsen R, Praetorius J, Christensen BM. Absence of E-Cadherin and β-Catenin in the Basal Plasma Membrane of Collecting Duct Cells During NDI Development and Recovery. J Histochem Cytochem 2023; 71:357-375. [PMID: 37439659 PMCID: PMC10363910 DOI: 10.1369/00221554231185809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Lithium (Li) induces severe polyuria and polydipsia in up to 40% of patients undergoing Li treatment. In rats, Li treatment induces a reversible cellular remodeling of the collecting duct (CD), decreasing the fraction of principal-to-intercalated cells. To investigate the potential role of adherens junction proteins, we performed immunohistochemistry on kidney cross-sections from rats treated with Li as well as rats undergoing recovery on a normal diet following 4 weeks of Li-treatment. We performed immunoelectron microscopy on cryosections to determine the ultrastructural localizations. Immunohistochemistry showed that E-cadherin and β-catenin were present in both the lateral and basal plasma membrane domains of CD cells. Immunoelectron microscopy confirmed that β-catenin was localized both to the lateral and the basal plasma membrane. The basal localization of both proteins was absent from a fraction of mainly principal cells after 10 and 15 days of Li-treatment. After 4 weeks of Li-treatment few to no cells were absent of E-cadherin and β-catenin at the basal plasma membrane. After 12 and 19 days of recovery some cells exhibited an absence of basal localization of both proteins. Thus, the observed localizational changes of E-cadherin and β-catenin appear before the cellular remodeling during both development and recovery from Li-NDI.
Collapse
Affiliation(s)
- Xabier Sørtvedt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
7
|
Münch J, Goodyer PR, Wagner CA. Tubular Diseases and Stones Seen From Pediatric and Adult Nephrology Perspectives. Semin Nephrol 2023; 43:151437. [PMID: 37968178 DOI: 10.1016/j.semnephrol.2023.151437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The tubular system of the kidneys is a complex series of morphologic and functional units orchestrating the content of tubular fluid as it flows along the nephron and collecting ducts. Renal tubules maintain body water, regulate electrolytes and acid-base balance, reabsorb precious organic solutes, and eliminate specific metabolites, toxins, and drugs. In addition, decisive mechanisms to adjust blood pressure are governed by the renal tubules. Genetic as well as acquired disorders of these tubular functions may cause serious diseases that manifest both in childhood and adulthood. This article addresses a selection of tubulopathies and the underlying pathomechanisms, while highlighting the important differences in pediatric and adult nephrology care. These range from rare monogenic conditions such as nephrogenic diabetes insipidus, cystinosis, and Bartter syndrome that present in childhood, to the genetic and acquired tubular pathologies causing hypertension or nephrolithiasis that are more prevalent in adults. Both pediatric and adult nephrologists must be aware of these conditions and the age-dependent manifestations that warrant close interaction between the two subspecialties.
Collapse
Affiliation(s)
- Johannes Münch
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Institute of Human Genetics, University of Zurich, Zurich, Switzerland; National Center of Competence in Research, NCCR Kidney.CH, Switzerland
| | - Paul R Goodyer
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research, NCCR Kidney.CH, Switzerland.
| |
Collapse
|
8
|
Patel N, Patel D, Farouk SS, Rein JL. Salt and Water: A Review of Hypernatremia. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:102-109. [PMID: 36868726 DOI: 10.1053/j.akdh.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 03/05/2023]
Abstract
Serum sodium disorders are generally a marker of water balance in the body. Thus, hypernatremia is most often caused by an overall deficit of total body water. Other unique circumstances may lead to excess salt, without an impact on the body's total water volume. Hypernatremia is commonly acquired in both the hospital and community. As hypernatremia is associated with increased morbidity and mortality, treatment should be initiated promptly. In this review, we will discuss the pathophysiology and management of the main types of hypernatremia, which can be categorized as either a loss of water or gain of sodium that can be mediated by renal or extrarenal mechanisms.
Collapse
Affiliation(s)
- Niralee Patel
- Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati, Cincinnati, OH
| | - Dhwanil Patel
- Division of Nephrology, Overlook Medical Center, Summit, NJ
| | - Samira S Farouk
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joshua L Rein
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
9
|
Boivin E, Le Daré B, Bellay R, Vigneau C, Mercerolle M, Bacle A. Long-term lithium therapy and risk of chronic kidney disease, hyperparathyroidism and hypercalcemia: a cohort study. Int J Bipolar Disord 2023; 11:4. [PMID: 36709463 PMCID: PMC9884717 DOI: 10.1186/s40345-023-00286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Lithium is well recognized as the first-line maintenance treatment for bipolar disorder (BD). However, besides therapeutic benefits attributed to lithium therapy, the associated side effects including endocrinological and renal disorders constitute important parameters in prescribing patterns and patient adherence. The objectives of this study is to (i) determine whether long-term lithium therapy is associated with a decrease in renal function, hyperparathyroidism and hypercalcemia and (ii) identify risk factors for lithium-induced chronic kidney disease (CKD). METHODS We conducted a single-centered cohort study of adult patients (≥ 18 years) treated with lithium, who were enrolled at Rennes University Hospital in France between January 1, 2018 and June 1, 2020. Required data were collected from the patient's medical records: demographics characteristics (age, sex, body mass index), biologic parameters (GFR, lithium blood level, PTH and calcium), medical comorbidities (hypertension and diabetes), lithium treatment duration and dosage, and length of hospitalization. RESULTS A total of 248 patients were included (mean age: 60.2 ± 16.5 years). Duration of lithium treatment correlated with (i) deterioration of renal function estimated at - 2.9 mL/min/year (p < 0.0001) and (ii) the development of hyperparathyroidism (p < 0.01) and hypercalcemia (p < 0.01). We also noted that patients with lithium blood level > 0.8 mEq/mL had significantly lower GFR than patients with lithium blood level < 0.8 mEq/mL (61.8 mL/min versus 77.6 mL/min, respectively, p = 0.0134). Neither diabetes mellitus nor hypertension was associated with more rapid deterioration of renal function. CONCLUSION This study suggests that the duration of lithium treatment contribute to the deterioration of renal function, raising the question of reducing dosages in patients with a GFR < 60 mL/min. Overdoses has been identified as a risk factor for CKD, emphasizing the importance of regular re-evaluation of the lithium dose regimen. Also, long-term lithium therapy was associated with hyperparathyroidism and hypercalcemia. Particular vigilance is required on these points in order to limit the occurrence of endocrinological and renal lithium adverse effects.
Collapse
Affiliation(s)
- Elise Boivin
- grid.411154.40000 0001 2175 0984Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000 Rennes, France
| | - Brendan Le Daré
- grid.411154.40000 0001 2175 0984Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000 Rennes, France ,grid.410368.80000 0001 2191 9284Institut NuMeCan (Nutrition, Metabolismes et Cancer), Réseau PREVITOX, INSERM, INRAE, Université de Rennes 1, Rennes, France
| | - Romain Bellay
- grid.488406.60000 0000 9139 4930Service Pharmacie, Centre Hospitalier Guillaume Regnier, Rennes, France
| | - Cécile Vigneau
- grid.414271.5Service de Néphrologie, Centre Hospitalier Universitaire Pontchaillou, Rennes, France
| | - Marion Mercerolle
- grid.411154.40000 0001 2175 0984Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000 Rennes, France
| | - Astrid Bacle
- grid.411154.40000 0001 2175 0984Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000 Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CHU Rennes, INSERM, EHESP, Irset-UMR_S 1085, 35000 Rennes, France
| |
Collapse
|
10
|
Tabibzadeh N, Crambert G. Mechanistic insights into the primary and secondary alterations of renal ion and water transport in the distal nephron. J Intern Med 2023; 293:4-22. [PMID: 35909256 PMCID: PMC10087581 DOI: 10.1111/joim.13552] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kidneys, by equilibrating the outputs to the inputs, are essential for maintaining the constant volume, pH, and electrolyte composition of the internal milieu. Inability to do so, either because of internal kidney dysfunction (primary alteration) or because of some external factors (secondary alteration), leads to pathologies of varying severity, leading to modification of these parameters and affecting the functions of other organs. Alterations of the functions of the collecting duct (CD), the most distal part of the nephron, have been extensively studied and have led to a better diagnosis, better management of the related diseases, and the development of therapeutic tools. Thus, dysfunctions of principal cell-specific transporters such as ENaC or AQP2 or its receptors (mineralocorticoid or vasopressin receptors) caused by mutations or by compounds present in the environment (lithium, antibiotics, etc.) have been demonstrated in a variety of syndromes (Liddle, pseudohypoaldosteronism type-1, diabetes insipidus, etc.) affecting salt, potassium, and water balance. In parallel, studies on specific transporters (H+ -ATPase, anion exchanger 1) in intercalated cells have revealed the mechanisms of related tubulopathies like distal renal distal tubular acidosis or Sjögren syndrome. In this review, we will recapitulate the mechanisms of most of the primary and secondary alteration of the ion transport system of the CD to provide a better understanding of these diseases and highlight how a targeted perturbation may affect many different pathways due to the strong crosstalk and entanglements between the different actors (transporters, cell types).
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
- Assistance Publique Hôpitaux de ParisHôpital BichâtParisFrance
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
| |
Collapse
|
11
|
Vaz de Castro PAS, Bitencourt L, de Oliveira Campos JL, Fischer BL, Soares de Brito SBC, Soares BS, Drummond JB, Simões E Silva AC. Nephrogenic diabetes insipidus: a comprehensive overview. J Pediatr Endocrinol Metab 2022; 35:421-434. [PMID: 35146976 DOI: 10.1515/jpem-2021-0566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Nephrogenic diabetes insipidus (NDI) is characterized by the inability to concentrate urine that results in polyuria and polydipsia, despite having normal or elevated plasma concentrations of arginine vasopressin (AVP). In this study, we review the clinical aspects and diagnosis of NDI, the various etiologies, current treatment options and potential future developments. NDI has different clinical manifestations and approaches according to the etiology. Hereditary forms of NDI are mainly caused by mutations in the genes that encode key proteins in the AVP signaling pathway, while acquired causes are normally associated with specific drug exposure, especially lithium, and hydroelectrolytic disorders. Clinical manifestations of the disease vary according to the degree of dehydration and hyperosmolality, being worse when renal water losses cannot be properly compensated by fluid intake. Regarding the diagnosis of NDI, it is important to consider the symptoms of the patient and the diagnostic tests, including the water deprivation test and the baseline plasma copeptin measurement, a stable surrogate biomarker of AVP release. Without proper treatment, patients may developcomplications leading to high morbidity and mortality, such as severe dehydration and hypernatremia. In that sense, the treatment of NDI consists in decreasing the urine output, while allowing appropriate fluid balance, normonatremia, and ensuring an acceptable quality of life. Therefore, therapeutic options include nonpharmacological interventions, including sufficient water intake and a low-sodium diet, and pharmacological treatment. The main medications used for NDI are thiazide diuretics, nonsteroidal anti-inflammatory drugs (NSAIDs), and amiloride, used isolated or in combination.
Collapse
Affiliation(s)
- Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Letícia Bitencourt
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Lacerda de Oliveira Campos
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruna Luisa Fischer
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Stephanie Bruna Camilo Soares de Brito
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Beatriz Santana Soares
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Juliana Beaudette Drummond
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
12
|
Dutta A, Das M. Deciphering the Role of Aquaporins in Metabolic Diseases: A Mini Review. Am J Med Sci 2022; 364:148-162. [DOI: 10.1016/j.amjms.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
|
13
|
Thomsen ML, Grønkjær C, Iervolino A, Rej S, Trepiccione F, Christensen BM. Atorvastatin does not ameliorate nephrogenic diabetes insipidus induced by lithium or potassium depletion in mice. Physiol Rep 2021; 9:e15111. [PMID: 34762363 PMCID: PMC8582289 DOI: 10.14814/phy2.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
Acquired forms of nephrogenic diabetes insipidus (NDI) include lithium (Li)-induced and hypokalemia-induced NDI. Both forms are associated with AQP2 downregulation and collecting duct (CD) cellular remodeling. Statins are cholesterol-lowering drugs appearing to increase AQP2 membrane-translocation and improve urine concentration in other NDI models. We have investigated if statins are able to prevent or rescue the Li-induced changes in mice and in a mouse cortical CD cell line (mCCDc1l ). Biotinylation assays showed that acute (1hr) atorvastatin, simvastatin, or fluvastatin increased AQP2 membrane accumulation in mCCDc1l cells showing that the cell line responds to acute statin treatment. To see whether chronic statin treatment abolish the Li effects, mCCDc1l cells were treated with 48 h Li, combined Li/atorvastatin or combined Li/simvastatin. Li reduced AQP2, but combined Li/atorvastatin or Li/simvastatin did not prevent AQP2 downregulation. In mice, chronic (21 days) Li increased urine output and reduced urine osmolality, but combined Li/atorvastatin did not prevent these effects. In inner medulla (IM), Li reduced total AQP2 and increased pS261-AQP2. Combined Li/atorvastatin did not abolish these changes. Atorvastatin did not prevent a Li-induced increase in intercalated cells and proliferation in IM. In mice with already established NDI, atorvastatin had no effect on the Li-induced changes either. Mice subjected to 14 days of potassium-deficient diet developed polyuria and AQP2 downregulation in IM. Co-treatment with atorvastatin did not prevent this. In conclusion, atorvastatin does not appear to be able to prevent or rescue Li-NDI or to prevent hypokalemic-induced NDI.
Collapse
Affiliation(s)
| | | | - Anna Iervolino
- Department of Translational Medical SciencesUniversity of Campania “L. Vanvitelli”NaplesItaly
- Biogem Institute of Molecular Biology and GeneticsAriano IrpinoItaly
| | - Soham Rej
- Jewish General Hospital/Lady Davis Institute/Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Francesco Trepiccione
- Department of Translational Medical SciencesUniversity of Campania “L. Vanvitelli”NaplesItaly
- Biogem Institute of Molecular Biology and GeneticsAriano IrpinoItaly
| | | |
Collapse
|
14
|
Uwai Y, Kondo R, Suzuki T, Kawasaki T, Nabekura T. Potent Inhibition of Biphasic Tubular Reabsorption of Lithium by Acetazolamide and Foscarnet in Rats. Physiol Res 2020; 69:645-651. [PMID: 32584131 DOI: 10.33549/physiolres.934285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lithium is mainly excreted into urine, and a large fraction of lithium filtered through glomeruli is reabsorbed in the proximal tubule. However, the mechanisms responsible for lithium reabsorption remain unclear. We previously reported that the reabsorption of lithium was biphasic in rats, and that foscarnet inhibited lithium reabsorption with a high affinity type. We herein evaluated the effects of acetazolamide and foscarnet on the renal excretion of lithium in rats treated with lithium chloride at 2 doses. In rats intravenously injected with a bolus of 25 mg/kg lithium chloride, acetazolamide facilitated the urinary excretion of lithium, and increased the fractional excretion of lithium from 0.446 to 0.953, near the theoretically maximum value. At a dose of 2.5 mg/kg lithium chloride, the fractional excretion of lithium was 0.241 in control rats, 0.420 in rats administered acetazolamide, and 0.976 in rats administered acetazolamide and foscarnet. These results showed the potent inhibition of lithium reabsorption by acetazolamide and foscarnet in rats. And, it was exhibited that the effects of acetazolamide on lithium reabsorption differed with the dosages of lithium administered.
Collapse
Affiliation(s)
- Y Uwai
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, Kusumoto, Chikusa, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
15
|
Rauf A, Gul S, Nasir M, Arif U, Oyenuga M. A Rare Case of Lithium-induced Partial Nephrogenic Diabetes Insipidus. Cureus 2020; 12:e7877. [PMID: 32489731 PMCID: PMC7255560 DOI: 10.7759/cureus.7877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Chronic lithium therapy in patients with bipolar disorder and other psychiatric illnesses can lead to a very common side effect of complete or partial nephrogenic diabetes insipidus. After confirmation of hypotonic polyuria, water deprivation test with desmopressin injection is used to make the diagnosis. Incomplete response to desmopressin suggests partial nephrogenic diabetes insipidus. We report a rare case of a 58-year-old patient who presented with hypernatremia and hypotonic polyuria secondary to chronic lithium therapy. She was diagnosed with partial nephrogenic diabetes insipidus secondary to chronic lithium therapy and was treated with amiloride resulting in improvement.
Collapse
Affiliation(s)
- Abdul Rauf
- Internal Medicine, SSM Health St. Mary's Hospital, St. Louis, USA
| | - Sawara Gul
- Internal Medicine, Lady Reading Hospital, Peshawar, PAK
| | - Mohammad Nasir
- Neurological Surgery, Hayatabad Medical Complex, Peshawar, PAK
| | - Uroosa Arif
- Internal Medicine, Khyber Teaching Hospital, Peshawar, PAK
| | | |
Collapse
|
16
|
Medić B, Stojanović M, Stimec BV, Divac N, Vujović KS, Stojanović R, Čolović M, Krstić D, Prostran M. Lithium - Pharmacological and Toxicological Aspects: The Current State of the Art. Curr Med Chem 2020; 27:337-351. [DOI: 10.2174/0929867325666180904124733] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
Abstract
:
Lithium is the smallest monovalent cation with many different biological effects.
Although lithium is present in the pharmacotherapy of psychiatric illnesses for decades, its
precise mechanism of action is still not clarified. Today lithium represents first-line therapy
for bipolar disorders (because it possesses both antimanic and antidepressant properties) and
the adjunctive treatment for major depression (due to its antisuicidal effects). Beside, lithium
showed some protective effects in neurological diseases including acute neural injury, chronic
degenerative conditions, Alzheimer's disease as well as in treating leucopenia, hepatitis and
some renal diseases. Recent evidence suggested that lithium also possesses some anticancer
properties due to its inhibition of Glycogen Synthase Kinase 3 beta (GSK3β) which is included
in the regulation of a lot of important cellular processes such as: glycogen metabolism,
inflammation, immunomodulation, apoptosis, tissue injury, regeneration etc.
:
Although recent evidence suggested a potential utility of lithium in different conditions, its
broader use in clinical practice still trails. The reason for this is a narrow therapeutic index of
lithium, numerous toxic effects in various organ systems and some clinically relevant interactions
with other drugs. Additionally, it is necessary to perform more preclinical as well as
clinical studies in order to a precise therapeutic range of lithium, as well as its detailed
mechanism of action. The aim of this review is to summarize the current knowledge concerning
the pharmacological and toxicological effects of lithium.
Collapse
Affiliation(s)
- Branislava Medić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bojan V. Stimec
- Anatomy Sector, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nevena Divac
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Radan Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mirjana Čolović
- Department of Physical Chemistry, “Vinca“ Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Systematic review and practical guideline for the prevention and management of the renal side effects of lithium therapy. Eur Neuropsychopharmacol 2020; 31:16-32. [PMID: 31837914 DOI: 10.1016/j.euroneuro.2019.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/10/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Lithium is the first line therapy of bipolar mood disorder. Lithium-induced nephrogenic diabetes insipidus (Li-NDI) and lithium nephropathy (Li-NP, i.e., renal insufficiency) are prevalent side effects of lithium therapy, with significant morbidity. The objective of this systematic review is to provide an overview of preventive and management strategies for Li-NDI and Li-NP. For this, the PRISMA guideline for systematic reviews was used. Papers on the prevention and/or treatment of Li-NDI or Li-NP, and (influenceable) risk factors for development of Li-NDI or Li-NP were included. We found that the amount of evidence on prevention and treatment of Li-NDI and Li-NP is scarce. To prevent Li-NDI and Li-NP we advise to use a once-daily dosing schedule, target the lowest serum lithium level that is effective and prevent lithium intoxication. We emphasize the importance of monitoring for Li-NDI and Li-NP, as early diagnosis and treatment can prevent further progression and permanent damage. Collaboration between psychiatrist, nephrologist and patients themselves is essential. In patients with Li-NDI and/or Li-NP cessation of lithium therapy and/or switch to another mood stabilizer should be considered. In patients with Li-NDI, off label therapy with amiloride can be useful.
Collapse
|
18
|
Jobbagy S, Vitturi DA, Salvatore SR, Pires MF, Rowart P, Emlet DR, Ross M, Hahn S, St. Croix C, Wendell SG, Subramanya AR, Straub AC, Tan RJ, Schopfer FJ. Nrf2 activation protects against lithium-induced nephrogenic diabetes insipidus. JCI Insight 2020; 5:128578. [PMID: 31941842 PMCID: PMC7030822 DOI: 10.1172/jci.insight.128578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lithium (Li) is the mainstay pharmacotherapeutic mood stabilizer in bipolar disorder. Its efficacious use is complicated by acute and chronic renal side effects, including nephrogenic diabetes insipidus (NDI) and progression to chronic kidney disease (CKD). The nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway senses and coordinates cellular responses to oxidative and electrophilic stress. Here, we identify that graded genetic activation of Nrf2 protects against Li-induced NDI (Li-NDI) and volume wasting via an aquaporin 2-independent mechanism. Renal Nrf2 activity is differentially expressed on functional segments of the nephron, and its activation along the distal tubule and collecting duct directly modulates ion transporter expression, mimicking paradoxical effects of diuretics in mitigating Li-NDI. In addition, Nrf2 reduces cyclooxygenase expression and vasoactive prostaglandin biosynthesis. Pharmacologic activation of Nrf2 confers protective effects, confirming this pathway as a potentially novel druggable target for the prevention of acute and chronic renal sequelae of Li therapy.
Collapse
Affiliation(s)
| | - Dario A. Vitturi
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | | | | | - David R. Emlet
- Center for Critical Care Nephrology, Department of Critical Care Medicine
| | | | - Scott Hahn
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology
- Health Sciences Metabolomics and Lipidomics Core, and
| | - Arohan R. Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | - Roderick J. Tan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
19
|
Cheung PW, Bouley R, Brown D. Targeting the Trafficking of Kidney Water Channels for Therapeutic Benefit. Annu Rev Pharmacol Toxicol 2020; 60:175-194. [PMID: 31561739 PMCID: PMC7334826 DOI: 10.1146/annurev-pharmtox-010919-023654] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability to regulate water movement is vital for the survival of cells and organisms. In addition to passively crossing lipid bilayers by diffusion, water transport is also driven across cell membranes by osmotic gradients through aquaporin water channels. There are 13 aquaporins in human tissues, and of these, aquaporin-2 (AQP2) is the most highly regulated water channel in the kidney: The expression and trafficking of AQP2 respond to body volume status and plasma osmolality via the antidiuretic hormone, vasopressin (VP). Dysfunctional VP signaling in renal epithelial cells contributes to disorders of water balance, and research initially focused on regulating the major cAMP/PKA pathway to normalize urine concentrating ability. With the discovery of novel and more complex signaling networks that regulate AQP2 trafficking, promising therapeutic targets have since been identified. Several strategies based on data from preclinical studies may ultimately translate to the care of patients with defective water homeostasis.
Collapse
Affiliation(s)
- Pui W. Cheung
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Richard Bouley
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
20
|
|
21
|
de Groot T, Ebert LK, Christensen BM, Andralojc K, Cheval L, Doucet A, Mao C, Baumgarten R, Low BE, Sandhoff R, Wiles MV, Deen PMT, Korstanje R. Identification of Acer2 as a First Susceptibility Gene for Lithium-Induced Nephrogenic Diabetes Insipidus in Mice. J Am Soc Nephrol 2019; 30:2322-2336. [PMID: 31558682 DOI: 10.1681/asn.2018050549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lithium, mainstay treatment for bipolar disorder, causes nephrogenic diabetes insipidus and hypercalcemia in about 20% and 10% of patients, respectively, and may lead to acidosis. These adverse effects develop in only a subset of patients treated with lithium, suggesting genetic factors play a role. METHODS To identify susceptibility genes for lithium-induced adverse effects, we performed a genome-wide association study in mice, which develop such effects faster than humans. On day 8 and 10 after assigning female mice from 29 different inbred strains to normal chow or lithium diet (40 mmol/kg), we housed the animals for 48 hours in metabolic cages for urine collection. We also collected blood samples. RESULTS In 17 strains, lithium treatment significantly elevated urine production, whereas the other 12 strains were not affected. Increased urine production strongly correlated with lower urine osmolality and elevated water intake. Lithium caused acidosis only in one mouse strain, whereas hypercalcemia was found in four strains. Lithium effects on blood pH or ionized calcium did not correlate with effects on urine production. Using genome-wide association analyses, we identified eight gene-containing loci, including a locus containing Acer2, which encodes a ceramidase and is specifically expressed in the collecting duct. Knockout of Acer2 led to increased susceptibility for lithium-induced diabetes insipidus development. CONCLUSIONS We demonstrate that genome-wide association studies in mice can be used successfully to identify susceptibility genes for development of lithium-induced adverse effects. We identified Acer2 as a first susceptibility gene for lithium-induced diabetes insipidus in mice.
Collapse
Affiliation(s)
- Theun de Groot
- The Jackson Laboratory, Bar Harbor, Maine.,Departments of Physiology.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Lena K Ebert
- The Jackson Laboratory, Bar Harbor, Maine.,Departments of Physiology.,Department II of Internal Medicine, Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Karolina Andralojc
- Molecular Biology.,Biochemistry, and.,Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lydie Cheval
- Cordeliers Research Center, Sorbonne University, Pierre and Marie Curie University Paris 06, INSERM (Institut National de la Santé et de la Recherche Médicale), Paris Descartes University, Sorbonne Paris Cité, UMR_S (Unité Mixte de Recherche en Sciences) 1138, Paris, France.,Physiology of Renal and Tubulopathies, CNRS (Centre National de la Recherche Scientifique) ERL 8228, Cordeliers Research Center, INSERM, Sorbonne University, Sorbonne Paris Cité University, Paris Descartes University, Paris Diderot University, Paris, France
| | - Alain Doucet
- Cordeliers Research Center, Sorbonne University, Pierre and Marie Curie University Paris 06, INSERM (Institut National de la Santé et de la Recherche Médicale), Paris Descartes University, Sorbonne Paris Cité, UMR_S (Unité Mixte de Recherche en Sciences) 1138, Paris, France
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, New York.,Stony Brook Cancer Center, Stony Brook, New York
| | | | | | - Roger Sandhoff
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; and.,Centre for Applied Sciences at Technical Universities (ZAFH)-Applied Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany
| | | | | | | |
Collapse
|
22
|
Bech AP, Wetzels JFM, Nijenhuis T. Effects of sildenafil, metformin, and simvastatin on ADH-independent urine concentration in healthy volunteers. Physiol Rep 2019; 6:e13665. [PMID: 29611351 PMCID: PMC5880873 DOI: 10.14814/phy2.13665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 11/24/2022] Open
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare disorder characterized by resistance of the kidney to the action of antidiuretic hormone (ADH), resulting in a decrease in the capacity of the kidney to concentrate the urine. NDI can be inherited or acquired due to, for example, chronic lithium therapy. Current treatment options are limited to attempts to lower urine output by a low-solute diet and the use of diuretics or anti-inflammatory drugs. These measures are only partially effective. Recent reports suggested that sildenafil, metformin, and simvastatin might improve ADH-independent urine concentration. If confirmed, this would provide interesting additional therapeutic options for patients with NDI. We, therefore, tested the effect of these drugs on ADH-independent urine concentrating capacity in healthy volunteers. We included 36 healthy volunteers who received sildenafil 20 mg thrice daily, metformin 500 mg thrice daily or simvastatin 40 mg once daily during 1 week. At baseline and at the end of treatment, a water loading test was performed. No significant increase in lowest urine osmolality was seen after the use of metformin or sildenafil (P = 0.66 and P = 0.09 respectively). Lowest urine osmolality increased modestly but significantly after the use of simvastatin (70 mOsm/kg to 85 mOsm/kg, P = 0.05). Our data suggest that only simvastatin has an effect on urine osmolality in healthy volunteers. Validation studies are needed and, most importantly, these drugs should be tested in patients with NDI.
Collapse
Affiliation(s)
- Anneke P Bech
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Abstract
Body fluid homeostasis is essential for normal life. In the maintenance of water balance, the most important factor and regulated process is the excretory function of the kidneys. The kidneys are capable to compensate not only the daily fluctuations of water intake but also the consequences of fluid loss (respiration, perspiration, sweating, hemorrhage). The final volume and osmolality of the excreted urine is set in the collecting duct via hormonal regulation. The hormone of water conservation is the vasopressin (AVP), and a large volume of urine is produced and excreted in the absence of AVP secretion or if AVP is ineffective in the kidneys. The aquaporin-2 water channel (AQP2) is expressed in the principal cells, and it plays an essential role in the reabsorption of water in the collecting ducts via type 2 vasopressin receptor (V2R)-mediated mechanism. If neural or hormonal regulation fails to operate the normal function of AVP-V2R-AQP2 system, it can result in various diseases such as diabetes insipidus (DI) or nephrogenic syndrome of inappropriate diuresis (NSIAD). The DI is characterized by excessive production of hyposmotic urine ("insipidus" means tasteless) due to the inability of the kidneys to concentrate urine. In this chapter, we focus and discuss the pathophysiology of nephrogenic DI (NDI) and the potential therapeutic interventions in the light of the current experimental data.
Collapse
Affiliation(s)
- András Balla
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary.
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
24
|
Lithium Therapy Associated With Renal and Upper and Lower Urinary Tract Tumors: Results From a Retrospective Single-Center Analysis. J Clin Psychopharmacol 2019; 39:530-532. [PMID: 31425462 PMCID: PMC6727908 DOI: 10.1097/jcp.0000000000001098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Zhang Y, Riquier-Brison A, Liu T, Huang Y, Carlson NG, Peti-Peterdi J, Kishore BK. Genetic Deletion of P2Y 2 Receptor Offers Long-Term (5 Months) Protection Against Lithium-Induced Polyuria, Natriuresis, Kaliuresis, and Collecting Duct Remodeling and Cell Proliferation. Front Physiol 2018; 9:1765. [PMID: 30618788 PMCID: PMC6304354 DOI: 10.3389/fphys.2018.01765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 11/15/2022] Open
Abstract
Chronic lithium administration for the treatment of bipolar disorder leads to nephrogenic diabetes insipidus (NDI), characterized by polyuria, natriuresis, kaliuresis, and collecting duct remodeling and cell proliferation among other features. Previously, using a 2-week lithium-induced NDI model, we reported that P2Y2 receptor (R) knockout mice are significantly resistant to polyuria, natriuresis, kaliuresis, and decrease in AQP2 protein abundance in the kidney relative to wild type mice. Here we show this protection is long-lasting, and is also associated with significant amelioration of lithium-induced collecting duct remodeling and cell proliferation. Age-matched wild type and knockout mice were fed regular (n = 5/genotype) or lithium-added (40 mmol/kg chow; n = 10/genotype) diet for 5 months and euthanized. Water intake, urine output and osmolality were monitored once in every month. Salt blocks were provided to mice on lithium-diet to prevent sodium loss. At the end of 5 months mice were euthanized and serum and kidney samples were analyzed. There was a steady increase in lithium-induced polyuria, natriuresis and kaliuresis in wild type mice over the 5-month period. Increases in these urinary parameters were very low in lithium-fed knockout mice, resulting in significantly widening differences between the wild type and knockout mice. Terminal AQP2 and NKCC2 protein abundances in the kidney were significantly higher in lithium-fed knockout vs. wild type mice. There were no significant differences in terminal serum lithium or sodium levels between the wild type and knockout mice. Confocal immunofluorescence microscopy revealed that lithium-induced marked remodeling of collecting duct with significantly increased proportion of [H+]-ATPase-positive intercalated cells and decreased proportion of AQP2-positive principal cells in the wild type, but not in knockout mice. Lithium-induced collecting duct cell proliferation (indicated by Ki67 labeling), was significantly lower in knockout vs. wild type mice. This is the first piece of evidence that purinergic signaling is potentially involved in lithium-induced collecting duct remodeling and cell proliferation. Our results demonstrate that genetic deletion of P2Y2-R protects against the key structural and functional alterations in Li-induced NDI, and underscore the potential utility of targeting this receptor for the treatment of NDI in bipolar patients on chronic lithium therapy.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Anne Riquier-Brison
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, United States
| | - Tao Liu
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - Yufeng Huang
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - Noel G. Carlson
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
| | - János Peti-Peterdi
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, United States
| | - Bellamkonda K. Kishore
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah Health, Salt Lake City, UT, United States
| |
Collapse
|
26
|
Soo JYC, Jansen J, Masereeuw R, Little MH. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 2018; 14:378-393. [PMID: 29626199 PMCID: PMC6013592 DOI: 10.1038/s41581-018-0003-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro screens for nephrotoxicity are currently poorly predictive of toxicity in humans. Although the functional proteins that are expressed by nephron tubules and mediate drug susceptibility are well known, current in vitro cellular models poorly replicate both the morphology and the function of kidney tubules and therefore fail to demonstrate injury responses to drugs that would be nephrotoxic in vivo. Advances in protocols to enable the directed differentiation of pluripotent stem cells into multiple renal cell types and the development of microfluidic and 3D culture systems have opened a range of potential new platforms for evaluating drug nephrotoxicity. Many of the new in vitro culture systems have been characterized by the expression and function of transporters, enzymes, and other functional proteins that are expressed by the kidney and have been implicated in drug-induced renal injury. In vitro platforms that express these proteins and exhibit molecular biomarkers that have been used as readouts of injury demonstrate improved functional maturity compared with static 2D cultures and represent an opportunity to model injury to renal cell types that have hitherto received little attention. As nephrotoxicity screening platforms become more physiologically relevant, they will facilitate the development of safer drugs and improved clinical management of nephrotoxicants.
Collapse
Affiliation(s)
- Joanne Y-C Soo
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jitske Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Melissa H Little
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
27
|
Lee JW, Alsady M, Chou CL, de Groot T, Deen PMT, Knepper MA, Ecelbarger CM. Single-tubule RNA-Seq uncovers signaling mechanisms that defend against hyponatremia in SIADH. Kidney Int 2018; 93:128-146. [PMID: 28843412 PMCID: PMC5750119 DOI: 10.1016/j.kint.2017.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 01/30/2023]
Abstract
In the syndrome of inappropriate antidiuretic hormone secretion (SIADH), hyponatremia is limited by onset of vasopressin-escape caused by loss of the water channel aquaporin-2 in the renal collecting duct despite high circulating vasopressin. Here, we use the methods of systems biology in a well-established rat model of SIADH to identify signaling pathways activated at the onset of vasopressin-escape. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical collecting ducts of vasopressin-treated rats at 1, 2, and 4 days after initiation of oral water loading in comparison to time-control rats without water loading. The time-dependent mRNA abundance changes were mapped to gene sets associated with curated canonical signaling pathways and revealed evidence of perturbation of transforming growth factor β signaling and epithelial-to-mesenchymal transition on Day 1 of water loading simultaneous with the initial fall in Aqp2 gene expression. On Day 2 of water loading, transcriptomic changes mapped to Notch signaling and the transition from G0 into the cell cycle but arrest at the G2/M stage. There was no evidence of cell proliferation or altered principal or intercalated cell numbers. Exposure of vasopressin-treated cultured mpkCCD cells to transforming growth factor β resulted in a virtually complete loss of aquaporin-2. Thus, there is a partial epithelial-to-mesenchymal transition during vasopressin escape with a subsequent shift from quiescence into the cell cycle with eventual arrest and loss of aquaporin-2.
Collapse
MESH Headings
- Animals
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Cell Proliferation/genetics
- Cells, Cultured
- Cellular Senescence/genetics
- Deamino Arginine Vasopressin
- Disease Models, Animal
- Drinking
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Hyponatremia/etiology
- Hyponatremia/genetics
- Hyponatremia/metabolism
- Hyponatremia/prevention & control
- Inappropriate ADH Syndrome/chemically induced
- Inappropriate ADH Syndrome/genetics
- Inappropriate ADH Syndrome/metabolism
- Kidney Tubules, Collecting/metabolism
- Male
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Sequence Analysis, RNA
- Signal Transduction/genetics
- Systems Biology/methods
- Time Factors
- Transcription, Genetic
- Transcriptome
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Jae Wook Lee
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Nephrology Clinic, National Cancer Center, Goyang, Gyeonggi-do, South Korea
| | - Mohammad Alsady
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M T Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carolyn M Ecelbarger
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, District of Columbia, USA.
| |
Collapse
|
28
|
Kalita-De Croft P, Bedford JJ, Leader JP, Walker RJ. Amiloride modifies the progression of lithium-induced renal interstitial fibrosis. Nephrology (Carlton) 2017; 23:20-30. [DOI: 10.1111/nep.12929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/07/2016] [Accepted: 09/25/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Priyakshi Kalita-De Croft
- Departments of Medicine; University of Otago; Dunedin New Zealand
- Departments of Physiology; University of Otago; Dunedin New Zealand
- Molecular Breast Pathology University of Queensland Centre for Clinical Research (UQCCR) Herston QLD; Australia
| | | | - John P Leader
- Departments of Medicine; University of Otago; Dunedin New Zealand
| | - Robert J Walker
- Departments of Medicine; University of Otago; Dunedin New Zealand
| |
Collapse
|
29
|
Alsady M, de Groot T, Kortenoeven MLA, Carmone C, Neijman K, Bekkenkamp-Grovenstein M, Engelke U, Wevers R, Baumgarten R, Korstanje R, Deen PMT. Lithium induces aerobic glycolysis and glutaminolysis in collecting duct principal cells. Am J Physiol Renal Physiol 2017; 314:F230-F239. [PMID: 29070571 DOI: 10.1152/ajprenal.00297.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lithium, given to bipolar disorder patients, causes nephrogenic diabetes insipidus (Li-NDI), a urinary-concentrating defect. Li-NDI occurs due to downregulation of principal cell AQP2 expression, which coincides with principal cell proliferation. The metabolic effect of lithium on principal cells, however, is unknown and investigated here. In earlier studies, we showed that the carbonic anhydrase (CA) inhibitor acetazolamide attenuated Li-induced downregulation in mouse-collecting duct (mpkCCD) cells. Of the eight CAs present in mpkCCD cells, siRNA and drug treatments showed that downregulation of CA9 and to some extent CA12 attenuated Li-induced AQP2 downregulation. Moreover, lithium induced cell proliferation and increased the secretion of lactate. Lithium also increased urinary lactate levels in wild-type mice that developed Li-NDI but not in lithium-treated mice lacking ENaC, the principal cell entry site for lithium. Inhibition of aerobic glycolysis with 2-deoxyglucose (2DG) attenuated lithium-induced AQP2 downregulation in mpkCCD cells but did not attenuate Li-NDI in mice. Interestingly, NMR analysis demonstrated that lithium also increased the urinary succinate, fumarate, citrate, and NH4+ levels, which were, in contrast to lactate, not decreased by 2DG. Together, our data reveal that lithium induces aerobic glycolysis and glutaminolysis in principal cells and that inhibition of aerobic glycolysis, but not the glutaminolysis, does not attenuate Li-NDI.
Collapse
Affiliation(s)
- Mohammad Alsady
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands.,The Jackson Laboratory, Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory , Bar Harbor, Maine
| | | | - Claudia Carmone
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Kim Neijman
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | | | - Udo Engelke
- Department of Laboratory Medicine, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Ron Wevers
- Department of Laboratory Medicine, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Ruben Baumgarten
- Society of Experimental Laboratory Medicine , Amersfoort , The Netherlands
| | - Ron Korstanje
- The Jackson Laboratory, Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory , Bar Harbor, Maine
| | | |
Collapse
|
30
|
Lodin M, Dwyer J. The role of amiloride in managing patients with lithium-induced nephrogenic diabetes insipidus. JOURNAL OF PHARMACY PRACTICE AND RESEARCH 2017. [DOI: 10.1002/jppr.1251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - James Dwyer
- Mercy Hospital for Women; Heidelberg Australia
| |
Collapse
|
31
|
Hua Y, Ding S, Cheng H, Luo H, Zhu X. Tanshinone IIA increases aquaporins expression in human amniotic epithelial WISH cells by stimulating GSK-3β phosphorylation. Clin Chim Acta 2017; 473:204-212. [DOI: 10.1016/j.cca.2016.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
32
|
de Groot T, Doornebal J, Christensen BM, Cockx S, Sinke AP, Baumgarten R, Bedford JJ, Walker RJ, Wetzels JFM, Deen PMT. Lithium-induced NDI: acetazolamide reduces polyuria but does not improve urine concentrating ability. Am J Physiol Renal Physiol 2017; 313:F669-F676. [DOI: 10.1152/ajprenal.00147.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/07/2023] Open
Abstract
Lithium is the mainstay treatment for patients with bipolar disorder, but it generally causes nephrogenic diabetes insipidus (NDI), a disorder in which the renal urine concentrating ability has become vasopressin insensitive. Li-NDI is caused by lithium uptake by collecting duct principal cells and downregulation of aquaporin-2 (AQP2) water channels, which are essential for water uptake from tubular urine. Recently, we found that the prophylactic administration of acetazolamide to mice effectively attenuated Li-NDI. To evaluate whether acetazolamide might benefit lithium-treated patients, we administered acetazolamide to mice with established Li-NDI and six patients with a lithium-induced urinary concentrating defect. In mice, acetazolamide partially reversed lithium-induced polyuria and increased urine osmolality, which, however, did not coincide with increased AQP2 abundances. In patients, acetazolamide led to the withdrawal of two patients from the study due to side effects. In the four remaining patients acetazolamide did not lead to clinically relevant changes in maximal urine osmolality. Urine output was also not affected, although none of these patients demonstrated overt lithium-induced polyuria. In three out of four patients, acetazolamide treatment increased serum creatinine levels, indicating a decreased glomerular filtration rate (GFR). Strikingly, these three patients also showed a decrease in systemic blood pressure. All together, our data reveal that acetazolamide does not improve the urinary concentrating defect caused by lithium, but it lowers the GFR, likely explaining the reduced urine output in our mice and in a recently reported patient with lithium-induced polyuria. The reduced GFR in patients prone to chronic kidney disease development, however, warrants against application of acetazolamide in Li-NDI patients without long-term (pre)clinical studies.
Collapse
Affiliation(s)
- Theun de Groot
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joan Doornebal
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Nephrology, Isala Clinics, Zwolle, The Netherlands
| | | | - Simone Cockx
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Anne P. Sinke
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Robert J. Walker
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Jack F. M. Wetzels
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M. T. Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Zhang Y, Peti-Peterdi J, Brandes AU, Riquier-Brison A, Carlson NG, Müller CE, Ecelbarger CM, Kishore BK. Prasugrel suppresses development of lithium-induced nephrogenic diabetes insipidus in mice. Purinergic Signal 2017; 13:239-248. [PMID: 28233082 PMCID: PMC5432483 DOI: 10.1007/s11302-017-9555-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/23/2017] [Indexed: 12/17/2022] Open
Abstract
Previously, we localized ADP-activated P2Y12 receptor (R) in rodent kidney and showed that its blockade by clopidogrel bisulfate (CLPD) attenuates lithium (Li)-induced nephrogenic diabetes insipidus (NDI). Here, we evaluated the effect of prasugrel (PRSG) administration on Li-induced NDI in mice. Both CLPD and PRSG belong to the thienopyridine class of ADP receptor antagonists. Groups of age-matched adult male B6D2 mice (N = 5/group) were fed either regular rodent chow (CNT), or with added LiCl (40 mmol/kg chow) or PRSG in drinking water (10 mg/kg bw/day) or a combination of LiCl and PRSG for 14 days and then euthanized. Water intake and urine output were determined and blood and kidney tissues were collected and analyzed. PRSG administration completely suppressed Li-induced polydipsia and polyuria and significantly prevented Li-induced decreases in AQP2 protein abundance in renal cortex and medulla. However, PRSG either alone or in combination with Li did not have a significant effect on the protein abundances of NKCC2 or NCC in the cortex and/or medulla. Immunofluorescence microscopy revealed that PRSG administration prevented Li-induced alterations in cellular disposition of AQP2 protein in medullary collecting ducts. Serum Li, Na, and osmolality were not affected by the administration of PRSG. Similar to CLPD, PRSG administration had no effect on Li-induced increase in urinary Na excretion. However, unlike CLPD, PRSG did not augment Li-induced increase in urinary arginine vasopressin (AVP) excretion. Taken together, these data suggest that the pharmacological inhibition of P2Y12-R by the thienopyridine group of drugs may potentially offer therapeutic benefits in Li-induced NDI.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Veterans Affairs Salt Lake City, Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA
| | - János Peti-Peterdi
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, University of Southern California, 1501 San Pablo Street, ZNI 313, Los Angeles, CA, 90033, USA
| | - Anna U Brandes
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Veterans Affairs Salt Lake City, Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA
| | - Anne Riquier-Brison
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, University of Southern California, 1501 San Pablo Street, ZNI 313, Los Angeles, CA, 90033, USA
| | - Noel G Carlson
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- Depatment of Neurobiology and Anatomy and Center on Aging, University of Utah Health Sciences Center, Geriatric Research, Education, and Clinical Center (GRECC) Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive (151B), Salt Lake City, UT, 84148, USA
| | - Carolyn M Ecelbarger
- Department of Medicine, Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, 4000 Reservoir Road NW Bldg D, Rm 392, Washington, DC, 20057, USA
| | - Bellamkonda K Kishore
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Veterans Affairs Salt Lake City, Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA.
| |
Collapse
|
34
|
Cheung PW, Nomura N, Nair AV, Pathomthongtaweechai N, Ueberdiek L, Lu HAJ, Brown D, Bouley R. EGF Receptor Inhibition by Erlotinib Increases Aquaporin 2-Mediated Renal Water Reabsorption. J Am Soc Nephrol 2016; 27:3105-3116. [PMID: 27694161 PMCID: PMC5042667 DOI: 10.1681/asn.2015080903] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/28/2016] [Indexed: 01/04/2023] Open
Abstract
Nephrogenic diabetes insipidus (NDI) is caused by impairment of vasopressin (VP) receptor type 2 signaling. Because potential therapies for NDI that target the canonical VP/cAMP/protein kinase A pathway have so far proven ineffective, alternative strategies for modulating aquaporin 2 (AQP2) trafficking have been sought. Successful identification of compounds by our high-throughput chemical screening assay prompted us to determine whether EGF receptor (EGFR) inhibitors stimulate AQP2 trafficking and reduce urine output. Erlotinib, a selective EGFR inhibitor, enhanced AQP2 apical membrane expression in collecting duct principal cells and reduced urine volume by 45% after 5 days of treatment in mice with lithium-induced NDI. Similar to VP, erlotinib increased exocytosis and decreased endocytosis in LLC-PK1 cells, resulting in a significant increase in AQP2 membrane accumulation. Erlotinib increased phosphorylation of AQP2 at Ser-256 and Ser-269 and decreased phosphorylation at Ser-261 in a dose-dependent manner. However, unlike VP, the effect of erlotinib was independent of cAMP, cGMP, and protein kinase A. Conversely, EGF reduced VP-induced AQP2 Ser-256 phosphorylation, suggesting crosstalk between VP and EGF in AQP2 trafficking and a role of EGF in water homeostasis. These results reveal a novel pathway that contributes to the regulation of AQP2-mediated water reabsorption and suggest new potential therapeutic strategies for NDI treatment.
Collapse
Affiliation(s)
- Pui W Cheung
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Naohiro Nomura
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anil V Nair
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nutthapoom Pathomthongtaweechai
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lars Ueberdiek
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hua A Jenny Lu
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard Bouley
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Al-Bataineh MM, Li H, Ohmi K, Gong F, Marciszyn AL, Naveed S, Zhu X, Neumann D, Wu Q, Cheng L, Fenton RA, Pastor-Soler NM, Hallows KR. Activation of the metabolic sensor AMP-activated protein kinase inhibits aquaporin-2 function in kidney principal cells. Am J Physiol Renal Physiol 2016; 311:F890-F900. [PMID: 27534994 PMCID: PMC5130465 DOI: 10.1152/ajprenal.00308.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022] Open
Abstract
Aquaporin-2 (AQP2) is essential to maintain body water homeostasis. AQP2 traffics from intracellular vesicles to the apical membrane of kidney collecting duct principal cells in response to vasopressin [arginine vasopressin (AVP)], a hormone released with low intravascular volume, which causes decreased kidney perfusion. Decreased kidney perfusion activates AMP-activated kinase (AMPK), a metabolic sensor that inhibits the activity of several transport proteins. We hypothesized that AMPK activation also inhibits AQP2 function. These putative AMPK effects could protect interstitial ionic gradients required for urinary concentration during metabolic stress when low intravascular volume induces AVP release. Here we found that short-term AMPK activation by treatment with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR; 75 min) in kidney tissue prevented baseline AQP2 apical accumulation in principal cells, but did not prevent AQP2 apical accumulation in response to the AVP analog desmopressin (dDAVP). Prolonged AMPK activation prevented AQP2 cell membrane accumulation in response to forskolin in mouse collecting duct mpkCCDc14 cells. Moreover, AMPK inhibition accelerated hypotonic lysis of Xenopus oocytes expressing AQP2. We performed phosphorylation assays to elucidate the mechanism by which AMPK regulates AQP2. Although AMPK weakly phosphorylated immunoprecipitated AQP2 in vitro, no direct AMPK phosphorylation of the AQP2 COOH-terminus was detected by mass spectrometry. AMPK promoted Ser-261 phosphorylation and antagonized dDAVP-dependent phosphorylation of other AQP2 COOH-terminal sites in cells. Our findings suggest an increasing, time-dependent antagonism of AMPK on AQP2 regulation with AICAR-dependent inhibition of cAMP-dependent apical accumulation and AVP-dependent phosphorylation of AQP2. This inhibition likely occurs via a mechanism that does not involve direct AQP2 phosphorylation by AMPK.
Collapse
Affiliation(s)
- Mohammad M Al-Bataineh
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hui Li
- Department of Medicine, University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Kazuhiro Ohmi
- Department of Medicine, University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Fan Gong
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Allison L Marciszyn
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sajid Naveed
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiaoqing Zhu
- Department of Molecular Genetics, School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; and
| | - Dietbert Neumann
- Department of Molecular Genetics, School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; and
| | - Qi Wu
- Department of Biomedicine, InterPrET Center, Aarhus University, Aarhus, Denmark
| | - Lei Cheng
- Department of Biomedicine, InterPrET Center, Aarhus University, Aarhus, Denmark
| | - Robert A Fenton
- Department of Biomedicine, InterPrET Center, Aarhus University, Aarhus, Denmark
| | - Núria M Pastor-Soler
- Department of Medicine, University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Keck School of Medicine of University of Southern California, Los Angeles, California;
| | - Kenneth R Hallows
- Department of Medicine, University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Keck School of Medicine of University of Southern California, Los Angeles, California
| |
Collapse
|
36
|
Molecular mechanisms in lithium-associated renal disease: a systematic review. Int Urol Nephrol 2016; 48:1843-1853. [DOI: 10.1007/s11255-016-1352-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
|
37
|
Uwai Y, Kawasaki T, Nabekura T. Foscarnet, an inhibitor of the sodium-phosphate cotransporter NaPi-IIa, inhibits phosphorylation of glycogen synthase kinase-3β by lithium in the rat kidney cortex. Drug Metab Pharmacokinet 2016; 31:256-9. [PMID: 27238574 DOI: 10.1016/j.dmpk.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
Lithium, which is used in the treatment of and prophylaxis for bipolar disease, inhibits glycogen synthase kinase-3β (GSK3β) by producing its phosphorylated form (p-GSK3β). GSK3β plays a role in apoptosis and some kinds of acute kidney injuries, and the formation of p-GSK3β is considered to contribute to protection against acute kidney injury. We previously reported that the sodium-phosphate cotransporter NaPi-IIa (SLC34A1) mediated the reabsorption of lithium in the rat kidney. In the present study, the phosphorylation status of GSK3β in the kidney cortex of rats administered lithium chloride and foscarnet, a typical inhibitor of NaPi-IIa, was examined using Western blotting. Under a 2-h infusion of lithium chloride, the plasma concentration of lithium was 1.06 mEq/l, and its renal clearance was calculated as 1.18 ml/min/kg, which was 29.6% of creatinine clearance. The abundance of p-GSK3β in the kidney cortex was augmented by the administration of lithium. The simultaneous infusion of foscarnet increased the renal clearance of lithium and its ratio to creatinine clearance as well as the urinary excretion of phosphate. Foscarnet also inhibited the lithium-induced phosphorylation of GSK3β. These results suggest that the reabsorption of lithium by NaPi-IIa triggers the phosphorylation of GSK3β in the rat kidney cortex.
Collapse
Affiliation(s)
- Yuichi Uwai
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan.
| | - Tatsuya Kawasaki
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Tomohiro Nabekura
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
38
|
Gong R, Wang P, Dworkin L. What we need to know about the effect of lithium on the kidney. Am J Physiol Renal Physiol 2016; 311:F1168-F1171. [PMID: 27122541 DOI: 10.1152/ajprenal.00145.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/21/2016] [Indexed: 02/03/2023] Open
Abstract
Lithium has been a valuable treatment for bipolar affective disorders for decades. Clinical use of lithium, however, has been problematic due to its narrow therapeutic index and concerns for its toxicity in various organ systems. Renal side effects associated with lithium include polyuria, nephrogenic diabetes insipidus, proteinuria, distal renal tubular acidosis, and reduction in glomerular filtration rate. Histologically, chronic lithium nephrotoxicity is characterized by interstitial nephritis with microcyst formation and occasional focal segmental glomerulosclerosis. Nevertheless, this type of toxicity is uncommon, with the strongest risk factors being high serum levels of lithium and longer time on lithium therapy. In contrast, in experimental models of acute kidney injury and glomerular disease, lithium has antiproteinuric, kidney protective, and reparative effects. This paradox may be partially explained by lower lithium doses and short duration of therapy. While long-term exposure to higher psychiatric doses of lithium may be nephrotoxic, short-term low dose of lithium may be beneficial and ameliorate kidney and podocyte injury. Mechanistically, lithium targets glycogen synthase kinase-3β, a ubiquitously expressed serine/threonine protein kinase implicated in the processes of tissue injury, repair, and regeneration in multiple organ systems, including the kidney. Future studies are warranted to discover the exact "kidney-protective dose" of lithium and test the effects of low-dose lithium on acute and chronic kidney disease in humans.
Collapse
Affiliation(s)
- Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island; and
| | - Pei Wang
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island; and.,Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lance Dworkin
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island; and
| |
Collapse
|
39
|
Abstract
Aquaporins (AQPs) are a 13 member family (AQP0-12) of proteins that act as channels, through which water and, for some family members, glycerol, urea and other small solutes can be transported. Aquaporins are highly abundant in kidney epithelial cells where they play a critical role with respect to water balance. In this review we summarize the current knowledge with respect to the localization and function of AQPs within the kidney tubule, and their role in mammalian water homeostasis and the water balance disorders. Overviews of practical aspects with regard to differential diagnosis for some of these disorders, alongside treatment strategies are also discussed.
Collapse
Affiliation(s)
- Hanne B Moeller
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | - Cecilia H Fuglsang
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | - Robert A Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark.
| |
Collapse
|
40
|
Abstract
Hypernatremia is defined as a serum sodium level above 145 mmol/L. It is a frequently encountered electrolyte disturbance in the hospital setting, with an unappreciated high mortality. Understanding hypernatremia requires a comprehension of body fluid compartments, as well as concepts of the preservation of normal body water balance. The human body maintains a normal osmolality between 280 and 295 mOsm/kg via Arginine Vasopressin (AVP), thirst, and the renal response to AVP; dysfunction of all three of these factors can cause hypernatremia. We review new developments in the pathophysiology of hypernatremia, in addition to the differential diagnosis and management of this important electrolyte disorder.
Collapse
Affiliation(s)
- Saif A Muhsin
- Renal Division, Brigham and Women's Hospital, Boston, MA, USA
| | - David B Mount
- Renal Division, Brigham and Women's Hospital, Boston, MA, USA; Veterans Affairs Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
41
|
Kalra S, Zargar AH, Jain SM, Sethi B, Chowdhury S, Singh AK, Thomas N, Unnikrishnan AG, Thakkar PB, Malve H. Diabetes insipidus: The other diabetes. Indian J Endocrinol Metab 2016; 20:9-21. [PMID: 26904464 PMCID: PMC4743391 DOI: 10.4103/2230-8210.172273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Diabetes insipidus (DI) is a hereditary or acquired condition which disrupts normal life of persons with the condition; disruption is due to increased thirst and passing of large volumes of urine, even at night. A systematic search of literature for DI was carried out using the PubMed database for the purpose of this review. Central DI due to impaired secretion of arginine vasopressin (AVP) could result from traumatic brain injury, surgery, or tumors whereas nephrogenic DI due to failure of the kidney to respond to AVP is usually inherited. The earliest treatment was posterior pituitary extracts containing vasopressin and oxytocin. The synthetic analog of vasopressin, desmopressin has several benefits over vasopressin. Desmopressin was initially available as intranasal preparation, but now the oral tablet and melt formulations have gained significance, with benefits such as ease of administration and stability at room temperature. Other molecules used for treatment include chlorpropamide, carbamazepine, thiazide diuretics, indapamide, clofibrate, indomethacin, and amiloride. However, desmopressin remains the most widely used drug for the treatment of DI. This review covers the physiology of water balance, causes of DI and various treatment modalities available, with a special focus on desmopressin.
Collapse
Affiliation(s)
- Sanjay Kalra
- Bharti Hospital and BRIDE, Karnal, Haryana, India
| | - Abdul Hamid Zargar
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Sunil M. Jain
- Managing Director, TOTALL Diabetes Hormone Institute, Indore, Madhya Pradesh, India
| | - Bipin Sethi
- Consultant Endocrinologist, CARE Hospitals, Hyderabad, Telangana, India
| | - Subhankar Chowdhury
- Department of Endocrinology, IPGMER and SSKM Hospital, Kolkata, West Bengal, India
| | - Awadhesh Kumar Singh
- GD Diabetes Institute, Kolkata, West Bengal, India
- Sun Valley Diabetes and Endocrine Research Centre, Guwahati, Assam, India
| | - Nihal Thomas
- Department of Endocrinology, Diabetes and Metabolism and Vice-Principal (Research), Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | - Harshad Malve
- Lead Medical, Asia Pacific region, Ferring Pharmaceuticals Pvt. Ltd., Mumbai, Maharashtra, India
| |
Collapse
|
42
|
|
43
|
Zhang Y, Peti-Peterdi J, Heiney KM, Riquier-Brison A, Carlson NG, Müller CE, Ecelbarger CM, Kishore BK. Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice. Purinergic Signal 2015; 11:507-18. [PMID: 26386699 PMCID: PMC4648798 DOI: 10.1007/s11302-015-9469-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022] Open
Abstract
Lithium (Li) administration causes deranged expression and function of renal aquaporins and sodium channels/transporters resulting in nephrogenic diabetes insipidus (NDI). Extracellular nucleotides (ATP/ADP/UTP), via P2 receptors, regulate these transport functions. We tested whether clopidogrel bisulfate (CLPD), an antagonist of ADP-activated P2Y(12) receptor, would affect Li-induced alterations in renal aquaporins and sodium channels/transporters. Adult mice were treated for 14 days with CLPD and/or Li and euthanized. Urine and kidneys were collected for analysis. When administered with Li, CLPD ameliorated polyuria, attenuated the rise in urine prostaglandin E2 (PGE2), and resulted in significantly higher urinary arginine vasopressin (AVP) and aldosterone levels as compared to Li treatment alone. However, urine sodium excretion remained elevated. Semi-quantitative immunoblotting revealed that CLPD alone increased renal aquaporin 2 (AQP2), Na-K-2Cl cotransporter (NKCC2), Na-Cl cotransporter (NCC), and the subunits of the epithelial Na channel (ENaC) in medulla by 25-130 %. When combined with Li, CLPD prevented downregulation of AQP2, Na-K-ATPase, and NKCC2 but was less effective against downregulation of cortical α- or γ-ENaC (70 kDa band). Thus, CLPD primarily attenuated Li-induced downregulation of proteins involved in water conservation (AVP-sensitive), with modest effects on aldosterone-sensitive proteins potentially explaining sustained natriuresis. Confocal immunofluorescence microscopy revealed strong labeling for P2Y(12)-R in proximal tubule brush border and blood vessels in the cortex and less intense labeling in medullary thick ascending limb and the collecting ducts. Therefore, there is the potential for CLPD to be directly acting at the tubule sites to mediate these effects. In conclusion, P2Y(12)-R may represent a novel therapeutic target for Li-induced NDI.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center & Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA
| | - János Peti-Peterdi
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, University of Southern California, 1501 San Pablo Street, ZNI 313, Los Angeles, CA, 90033, USA
| | - Kristina M Heiney
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center & Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA
| | - Anne Riquier-Brison
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, University of Southern California, 1501 San Pablo Street, ZNI 313, Los Angeles, CA, 90033, USA
| | - Noel G Carlson
- Department of Neurobiology and Anatomy and Center on Aging Geriatric Research, Education, and Clinical Center (GRECC), University of Utah Health Sciences Center & Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive (151B), Salt Lake City, UT, 84148, USA
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Carolyn M Ecelbarger
- Department of Medicine, Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, 4000 Reservoir Road NW Bldg D, Rm 392, Washington, DC, 20057, USA
| | - Bellamkonda K Kishore
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center & Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA.
| |
Collapse
|
44
|
Alsady M, Baumgarten R, Deen PMT, de Groot T. Lithium in the Kidney: Friend and Foe? J Am Soc Nephrol 2015; 27:1587-95. [PMID: 26577775 DOI: 10.1681/asn.2015080907] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trace amounts of lithium are essential for our physical and mental health, and administration of lithium has improved the quality of life of millions of patients with bipolar disorder for >60 years. However, in a substantial number of patients with bipolar disorder, long-term lithium therapy comes at the cost of severe renal side effects, including nephrogenic diabetes insipidus and rarely, ESRD. Although the mechanisms underlying the lithium-induced renal pathologies are becoming clearer, several recent animal studies revealed that short-term administration of lower amounts of lithium prevents different forms of experimental AKI. In this review, we discuss the knowledge of the pathologic and therapeutic effects of lithium in the kidney. Furthermore, we discuss the underlying mechanisms of these seemingly paradoxical effects of lithium, in which fine-tuned regulation of glycogen synthase kinase type 3, a prime target for lithium, seems to be key. The new discoveries regarding the protective effect of lithium against AKI in rodents call for follow-up studies in humans and suggest that long-term therapy with low lithium concentrations could be beneficial in CKD.
Collapse
Affiliation(s)
- Mohammad Alsady
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | | | - Peter M T Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| |
Collapse
|
45
|
de Groot T, Sinke AP, Kortenoeven MLA, Alsady M, Baumgarten R, Devuyst O, Loffing J, Wetzels JF, Deen PMT. Acetazolamide Attenuates Lithium-Induced Nephrogenic Diabetes Insipidus. J Am Soc Nephrol 2015; 27:2082-91. [PMID: 26574046 DOI: 10.1681/asn.2015070796] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/30/2015] [Indexed: 12/27/2022] Open
Abstract
To reduce lithium-induced nephrogenic diabetes insipidus (lithium-NDI), patients with bipolar disorder are treated with thiazide and amiloride, which are thought to induce antidiuresis by a compensatory increase in prourine uptake in proximal tubules. However, thiazides induced antidiuresis and alkalinized the urine in lithium-NDI mice lacking the sodium-chloride cotransporter, suggesting that inhibition of carbonic anhydrases (CAs) confers the beneficial thiazide effect. Therefore, we tested the effect of the CA-specific blocker acetazolamide in lithium-NDI. In collecting duct (mpkCCD) cells, acetazolamide reduced the cellular lithium content and attenuated lithium-induced downregulation of aquaporin-2 through a mechanism different from that of amiloride. Treatment of lithium-NDI mice with acetazolamide or thiazide/amiloride induced similar antidiuresis and increased urine osmolality and aquaporin-2 abundance. Thiazide/amiloride-treated mice showed hyponatremia, hyperkalemia, hypercalcemia, metabolic acidosis, and increased serum lithium concentrations, adverse effects previously observed in patients but not in acetazolamide-treated mice in this study. Furthermore, acetazolamide treatment reduced inulin clearance and cortical expression of sodium/hydrogen exchanger 3 and attenuated the increased expression of urinary PGE2 observed in lithium-NDI mice. These results show that the antidiuresis with acetazolamide was partially caused by a tubular-glomerular feedback response and reduced GFR. The tubular-glomerular feedback response and/or direct effect on collecting duct principal or intercalated cells may underlie the reduced urinary PGE2 levels with acetazolamide, thereby contributing to the attenuation of lithium-NDI. In conclusion, CA activity contributes to lithium-NDI development, and acetazolamide attenuates lithium-NDI development in mice similar to thiazide/amiloride but with fewer adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Olivier Devuyst
- Institute of Physiology, Zurich Centre for Integrative Human Physiology, Zurich, Switzerland; and
| | | | - Jack F Wetzels
- Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
46
|
Bockenhauer D, Bichet DG. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol 2015; 11:576-88. [PMID: 26077742 DOI: 10.1038/nrneph.2015.89] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Healthy kidneys maintain fluid and electrolyte homoeostasis by adjusting urine volume and composition according to physiological needs. The final urine composition is determined in the last tubular segment: the collecting duct. Water permeability in the collecting duct is regulated by arginine vasopressin (AVP). Secretion of AVP from the neurohypophysis is regulated by a complex signalling network that involves osmosensors, barosensors and volume sensors. AVP facilitates aquaporin (AQP)-mediated water reabsorption via activation of the vasopressin V2 receptor (AVPR2) in the collecting duct, thus enabling concentration of urine. In nephrogenic diabetes insipidus (NDI), inability of the kidneys to respond to AVP results in functional AQP deficiency. Consequently, affected patients have constant diuresis, resulting in large volumes of dilute urine. Primary forms of NDI result from mutations in the genes that encode the key proteins AVPR2 and AQP2, whereas secondary forms are associated with biochemical abnormalities, obstructive uropathy or the use of certain medications, particularly lithium. Treatment of the disease is informed by identification of the underlying cause. Here we review the clinical aspects and diagnosis of NDI, the various aetiologies, current treatment options and potential future developments.
Collapse
Affiliation(s)
- Detlef Bockenhauer
- University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Daniel G Bichet
- Departments of Medicine and Molecular and Integrative Physiology, Université de Montréal Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin Ouest, Montréal, QC H4J 1C5 Canada
| |
Collapse
|
47
|
Kishore BK, Carlson NG, Ecelbarger CM, Kohan DE, Müller CE, Nelson RD, Peti-Peterdi J, Zhang Y. Targeting renal purinergic signalling for the treatment of lithium-induced nephrogenic diabetes insipidus. Acta Physiol (Oxf) 2015; 214:176-88. [PMID: 25877068 PMCID: PMC4430398 DOI: 10.1111/apha.12507] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/08/2015] [Indexed: 12/26/2022]
Abstract
Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development of nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulphate (Plavix(®)) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unravelled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action.
Collapse
Affiliation(s)
- B. K. Kishore
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Center on Aging, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - N. G. Carlson
- Center on Aging, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Neurobiology and Anatomy, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - C. M. Ecelbarger
- Department of Medicine, Georgetown University, Washington, District of Columbia, USA
- Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, Washington, District of Columbia, USA
| | - D. E. Kohan
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - C. E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - R. D. Nelson
- Department of Paediatrics, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - J. Peti-Peterdi
- Department of Physiology and Biophysics, and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Y. Zhang
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
| |
Collapse
|
48
|
Rookmaaker MB, van Gerven HAJM, Goldschmeding R, Boer WH. Solid renal tumours of collecting duct origin in patients on chronic lithium therapy. Clin Kidney J 2015; 5:412-5. [PMID: 26019817 PMCID: PMC4432410 DOI: 10.1093/ckj/sfs091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 11/24/2022] Open
Abstract
Background Lithium (Li) is an invaluable drug for the treatment of bipolar disorder. Long-term Li use is associated with renal complications including the formation of uncomplicated renal cysts caused by proliferation and expansion of collecting duct (CD) cells. We report six patients with complicated renal cysts in the context of Li nephropathy. Methods Over a time period of 15 years, we have identified six patients with one or more solid renal tumours in our population of approximately 50 patients with chronic Li nephropathy. In this study we describe the clinical and pathological characteristics of these Li-related tumours. Results All patients were on Li therapy for over 10 years and suffered from varying degrees of Li nephropathy. The tumours were all of CD origin and comprised both oncocytomas and collecting duct carcinomas. The CD carcinomas differed from the very rare “classical” CD cell carcinomas in histological appearance, multifocal presentation and non-aggressive clinical behaviour Conclusions The increased incidence of CD derived tumours and atypical presentation of CD cell carcinomas in patients with chronic Li nephropathy suggests that Li predisposes to the development of these tumours. We hypothesize that prolonged stimulation of CD cell proliferation and expansion by Li not only causes cyst formation, but can eventually induce the formation of adenomas and carcinomas. Increased awareness of a possible relationship between chronic Li therapy and renal neoplasms, will enhance the knowledge on epidemiology, clinical behavior and optimal therapy for the Li-related renal neoplasms.
Collapse
Affiliation(s)
- Maarten B Rookmaaker
- Department of Nephrology and Hypertension , University Medical Center Utrecht , Utrecht , The Netherlands
| | | | - Roel Goldschmeding
- Department of Old-Age Psychiatry , GGZ Ingeest , Haarlem , The Netherlands
| | - Walther H Boer
- Department of Nephrology and Hypertension , University Medical Center Utrecht , Utrecht , The Netherlands
| |
Collapse
|
49
|
Pottegård A, Hallas J, Jensen BL, Madsen K, Friis S. Long-Term Lithium Use and Risk of Renal and Upper Urinary Tract Cancers. J Am Soc Nephrol 2015; 27:249-55. [PMID: 25941353 DOI: 10.1681/asn.2015010061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/09/2015] [Indexed: 01/20/2023] Open
Abstract
Lithium induces proliferation in the epithelium of renal collecting ducts. A recent small-scale cohort study reported a strong association between use of lithium and increased risk of renal neoplasia. We therefore conducted a large-scale pharmacoepidemiologic study of the association between long-term use of lithium and risk of upper urinary tract cancer, including renal cell cancer and cancers of the renal pelvis or ureter. We identified all histologically verified upper urinary tract cancer cases in Denmark between 2000 and 2012 from the Danish Cancer Registry. A total of 6477 cases were matched by age and sex to 259,080 cancer-free controls. Data on lithium use from 1995 to 2012 were obtained from the Danish Prescription Registry. We estimated the association between long-term use of lithium (≥5 years) and risk of upper urinary tract cancer using conditional logistic regression with adjustment for potential confounders. Long-term use of lithium was observed among 0.22% of cases and 0.17% of controls. This yielded an overall nonsignificant adjusted odds ratio (OR) of 1.3 (95% confidence interval [95% CI], 0.8-2.2) for upper urinary tract cancer associated with long-term use of lithium. Analyses stratified by stage and subtype of upper urinary tract cancer revealed slight but nonsignificant increases in the ORs for localized disease (OR, 1.6; 95% CI, 0.8-3.0) and for renal pelvis/ureter cancers (OR, 1.7; 95% CI, 0.5-5.4). In conclusion, in our nationwide case-control study, use of lithium was not associated with an increased risk of upper urinary tract cancer.
Collapse
Affiliation(s)
- Anton Pottegård
- Clinical Pharmacology, Institute of Public Health, University of Southern Denmark, Odense, Denmark;
| | - Jesper Hallas
- Clinical Pharmacology, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark; Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Søren Friis
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
50
|
Nørregaard R, Tao S, Nilsson L, Woodgett JR, Kakade V, Yu ASL, Howard C, Rao R. Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice. Am J Physiol Renal Physiol 2015; 308:F650-60. [PMID: 25608967 DOI: 10.1152/ajprenal.00516.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mammals, glycogen synthase kinase (GSK)3 comprises GSK3α and GSK3β isoforms. GSK3β has been shown to play a role in the ability of kidneys to concentrate urine by regulating vasopressin-mediated water permeability of collecting ducts, whereas the role of GSK3α has yet to be discerned. To investigate the role of GSK3α in urine concentration, we compared GSK3α knockout (GSK3αKO) mice with wild-type (WT) littermates. Under normal conditions, GSK3αKO mice had higher water intake and urine output. GSK3αKO mice also showed reduced urine osmolality and aquaporin-2 levels but higher urinary vasopressin. When water deprived, they failed to concentrate their urine to the same level as WT littermates. The addition of 1-desamino-8-d-arginine vasopressin to isolated inner medullary collecting ducts increased the cAMP response in WT mice, but this response was reduced in GSK3αKO mice, suggesting reduced responsiveness to vasopressin. Gene silencing of GSK3α in mpkCCD cells also reduced forskolin-induced aquaporin-2 expression. When treated with LiCl, an isoform nonselective inhibitor of GSK3 and known inducer of polyuria, WT mice developed significant polyuria within 6 days. However, in GSK3αKO mice, the polyuric response was markedly reduced. This study demonstrates, for the first time, that GSK3α could play a crucial role in renal urine concentration and suggest that GSK3α might be one of the initial targets of Li(+) in LiCl-induced nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Shixin Tao
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Line Nilsson
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; and
| | - Vijayakumar Kakade
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S L Yu
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Christiana Howard
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Reena Rao
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|