1
|
Irsik DL, Chen JK, Bollag WB, Isales CM. Chronic infusion of the tryptophan metabolite kynurenine increases mean arterial pressure in male Sprague-Dawley rats. Am J Physiol Renal Physiol 2024; 327:F199-F207. [PMID: 38841747 DOI: 10.1152/ajprenal.00019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic kidney disease is the loss of renal function that can occur from aging or through a myriad of other disease states. Rising serum concentrations of kynurenine, a tryptophan metabolite, have been shown to correlate with increasing severity of chronic kidney disease. This study used chronic intravenous infusion in conscious male Sprague-Dawley rats to test the hypothesis that kynurenine can induce renal damage and promote alterations in blood pressure, heart rate, and decreased renal function. We found that kynurenine infusion increased mean arterial pressure, increased the maximum and minimum range of heart rate, decreased glomerular filtration rate, and induced kidney damage in a dose-dependent manner. This study shows that kynurenine infusion can promote kidney disease in healthy, young rats, implying that the increase in kynurenine levels associated with chronic kidney disease may establish a feed-forward mechanism that exacerbates the loss of renal function.NEW & NOTEWORTHY In humans, an elevated serum concentration of kynurenine has long been associated with negative outcomes in various disease states as well as in aging. However, it has been unknown whether these increased kynurenine levels are mediating the disorders or simply associated with them. This study shows that chronically infusing kynurenine can contribute to the development of hypertension and kidney impairment. The mechanism of this action remains to be determined in future studies.
Collapse
Affiliation(s)
- Debra L Irsik
- Research, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| | - Jian-Kang Chen
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Wendy B Bollag
- Research, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Carlos M Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| |
Collapse
|
2
|
Mullins TP, Schock-Kusch D, Gallo LA. Transdermal Measurement of Glomerular Filtration Rate in Preclinical Research. Methods Mol Biol 2023; 2664:309-315. [PMID: 37423996 DOI: 10.1007/978-1-0716-3179-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The measurement of glomerular filtration rate (GFR) is essential to understanding renal physiology, including the monitoring of disease progression and treatment effectiveness. Transdermal measurement of glomerular filtration rate (tGFR) using a miniaturized fluorescence monitor in combination with a fluorescent exogenous GFR tracer has become a common technique to measure GFR in the preclinical setting, especially in rodent models. It allows for close to real-time measurement of GFR in conscious unrestrained animals and overcomes several limitations of other GFR measures. Its widespread use is reflected by published research articles and conference abstracts from different research fields, including in the assessment of new and existing kidney therapeutics, evaluation of nephrotoxicity, screening of novel chemical or medical agents, and fundamental understanding of kidney function.
Collapse
Affiliation(s)
- Thomas P Mullins
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Daniel Schock-Kusch
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Linda A Gallo
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Real-time glomerular filtration rate: improving sensitivity, accuracy and prognostic value in acute kidney injury. Curr Opin Crit Care 2021; 26:549-555. [PMID: 33002974 DOI: 10.1097/mcc.0000000000000770] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) is common and associated with high patient mortality, and accelerated progression to chronic kidney disease. Our ability to diagnose and stratify patients with AKI is paramount for translational progress. Unfortunately, currently available methods have major pitfalls. Serum creatinine is an insensitive functional biomarker of AKI, slow to register the event and influenced by multiple variables. Cystatin C, a proposed alternative, requires long laboratory processing and also lacks specificity. Other techniques are either very cumbersome (inuline, iohexol) or involve administration of radioactive products, and are therefore, not applicable on a large scale. RECENT FINDINGS The development of two optical measurement techniques utilizing novel minimally invasive techniques to quantify kidney function, independent of serum or urinary measurements is advancing. Utilization of both one and two compartmental models, as well as continuous monitoring, are being developed. SUMMARY The clinical utility of rapid GFR measurements in AKI patients remains unknown as these disruptive technologies have not been tested in studies exploring clinical outcomes. However, these approaches have the potential to improve our understanding of AKI and clinical care. This overdue technology has the potential to individualize patient care and foster therapeutic success in AKI.
Collapse
|
4
|
Mullins TP, Tan WS, Carter DA, Gallo LA. Validation of non-invasive transcutaneous measurement for glomerular filtration rate in lean and obese C57BL/6J mice. Nephrology (Carlton) 2020; 25:575-581. [PMID: 32180312 DOI: 10.1111/nep.13713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 02/02/2023]
Abstract
AIM The measurement of glomerular filtration rate (GFR) in experimental rodents is pivotal to understanding the progression of kidney disease and benefits of treatment strategies. A non-invasive clearance device has been developed, which measures transcutaneous decay of injected FITC-sinistrin in conscious rodents. The technique was validated against the well-established plasma clearance method in the same mice, but on consecutive days, using only models of uninephrectomy and polycystic kidney disease. We aimed to validate this widely used technique in the same lean or obese mice, at the same time. METHODS Five-week-old male C57BL/6J mice were randomised to a high fat diet (n = 12) or normal diet (n = 11) for 10 weeks. Transcutaneous and plasma clearance of FITC-sinistrin were measured simultaneously in each mouse. RESULTS In lean mice, there was a positive correlation between transcutaneous and plasma derived GFR (P < .01, R2 = .704), although there was an approximate 40% underestimation by the transcutaneous method (P < .0001). In obese mice, no correlation was observed between transcutaneous and plasma derived GFR, nor elimination half-life which removes any effect of the conversion factor and injected dose. The limits of agreement in a Bland-Altman plot were narrower when we used new conversion factors derived from mice in the current study and, in lean mice, a generic conversion factor which assumes 20% extracellular volume. CONCLUSION The non-invasive clearance device may be useful for serial GFR measurements in lean and healthy mice, provided validation studies have been carried out, but its utility in obesity requires further study.
Collapse
Affiliation(s)
- Thomas P Mullins
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.,Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Australia
| | - Wei Sheng Tan
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.,Duke-NUS Medical School, Singapore, Singapore
| | - David A Carter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - Linda A Gallo
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.,Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
5
|
Quantitative renal function assessment of atheroembolic renal disease using view-shared compressed sensing based dynamic-contrast enhanced MR imaging: An in vivo study. Magn Reson Imaging 2019; 65:67-74. [PMID: 31654738 DOI: 10.1016/j.mri.2019.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 11/21/2022]
Abstract
Atheroembolic renal disease (AERD) is the major cause of renal insufficiency in the elderly, and particularly, the diagnose of AERD is often delayed and even missed due to its nonspecific presentation and the sudden occurrence of an embolic event. To investigate the feasibility of the view-shared compressed sensing (VCS) based dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in the assessment of AERD in animal models. The reproducibility of VCS DCE-MRI based glomerular filtration rate (GFR) estimation was first evaluated using the three healthy rabbits. Animal models of unilateral AERD were then conducted. All the rabbits underwent VCS DCE-MRI and the GFR maps were estimated by a commonly used cortical-compartment model. The whole kidney and suspicious lesion region GFR values of embolized kidneys were then compared with the corresponding values of normal kidneys. Finally, the suspicious lesion regions were confirmed by the corresponding renal specimens and histological findings. The reproducibility of GFR measurements was analyzed using the coefficient of variation and Bland-Altman analysis. The GFR values of normal and embolized kidneys were compared using the Student t-test. Contrast-enhanced images with sufficient diagnostic quality and reduced motion artifacts are obtained at a temporal resolution of 2.5 s. The Bland-Altman plot indicated close agreement between the GFR values estimated from between-day scans in healthy rabbits. Besides, there existed significant differences between the pixel-wise GFR values of normal and AERD kidneys in region-based comparison(P < 0.0001). The suspicious lesions are consistent well with the renal specimen and histological findings. The preliminary animal study verified the feasibility of VCS DCE-MRI for renal function evaluation, and the strategy could potentially provide a valuable tool to identify AERD.
Collapse
|
6
|
Shaver CM, Paul MG, Putz ND, Landstreet SR, Kuck JL, Scarfe L, Skrypnyk N, Yang H, Harrison FE, de Caestecker MP, Bastarache JA, Ware LB. Cell-free hemoglobin augments acute kidney injury during experimental sepsis. Am J Physiol Renal Physiol 2019; 317:F922-F929. [PMID: 31364379 PMCID: PMC6843044 DOI: 10.1152/ajprenal.00375.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury is a common complication of severe sepsis and contributes to high mortality. The molecular mechanisms of acute kidney injury during sepsis are not fully understood. Because hemoproteins, including myoglobin and hemoglobin, are known to mediate kidney injury during rhabdomyolysis, we hypothesized that cell-free hemoglobin (CFH) would exacerbate acute kidney injury during sepsis. Sepsis was induced in mice by intraperitoneal injection of cecal slurry (CS). To mimic elevated levels of CFH observed during human sepsis, mice also received a retroorbital injection of CFH or dextrose control. Four groups of mice were analyzed: sham treated (sham), CFH alone, CS alone, and CS + CFH. The addition of CFH to CS reduced 48-h survival compared with CS alone (67% vs. 97%, P = 0.001) and increased the severity of illness. After 24 and 48 h, CS + CFH mice had a reduced glomerular filtration rate from baseline, whereas sham, CFH, and CS mice maintained baseline glomerular filtration rate. Biomarkers of acute kidney injury, neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), were markedly elevated in CS+CFH compared with CS (8-fold for NGAL and 2.4-fold for KIM-1, P < 0.002 for each) after 48 h. Histological examination showed a trend toward increased tubular injury in CS + CFH-exposed kidneys compared with CS-exposed kidneys. However, there were similar levels of renal oxidative injury and apoptosis in the CS + CFH group compared with the CS group. Kidney levels of multiple proinflammatory cytokines were similar between CS and CS + CFH groups. Human renal tubule cells (HK-2) exposed to CFH demonstrated increased cytotoxicity. Together, these results show that CFH exacerbates acute kidney injury in a mouse model of experimental sepsis, potentially through increased renal tubular injury.
Collapse
Affiliation(s)
- Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda G Paul
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nathan D Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stuart R Landstreet
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jamie L Kuck
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren Scarfe
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nataliya Skrypnyk
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haichun Yang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
7
|
Krishnan V, Booker D, Cunningham G, Jadapalli JK, Kain V, Pullen AB, Halade GV. Pretreatment of carprofen impaired initiation of inflammatory- and overlapping resolution response and promoted cardiorenal syndrome in heart failure. Life Sci 2018; 218:224-232. [PMID: 30597172 DOI: 10.1016/j.lfs.2018.12.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/22/2022]
Abstract
Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are commonly used to control pain, inflammation, and limit the cardinal signs of injury in humans. However, prolonged use of NSAIDs increases the risk of heart attack (myocardial infarction; MI) and the subsequent risk of heart and renal failure. The molecular and cellular mechanism of action for this adverse effect, particularly along the cardiorenal network, is incomplete. To define the mechanism, carprofen (CAP), an NSAID was administered at the dose of 5 mg/kg to C57BL/6 male mice for two weeks. After last dose of CAP treatment mice were subjected to permanent occlusion of coronary artery that induces irreversible cardiac remodeling while maintaining naive and MI-controls. After MI, cardiac pathology and dysfunction were confirmed, along with additional measurements of kidney function, histology, and injury markers, such as plasma creatinine. CAP treatment increased plasma creatinine levels and subsequently, myocardial structural disorganization increased. Kidney neutrophil gelatinase associated lipocalin (NGAL) and protein expression were increased post-MI. After two weeks CAP treatment, the expression of pyrogenic pro-inflammatory cytokines TNF-α and IL-1β was increased compared to non-CAP treated mice, indicative of amplified inflammatory response. There was also evidence that renal injury of both the post-CAP treatment controls and post-CAP MI were much greater than the non-CAP treated naïve controls, as serum creatinine and NGAL levels were elevated along with obvious structural impairment of the glomerulus. Therefore, CAP treatment tampers with the acute inflammatory response that promotes cardiorenal syndrome and non-resolving inflammation post-MI in acute heart failure.
Collapse
Affiliation(s)
- Veena Krishnan
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - David Booker
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Gabrielle Cunningham
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jeevan Kumar Jadapalli
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Amanda B Pullen
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
8
|
Huang J, Gretz N. Light-Emitting Agents for Noninvasive Assessment of Kidney Function. ChemistryOpen 2017; 6:456-471. [PMID: 28794936 PMCID: PMC5542756 DOI: 10.1002/open.201700065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 02/03/2023] Open
Abstract
The noninvasive assessment of kidney function and diagnosis of kidney disease have long been challenges. Traditional methods are not routinely available, because the existing protocols are cumbersome, time consuming, and invasive. In the past few years, significant progress in the area of diagnosing kidney function and disease on the basis of light-emitting agents has been made. Herein, we briefly review light-emitting agents, including organic fluorescent agents and inorganic renal clearable luminescent nanoparticles for the noninvasive and real-time monitoring of kidney function and disease. Moreover, some significant requirements and strategies regarding the design of ideal glomerular filtration rate agents and renal clearable nanoparticles are discussed. Finally, we discuss future challenges in expediting clinical translation of these developed light-emitting agents, along with considerations of the efforts that need to be made to develop new agents and diagnosing kidney disease.
Collapse
Affiliation(s)
- Jiaguo Huang
- Medical Research Center, Medical Faculty MannheimUniversity of HeidelbergTheodor-Kutzer-Ufer 1–368167MannheimGermany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty MannheimUniversity of HeidelbergTheodor-Kutzer-Ufer 1–368167MannheimGermany
| |
Collapse
|
9
|
Molitoris BA. Rethinking CKD Evaluation: Should We Be Quantifying Basal or Stimulated GFR to Maximize Precision and Sensitivity? Am J Kidney Dis 2017; 69:675-683. [PMID: 28223001 PMCID: PMC5403623 DOI: 10.1053/j.ajkd.2016.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) is an increasing clinical problem. Although clinical risk factors and biomarkers for the development and progression of CKD have been identified, there is no commercial surveillance technology to definitively diagnose and quantify the severity and progressive loss of glomerular filtration rate (GFR) in CKD. This has limited the study of potential therapies to late stages of CKD when FDA-registerable events are more likely. Because patient outcomes, including the rate of CKD progression, correlate with disease severity and effective therapy may require early intervention, being able to diagnose and stratify patients by their level of decreased kidney function early on is key for translational progress. In addition, renal reserve, defined as the increase in GFR following stimulation, may improve the quantification of GFR based solely on basal levels. Various groups are developing and characterizing optical measurement techniques using new minimally invasive or noninvasive approaches for quantifying basal and stimulated kidney function. This development has the potential to allow widespread individualization of therapy at an earlier disease stage. Therefore, the purposes of this review are to suggest why quantifying stimulated GFR, by activating renal reserve, may be advantageous in patients and to review fluorescent technologies to deliver patient-specific GFR.
Collapse
Affiliation(s)
- Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indiana Center for Biological Microscopy, Rouderbush VA, Indianapolis, IN.
| |
Collapse
|
10
|
Molitoris BA, Reilly ES. Quantifying Glomerular Filtration Rates in Acute Kidney Injury: A Requirement for Translational Success. Semin Nephrol 2017; 36:31-41. [PMID: 27085733 DOI: 10.1016/j.semnephrol.2016.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) remains a vexing clinical problem that results in unacceptably high patient mortality, development of chronic kidney disease, and accelerated progression to end-stage kidney disease. Although clinical risks factors for developing AKI have been identified, there is no reasonable surveillance technique to definitively and rapidly diagnose and determine the extent of severity of AKI in any patient. Because patient outcomes correlate with the extent of injury, and effective therapy likely requires early intervention, the ability to rapidly diagnose and stratify patients by their level of kidney injury is paramount for translational progress. Many groups are developing and characterizing optical measurement techniques using novel minimally invasive or noninvasive techniques that can quantify kidney function independent of serum or urinary measurements. The use of both one- and two-compartment models, as well as continuous monitoring, are being developed. This review documents the need for glomerular filtration rate measurement in AKI patients and discusses the approaches being taken to deliver this overdue technique that is necessary to help propel nephrology to individualization of care and therapeutic success.
Collapse
Affiliation(s)
- Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana Center for Biological Microscopy, Indiana University School of Medicine, Roudebush VA, Indianapolis, Indiana; FAST BioMedical, Indianapolis, Indiana.
| | | |
Collapse
|
11
|
Huang J, Weinfurter S, Daniele C, Perciaccante R, Federica R, Della Ciana L, Pill J, Gretz N. Zwitterionic near infrared fluorescent agents for noninvasive real-time transcutaneous assessment of kidney function. Chem Sci 2017; 8:2652-2660. [PMID: 28553500 PMCID: PMC5431684 DOI: 10.1039/c6sc05059j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/08/2017] [Indexed: 12/28/2022] Open
Abstract
Zwitterionic near infrared fluorescent agents were developed for non-invasive real-time transcutaneous assessment of kidney function.
We developed novel zwitterionic near infrared (NIR) fluorescent agents (ABZWCY-HPβCD and AAZWCY-HPβCD), which exhibit favorable hydrophilicity, low plasma protein binding, high stability and non-toxicity. These attractive characteristics ensure that they are excreted rapidly, without any skin accumulation or metabolism in vivo. More importantly, zwitterionic HPβCD based agents can be efficiently filtrated by the glomerulus and completely excreted through the kidneys into urine without reabsorption or secretion in the kidney proximal tubule. Relying on these novel zwitterionic NIR agents and a transcutaneous device, we demonstrate a rapid, robust and biocompatible approach for assessing kidney function in rat models of both healthy rats and those with kidney disease, without the need for time-consuming blood/urine sample preparation. Our work provides a promising tool for in vivo real-time non-invasive kidney function assessment in preclinical applications.
Collapse
Affiliation(s)
- Jiaguo Huang
- Medical Research Center , Medical Faculty Mannheim , University of Heidelberg , Theodor-Kutzer-Ufer 1-3 , 68167 , Mannheim , Germany .
| | - Stefanie Weinfurter
- Medical Research Center , Medical Faculty Mannheim , University of Heidelberg , Theodor-Kutzer-Ufer 1-3 , 68167 , Mannheim , Germany .
| | - Cristina Daniele
- Medical Research Center , Medical Faculty Mannheim , University of Heidelberg , Theodor-Kutzer-Ufer 1-3 , 68167 , Mannheim , Germany .
| | | | - Rodeghiero Federica
- Cyanagen S.r.l. , Via degli Stradelli Guelfi 40/C , 40138 Bologna , BO , Italy
| | | | - Johannes Pill
- Medical Research Center , Medical Faculty Mannheim , University of Heidelberg , Theodor-Kutzer-Ufer 1-3 , 68167 , Mannheim , Germany .
| | - Norbert Gretz
- Medical Research Center , Medical Faculty Mannheim , University of Heidelberg , Theodor-Kutzer-Ufer 1-3 , 68167 , Mannheim , Germany .
| |
Collapse
|
12
|
Huang J, Gretz N, Weinfurter S. Filtration markers and determination methods for the assessment of kidney function. Eur J Pharmacol 2016; 790:92-98. [DOI: 10.1016/j.ejphar.2016.06.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/02/2016] [Accepted: 06/30/2016] [Indexed: 12/01/2022]
|
13
|
Huang J, Weinfurter S, Pinto PC, Pretze M, Kränzlin B, Pill J, Federica R, Perciaccante R, Ciana LD, Masereeuw R, Gretz N. Fluorescently Labeled Cyclodextrin Derivatives as Exogenous Markers for Real-Time Transcutaneous Measurement of Renal Function. Bioconjug Chem 2016; 27:2513-2526. [DOI: 10.1021/acs.bioconjchem.6b00452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiaguo Huang
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Stefanie Weinfurter
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Pedro Caetano Pinto
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Marc Pretze
- Molecular
Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear
Medicine, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Bettina Kränzlin
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Johannes Pill
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | | | - Rosalinde Masereeuw
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Norbert Gretz
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
14
|
Improved kinetic model for the transcutaneous measurement of glomerular filtration rate in experimental animals. Kidney Int 2016; 90:1377-1385. [PMID: 27665115 DOI: 10.1016/j.kint.2016.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
Transcutaneous measurement of the glomerular filtration rate (tGFR) is now frequently used in animal studies. tGFR allows consecutive measurements on the same animal, including multiple measurements on a daily basis, because no blood sampling is required. Here we derive and validate a novel kinetic model for the description of transcutaneously measured FITC-Sinistrin excretion kinetics. In contrast to standard 1- to 3-compartment models, our model covers the complete kinetic, including injection and distribution of the tracer in the plasma compartment. Because the model describes the complete progression of the measurement, it allows further refinement by correcting for baseline shifts observed occasionally during measurement. Possible reasons for shifts in the background signal include photo bleaching of the skin, autofluorescence, changes of physiological state of the animals during the measurements, or effects arising from the attachment of the measurement device. Using the new 3-compartment kinetic model with modulated baseline (tGFR3cp.b.m), tGFR measurements in rats can reach comparable precision as those from GFR measurements assessed using a gold standard technique based on constant infusion of a tracer. Moreover, the variability of simultaneous (parallel) measurements, as well as repeated tGFR measurements in the same animals, showed higher precision when tGFR3cp.b.m was compared with the 1-compartment tGFR1cp model.
Collapse
|
15
|
Whalen H, Shiels P, Littlejohn M, Clancy M. A novel rodent model of severe renal ischemia reperfusion injury. Ren Fail 2016; 38:1694-1701. [PMID: 26887330 DOI: 10.3109/0886022x.2016.1144024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Renal ischemia reperfusion injury (IRI) is a major problem, currently without treatments in clinical use. This reflects the failure of animal models to mimic the severity of IRI observed in clinical practice. Most described models lack both the ability to inflict a permanent reduction in renal function and the sensitivity to demonstrate the protective efficacy of different therapies in vivo. To test novel cell-based therapies, we have developed a model of renal IRI in Fisher 344 rats. Animals were subjected to 120 min of unilateral warm ischemia, during which they underwent an intra-renal artery infusion of therapeutic agents or vehicle. At either 2 or 6 weeks post-surgery, animals underwent terminal glomerular filtration rate (GFR) studies by inulin clearance to most accurately quantify renal function. Harvested kidneys underwent histological analysis. Compared to sham operations, saline treated animals suffered a long-term reduction in GFR of ≈50%. Histology revealed short- and long-term disruption of renal architecture. Despite the injury severity, post-operative animal losses are <5%. This model produces a severe, consistent renal injury that closely replicates the pathological processes encountered in clinical medicine. Renal artery infusion mimics the route likely employed in clinical transplantation, where the renal artery is accessible. Inulin clearance characterizes GFR, allowing full assessment of therapeutic intervention. This model is useful for screening therapeutic agents prior to testing in a transplant model. This reduces animal numbers needed to test drugs for clinical transplantation and allows for refinement of dosing schedules.
Collapse
Affiliation(s)
- Henry Whalen
- a College of Medical, Veterinary and Life Sciences Institute of Cancer Sciences, University of Glasgow , Glasgow , UK.,b Department of Renal Transplantation , South Glasgow University Hospital , Glasgow , UK
| | - Paul Shiels
- a College of Medical, Veterinary and Life Sciences Institute of Cancer Sciences, University of Glasgow , Glasgow , UK
| | - Marc Littlejohn
- a College of Medical, Veterinary and Life Sciences Institute of Cancer Sciences, University of Glasgow , Glasgow , UK
| | - Marc Clancy
- b Department of Renal Transplantation , South Glasgow University Hospital , Glasgow , UK
| |
Collapse
|
16
|
Shmarlouski A, Schock-Kusch D, Shulhevich Y, Buschmann V, Rohlicke T, Herdt D, Radle M, Hesser J, Stsepankou D. A Novel Analysis Technique for Transcutaneous Measurement of Glomerular Filtration Rate With Ultralow Dose Marker Concentrations. IEEE Trans Biomed Eng 2015; 63:1742-50. [PMID: 26595905 DOI: 10.1109/tbme.2015.2501544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE A novel high-precision approach [lifetime-decomposition measurement (LTDM)] for the assessment of the glomerular filtration rate (GFR) based on clearance measurements of exogenous filtration marker. METHODS The time-correlated single photon counting (TCSPC) acquisition in combination with a new decomposition method allows the separation of signal and background from transcutaneous measurements of GFR. RESULTS The performance of LTDM is compared versus the commercially available NIC-kidney patch-based system for transcutaneous GFR measurement. Measurements are performed in awake Sprague Dawley (SD) rats. Using the standard concentration required for the NIC-kidney system [7-mg/100-g body weight (b.w.) FITC-Sinistrin] as reference, the mean difference (bias) of the elimination curves GFR between LTDM and NIC-kidney was 4.8%. On the same animal and same day, the capability of LTDM to measure GFR with a FITC-Sinistrin dose reduced by a factor of 200 (35-μg/100-g b.w.) was tested as well. The mean differences (half lives with low dose using LTDM compared with those using first, the NIC-Kidney system and its standard concentration, and second, LTDM with the same concentration as for the NIC-Kidney system) were 3.4% and 4.5%, respectively. CONCLUSION We demonstrate that with the LTDM strategy substantial reductions in marker concentrations are possible at the same level of accuracy. SIGNIFICANCE LTDM aims to resolve the issue of the currently necessary large doses of fluorescence tracer required for transcutaneous GFR measurement. Due to substantially less influences from autofluorescence and artifacts, the proposed method outperforms other existing techniques for accurate percutaneous organ function measurement.
Collapse
|
17
|
|
18
|
Cowley AW, Abe M, Mori T, O'Connor PM, Ohsaki Y, Zheleznova NN. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am J Physiol Renal Physiol 2014; 308:F179-97. [PMID: 25354941 DOI: 10.1152/ajprenal.00455.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hydrogen peroxide in the renal medulla result in reduction of medullary blood flow, enhanced Na(+) reabsorption, and hypertension. A shift in the redox balance between nitric oxide and reactive oxygen species (ROS) is found to occur naturally in the Dahl salt-sensitive (SS) rat model, where selective reduction of ROS production in the renal medulla reduces salt-induced hypertension. Excess medullary production of ROS in SS rats emanates from the medullary thick ascending limbs of Henle [from both the mitochondria and membrane NAD(P)H oxidases] in response to increased delivery and reabsorption of excess sodium and water. There is evidence that ROS and perhaps other mediators such as ATP diffuse from the mTAL to surrounding vasa recta capillaries, resulting in medullary ischemia, which thereby contributes to hypertension.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michiaki Abe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takefumi Mori
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yusuke Ohsaki
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
19
|
Zöllner FG, Zimmer F, Klotz S, Hoeger S, Schad LR. Functional imaging of acute kidney injury at 3 Tesla: investigating multiple parameters using DCE-MRI and a two-compartment filtration model. Z Med Phys 2014; 25:58-65. [PMID: 24629306 DOI: 10.1016/j.zemedi.2014.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 11/28/2022]
Abstract
OBJECT To investigate how MR-based parameters reflect functional changes in kidneys with acute kidney injury (AKI) using dynamic contrast enhanced MRI and a two-compartment renal filtration model. MATERIALS AND METHODS MRI data of eight male Lewis rats were analyzed retrospectively. Five animals were subjected to AKI, three native rats served as control. All animals underwent perfusion imaging by dynamic contrast-enhanced MRI. Renal blood volume, glomerular filtration rate (GFR) as well as plasma and tubular mean transit times were estimated from regions-of-interest drawn in the renal cortex. Differences between healthy kidneys and kidneys subjected to AKI were analyzed using a paired t-test. RESULTS Significant differences between ischemic and healthy kidneys could only be detected for the glomerular filtration rate. For all other calculated parameters, differences were present, however not significant. In rats with AKI, average single kidney GFR was 0.66 ± 0.37 ml/min for contralateral and 0.26 ± 0.12 ml/ min for diseased kidneys (P = 0.0254). For the healthy control group, the average GFR was 0.39 ± 0.06 ml/min and 0.41 ± 0.11 ml/min, respectively. Differences between diseased kidneys of AKI rats and ipsilateral kidneys of the healthy control group were significant (P = 0.0381). CONCLUSION Significant differences of functional parameters reflecting damage of the renal tissue of kidneys with AKI compared to the contralateral, healthy kidneys could only be detected by GFR. GFR might be a useful parameter that allows for a spatially resolved detection of abnormal changes of renal tissue by AKI.
Collapse
Affiliation(s)
- Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Fabian Zimmer
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sarah Klotz
- Department of Medicine V, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Simone Hoeger
- Department of Medicine V, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
20
|
Zöllner FG, Schock-Kusch D, Bäcker S, Neudecker S, Gretz N, Schad LR. Simultaneous measurement of kidney function by dynamic contrast enhanced MRI and FITC-sinistrin clearance in rats at 3 tesla: initial results. PLoS One 2013; 8:e79992. [PMID: 24260332 PMCID: PMC3832374 DOI: 10.1371/journal.pone.0079992] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022] Open
Abstract
Glomerular filtration rate (GFR) is an essential parameter of kidney function which can be measured by dynamic contrast enhanced magnetic resonance imaging (MRI-GFR) and transcutaneous approaches based on fluorescent tracer molecules (optical-GFR). In an initial study comparing both techniques in separate measurements on the same animal, the correlation of the obtained GFR was poor. The goal of this study was to investigate if a simultaneous measurement was feasible and if thereby, the discrepancies in MRI-GFR and optical-GFR could be reduced. For the experiments healthy and unilateral nephrectomised (UNX) Sprague Dawley (SD) rats were used. The miniaturized fluorescent sensor was fixed on the depilated back of an anesthetized rat. A bolus of 5 mg/100 g b.w. of FITC-sinistrin was intravenously injected. For dynamic contrast enhanced perfusion imaging (DCE-MRI) a 3D time-resolved angiography with stochastic trajectories (TWIST) sequence was used. By means of a one compartment model the excretion half-life (t1/2) of FITC-sinistrin was calculated and converted into GFR. GFR from DCE-MRI was calculated by fitting pixel-wise a two compartment renal filtration model. Mean cortical GFR and GFR by FITC-sinistrin were compared by Bland-Altman plots and pair-wise t-test. Results show that a simultaneous GFR measurement using both techniques is feasible. Mean optical-GFR was 4.34 ± 2.22 ml/min (healthy SD rats) and 2.34 ± 0.90 ml/min (UNX rats) whereas MRI-GFR was 2.10 ± 0.64 ml/min (SD rats) and 1.17 ± 0.38 ml/min (UNX rats). Differences between healthy and UNX rats were significant (p<0.05) and almost equal percentage difference (46.1% and 44.3%) in mean GFR were assessed with both techniques. Overall mean optical-GFR values were approximately twice as high compared to MRI-GFR values. However, compared to a previous study, our results showed a higher agreement. In conclusion, the possibility to use the transcutaneous method in MRI may have a huge impact in improving and validating MRI methods for GFR assessment in animal models.
Collapse
Affiliation(s)
- Frank G. Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| | - Daniel Schock-Kusch
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sandra Bäcker
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabine Neudecker
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R. Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
21
|
Reliability of transcutaneous measurement of renal function in various strains of conscious mice. PLoS One 2013; 8:e71519. [PMID: 23977062 PMCID: PMC3747225 DOI: 10.1371/journal.pone.0071519] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
Measuring renal function in laboratory animals using blood and/or urine sampling is not only labor-intensive but puts also a strain on the animal. Several approaches for fluorescence based transcutaneous measurement of the glomerular filtration rate (GFR) in laboratory animals have been developed. They allow the measurement of GFR based on the elimination kinetics of fluorescent exogenous markers. None of the studies dealt with the reproducibility of the measurements in the same animals. Therefore, the reproducibility of a transcutaneous GFR assessment method was investigated using the fluorescent renal marker FITC-Sinistrin in conscious mice in the present study. We performed two transcutaneous GFR measurements within three days in five groups of mice (Balb/c, C57BL/6, SV129, NMRI at 3–4 months of age, and a group of 24 months old C57BL/6). Data were evaluated regarding day-to-day reproducibility as well as intra- and inter-strain variability of GFR and the impact of age on these parameters. No significant differences between the two subsequent GFR measurements were detected. Fastest elimination for FITC-Sinistrin was detected in Balb/c with significant differences to C57BL/6 and SV129 mice. GFR decreased significantly with age in C57BL/6 mice. Evaluation of GFR in cohorts of young and old C57BL/6 mice from the same supplier showed high consistency of GFR values between groups. Our study shows that the investigated technique is a highly reproducible and reliable method for repeated GFR measurements in conscious mice. This gentle method is easily used even in old mice and can be used to monitor the age-related decline in GFR.
Collapse
|
22
|
Schreiber A, Shulhevich Y, Geraci S, Hesser J, Stsepankou D, Neudecker S, Koenig S, Heinrich R, Hoecklin F, Pill J, Friedemann J, Schweda F, Gretz N, Schock-Kusch D. Transcutaneous measurement of renal function in conscious mice. Am J Physiol Renal Physiol 2012; 303:F783-8. [PMID: 22696603 DOI: 10.1152/ajprenal.00279.2012] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Determination of glomerular filtration rate (GFR) in conscious mice is cumbersome for the experimenter and stressful for the animals. Here we report on a simple new technique allowing the transcutaneous measurement of GFR in conscious mice. This approach extends our previously developed technique for rats to mice. The technique relies on a miniaturized device equipped with an internal memory that permits the transcutaneous measurement of the elimination kinetics of the fluorescent renal marker FITC-sinistrin. This device is described and validated compared with FITC-sinistrin plasma clearance in healthy, unilaterally nephrectomized and pcy mice. In summary, we describe a technique allowing the measurement of renal function in freely moving mice independent of blood or urine sampling as well as of laboratory assays.
Collapse
Affiliation(s)
- Andrea Schreiber
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|