1
|
Yang S, Zhang M, Wei H, Zhang B, Peng J, Shang P, Sun S. Research prospects for kidney xenotransplantation: a bibliometric analysis. Ren Fail 2024; 46:2301681. [PMID: 38391160 PMCID: PMC10916899 DOI: 10.1080/0886022x.2023.2301681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/30/2023] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Xenograft kidney transplantation has been receiving increasing attention. The purpose of this study is to use bibliometric analysis to identify papers in this research field and explore their current status and development trends. METHODS Using the data in the Web of Science core database from Clarivate Analytics as the object of study, we used 'TS = Kidney OR Renal AND xenotransplantation' as the search term to find all literature from 1980 to 2 November 2022. RESULTS In total, 1005 articles were included. The United States has the highest number of publications and has made significant contributions in this field. Harvard University was at the forefront of this study. Professor Cooper has published 114 articles in this field. Xenotransplantation has the largest number of relevant articles. Transplantation was the most cited journal. High-frequency keywords illustrated the current state of development and future trends in xenotransplantation. The use of transgenic pigs and the development of coordinated co-stimulatory blockers have greatly facilitated progress in xenotransplantation research. We found that 'co-stimulation blockade', 'xenograft survival', 'pluripotent stem cell', 'translational research', and 'genetic engineering' were likely to be the focus of attention in the coming years. CONCLUSIONS This study screened global publications related to xenogeneic kidney transplantation; analyzed their literature metrology characteristics; identified the most cited articles in the research field; understood the current situation, hot spots, and trends of global research; and provided future development directions for researchers and practitioners.
Collapse
Affiliation(s)
- Shujun Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Mingtao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Wei
- Department of Urology, Qingdao University Hospital, Qingdao, China
| | - Bin Zhang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiang Peng
- Department of Orthopaedics, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Panfeng Shang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Shengkun Sun
- Department of Urology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
2
|
Schmalkuche K, Rother T, Besli S, Schwinzer R, Blasczyk R, Petersen B, Figueiredo C. Human PD-L1 overexpression decreases xenogeneic human T-cell immune responses towards porcine kidneys. Front Immunol 2024; 15:1279050. [PMID: 38352884 PMCID: PMC10861674 DOI: 10.3389/fimmu.2024.1279050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Xenotransplantation offers a promising alternative to circumvent the lack of donated human organs available for transplantation. Different attempts to improve the survival of xenografts led to the generation of transgenic pigs expressing various combinations of human protective genes or knocked out for specific antigens. Currently, testing the efficiency of porcine organs carrying different genetic modifications in preventing xenogeneic immune responses completely relies on in vitro assays, humanized mouse models, or non-human primate transplantation models. However, these tests are often associated with major concerns due to reproducibility and generation of insufficient data as well as they raise ethical, logistical, and economic issues. In this study, we investigated the feasibility of specifically assessing the strength of human T-cell responses towards the kidneys of wild-type (WT) or transgenic pigs overexpressing human programmed death-1 ligand 1 (hPD-L1) during ex vivo kidney perfusion (EVKP). Human T cells were shown to adhere to the endothelium and transmigrate into WT and hPD-L1 kidneys. However, transcript levels of TNF-a and IFN-y as well as cytotoxic molecules such as granzyme B and perforin secreted by human T cells were significantly decreased in the tissue of hPD-L1 kidneys in comparison to WT kidneys. These results were confirmed via in vitro assays using renal endothelial cells (ECs) isolated from WT and hPD-L1 transgenic pigs. Both CD4+ and CD8+ T cells showed significantly lower proliferation rates after exposure to hPD-L1 porcine renal ECs in comparison to WT ECs. In addition, the secretion of pro-inflammatory cytokines was significantly reduced in cultures using hPD-L1 ECs in comparison to WT ECs. Remarkably, hPD-L1 EC survival was significantly increased in cytotoxic assays. This study demonstrates the feasibility of evaluating the human response of specific immune subsets such as human T cells towards the whole xenograft during EVKP. This may represent a robust strategy to assess the potency of different genetic modifications to prevent xenogeneic immune responses and thereby predict the risk of immune rejection of new genetically engineered xenografts.
Collapse
Affiliation(s)
- Katharina Schmalkuche
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| | - Tamina Rother
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Sevval Besli
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Reinhard Schwinzer
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
- Transplantation Laboratory, Clinic for General, Visceral and Transplantation-Surgery, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Neustadt am Rübenberge, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Mubarak M. Transitioning of renal transplant pathology from allograft to xenograft and tissue engineering pathology: Are we prepared? World J Transplant 2023; 13:86-95. [PMID: 36968134 PMCID: PMC10037233 DOI: 10.5500/wjt.v13.i3.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 03/16/2023] Open
Abstract
Currently, the most feasible and widely practiced option for patients with end-stage organ failure is the transplantation of part of or whole organs, either from deceased or living donors. However, organ shortage has posed and is still posing a big challenge in this field. Newer options being explored are xenografts and engineered/bioengineered tissues/organs. Already small steps have been taken in this direction and sooner or later, these will become a norm in this field. However, these developments will pose different challenges for the diagnosis and management of problems as compared with traditional allografts. The approach to pathologic diagnosis of dysfunction in these settings will likely be significantly different. Thus, there is a need to increase awareness and prepare transplant diagnosticians to meet this future challenge in the field of xenotransplantation/ regenerative medicine. This review will focus on the current status of transplant pathology and how it will be changed in the future with the emerging scenario of routine xenotransplantation.
Collapse
Affiliation(s)
- Muhammed Mubarak
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| |
Collapse
|
4
|
Carrier AN, Verma A, Mohiuddin M, Pascual M, Muller YD, Longchamp A, Bhati C, Buhler LH, Maluf DG, Meier RPH. Xenotransplantation: A New Era. Front Immunol 2022; 13:900594. [PMID: 35757701 PMCID: PMC9218200 DOI: 10.3389/fimmu.2022.900594] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Organ allotransplantation has now reached an impassable ceiling inherent to the limited supply of human donor organs. In the United States, there are currently over 100,000 individuals on the national transplant waiting list awaiting a kidney, heart, and/or liver transplant. This is in contrast with only a fraction of them receiving a living or deceased donor allograft. Given the morbidity, mortality, costs, or absence of supportive treatments, xenotransplant has the potential to address the critical shortage in organ grafts. Last decade research efforts focused on creation of donor organs from pigs with various genes edited out using CRISPR technologies and utilizing non-human primates for trial. Three groups in the United States have recently moved forward with trials in human subjects and obtained initial successful results with pig-to-human heart and kidney xenotransplantation. This review serves as a brief discussion of the recent progress in xenotransplantation research, particularly as it concerns utilization of porcine heart, renal, and liver xenografts in clinical practice.
Collapse
Affiliation(s)
- Amber N Carrier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anjali Verma
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muhammad Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Manuel Pascual
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Yannick D Muller
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Chandra Bhati
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Leo H Buhler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Daniel G Maluf
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Raphael P H Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Miura S, Habibabady ZA, Pollok F, Connolly M, Pratts S, Dandro A, Sorrells L, Karavi K, Phelps C, Eyestone W, Ayares D, Burdorf L, Azimzadeh A, Pierson RN. Effects of human TFPI and CD47 expression and selectin and integrin inhibition during GalTKO.hCD46 pig lung perfusion with human blood. Xenotransplantation 2022; 29:e12725. [PMID: 35234315 PMCID: PMC10207735 DOI: 10.1111/xen.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Loss of barrier function when GalTKO.hCD46 porcine lungs are perfused with human blood is associated with coagulation pathway dysregulation, innate immune system activation, and rapid sequestration of human formed blood elements. Here, we evaluate whether genetic expression of human tissue factor pathway inhibitor (hTFPI) and human CD47 (hCD47), alone or with combined selectin and integrin adhesion pathway inhibitors, delays GalTKO.hCD46 porcine lung injury or modulates neutrophil and platelet sequestration. METHODS In a well-established paired ex vivo lung perfusion model, GalTKO.hCD46.hTFPI.hCD47 transgenic porcine lungs (hTFPI.hCD47, n = 7) were compared to GalTKO.hCD46 lungs (reference, n = 5). All lung donor pigs were treated with a thromboxane synthase inhibitor, anti-histamine, and anti-GPIb integrin-blocking Fab, and were pre-treated with Desmopressin. In both genotypes, one lung of each pair was additionally treated with PSGL-1 and GMI-1271 (P- and E-selectin) and IB4 (CD11b/18 integrin) adhesion inhibitors (n = 6 hTFPI.hCD47, n = 3 reference). RESULTS All except for two reference lungs did not fail within 480 min when experiments were electively terminated. Selectin and integrin adhesion inhibitors moderately attenuated initial pulmonary vascular resistance (PVR) elevation in hTFPI.hCD47 lungs. Neutrophil sequestration was significantly delayed during the early time points following reperfusion and terminal platelet activation was attenuated in association with lungs expressing hTFPI.hCD47, but additional adhesion pathway inhibitors did not show further effects with either lung genotype. CONCLUSION Expression of hTFPI.hCD47 on porcine lung may be useful as part of an integrated strategy to prevent neutrophil adhesion and platelet activation that are associated with xenograft injury. Additionally, targeting canonical selectin and integrin adhesion pathways reduced PVR elevation associated with hTFPI.hCD47 expression, but did not significantly attenuate neutrophil or platelet sequestration. We conclude that other adhesive mechanisms mediate the residual sequestration of human formed blood elements to pig endothelium that occurs even in the context of the multiple genetic modifications and drug treatments tested here.
Collapse
Affiliation(s)
- Shuhei Miura
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Cardiovascular Surgery, Teine Keijinkai Hospital, Sapporo, Japan
| | - Zahra A. Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Franziska Pollok
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Margaret Connolly
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon Pratts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | - Lars Burdorf
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Agnes Azimzadeh
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Meier RPH, Longchamp A, Mohiuddin M, Manuel O, Vrakas G, Maluf DG, Buhler LH, Muller YD, Pascual M. Recent progress and remaining hurdles toward clinical xenotransplantation. Xenotransplantation 2021; 28:e12681. [PMID: 33759229 DOI: 10.1111/xen.12681] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Xenotransplantation has made tremendous progress over the last decade. METHODS We discuss kidney and heart xenotransplantation, which are nearing initial clinical trials. RESULTS Life sustaining genetically modified kidney xenografts can now last for approximately 500 days and orthotopic heart xenografts for 200 days in non-human primates. Anti-swine specific antibody screening, preemptive desensitization protocols, complement inhibition and targeted immunosuppression are currently being adapted to xenotransplantation with the hope to achieve better control of antibody-mediated rejection (AMR) and improve xenograft longevity. These newest advances could probably facilitate future clinical trials, a significant step for the medical community, given that dialysis remains difficult for many patients and can have prohibitive costs. Performing a successful pig-to-human clinical kidney xenograft, that could last for more than a year after transplant, seems feasible but it still has significant potential hurdles to overcome. The risk/benefit balance is progressively reaching an acceptable equilibrium for future human recipients, e.g. those with a life expectancy inferior to two years. The ultimate question at this stage would be to determine if a "proof of concept" in humans is desirable, or whether further experimental/pre-clinical advances are still needed to demonstrate longer xenograft survival in non-human primates. CONCLUSION In this review, we discuss the most recent advances in kidney and heart xenotransplantation, with a focus on the prevention and treatment of AMR and on the recipient's selection, two aspects that will likely be the major points of discussion in the first pig organ xenotransplantation clinical trials.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Muhammad Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Oriol Manuel
- Transplantation Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Georgios Vrakas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel G Maluf
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leo H Buhler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yannick D Muller
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Manuel Pascual
- Transplantation Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Kim SC, Mathews DV, Breeden CP, Higginbotham LB, Ladowski J, Martens G, Stephenson A, Farris AB, Strobert EA, Jenkins J, Walters EM, Larsen CP, Tector M, Tector AJ, Adams AB. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant 2019; 19:2174-2185. [PMID: 30821922 PMCID: PMC6658347 DOI: 10.1111/ajt.15329] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 01/25/2023]
Abstract
The shortage of available organs remains the greatest barrier to expanding access to transplant. Despite advances in genetic editing and immunosuppression, survival in experimental models of kidney xenotransplant has generally been limited to <100 days. We found that pretransplant selection of recipients with low titers of anti-pig antibodies significantly improved survival in a pig-to-rhesus macaque kidney transplant model (6 days vs median survival time 235 days). Immunosuppression included transient pan-T cell depletion and an anti-CD154-based maintenance regimen. Selective depletion of CD4+ T cells but not CD8+ T cells resulted in long-term survival (median survival time >400 days vs 6 days). These studies suggested that CD4+ T cells may have a more prominent role in xenograft rejection compared with CD8+ T cells. Although animals that received selective depletion of CD8+ T cells showed signs of early cellular rejection (marked CD4+ infiltrates), animals receiving selective CD4+ depletion exhibited normal biopsy results until late, when signs of chronic antibody rejection were present. In vitro study results suggested that rhesus CD4+ T cells required the presence of SLA class II to mount an effective proliferative response. The combination of low pretransplant anti-pig antibody and CD4 depletion resulted in consistent, long-term xenograft survival.
Collapse
Affiliation(s)
- SC Kim
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - DV Mathews
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - CP Breeden
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - LB Higginbotham
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - J Ladowski
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - G Martens
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - A Stephenson
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - AB Farris
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - EA Strobert
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - J Jenkins
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - EM Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - CP Larsen
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia,Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - M Tector
- Comprehensive Transplant Institute, University of Alabama Birmingham School of Medicine, Birmingham, Alabama
| | - AJ Tector
- Comprehensive Transplant Institute, University of Alabama Birmingham School of Medicine, Birmingham, Alabama
| | - AB Adams
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia,Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
8
|
Chen YF, Yang X, Yang HJ. Heterologous Antibodies Adsorption in Xenotransplantation of a Landrace Piglet Kidney Into a Rhesus Monkey. Transplant Proc 2019; 51:987-992. [PMID: 30979492 DOI: 10.1016/j.transproceed.2019.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND To explore the adsorption of heterologous antibodies in 6 xenotransplants of Landrace piglet kidneys into rhesus monkeys. METHODS The Landrace piglets and rhesus monkeys were used as donors and recipients, respectively. The donor kidney was the left kidney excised from each Landrace piglet and lavaged with University of Wisconsin solution through the renal artery and vein ex vivo. The renal arteriovenous end of the recipient was preserved. After anastomosis of the renal artery and vein with the arteriovenous end of the recipient for reperfusion, a cross-lymphocyte cytotoxicity test of the heterogeneous kidney was performed. RESULTS All 6 Landrace piglet kidneys absorbed heterologous antibodies that were pre-existing in the rhesus macaques' kidneys. The cross-lymphocyte toxicity test was performed after the kidney were completely blackened. The cross-lymphocyte toxicity in all each heterogeneous kidney changed from strong positive to weak positive. CONCLUSIONS Heterologous antibodies were adsorbed in xenotransplants of Landrace piglet kidneys into rhesus monkeys. Xenotransplanted kidney can adsorb heterologous antibodies and consume relevant complements, which is a good model for research of hyperacute rejection in xenotransplantation.
Collapse
Affiliation(s)
- Y-F Chen
- Organ Transplant Center and Hepatobiliary Ward 3, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - X Yang
- Wenjiang District People's Hospital, Chengdu, Sichuan, China
| | - H-J Yang
- Organ Transplant Center and Hepatobiliary Ward 3, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Juriasingani S, Akbari M, Chan JYH, Whiteman M, Sener A. H2S supplementation: A novel method for successful organ preservation at subnormothermic temperatures. Nitric Oxide 2018; 81:57-66. [DOI: 10.1016/j.niox.2018.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
|
10
|
Yoon YE, Lee HH, Na JC, Han WK. Prospective assessment of urinary neutrophil gelatinase-associated lipoprotein in living kidney donors: toward understanding differences between chronic kidney diseases of surgical and medical origin. BJU Int 2018; 123:869-876. [PMID: 30347133 DOI: 10.1111/bju.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To evaluate the clinical implications of postoperative urinary neutrophil gelatinase-associated lipoprotein (NGAL) changes and the association between urinary NGAL (uNGAL) and renal function in living kidney donors. SUBJECTS, PATIENTS AND METHODS We included 76 healthy adults who underwent donor nephrectomy between December 2013 and November 2014. Perioperative serum creatinine (sCr), uNGAL, serum NGAL (sNGAL), and urinary microalbumin were prospectively measured until 6 months postoperatively. Patients with chronic kidney disease (CKD) due to medical disorders who visited our outpatient clinic during the same period were included for comparison. RESULTS The mean (SD) preoperative uNGAL of donors was 5 (5.17) ng/mL. uNGAL (corrected for urinary creatinine) was maximal at 1-2 days postoperatively, decreased on postoperative day 3, and stabilised by 7 days after surgery. Postoperative uNGAL was not associated with sex, age, or preoperative renal function. When corrected for sNGAL to compensate for the systemic increase in NGAL with major surgery, uNGAL on days 1-3 postoperatively was negatively correlated with sCr. Postoperatively, donor uNGAL remained higher than preoperatively for up to 6 months but was significantly lower than in patients with medical CKD with similar glomerular filtration rates. CONCLUSION Acute kidney injury due to hyperfiltration of remnant kidney after donor nephrectomy was maximal within 1-2 days postoperatively. The rise in uNGAL during this period in donors was negatively correlated with postoperative sCr levels. Decreased renal function after nephrectomy differs from that of medical CKD.
Collapse
Affiliation(s)
- Young Eun Yoon
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Hyung Ho Lee
- Department of Urology, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Joon Chae Na
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Woong Kyu Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Recapitulating kidney development: Progress and challenges. Semin Cell Dev Biol 2018; 91:153-168. [PMID: 30184476 DOI: 10.1016/j.semcdb.2018.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
Decades of research into the molecular and cellular regulation of kidney morphogenesis in rodent models, particularly the mouse, has provided both an atlas of the mammalian kidney and a roadmap for recreating kidney cell types with potential applications for the treatment of kidney disease. With advances in both our capacity to maintain nephron progenitors in culture, reprogram to kidney cell types and direct the differentiation of human pluripotent stem cells to kidney endpoints, renal regeneration via cellular therapy or tissue engineering may be possible. Human kidney models also have potential for disease modelling and drug screening. Such applications will rely upon the accuracy of the model at the cellular level and the capacity for stem-cell derived kidney tissue to recapitulate both normal and diseased kidney tissue. In this review, we will discuss the available cell sources, how well they model the human kidney and how far we are from application either as models or for tissue engineering.
Collapse
|
12
|
Burdorf L, Harris D, Dahi S, Laird C, Zhang T, Ali F, Shah A, Thompson M, Braileanu G, Cheng X, Sievert E, Schwartz E, Sendil S, Parsell DM, Redding E, Phelps CJ, Ayares DL, Azimzadeh AM, Pierson RN. Thromboxane and histamine mediate PVR elevation during xenogeneic pig lung perfusion with human blood. Xenotransplantation 2018; 26:e12458. [PMID: 30175863 DOI: 10.1111/xen.12458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/29/2018] [Accepted: 07/20/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Elevated pulmonary vascular resistance (PVR), platelet adhesion, coagulation activation, and inflammation are prominent features of xenolung rejection. Here, we evaluate the role of thromboxane and histamine on PVR, and their contribution to other lung xenograft injury mechanisms. METHODS GalTKO.hCD46 single pig lungs were perfused ex vivo with fresh heparinized human blood: lungs were either treated with 1-Benzylimidazole (1-BIA) combined with histamine receptor blocker famotidine (n = 4) or diphenhydramine (n = 6), 1-BIA alone (n = 6) or were left untreated (n = 9). RESULTS Six of the nine control experiments (GalTKO.hCD46 untreated), "survived" until elective termination at 4 hours. Without treatment, initial PVR elevation within the first 30 minutes resolved partially over the following hour, and increased progressively during the final 2 hours of perfusion. In contrast, 1-BIA, alone or in addition to either antihistamine treatment, was associated with low stable PVR. Combined treatments significantly lowered the airway pressure when compared to untreated reference. Although platelet and neutrophil sequestration and coagulation cascade activation were not consistently altered by any intervention, increased terminal wet/dry weight ratio in untreated lungs was significantly blunted by combined treatments. CONCLUSION Combined thromboxane and histamine pathway blockade prevents PVR elevation and significantly inhibits loss of vascular barrier function when GalTKO.hCD46 lungs are perfused with human blood. Platelet activation and platelet and neutrophil sequestration persist in all groups despite efficient complement regulation, and appear to occur independent of thromboxane and histamine antagonism. Our work identifies thromboxane and histamine as key mediators of xenolung injury and defines those pathways as therapeutic targets to achieve successful xenolung transplantation.
Collapse
Affiliation(s)
- Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland.,Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Donald Harris
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Siamak Dahi
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Christopher Laird
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Tianshu Zhang
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Franchesca Ali
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Aakash Shah
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Mercedes Thompson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Gheorghe Braileanu
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Xiangfei Cheng
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Evelyn Sievert
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Evan Schwartz
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Selin Sendil
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Dawn M Parsell
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Emily Redding
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Carol J Phelps
- Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Agnes M Azimzadeh
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland.,Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Richard N Pierson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland.,Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Ross MJ, Coates PT. Using CRISPR to inactivate endogenous retroviruses in pigs: an important step toward safe xenotransplantation? Kidney Int 2017; 93:4-6. [PMID: 29198467 DOI: 10.1016/j.kint.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023]
Abstract
Xenotransplantation could theoretically provide an unlimited supply of organs for patients living with end-stage kidney disease and other end-stage organ failure, but severe rejection and concerns about possible transmission of zoonotic infections remain important obstacles. In a recent study, investigators used CRISPR-cas9 to generate genetically modified pigs in which all endogenous retroviruses were inactivated. This approach may address one important barrier to the feasibility of clinical trials of xenotransplantation.
Collapse
Affiliation(s)
- Michael J Ross
- Division of Nephrology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA; Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - P Toby Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Potential Antigens Involved in Delayed Xenograft Rejection in a Ggta1/Cmah Dko Pig-to-Monkey Model. Sci Rep 2017; 7:10024. [PMID: 28855711 PMCID: PMC5577312 DOI: 10.1038/s41598-017-10805-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022] Open
Abstract
When hyperacute rejection is avoided by deletion of Gal expression in the pig, delayed xenograft rejection (DXR) becomes a major immunologic barrier to successful xenotransplantation. This study was to investigate the potential antigens involved in DXR. We isolated primary renal microvascular endothelial cells (RMEC) and aortic endothelial cells (AEC) from a GGTA1/CMAH double-knockout (DKO) pig (and a GGTA1-KO pig) and immunized cynomolgus monkeys with both of these cells. After sensitization, monkey serum antibody binding and cytotoxicity to RMEC was significantly higher than to AEC(p < 0.05), suggesting that RMEC are more immunogenic than AEC. Transcriptome sequencing of GGTA1/CMAH DKO pigs indicated that the expression of 1,500 genes was higher in RMEC than in AEC, while expression of 896 genes was lower. Next, we selected 101 candidate genes expressed only in pig RMEC, but not in pig AEC or in monkey or human RMEC. When these genes were knocked out individually in GGTA1/CMAH DKO RMEC, 32 genes were associated with reduced antibody binding, indicating that these genes might be primary immunologic targets involved in DXR. These genes may be important candidates for deletion in producing pigs against which there is a reduced primate immune response in pig kidney xenograft.
Collapse
|
15
|
Cooper DK, Wijkstrom M, Hariharan S, Chan JL, Singh A, Horvath K, Mohiuddin M, Cimeno A, Barth RN, LaMattina JC, Pierson RN. Selection of Patients for Initial Clinical Trials of Solid Organ Xenotransplantation. Transplantation 2017; 101:1551-1558. [PMID: 27906824 PMCID: PMC5453852 DOI: 10.1097/tp.0000000000001582] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several groups have reported extended survival of genetically engineered pig organs in nonhuman primates, varying from almost 10 months for life-supporting kidney grafts and more than 2 years for non-life-supporting heart grafts to less than 1 month for life-supporting liver and lung grafts. We have attempted to define groups of patients who may not have an option to wait for an allograft. These include kidney, heart, and lung candidates who are highly-allosensitized. In addition, some kidney candidates (who have previously lost at least 2 allografts from rapid recurrence of native kidney disease) have a high risk of further recurrence and will not be offered a repeat allotransplant. Patients with complex congenital heart disease, who may have undergone previous palliative surgical procedures, may be unsuitable for ventricular assist device implantation. Patients dying of fulminant hepatic failure, for whom no alternative therapy is available, may be candidates for a pig liver, even if only as a bridge until an allograft becomes available. When the results of pig organ xenotransplantation in nonhuman primates suggest a realistic potential for success of a pilot clinical trial, highly selected patients should be offered participation.
Collapse
Affiliation(s)
- David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Sundaram Hariharan
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Joshua L. Chan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Avneesh Singh
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Keith Horvath
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Muhammad Mohiuddin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Arielle Cimeno
- Division of Transplantation Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - Rolf N. Barth
- Division of Transplantation Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - John C. LaMattina
- Division of Transplantation Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - Richard N. Pierson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD, USA
| |
Collapse
|
16
|
Cowan PJ, Ierino FL. Reducing the Threshold for Clinical Renal Xenotransplantation. Transplantation 2017; 101:692-693. [PMID: 28099406 PMCID: PMC7228590 DOI: 10.1097/tp.0000000000001641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Peter J Cowan
- 1 Immunology Research Centre, St Vincent's Hospital Melbourne, Victoria, Australia. 2 Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Victoria, Australia. 3 Department of Nephrology, St Vincent's Hospital Melbourne, Victoria, Australia
| | | |
Collapse
|
17
|
Cowan PJ, Ayares D, Wolf E, Cooper DKC. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--Chapter 2b: genetically modified source pigs. Xenotransplantation 2016; 23:32-7. [PMID: 26926888 DOI: 10.1111/xen.12224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/24/2022]
Abstract
Genetic modification of the source pig offers the opportunity to improve the engraftment and survival of islet xenografts. The type of modification can be tailored to the transplant setting; for example, intraportal islet xenografts have been shown to benefit from the expression of anticoagulant and anti-inflammatory transgenes, whereas cytoprotective transgenes are probably more relevant for encapsulated islets. The rapid development of pig genetic engineering, particularly with the introduction of genome editing techniques such as CRISPR-Cas, has accelerated the generation of new pig lines with multiple modifications. With pre-clinical testing in progress, it is an opportune time to consider any implications of genetic modification for the conditions for undertaking clinical trials. Obviously, the stringent requirements to fulfill designated pathogen-free status that are applied to wild-type pigs will apply equally to genetically modified (GM) source pigs. In addition, it is important from a safety perspective that the genetic modifications are characterized at the molecular level (e.g., integration site, absence of off-target mutations), the phenotypic level (e.g., durability and stability of transgene expression), and the functional level (e.g., protection of islets in vitro or in vivo, absence of detrimental effects on insulin secretion). The assessment of clinical trial protocols using GM pig islets will need to be performed on a case-by-case basis, taking into account a range of factors including the particular genetic modification(s) and the site and method of delivery.
Collapse
Affiliation(s)
- Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| | | | - Eckhard Wolf
- Gene Center, Ludwig Maximilian University, Munich, Germany
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Kaths JM, Echeverri J, Goldaracena N, Louis KS, Yip P, John R, Mucsi I, Ghanekar A, Bagli D, Selzner M, Robinson LA. Heterotopic Renal Autotransplantation in a Porcine Model: A Step-by-Step Protocol. J Vis Exp 2016:53765. [PMID: 26967919 PMCID: PMC4828178 DOI: 10.3791/53765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kidney transplantation is the treatment of choice for patients suffering from end-stage renal disease. It offers better life expectancy and higher quality of life when compared to dialysis. Although the last few decades have seen major improvements in patient outcomes following kidney transplantation, the increasing shortage of available organs represents a severe problem worldwide. To expand the donor pool, marginal kidney grafts recovered from extended criteria donors (ECD) or donated after circulatory death (DCD) are now accepted for transplantation. To further improve the postoperative outcome of these marginal grafts, research must focus on new therapeutic approaches such as alternative preservation techniques, immunomodulation, gene transfer, and stem cell administration. Experimental studies in animal models are the final step before newly developed techniques can be translated into clinical practice. Porcine kidney transplantation is an excellent model of human transplantation and allows investigation of novel approaches. The major advantage of the porcine model is its anatomical and physiological similarity to the human body, which facilitates the rapid translation of new findings to clinical trials. This article offers a surgical step-by-step protocol for an autotransplantation model and highlights key factors to ensure experimental success. Adequate pre- and postoperative housing, attentive anesthesia, and consistent surgical techniques result in favorable postoperative outcomes. Resection of the contralateral native kidney provides the opportunity to assess post-transplant graft function. The placement of venous and urinary catheters and the use of metabolic cages allow further detailed evaluation. For long-term follow-up studies and investigation of alternative graft preservation techniques, autotransplantation models are superior to allotransplantation models, as they avoid the confounding bias posed by rejection and immunosuppressive medication.
Collapse
Affiliation(s)
- J Moritz Kaths
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital; Division of Nephrology, The Hospital for Sick Children;
| | - Juan Echeverri
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital; Programa de Doctorat en Medicina, La Universitat Autónoma de Barcelona
| | - Nicolas Goldaracena
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital
| | - Kristine S Louis
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital
| | - Paul Yip
- Laboratory Medicine and Pathobiology, Toronto General Hospital
| | - Rohan John
- Laboratory Medicine and Pathobiology, Toronto General Hospital
| | - Istvan Mucsi
- Department of Medicine, Toronto General Hospital
| | - Anand Ghanekar
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital
| | - Darius Bagli
- Departments of Surgery (Urology) & Physiology, Developmental & Stem Cell Biology, The Hospital for Sick Children
| | - Markus Selzner
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital
| | | |
Collapse
|
19
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Kemter E, Wolf E. Pigs pave a way to de novo formation of functional human kidneys. Proc Natl Acad Sci U S A 2015; 112:12905-6. [PMID: 26460047 PMCID: PMC4620893 DOI: 10.1073/pnas.1517582112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elisabeth Kemter
- Gene Center and Center for Innovative Medical Models, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| |
Collapse
|
21
|
Cooper DKC, Bottino R. Recent advances in understanding xenotransplantation: implications for the clinic. Expert Rev Clin Immunol 2015; 11:1379-90. [PMID: 26548357 PMCID: PMC4879962 DOI: 10.1586/1744666x.2015.1083861] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The results of organ and cell allotransplantation continue to improve, but the field remains limited by a lack of deceased donor organs. Xenotransplantation, for example, between pig and human, offers unlimited organs and cells for clinical transplantation. The immune barriers include a strong innate immune response in addition to the adaptive T-cell response. The innate response has largely been overcome by the transplantation of organs from pigs with genetic modifications that protect their tissues from this response. T-cell-mediated rejection can be controlled by immunosuppressive agents that inhibit costimulation. Coagulation dysfunction between the pig and primate remains problematic but is being overcome by the transplantation of organs from pigs that express human coagulation-regulatory proteins. The remaining barriers will be resolved by the introduction of novel genetically-engineered pigs. Limited clinical trials of pig islet and corneal transplantation are already underway.
Collapse
Affiliation(s)
- David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA
| |
Collapse
|
22
|
Butler JR, Martens GR, Li P, Wang ZY, Estrada JL, Ladowski JM, Tector M, Tector AJ. The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs. J Surg Res 2015; 200:698-706. [PMID: 26375504 DOI: 10.1016/j.jss.2015.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Thrombocytopenia may represent a significant challenge to the clinical application of solid-organ xenotransplantation. When studied in a pig-to-primate model, consumptive coagulopathy has challenged renal xenografts. New strategies of genetic manipulation have altered porcine carbohydrate profiles to significantly reduce human antibody binding to pig cells. As this process continues to eliminate immunologic barriers to clinical xenotransplantation, the relationship between human platelets and pig organs must be considered. METHODS Genetically modified pigs that were created by the CRISPR/Cas9 system with α-1,3-galactosyltransferase (GGTA1)(-/-) or GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-) phenotype, as well as domestic pigs, were used in this study. Autologous porcine platelets were isolated from donor animal blood collection, and human platelets were obtained from a blood bank. Platelets were fluorescently labeled and in a single-pass model, human, or autologous platelets were perfused through porcine organs at a constant concentration and controlled temperature. Platelet uptake was measured by sampling venous output and measuring sample florescence against input florescence. In vitro study of the interaction between human platelets and porcine endothelial cells was accomplished by immunohistochemical stain and confocal microscopy. RESULTS Differences between human and autologous platelet loss through the porcine kidney were not significant in any genetic background tested (WT P = 0.15, GGTA1(-/-)P = 0.12, GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-)P = 0.25). The unmodified porcine liver consumed human platelets in a single-pass model of platelet perfusion in fewer than 10 min. WT suprahepatic inferior vena cava fluoresce reached a maximum of 76% of input fluoresce within the human platelet cohort and was significantly lower than the autologous platelet control cohort (P = 0.001). Confocal microscopic analysis did not demonstrate a significant association between human platelets and porcine renal endothelial cells compared with porcine liver endothelial positive controls. CONCLUSIONS Our results suggest that in the absence of immunologic injury, human platelets respond in a variable fashion to organ-specific porcine endothelial surfaces. Human platelets are not removed from circulation by exposure to porcine renal endothelium but are removed by unmodified porcine hepatic endothelium. Kidneys possessing genetic modifications currently relevant to clinical xenotransplantation failed to consume human platelets in an isolated single-pass model. Human platelets did not exhibit significant binding to renal endothelial cells by in vitro assay.
Collapse
Affiliation(s)
- James R Butler
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gregory R Martens
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ping Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zheng-Yu Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose L Estrada
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph M Ladowski
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matt Tector
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - A Joseph Tector
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
23
|
Higginbotham L, Ford ML, Newell KA, Adams AB. Preventing T cell rejection of pig xenografts. Int J Surg 2015; 23:285-290. [PMID: 26306770 DOI: 10.1016/j.ijsu.2015.07.722] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022]
Abstract
Xenotransplantation is a potential solution to the limited supply of donor organs. While early barriers to xenograft acceptance, such as hyperacute rejection, are now largely avoided through genetic engineering, the next frontier in successful xenograft survival will require prevention of T cell-mediated rejection. Most successful immunosuppressive regimens in xenotransplantation utilize T cell depletion with antibody therapy. Additionally, the use of T cell costimulatory blockade - specifically blockade of the CD40-CD154 pathway - shows promise with several reports of long-term xenograft survival. Additional therapies, such as transgenic expression of T cell coinhibitory molecules or transfer of immunomodulatory cells to promote tolerance, may be necessary to achieve reliable long-term xenograft acceptance. Further studies in pre-clinical models are essential in order to optimize these regimens prior to trials in patients.
Collapse
Affiliation(s)
- Laura Higginbotham
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kenneth A Newell
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew B Adams
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
24
|
Abstract
Dysregulation of coagulation and disordered hemostasis are frequent complications in the pig-to-nonhuman primate preclinical xenotransplantation model. The most extreme manifestations are the systemic development of a life-threatening consumptive coagulopathy, characterized by thrombocytopenia and bleeding, which is balanced at the opposite extreme by local complications of graft loss due to thrombotic microangiopathy. The contributing mechanisms include inflammation, vascular injury, heightened innate, humoral and cellular immune responses, and molecular incompatibilities affecting the regulation of coagulation. There also appear to be organ-specific factors that have been linked to vascular heterogeneity. As examples, liver xenografts rapidly induce thrombocytopenia by sequestering human/primate platelets; renal xenografts cause a broader coagulopathy, linked in some cases to reactivation of porcine CMV, whereas cardiac xenografts often succumb to microvascular thrombosis without associated systemic coagulopathy but with local perturbations in fibrinolysis. Overcoming coagulation dysfunction will require a combination of genetic and pharmacological strategies. Deletion of the xenoantigen αGal, transgenic expression of human complement regulatory proteins, and refinement of immunosuppression to blunt the antibody response have all had some impact, without providing a complete solution. More recently, the addition of approaches specifically targeted at coagulation have produced promising results. As an example, heterotopic cardiac xenografts from donors expressing human thrombomodulin have survived for more than a year in immunosuppressed baboons, with no evidence of thrombotic microangiopathy or coagulopathy.
Collapse
|
25
|
Ekser B, Cooper DKC, Tector AJ. The need for xenotransplantation as a source of organs and cells for clinical transplantation. Int J Surg 2015; 23:199-204. [PMID: 26188183 DOI: 10.1016/j.ijsu.2015.06.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
The limited availability of deceased human organs and cells for the purposes of clinical transplantation remains critical worldwide. Despite the increasing utilization of 'high-risk', 'marginal', or 'extended criteria' deceased donors, in the U.S. each day 30 patients either die or are removed from the waiting list because they become too sick to undergo organ transplantation. In certain other countries, where there is cultural resistance to deceased donation, e.g., Japan, the increased utilization of living donors, e.g., of a single kidney or partial liver, only very partially addresses the organ shortage. For transplants of tissues and cells, e.g., pancreatic islet transplantation for patients with diabetes, and corneal transplantation for patients with corneal blindness (whose numbers worldwide are potentially in the millions), allotransplantation will never prove a sufficient source. There is an urgent need for an alternative source of organs and cells. The pig could prove to be a satisfactory source, and clinical xenotransplantation using pig organs or cells, particularly with the advantages provided by genetic engineering to provide resistance to the human immune response, may resolve the organ shortage. The physiologic compatibilities and incompatibilities of the pig and the human are briefly reviewed.
Collapse
Affiliation(s)
- Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - A Joseph Tector
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
26
|
Higginbotham L, Mathews D, Breeden CA, Song M, Farris AB, Larsen CP, Ford ML, Lutz AJ, Tector M, Newell KA, Tector AJ, Adams AB. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model. Xenotransplantation 2015. [PMID: 25847130 DOI: 10.1111/xen.12166.pre-transplant] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Xenotransplantation has the potential to alleviate the organ shortage that prevents many patients with end-stage renal disease from enjoying the benefits of kidney transplantation. Despite significant advances in other models, pig-to-primate kidney xenotransplantation has met limited success. Preformed anti-pig antibodies are an important component of the xenogeneic immune response. To address this, we screened a cohort of 34 rhesus macaques for anti-pig antibody levels. We then selected animals with both low and high titers of anti-pig antibodies to proceed with kidney transplant from galactose-α1,3-galactose knockout/CD55 transgenic pig donors. All animals received T-cell depletion followed by maintenance therapy with costimulation blockade (either anti-CD154 mAb or belatacept), mycophenolate mofetil, and steroid. The animal with the high titer of anti-pig antibody rejected the kidney xenograft within the first week. Low-titer animals treated with anti-CD154 antibody, but not belatacept exhibited prolonged kidney xenograft survival (>133 and >126 vs. 14 and 21 days, respectively). Long-term surviving animals treated with the anti-CD154-based regimen continue to have normal kidney function and preserved renal architecture without evidence of rejection on biopsies sampled at day 100. This description of the longest reported survival of pig-to-non-human primate kidney xenotransplantation, now >125 days, provides promise for further study and potential clinical translation.
Collapse
Affiliation(s)
- Laura Higginbotham
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Dave Mathews
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Cynthia A Breeden
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mingqing Song
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Alton Brad Farris
- Anatomic Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian P Larsen
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L Ford
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew J Lutz
- Department of Surgery, Indiana University Health Transplant Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Tector
- Indiana University Health Transplant Department, Indianapolis, IN, USA
| | - Kenneth A Newell
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - A Joseph Tector
- Department of Surgery, Indiana University Health Transplant Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew B Adams
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Higginbotham L, Mathews D, Breeden CA, Song M, Farris AB, Larsen CP, Ford ML, Lutz AJ, Tector M, Newell KA, Tector AJ, Adams AB. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model. Xenotransplantation 2015; 22:221-30. [PMID: 25847130 DOI: 10.1111/xen.12166] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/08/2015] [Indexed: 12/13/2022]
Abstract
Xenotransplantation has the potential to alleviate the organ shortage that prevents many patients with end-stage renal disease from enjoying the benefits of kidney transplantation. Despite significant advances in other models, pig-to-primate kidney xenotransplantation has met limited success. Preformed anti-pig antibodies are an important component of the xenogeneic immune response. To address this, we screened a cohort of 34 rhesus macaques for anti-pig antibody levels. We then selected animals with both low and high titers of anti-pig antibodies to proceed with kidney transplant from galactose-α1,3-galactose knockout/CD55 transgenic pig donors. All animals received T-cell depletion followed by maintenance therapy with costimulation blockade (either anti-CD154 mAb or belatacept), mycophenolate mofetil, and steroid. The animal with the high titer of anti-pig antibody rejected the kidney xenograft within the first week. Low-titer animals treated with anti-CD154 antibody, but not belatacept exhibited prolonged kidney xenograft survival (>133 and >126 vs. 14 and 21 days, respectively). Long-term surviving animals treated with the anti-CD154-based regimen continue to have normal kidney function and preserved renal architecture without evidence of rejection on biopsies sampled at day 100. This description of the longest reported survival of pig-to-non-human primate kidney xenotransplantation, now >125 days, provides promise for further study and potential clinical translation.
Collapse
Affiliation(s)
- Laura Higginbotham
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Dave Mathews
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Cynthia A Breeden
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mingqing Song
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Alton Brad Farris
- Anatomic Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian P Larsen
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L Ford
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew J Lutz
- Department of Surgery, Indiana University Health Transplant Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Tector
- Indiana University Health Transplant Department, Indianapolis, IN, USA
| | - Kenneth A Newell
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - A Joseph Tector
- Department of Surgery, Indiana University Health Transplant Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew B Adams
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
28
|
Abstract
The availability of organs and cells from deceased humans for transplantation is not meeting the demand. Xenotransplantation, specifically the transplantation of organs and cells from genetically engineered pigs, could resolve this problem. Diabetic monkeys have remained normoglycemic and insulin-independent after pig islet transplantation for >one yr, and a pig heterotopic (non-life-supporting) heart transplant recently reached the one-yr milestone in a baboon. With these encouraging results, why is it that, with some notable exceptions, research into xenotransplantation has received relatively little support by industry, government funding agencies, and medical charitable foundations? Industry appears reluctant to support research that will take more than two to three yr to come to clinical trial, and the funding agencies appear to have been "distracted" by the current appeal of stem cell technology and regenerative medicine. It has only been the willingness of living donors to provide organs that has significantly increased the number of transplants being performed worldwide. These altruistic donations are not without risk of morbidity and even mortality to the donor. Although with the best of intentions, we are therefore traversing the Hippocratic Oath of doctors to "do no harm." This should be a stimulus to fund exploration of alternative approaches, including xenotransplantation.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Le BBS, Tillou X, Branchereau J, Dilek N, Poirier N, Châtelais M, Charreau B, Minault D, Hervouet J, Renaudin K, Crossan C, Scobie L, Takeuchi Y, Diswall M, Breimer M, Klar N, Daha M, Simioni P, Robson S, Nottle M, Salvaris E, Cowan P, d’Apice A, Sachs D, Yamada K, Lagutina I, Duchi R, Perota A, Lazzari G, Galli C, Cozzi E, Soulillou JP, B. V, Blancho G. Bortezomib, C1-inhibitor and plasma exchange do not prolong the survival of multi-transgenic GalT-KO pig kidney xenografts in baboons. Am J Transplant 2015; 15:358-70. [PMID: 25612490 PMCID: PMC4306235 DOI: 10.1111/ajt.12988] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/23/2014] [Accepted: 08/12/2014] [Indexed: 01/25/2023]
Abstract
Galactosyl-transferase KO (GalT-KO) pigs represent a potential solution to xenograft rejection, particularly in the context of additional genetic modifications. We have performed life supporting kidney xenotransplantation into baboons utilizing GalT-KO pigs transgenic for human CD55/CD59/CD39/HT. Baboons received tacrolimus, mycophenolate mofetil, corticosteroids and recombinant human C1 inhibitor combined with cyclophosphamide or bortezomib with or without 2-3 plasma exchanges. One baboon received a control GalT-KO xenograft with the latter immunosuppression. All immunosuppressed baboons rejected the xenografts between days 9 and 15 with signs of acute humoral rejection, in contrast to untreated controls (n = 2) that lost their grafts on days 3 and 4. Immunofluorescence analyses showed deposition of IgM, C3, C5b-9 in rejected grafts, without C4d staining, indicating classical complement pathway blockade but alternate pathway activation. Moreover, rejected organs exhibited predominantly monocyte/macrophage infiltration with minimal lymphocyte representation. None of the recipients showed any signs of porcine endogenous retrovirus transmission but some showed evidence of porcine cytomegalovirus (PCMV) replication within the xenografts. Our work indicates that the addition of bortezomib and plasma exchange to the immunosuppressive regimen did not significantly prolong the survival of multi-transgenic GalT-KO renal xenografts. Non-Gal antibodies, the alternative complement pathway, innate mechanisms with monocyte activation and PCMV replication may have contributed to rejection.
Collapse
Affiliation(s)
- Bas-Bernardet S. Le
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - X. Tillou
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France
| | - J. Branchereau
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France
| | - N. Dilek
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Effimune, Nantes, France
| | - N. Poirier
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Effimune, Nantes, France
| | - M. Châtelais
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - B. Charreau
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - D. Minault
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France
| | - J. Hervouet
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France
| | - K. Renaudin
- Pathology Laboratory, CHU- Hôtel Dieu, Nantes, France
| | - C. Crossan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - L. Scobie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - Y. Takeuchi
- University College London, London, United Kingdom,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - M. Diswall
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - M.E. Breimer
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - N. Klar
- Department of Nephrology, University Medical Center, Leiden, The Netherlands,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - M.R. Daha
- Department of Nephrology, University Medical Center, Leiden, The Netherlands,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - P. Simioni
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padua, Padua, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - S.C. Robson
- Gastroenterology and Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M.B. Nottle
- Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - E.J. Salvaris
- Immunology Research Centre, St Vincent’s Hospital Melbourne, Victoria, Australia
| | - P.J. Cowan
- Immunology Research Centre, St Vincent’s Hospital Melbourne, Victoria, Australia
| | - A.J.F. d’Apice
- Immunology Research Centre, St Vincent’s Hospital Melbourne, Victoria, Australia
| | - D.H. Sachs
- Transplantation Biology Research Center (TBRC), Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - K. Yamada
- Transplantation Biology Research Center (TBRC), Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - I. Lagutina
- Avantea, Cremona, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - R. Duchi
- Avantea, Cremona, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - A. Perota
- Avantea, Cremona, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - G. Lazzari
- Avantea, Cremona, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - C. Galli
- Avantea, Cremona, Italy,Dept. of Veterinary Medical Science, University of Bologna, Ozzano Emilia, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - E. Cozzi
- Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - J.-P. Soulillou
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - Vanhove B.
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Effimune, Nantes, France
| | - G. Blancho
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| |
Collapse
|
30
|
Burlak C, Paris L, Lutz A, Sidner R, Estrada J, Li P, Tector M, Tector A. Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs. Am J Transplant 2014; 14:1895-900. [PMID: 24909344 PMCID: PMC4366649 DOI: 10.1111/ajt.12744] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/25/2023]
Abstract
Xenotransplantation using genetically modified pig organs could solve the donor organ shortage problem. Two inactivated genes that make humans unique from pigs are GGTA1 and CMAH, the products of which produce the carbohydrate epitopes, aGal and Neu5Gc that attract preformed human antibody. When the GGTA1 and CMAH genes were deleted in pigs, human antibody binding was reduced in preliminary analysis. We analyzed the binding of human IgM and IgG from 121 healthy human serum samples for binding to GGTA1 KO and GGTA1/CMAH KO peripheral blood mononuclear cells (PBMCs). We analyzed a sub population for reactivity toward genetically modified pig PBMCs as compared to chimpanzee and human PBMCs. Deletion of the GGTA1 and CMAH genes in pigs improved the crossmatch results beyond those observed with chimpanzees. Sorting the 121 human samples tested against the GGTA1/CMAH KO pig PBMCs did not reveal a distinguishing feature such as blood group, age or gender. Modification of genes to make pig carbohydrates more similar to humans has improved the crossmatch with human serum significantly.
Collapse
Affiliation(s)
- C. Burlak
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - L.L. Paris
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - A.J. Lutz
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - R.A. Sidner
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - J. Estrada
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - P. Li
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - M. Tector
- Indiana University Health Transplant Institute, Indianapolis, Indiana
| | - A.J. Tector
- Indiana University Health Transplant Institute, Indianapolis, Indiana
| |
Collapse
|