1
|
Sivagurunathan U, Izquierdo M, Tseng Y, Prabhu PAJ, Zamorano MJ, Robaina L, Domínguez D. Effects of the Interaction between Dietary Vitamin D 3 and Vitamin K 3 on Growth, Skeletal Anomalies, and Expression of Bone and Calcium Metabolism-Related Genes in Juvenile Gilthead Seabream ( Sparus aurata). Animals (Basel) 2024; 14:2808. [PMID: 39409757 PMCID: PMC11475414 DOI: 10.3390/ani14192808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The interaction between vitamin D and vitamin K is crucial for regulating bone metabolism and maintaining calcium homeostasis across diverse animal species due to their complementary roles in calcium metabolism and bone health. However, research on this interaction of vitamin D and K in fish, particularly Mediterranean species like gilthead seabream, is limited or not studied. This study aimed to understand the effects of different dietary combinations of vitamin D3 and K3 on juvenile gilthead seabream. Accordingly, seabream juveniles were fed with varying combinations of vitamin D3/vitamin K3 (mg/kg diet) for 3 months: (0.07/0.01), (0.20/0.58), (0.19/1.65), (0.51/0.74), (0.56/1.00). At the end of the trial, survival, growth, body morphology, serum calcitriol, and vertebral mineral composition remained unaffected by varying vitamin levels, while gene expression patterns related to bone formation, resorption, and calcium regulation in various tissues were significantly influenced by both vitamins and their interaction. Gilthead seabream juveniles fed the 0.07/0.01 mg/kg diet upregulated calcium-regulating genes in the gills, indicating an effort to enhance calcium absorption to compensate for dietary deficiencies. Conversely, an increase in vitamin D3 and K3 up to 0.19 and 1.65 mg/kg, respectively, upregulated bone formation, bone remodeling, and calcium homeostasis-related gene expression in vertebra and other tissues. On the contrary, a dietary increase in these vitamins up to 0.56 mg/kg vitamin D3 and 1.00 mg/kg vitamin K3 downregulated calcium metabolism-related genes in tissues, suggesting an adverse interaction resulting from elevated levels of these vitamins in the diet. Hence, sustaining an equilibrium in the dietary intake of vitamin D3 and vitamin K3, in an appropriately combined form, may potentially induce interactions between the vitamins, contributing to favorable effects on bone development and calcium regulation in gilthead seabream juveniles.
Collapse
Affiliation(s)
- Ulaganathan Sivagurunathan
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Yiyen Tseng
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Philip Antony Jesu Prabhu
- Institute of Marine Research (IMR), Fish Nutrition Program, 5005 Bergen, Norway;
- Nutrition and Feed Technology Group, Nofima, 5141 Bergen, Norway
| | - María Jesús Zamorano
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - David Domínguez
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
- Institute of Marine Research (IMR), Fish Nutrition Program, 5005 Bergen, Norway;
| |
Collapse
|
2
|
Taskapan H, Mahdavi S, Bellasi A, Martin S, Kuvadia S, Patel A, Taskapan B, Tam P, Sikaneta T. Ethnic and seasonal variations in FGF-23 and markers of chronic kidney disease-mineral and bone disorder. Clin Kidney J 2024; 17:sfae188. [PMID: 39070948 PMCID: PMC11273220 DOI: 10.1093/ckj/sfae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 07/30/2024] Open
Abstract
Background Fibroblast growth factor 23 (FGF-23) and other markers of chronic kidney disease-mineral and bone disorder (CKD-MBD) provide valuable insights into disease processes, treatment options and patient prognosis. However, limited research has explored potential associations with ethnicity or season, particularly in multi-ethnic populations residing in high-latitude regions. Methods We evaluated CKD-BMD markers in a diverse cohort of CKD patients, who were participants of The CANADIAN AIM to PREVENT (the CAN AIM to PREVENT) study. FGF-23, calcium, phosphate, 25-hydroxyvitamin D (25-OHD) and intact parathyroid hormone (iPTH) in 1234 participants with pre-dialysis CKD (mean estimated glomerular filtration rate: 41.8 ± 14.3 mL/min) were analyzed. Mixed-effects general linear regression models adjusted for demographic and biological factors were used to compare repeated measurements across patient groups categorized by ethnicity (East Asian, White, South Asian, Black, Southeast Asian) and seasons. Results Compared with other groups, White participants exhibited 8.0%-18.5% higher FGF-23 levels, Black participants had 0.17-0.32 mg/dL higher calcium levels, White participants had 10.0%-20.1% higher 25-OHD levels, South Asian participants had 7.3%-20.1% lower 25-OHD levels and Black participants had 22.1-73.8% higher iPTH levels, while East Asian participants had 10.7%-73.8% lower iPTH levels. Seasonal variations were also observed. FGF-23 levels were 11.9%-15.5% higher in summer compared with other seasons, while calcium levels were 0.03-0.06 mg/dL lower in summer. 25-OHD levels were 5.6%-10.6% higher in summer and autumn compared with other seasons. Conclusions This study shows that FGF-23 and CKD-MBD markers in a Canadian pre-dialysis CKD cohort vary independently by ethnicity and season. Further research is needed to understand the reasons and clinical significance of these findings.
Collapse
Affiliation(s)
- Hulya Taskapan
- Research Department, Kidney Life Sciences Institute, Toronto, Canada
| | - Sara Mahdavi
- Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Medicine, University of Canada, Toronto, Canada
- Department of Nephrology, The Scarborough Health Network, Toronto, Canada
| | - Antonio Bellasi
- Department of Nephrology, Ente Ospedaliere Cantonale, Lugano, Switzerland
| | - Salome Martin
- Department of Nephrology, The Scarborough Health Network, Toronto, Canada
| | - Saeeda Kuvadia
- Department of Nephrology, The Scarborough Health Network, Toronto, Canada
| | - Anfal Patel
- Department of Medicine, University of Canada, Toronto, Canada
- Department of Nephrology, The Scarborough Health Network, Toronto, Canada
| | - Berkay Taskapan
- Research Department, Kidney Life Sciences Institute, Toronto, Canada
| | - Paul Tam
- Research Department, Kidney Life Sciences Institute, Toronto, Canada
- Department of Medicine, University of Canada, Toronto, Canada
| | - Tabo Sikaneta
- Research Department, Kidney Life Sciences Institute, Toronto, Canada
- Department of Medicine, University of Canada, Toronto, Canada
- Department of Nephrology, The Scarborough Health Network, Toronto, Canada
| |
Collapse
|
3
|
Masenga SK, Kirabo A. Hypertensive heart disease: risk factors, complications and mechanisms. Front Cardiovasc Med 2023; 10:1205475. [PMID: 37342440 PMCID: PMC10277698 DOI: 10.3389/fcvm.2023.1205475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Hypertensive heart disease constitutes functional and structural dysfunction and pathogenesis occurring primarily in the left ventricle, the left atrium and the coronary arteries due to chronic uncontrolled hypertension. Hypertensive heart disease is underreported and the mechanisms underlying its correlates and complications are not well elaborated. In this review, we summarize the current understanding of hypertensive heart disease, we discuss in detail the mechanisms associated with development and complications of hypertensive heart disease especially left ventricular hypertrophy, atrial fibrillation, heart failure and coronary artery disease. We also briefly highlight the role of dietary salt, immunity and genetic predisposition in hypertensive heart disease pathogenesis.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Cam-Pus, Livingstone, Zambia
- School of Medicine, University of Zambia, Lusaka, Zambia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| |
Collapse
|
4
|
Dietary Supplementation of Calcium Propionate and Calcium Butyrate Improves Eggshell Quality of Laying Hens in the Late Phase of Production. J Poult Sci 2022; 59:64-74. [PMID: 35125914 PMCID: PMC8791774 DOI: 10.2141/jpsa.0200127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/20/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to evaluate the effects of dietary supplementation of calcium propionate and calcium butyrate on the laying performance, eggshell quality, and expression of genes related to calcium and phosphorus metabolism in the tibia. One hundred and twenty 70-week-old Isa Brown hens were randomly assigned to three treatments, and each treatment had four replicates of 10 birds fed a basal diet (control) or a basal diet supplemented with 0.5% calcium propionate (CP) or 0.5% calcium butyrate (CB) for 8 weeks. The CB and CP treatments had no significant effect (P>0.05) on the laying rate, egg production, egg weight, and feed efficiency. The eggshell percentage was increased from week 2 (P<0.05) and eggshell thickness was elevated at week 8 (P<0.01) by both CP and CB treatments. Compared to the control treatment, the CB treatment increased serum calcium and phosphorus levels at week 4 (P<0.05), whereas the CP and CB treatments decreased serum phosphorus at weeks 6 and 8, respectively (P<0.05). Dietary supplementation had no effect on the bone index and bending strength of the tibia (P>0.05). The calcium and phosphorus content of the tibia was decreased by the CB treatment (P<0.05). In the spleen, NF-κB and IL-6 transcript levels were not influenced (P>0.05) but TNF-α transcript levels were decreased by the CP treatment (P<0.05). In the tibia, the expression levels of NF-κB, TNF-α, and IL-17 were not affected by the CP or CB treatment (P>0.05). The CP and CB treatments had no significant effect on the transcript levels of RANKL, OPG, RNUX2, OPN, α-Clotho, and VDR (P>0.05). In contrast, PHEX transcript levels were increased by the CP treatment (P<0.05). The expression levels of osteocalcin (P=0.094) and FGF23 (P=0.087) tended to decrease under the CB treatment. In conclusion, dietary supplementation of 0.5% calcium butyrate or 0.5% calcium propionate improved the eggshell quality of aged laying hens, possibly as a result of decreased deposition or enhanced mobilization of bone calcium and phosphorus.
Collapse
|
5
|
Jhee JH, Park HC, Choi HY. Skin Sodium and Blood Pressure Regulation. Electrolyte Blood Press 2022; 20:1-9. [DOI: 10.5049/ebp.2022.20.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jong Hyun Jhee
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Cheon Park
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoon Young Choi
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
FAM20C Overview: Classic and Novel Targets, Pathogenic Variants and Raine Syndrome Phenotypes. Int J Mol Sci 2021; 22:ijms22158039. [PMID: 34360805 PMCID: PMC8348777 DOI: 10.3390/ijms22158039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022] Open
Abstract
FAM20C is a gene coding for a protein kinase that targets S-X-E/pS motifs on different phosphoproteins belonging to diverse tissues. Pathogenic variants of FAM20C are responsible for Raine syndrome (RS), initially described as a lethal and congenital osteosclerotic dysplasia characterized by generalized atherosclerosis with periosteal bone formation, characteristic facial dysmorphisms and intracerebral calcifications. The aim of this review is to give an overview of targets and variants of FAM20C as well as RS aspects. We performed a wide phenotypic review focusing on clinical aspects and differences between all lethal (LRS) and non-lethal (NLRS) reported cases, besides the FAM20C pathogenic variant description for each. As new targets of FAM20C kinase have been identified, we reviewed FAM20C targets and their functions in bone and other tissues, with emphasis on novel targets not previously considered. We found the classic lethal and milder non-lethal phenotypes. The milder phenotype is defined by a large spectrum ranging from osteonecrosis to osteosclerosis with additional congenital defects or intellectual disability in some cases. We discuss our current understanding of FAM20C deficiency, its mechanism in RS through classic FAM20C targets in bone tissue and its potential biological relevance through novel targets in non-bone tissues.
Collapse
|
7
|
Shim S, Won S, Reza A, Kim S, Ahn S, Jung B, Yoon B, Ra C. In Vivo Toxicity and In Vitro Solubility Assessment of Pre-Treated Struvite as A Potential Alternative Phosphorus Source in Animal Feed. Animals (Basel) 2019; 9:ani9100785. [PMID: 31614549 PMCID: PMC6826386 DOI: 10.3390/ani9100785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Apart from using as fertilizer for plants, the application of struvite may be expanded to animal feed industries through proper pre-treatment. This study aimed to investigate the safety and efficacy of using pre-treated struvite (microwave irradiated struvite (MS) and incinerated struvite (IS)) in animal feeds. For safety assessment, an in vivo toxicity experiment using thirty female Sprague Dawley rats (average body weight (BW) of 200 ± 10 g) was conducted. The rats were randomly divided into five groups, including a control. Based on the BW, MS and IS were applied daily by oral administration with 1 and 10 mg kg-1-BW (MS1 and MS10; IS1 and IS10) using dimethyl sulfoxide (DMSO) as a vehicle. A series of jar tests were conducted for four hours to check the solubility of the MS and IS at different pH (pH 2, 4, and 5) and compared to a commercial P source (monocalcium phosphate, MCP, control). The toxicity experiment results showed no significant differences among the treatments in BW and organ (liver, kidney, heart, and lung) weight of rats (p > 0.05). There were no adverse effects on blood parameters and the histopathological examination showed no inflammation in the organ tissues in MS and IS treated groups compared to the control. In an in vitro solubility test, no significant difference was observed in ortho-phosphate (O-P) solubility from the MCP and MS at pH 2 and 4 (p > 0.05), while O-P solubility from MS at pH 5 to 7 was higher than MCP and found to be significantly different (p < 0.05). O-P solubility from IS was the lowest among the treatments and significantly different from MCP and MS in all the experiments (p < 0.05). The results of this study not only suggest that the struvite pre-treated as MS could be a potential alternative source of P in animal feed but also motivate further studies with more stringent designs to better examine the potential of struvite application in diverse fields.
Collapse
Affiliation(s)
- Soomin Shim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Seunggun Won
- Department of Animal Resources, College of Life and Environmental Science, Daegu University, Gyeongsan 38453, Korea.
| | - Arif Reza
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea.
- Department of Environmental Science, College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh.
| | - Seungsoo Kim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Sungil Ahn
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Baedong Jung
- Department of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.
| | - Byungil Yoon
- Department of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.
| | - Changsix Ra
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
8
|
Abstract
Purpose of Review Dietary sodium is an important trigger for hypertension and humans show a heterogeneous blood pressure response to salt intake. The precise mechanisms for this have not been fully explained although renal sodium handling has traditionally been considered to play a central role. Recent Findings Animal studies have shown that dietary salt loading results in non-osmotic sodium accumulation via glycosaminoglycans and lymphangiogenesis in skin mediated by vascular endothelial growth factor-C, both processes attenuating the rise in BP. Studies in humans have shown that skin could be a buffer for sodium and that skin sodium could be a marker of hypertension and salt sensitivity. Summary Skin sodium storage could represent an additional system influencing the response to salt load and blood pressure in humans.
Collapse
Affiliation(s)
- Viknesh Selvarajah
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Box 98, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK.
| | - Kathleen Connolly
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Box 98, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
| | - Carmel McEniery
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Box 98, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
| | - Ian Wilkinson
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Box 98, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
9
|
Aniteli TM, de Siqueira FR, Dos Reis LM, Dominguez WV, de Oliveira EMC, Castelucci P, Moysés RMA, Jorgetti V. Effect of variations in dietary Pi intake on intestinal Pi transporters (NaPi-IIb, PiT-1, and PiT-2) and phosphate-regulating factors (PTH, FGF-23, and MEPE). Pflugers Arch 2018; 470:623-632. [PMID: 29372301 DOI: 10.1007/s00424-018-2111-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 11/29/2022]
Abstract
Hyperphosphatemia is a common condition in patients with chronic kidney disease (CKD) and can lead to bone disease, vascular calcification, and increased risks of cardiovascular disease and mortality. Inorganic phosphate (Pi) is absorbed in the intestine, an important step in the maintenance of homeostasis. In CKD, it is not clear to what extent Pi absorption is modulated by dietary Pi. Thus, we investigated 5/6 nephrectomized (Nx) Wistar rats to test whether acute variations in dietary Pi concentration over 2 days would alter hormones involved in Pi metabolism, expression of sodium-phosphate cotransporters, apoptosis, and the expression of matrix extracellular phosphoglycoprotein (MEPE) in different segments of the small intestine. The animals were divided into groups receiving different levels of dietary phosphate: low (Nx/LPi), normal (Nx/NPi), and high (Nx/HPi). Serum phosphate, fractional excretion of phosphate, intact serum fibroblast growth factor 23 (FGF-23), and parathyroid hormone (PTH) were significantly higher and ionized calcium was significantly lower in the Nx/HPi group than in the Nx/LPi group. The expression levels of NaPi-IIb and PiT-1/2 were increased in the total jejunum mucosa of the Nx/LPi group compared with the Nx/HPi group. Modification of Pi concentration in the diet affected the apoptosis of enterocytes, particularly with Pi overload. MEPE expression was higher in the Nx/HPi group than in the Nx/NPi. These data reveal the importance of early control of Pi in uremia to prevent an increase in serum PTH and FGF-23. Uremia may be a determining factor that explains the expressional modulation of the cotransporters in the small intestine segments.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrícia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Rosa Maria Affonso Moysés
- Medical School, Division of Nephrology, Universidade de São Paulo, São Paulo, Brazil.,Universidade Nove de Julho - UNINOVE, São Paulo, Brazil
| | - Vanda Jorgetti
- Medical School, Division of Nephrology, Universidade de São Paulo, São Paulo, Brazil. .,Faculdade de Medicina, Serviço de Nefrologia, Universidade de São Paulo, Av. Dr. Arnaldo, 455, 3° andar, sala 3342, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
10
|
Targeted Pth4-expressing cell ablation impairs skeletal mineralization in zebrafish. PLoS One 2017; 12:e0186444. [PMID: 29040309 PMCID: PMC5645135 DOI: 10.1371/journal.pone.0186444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
Skeletal development and mineralization are essential processes driven by the coordinated action of neural signals, circulating molecules and local factors. Our previous studies revealed that the novel neuropeptide Pth4, synthesized by hypothalamic cells, was involved in bone metabolism via phosphate regulation in adult zebrafish. Here, we investigate the role of pth4 during skeletal development using single-cell resolution, two-photon laser ablation of Pth4:eGFP-expressing cells and confocal imaging in vivo. Using a stable transgenic Pth4:eGFP zebrafish line, we identify Pth4:eGFP-expressing cells as post-mitotic neurons. After targeted ablation of eGFP-expressing cells in the hypothalamus, the experimental larvae exhibited impaired mineralization of the craniofacial bones whereas cartilage development was normal. In addition to a decrease in pth4 transcript levels, we noted altered expression of phex and entpd5, genes associated with phosphate homeostasis and mineralization, as well as a delay in the expression of osteoblast differentiation markers such as sp7 and sparc. Taken together, these results suggest that Pth4-expressing hypothalamic neurons participate in the regulation of bone metabolism, possibly through regulating phosphate balance during zebrafish development.
Collapse
|
11
|
Creo AL, Thacher TD, Pettifor JM, Strand MA, Fischer PR. Nutritional rickets around the world: an update. Paediatr Int Child Health 2017; 37:84-98. [PMID: 27922335 DOI: 10.1080/20469047.2016.1248170] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Worldwide, nutritional rickets continues to be an evolving problem with several causes. This paper provides an updated literature review characterising the prevalence, aetiology, pathophysiology and treatment of nutritional rickets worldwide. A systematic review of articles on nutritional rickets from various geographical regions was undertaken. For each region, key information was extracted, including prevalence, cause of rickets specific to the region, methods of confirming the diagnosis and current treatment and preventive measures. Calcium deficiency continues to be a major cause of rickets in Africa and Asia. Vitamin D deficiency rickets is perhaps increasing in the Americas, Europe and parts of the Middle East. There continues to be a distinct presentation of calcium-predominant versus vitamin D predominant rickets, although there are overlapping features. More careful diagnosis of rickets and reporting of 25-OHD concentrations has improved accurate knowledge of rickets prevalence and better delineated the cause. Nutritional rickets continues to be an evolving and multi-factorial problem worldwide. It is on a spectrum, ranging from isolated vitamin D deficiency to isolated calcium deficiency. Specific areas which require emphasis include a consistent community approach to screening and diagnosis, vitamin D supplementation of infants and at-risk children, prevention of maternal vitamin D deficiency and the provision of calcium in areas with low calcium diets.
Collapse
Affiliation(s)
- Ana L Creo
- a Department of Pediatric and Adolescent Medicine , Mayo Clinic , Rochester , MN , USA
| | - Tom D Thacher
- b Department of Family Medicine , Mayo Clinic , Rochester , MN , USA
| | - John M Pettifor
- c Wits/SAMRC Developmental Pathways for Health Research Unit, Department of Paediatrics , University of the Witwatersrand , Johannesburg , South Africa
| | - Mark A Strand
- d Pharmacy Practice, Department of Public Health , North Dakota State University , Fargo , ND , USA
| | - Philip R Fischer
- a Department of Pediatric and Adolescent Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
12
|
Abstract
Western diet, high in protein-rich foods and poor in vegetables, is likely to be responsible for the development of a moderate acid excess leading to metabolism deregulation and the onset or worsening of chronic disturbances. Available findings seem to suggest that diets with high protein/vegetables ratio are likely to induce the development of calcium lithiasis, especially in predisposed subjects. Moreover, some evidence supports the hypothesis of bone metabolism worsening and enhanced bone loss following acid-genic diet consumption although available literature seems to lack direct and conclusive evidence demonstrating pathological bone loss. According to other evidences, diet-induced acidosis is likely to induce or accelerate muscle wasting or sarcopenia, especially among elderlies. Furthermore, recent epidemiological findings highlight a specific role of dietary acid load in glucose metabolism deregulation and insulin resistance. The aim of this review is to investigate the role of acid-genic diets in the development of the mentioned metabolic disorders focusing on the possible clinical improvements exerted by alkali supplementation.
Collapse
Affiliation(s)
- Lucio Della Guardia
- a Department of Public Health Experimental and Forensic Medicine , Unit of Human Nutrition University of Pavia , Pavia , Italy
| | - Carla Roggi
- a Department of Public Health Experimental and Forensic Medicine , Unit of Human Nutrition University of Pavia , Pavia , Italy
| | - Hellas Cena
- a Department of Public Health Experimental and Forensic Medicine , Unit of Human Nutrition University of Pavia , Pavia , Italy
| |
Collapse
|
13
|
Kiela PR, Ghishan FK. Physiology of Intestinal Absorption and Secretion. Best Pract Res Clin Gastroenterol 2016; 30:145-59. [PMID: 27086882 PMCID: PMC4956471 DOI: 10.1016/j.bpg.2016.02.007] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/31/2023]
Abstract
Virtually all nutrients from the diet are absorbed into blood across the highly polarized epithelial cell layer forming the small and large intestinal mucosa. Anatomical, histological, and functional specializations along the gastrointestinal tract are responsible for the effective and regulated nutrient transport via both passive and active mechanisms. In this chapter, we summarize the current state of knowledge regarding the mechanism of intestinal absorption of key nutrients such as sodium, anions (chloride, sulfate, oxalate), carbohydrates, amino acids and peptides, lipids, lipid- and water-soluble vitamins, as well as the major minerals and micronutrients. This outline, including the molecular identity, specificity, and coordinated activities of key transport proteins and genes involved, serves as the background for the following chapters focused on the pathophysiology of acquired and congenital intestinal malabsorption, as well as clinical tools to test and treat malabsorptive symptoms.
Collapse
Affiliation(s)
- Pawel R. Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
,Department of Immunobiology, University of Arizona Health Sciences Center, 1656 E. Mabel St., Tucson, AZ 85724, USA
| | - Fayez K. Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
,Corresponding author. (F.K. Ghishan)
| |
Collapse
|
14
|
Gullard A, Gluhak-Heinrich J, Papagerakis S, Sohn P, Unterbrink A, Chen S, MacDougall M. MEPE Localization in the Craniofacial Complex and Function in Tooth Dentin Formation. J Histochem Cytochem 2016; 64:224-36. [PMID: 26927967 DOI: 10.1369/0022155416635569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 01/05/2023] Open
Abstract
Matrix extracellular phosphoglycoprotein (MEPE) is an extracellular matrix protein found in dental and skeletal tissues. Although information regarding the role of MEPE in bone and disorders of phosphate metabolism is emerging, the role of MEPE in dental tissues remains unclear. We performed RNA in situ hybridization and immunohistochemistry analyses to delineate the expression pattern of MEPE during embryonic and postnatal development in craniofacial mineralizing tissues. Mepe RNA expression was seen within teeth from cap through root formation in association with odontoblasts and cellular cementoblasts. More intense expression was seen in the alveolar bone within the osteoblasts and osteocytes. MEPE immunohistochemistry showed biphasic dentin staining in incisors and more intense staining in alveolar bone matrix and in forming cartilage. Analysis of Mepe null mouse molars showed overall mineralized tooth volume and density of enamel and dentin comparable with that of wild-type samples. However, Mepe(-/-) molars exhibited increased thickness of predentin, dentin, and enamel over controls and decreased gene expression of Enam, Bsp, Dmp1, Dspp, and Opnby RT-PCR. In vitro Mepe overexpression in odontoblasts led to significant reductions in Dspp reporter activity. These data suggest MEPE may be instrumental in craniofacial and dental matrix maturation, potentially functioning in the maintenance of non-mineralized matrix.
Collapse
Affiliation(s)
- Angela Gullard
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM),Pathology Graduate Program, University of Alabama at Birmingham, Birmingham, Alabama (AG)
| | - Jelica Gluhak-Heinrich
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX (JGH)
| | - Silvana Papagerakis
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, Michigan (SP)
| | - Philip Sohn
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM)
| | - Aaron Unterbrink
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX (AU)
| | - Shuo Chen
- Department of Pediatric Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX (SC)
| | - Mary MacDougall
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM)
| |
Collapse
|
15
|
Abstract
Traditionally, control of phosphorus in the body has been considered secondary to the tighter control of calcium by parathyroid hormone and vitamin D. However, over the past decade, substantial advances have been made in understanding the control of phosphorus by the so-called phosphatonin system, the lynchpin of which is fibroblast growth factor 23 (FGF23). FGF23 binds to the klotho/FGFR1c receptor complex in renal tubular epithelial cells, leading to upregulation of Na/Pi cotransporters and subsequent excretion of phosphorus from the body. In addition, FGF23 inhibits parathyroid hormone and the renal 1α-hydroxylase enzyme, while it stimulates 24-hydroxylase, leading to decreased 1,25-dihydroxyvitamin D3. FGF23 is intimately involved in the pathogenesis of a number of diseases, particularly the hereditary hypophosphatemic rickets group and chronic kidney disease, and is a target for the development of new treatments in human medicine. Little work has been done on FGF23 or the other phosphatonins in veterinary medicine, but increases in FGF23 are seen with chronic kidney disease in cats, and increased FGF23 expression has been found in soft tissue sarcomas in dogs.
Collapse
Affiliation(s)
- M. R. Hardcastle
- Gribbles Veterinary Pathology Ltd, Mt Wellington, Auckland, New Zealand
| | - K. E. Dittmer
- Animal and Biomedical Sciences, Institute of Veterinary, Massey University, Palmerston North, New Zealand
| |
Collapse
|
16
|
Abstract
The increased awareness of the potential role played by mineral and bone disorder in the appearance of cardiovascular disease in renal patients has produced research efforts aimed at discovering possible pathogenic links. Accordingly, the diagnostic significance of the classic bone markers of mineral disorders and of the new markers in the setting of chronic kidney disease-mineral and bone disorders (CKD-MBD) needs to be re-evaluated along with increasing information. In this article we include classic markers of bone metabolism and some of the noncollagenous bone proteins that are gaining experimental and clinical significance in CKD-MBD. Among classic markers of secondary hyperparathyroidism and of renal osteodystrophy, we analyzed parathyroid hormone, alkaline phosphatase, tartrate-resistant acid phosphatase, and bone collagen-derived peptides. We underlined, for each, the relevance of parent proteins (peptides or isoforms) that affect assay methods and, eventually, the diagnostic or prognostic significance. Also, we considered their relationship with cardiovascular mortality. Among the numerous noncollagenous bone proteins, we examined matrix Gla protein (MGP), osteocalcin (OC), osteoprotegerin, and the small integrin-binding ligand N-linked glycoprotein family. For MGP and OC we report the relevant involvement with the process of calcification (MGP) and with glucose and energy metabolism (OC). Both of these proteins require vitamin K to become active and this is a specific problem in renal patients who frequently are deficient of this vitamin. Finally, recent acquisitions on the fascinating family of the small integrin-binding ligand N-linked glycoprotein proteins are recapitulated briefly to underline their potential clinical interest and their complex involvement with all aspects of CKD-MBD. Their diagnostic role in clinical practice awaits further studies.
Collapse
Affiliation(s)
- Sandro Mazzaferro
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy.
| | - Lida Tartaglione
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Silverio Rotondi
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Jordi Bover
- Department of Nephrology, Fundaciò Puigvert, IIB Sant Pau, REDinREN, Barcelona, Spain
| | - David Goldsmith
- King's Health Partners, Academic Health Science Centre, London, United Kingdom
| | - Marzia Pasquali
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
de Brito Galvao JF, Nagode LA, Schenck PA, Chew DJ. Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease. J Vet Emerg Crit Care (San Antonio) 2013; 23:134-62. [PMID: 23566108 PMCID: PMC3677418 DOI: 10.1111/vec.12036] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 02/05/2013] [Indexed: 12/13/2022]
Abstract
Objective To review the inter-relationships between calcium, phosphorus, parathyroid hormone (PTH), parent and activated vitamin D metabolites (vitamin D, 25(OH)-vitamin D, 1,25(OH)2-vitamin D, 24,25(OH)2-vitamin D), and fibroblast growth factor-23 (FGF-23) during chronic kidney disease (CKD) in dogs and cats. Data Sources Human and veterinary literature. Human Data Synthesis Beneficial effects of calcitriol treatment during CKD have traditionally been attributed to regulation of PTH but new perspectives emphasize direct renoprotective actions independent of PTH and calcium. It is now apparent that calcitriol exerts an important effect on renal tubular reclamation of filtered 25(OH)-vitamin D, which may be important in maintaining adequate circulating 25(OH)-vitamin D. This in turn may be vital for important pleiotropic actions in peripheral tissues through autocrine/paracrine mechanisms that impact the health of those local tissues. Veterinary Data Synthesis Limited information is available reporting the benefit of calcitriol treatment in dogs and cats with CKD. Conclusions A survival benefit has been shown for dogs with CKD treated with calcitriol compared to placebo. The concentrations of circulating 25(OH)-vitamin D have recently been shown to be low in people and dogs with CKD and are related to survival in people with CKD. Combination therapy for people with CKD using both parental and activated vitamin D compounds is common in human nephrology and there is a developing emphasis using combination treatment with activated vitamin D and renin-angiotensin-aldosterone-system (RAAS) inhibitors.
Collapse
|
18
|
Proszkowiec-Weglarz M, Angel R. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. J APPL POULTRY RES 2013. [DOI: 10.3382/japr.2012-00743] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
A short story of Klotho and FGF23: a deuce of dark side or the savior? Int Urol Nephrol 2013; 46:577-81. [DOI: 10.1007/s11255-013-0536-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
|
20
|
Vieira FA, Thorne MAS, Stueber K, Darias M, Reinhardt R, Clark MS, Gisbert E, Power DM. Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation. Gen Comp Endocrinol 2013; 191:45-58. [PMID: 23770218 DOI: 10.1016/j.ygcen.2013.05.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Abstract
An articulated endoskeleton that is calcified is a unifying innovation of the vertebrates, however the molecular basis of the structural divergence between terrestrial and aquatic vertebrates, such as teleost fish, has not been determined. In the present study long-read next generation sequencing (NGS, Roche 454 platform) was used to characterize acellular perichondral bone (vertebrae) and chondroid bone (gill arch) in the gilthead sea bream (Sparus auratus). A total of 15.97 and 14.53Mb were produced, respectively from vertebrae and gill arch cDNA libraries and yielded 32,374 and 28,371 contigs (consensus sequences) respectively. 10,455 contigs from vertebrae and 10,625 contigs from gill arches were annotated with gene ontology terms. Comparative analysis of the global transcriptome revealed 4249 unique transcripts in vertebrae, 4201 unique transcripts in the gill arches and 3700 common transcripts. Several core gene networks were conserved between the gilthead sea bream and mammalian skeleton. Transcripts for putative endocrine factors were identified in acellular gilthead sea bream bone suggesting that in common with mammalian bone it can act as an endocrine tissue. The acellular bone of the vertebra, in contrast to current opinion based on histological analysis, was responsive to a short fast and significant (p<0.05) down-regulation of several transcripts identified by NGS, osteonectin, osteocalcin, cathepsin K and IGFI occurred. In gill arches fasting caused a significant (p<0.05) down-regulation of osteocalcin and up-regulation of MMP9.
Collapse
|
21
|
Staude H, Jeske S, Schmitz K, Warncke G, Fischer DC. Cardiovascular Risk and Mineral Bone Disorder in Patients with Chronic Kidney Disease. ACTA ACUST UNITED AC 2013; 37:68-83. [DOI: 10.1159/000343402] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/19/2022]
|
22
|
Rowe PSN. The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled. Cell Biochem Funct 2012; 30:355-75. [PMID: 22573484 PMCID: PMC3389266 DOI: 10.1002/cbf.2841] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/23/2012] [Accepted: 04/18/2012] [Indexed: 12/17/2022]
Abstract
The eggshell is an ancient innovation that helped the vertebrates' transition from the oceans and gain dominion over the land. Coincident with this conquest, several new eggshell and noncollagenous bone-matrix proteins (NCPs) emerged. The protein ovocleidin-116 is one of these proteins with an ancestry stretching back to the Triassic. Ovocleidin-116 is an avian homolog of Matrix Extracellular Phosphoglycoprotein (MEPE) and belongs to a group of proteins called Small Integrin-Binding Ligand Interacting Glycoproteins (SIBLINGs). The genes for these NCPs are all clustered on chromosome 5q in mice and chromosome 4q in humans. A unifying feature of the SIBLING proteins is an Acidic Serine Aspartate-Rich MEPE (ASARM)-associated motif. The ASARM motif and the released ASARM peptide play roles in mineralization, bone turnover, mechanotransduction, phosphate regulation and energy metabolism. ASARM peptides and motifs are physiological substrates for phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX), a Zn metalloendopeptidase. Defects in PHEX are responsible for X-linked hypophosphatemic rickets. PHEX interacts with another ASARM motif containing SIBLING protein, Dentin Matrix Protein-1 (DMP1). DMP1 mutations cause bone-renal defects that are identical with the defects caused by loss of PHEX function. This results in autosomal recessive hypophosphatemic rickets (ARHR). In both X-linked hypophosphatemic rickets and ARHR, increased fibroblast growth factor 23 (FGF23) expression occurs, and activating mutations in FGF23 cause autosomal dominant hypophosphatemic rickets (ADHR). ASARM peptide administration in vitro and in vivo also induces increased FGF23 expression. This review will discuss the evidence for a new integrative pathway involved in bone formation, bone-renal mineralization, renal phosphate homeostasis and energy metabolism in disease and health.
Collapse
Affiliation(s)
- Peter S N Rowe
- Department of Internal Medicine, The Kidney Institute, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
23
|
Haussler MR, Whitfield GK, Kaneko I, Forster R, Saini R, Hsieh JC, Haussler CA, Jurutka PW. The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev Endocr Metab Disord 2012; 13:57-69. [PMID: 21932165 PMCID: PMC3288475 DOI: 10.1007/s11154-011-9199-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1,25-dihydroxyvitamin D (1,25D), through association with the nuclear vitamin D receptor (VDR), exerts control over a novel endocrine axis consisting of the bone-derived hormone FGF23, and the kidney-expressed klotho, CYP27B1, and CYP24A1 genes, which together prevent hyperphosphatemia/ectopic calcification and govern the levels of 1,25D to maintain bone mineral integrity while promoting optimal function of other vital tissues. When occupied by 1,25D, VDR interacts with RXR to form a heterodimer that binds to VDREs in the region of genes directly controlled by 1,25D (e.g., FGF23, klotho, Npt2c, CYP27B1 and CYP24A1). By recruiting complexes of comodulators, activated VDR initiates a series of events that induces or represses the transcription of genes encoding proteins such as: the osteocyte-derived hormone, FGF23; the renal anti-senescence factor and protein co-receptor for FGF23, klotho; other mediators of phosphate transport including Npt2a/c; and vitamin D hormone metabolic enzymes, CYP27B1 and CYP24A1. The mechanism whereby osteocytes are triggered to release FGF23 is yet to be fully defined, but 1,25D, phosphate, and leptin appear to play major roles. The kidney responds to FGF23 to elicit CYP24A1-catalyzed detoxification of the 1,25D hormone while also repressing both Npt2a/c to mediate phosphate elimination and CYP27B1 to limit de novo 1,25D synthesis. Comprehension of these skeletal and renal actions of 1,25D should facilitate the development of novel mimetics to prevent ectopic calcification, chronic renal and vascular disease, and promote healthful aging.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Holy X, Collombet JM, Labarthe F, Granger-Veyron N, Bégot L. Effects of seasonal vitamin D deficiency and respiratory acidosis on bone metabolism markers in submarine crewmembers during prolonged patrols. J Appl Physiol (1985) 2012; 112:587-96. [DOI: 10.1152/japplphysiol.00608.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the study was to determine the seasonal influence of vitamin D status on bone metabolism in French submariners over a 2-mo patrol. Blood samples were collected as follows: prepatrol and patrol days 20, 41, and 58 on crewmembers from both a winter (WP; n = 20) and a summer patrol (SP; n = 20), respectively. Vitamin D status was evaluated for WP and SP. Moreover, extended parameters for acid-base balance (Pco2, pH, and bicarbonate), bone metabolism (bone alkaline phosphatase and COOH-terminal telopeptide of type I collagen), and mineral homeostasis (parathyroid hormone, ionized calcium and phosphorus) were scrutinized. As expected, SP vitamin D status was higher than WP vitamin D status, regardless of the considered experimental time. A mild chronic respiratory acidosis (CRA) was identified in both SP and WP submariners, up to patrol day 41. Such an occurrence paired up with an altered bone remodeling coupling (decreased bone alkaline phosphatase-to-COOH-terminal telopeptide of type I collagen ratio). At the end of the patrol ( day 58), a partial compensation of CRA episode, combined with a recovered normal bone remodeling coupling, was observed in SP, not, however, in WP submariners. The mild CRA episode displayed over the initial 41-day submersion period was mainly induced by a hypercapnia resulting from the submarine-enriched CO2 level. The correlated impaired bone remodeling may imply a physiological attempt to compensate this acidosis via bone buffering. On patrol day 58, the discrepancy observed in terms of CRA compensation between SP and WP may result from the seasonal influence on vitamin D status.
Collapse
Affiliation(s)
- Xavier Holy
- Department Soutien Médico-Chirurgical des Forces, Service Histologie et Réparation Tissulaire, Institut de Recherche Biomédicale des Armées, BP 73, Brétigny-sur-Orge; and
| | - Jean-Marc Collombet
- Department Soutien Médico-Chirurgical des Forces, Service Histologie et Réparation Tissulaire, Institut de Recherche Biomédicale des Armées, BP 73, Brétigny-sur-Orge; and
| | - Frédéric Labarthe
- Centre Médical de l'Escadrille des Sous-Marins Nucléaires Lanceurs d'Engins, BP 500, Brest Naval, France
| | - Nicolas Granger-Veyron
- Centre Médical de l'Escadrille des Sous-Marins Nucléaires Lanceurs d'Engins, BP 500, Brest Naval, France
| | - Laurent Bégot
- Department Soutien Médico-Chirurgical des Forces, Service Histologie et Réparation Tissulaire, Institut de Recherche Biomédicale des Armées, BP 73, Brétigny-sur-Orge; and
| |
Collapse
|
25
|
Sun Y, Wang O, Xia W, Jiang Y, Li M, Xing X, Hu Y, Liu H, Meng X, Zhou X. FGF23 analysis of a Chinese family with autosomal dominant hypophosphatemic rickets. J Bone Miner Metab 2012; 30:78-84. [PMID: 21710177 DOI: 10.1007/s00774-011-0285-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 05/16/2011] [Indexed: 12/24/2022]
Abstract
Autosomal dominant hypophosphatemic rickets (ADHR; MIM 193100) is a hereditary disorder characterized by isolated renal phosphate wasting, hypophosphatemia, and inappropriately normal 1,25-dihydroxyvitamin D(3) levels. Recent studies have shown that the fibroblast growth factor 23 (FGF23) gene is responsible for this disease. FGF23 protein is a phosphaturic factor that is elevated in several diseases associated with hypophosphatemia and rickets but varies with disease status in ADHR. In the present study we observed a Chinese family of Han ethnic origin diagnosed with ADHR. The proband is a 30-year-old woman with no history of rickets but with multiple tooth abscesses as a young adult. She presented with progressive painful swelling of the left ankle after a blunt trauma at 26 years of age. She developed back pain, generalized weakness, and fatigue, and she could barely walk at age 27. She was found to have severe hypophosphatemia, low ratio of phosphorus tubule maximum (TmP) to glomerular filtration rate (GFR) (TmP/GFR), and elevated alkaline phosphatase at age 28. Her brother, 26 years old, presented with fatigue at 24 years of age and is normophosphatemic. The parents of this family had no history of rickets or hypophosphatemia. Direct sequence analysis of genomic DNA demonstrated a single heterozygous c.527G>A (p.R176Q) mutation in the FGF23 gene in three family members, including the proband, her brother, and their mother. Intact FGF23 assay of seven time points during the oral phosphate loading test showed no significant relationship between intact FGF23 and serum phosphorus levels of the subject with ADHR and a control. It is probably the first report of a Chinese family with ADHR.
Collapse
Affiliation(s)
- Yue Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Dongcheng District, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rowe PSN. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr 2012; 22:61-86. [PMID: 22339660 PMCID: PMC3362997 DOI: 10.1615/critreveukargeneexpr.v22.i1.50] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
More than 300 million years ago, vertebrates emerged from the vast oceans to conquer gravity and the dry land. With this transition, new adaptations occurred that included ingenious changes in reproduction, waste secretion, and bone physiology. One new innovation, the egg shell, contained an ancestral protein (ovocleidin-116) that likely first appeared with the dinosaurs and was preserved through the theropod lineage in modern birds and reptiles. Ovocleidin-116 is an avian homolog of matrix extracellular phosphoglycoprotein (MEPE) and belongs to a group of proteins called short integrin-binding ligand-interacting glycoproteins (SIBLINGs). These proteins are all localized to a defined region on chromosome 5q in mice and chromosome 4q in humans. A unifying feature of SIBLING proteins is an acidic serine aspartate-rich MEPE-associated motif (ASARM). Recent research has shown that the ASARM motif and the released ASARM peptide have regulatory roles in mineralization (bone and teeth), phosphate regulation, vascularization, soft-tissue calcification, osteoclastogenesis, mechanotransduction, and fat energy metabolism. The MEPE ASARM motif and peptide are physiological substrates for PHEX, a zinc metalloendopeptidase. Defects in PHEX are responsible for X-linked hypophosphatemic rickets (HYP). There is evidence that PHEX interacts with another ASARM motif containing SIBLING protein, dentin matrix protein-1 (DMP1). DMP1 mutations cause bone and renal defects that are identical with the defects caused by a loss of PHEX function. This results in autosomal recessive hypophosphatemic rickets (ARHR). In both HYP and ARHR, increased FGF23 expression plays a major role in the disease and in autosomal dominant hypophosphatemic rickets (ADHR), FGF23 half-life is increased by activating mutations. ASARM peptide administration in vitro and in vivo also induces increased FGF23 expression. FGF23 is a member of the fibroblast growth factor (FGF) family of cytokines, which surfaced 500 million years ago with the boney fish (i.e., teleosts) that do not contain SIBLING proteins. In terrestrial vertebrates, FGF23, like SIBLING proteins, is expressed in the osteocyte. The boney fish, however, are an-osteocytic, so a physiological bone-renal link with FGF23 and the SIBLINGs was cemented when life ventured from the oceans to the land during the Triassic period, approximately 300 million years ago. This link has been revealed by recent research that indicates a competitive displacement of a PHEX-DMP1 interaction by an ASARM peptide that leads to increased FGF23 expression. This review discusses the new discoveries that reveal a novel PHEX, DMP1, MEPE, ASARM peptide, and FGF23 bone-renal pathway. This pathway impacts not only bone formation, bone-renal mineralization, and renal phosphate homeostasis but also energy metabolism. The study of this new pathway is relevant for developing therapies for several diseases: bone-teeth mineral loss disorders, renal osteodystrophy, chronic kidney disease and bone mineralization disorders (CKD-MBD), end-stage renal diseases, ectopic arterial-calcification, cardiovascular disease renal calcification, diabetes, and obesity.
Collapse
Affiliation(s)
- Peter S N Rowe
- Department of Internal Medicine, The Kidney Institute and Division of Nephrology-Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
27
|
Masi L. Phosphatonins: new hormones involved in numerous inherited bone disorders. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2011; 8:9-13. [PMID: 22461821 PMCID: PMC3279060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphate (Pi) homeostasis is under control of several endocrine factors that play effects on bone, kidney and intestine. The control of Pi homeostasis has a significant biological importance, as it relates to numerous cellular mechanisms involved in energy metabolism, cell signaling, nucleic acid synthesis, membrane function, as well as skeletal health and integrity. Pi is essential for diverse biological processes, and negative Pi balance resulting from improperly regulated intestinal absorption, systemic utilization, and renal excretion. As results of these functions, chronic Pi deprivation causes several biological alterations, such as bone demineralization with unmineralized osateoid typical of osteomalacia in adults and rickets in developing animals and humans (1). Phosphatonins are new hormones playing an important role in the control of Pi homeostasis together with parathyroid hormone (PTH) and 1,25-dihydroxy vitamin D(3). Most insight into the underlying mechanisms was established by defining the molecular basis of different inherited disorders that are characterized by an abnormal regulation of Pi homeostasis.
Collapse
Affiliation(s)
- Laura Masi
- Department of Internal Medicine, Bone Metabolic Diseases Unit, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Gut-bone interactions and implications for the child with chronic gastrointestinal disease. J Pediatr Gastroenterol Nutr 2011; 53:250-4. [PMID: 21613962 DOI: 10.1097/mpg.0b013e3182254828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Bone is not simply a framework on which to hang viscera and connective tissue; it is also a dynamic interactive organ system with roles in immunoregulation, adipogenesis, and vascular calcification, among others. Bone is intimately affected by chronic disease, including gastrointestinal disease. The mechanisms for bone loss in conditions such as inflammatory bowel disease, celiac disease, and cystic fibrosis are discussed with regard to the role of the inflammatory response. Furthermore, we raise the issue of effects of inflammation on both intestinal and renal calcium and phosphate transport, although the ways in which these actions affect bone are not explained and require further research. The stress response, a prominent feature following burn injury, is also elucidated and its relation to gastrointestinal disease is examined. We then discuss the importance of knowing the mechanism of bone loss to determine proper prevention and treatment for the bone loss in specific gastrointestinal conditions.
Collapse
|
29
|
Moriyama K, Hanai A, Mekada K, Yoshiki A, Ogiwara K, Kimura A, Takahashi T. Kbus/Idr, a mutant mouse strain with skeletal abnormalities and hypophosphatemia: identification as an allele of 'Hyp'. J Biomed Sci 2011; 18:60. [PMID: 21854633 PMCID: PMC3175157 DOI: 10.1186/1423-0127-18-60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 08/20/2011] [Indexed: 12/17/2022] Open
Abstract
Background The endopeptidase encoded by Phex (phosphate-regulating gene with homologies to endopeptidases linked to the X chromosome) is critical for regulation of bone matrix mineralization and phosphate homeostasis. PHEX has been identified from analyses of human X-linked hypophosphatemic rickets and Hyp mutant mouse models. We here demonstrated a newly established dwarfism-like Kbus/Idr mouse line to be a novel Hyp model. Methods Histopathological and X-ray examination with cross experiments were performed to characterize Kbus/Idr. RT-PCR-based and exon-directed PCR screening performed to identify the presence of genetic alteration. Biochemical assays were also performed to evaluate activity of alkaline phosphatase. Results Kbus/Idr, characterized by bone mineralization defects, was found to be inherited in an X chromosome-linked dominant manner. RT-PCR experiments showed that a novel mutation spanning exon 16 and 18 causing hypophosphatemic rickets. Alkaline phosphatase activity, as an osteoblast marker, demonstrated raised levels in the bone marrow of Kbus/Idr independent of the age. Conclusions Kbus mice should serve as a useful research tool exploring molecular mechanisms underlying aberrant Phex-associated pathophysiological phenomena.
Collapse
Affiliation(s)
- Kenji Moriyama
- Department of Medicine & Clinical Science, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Liver X receptor-activating ligands modulate renal and intestinal sodium-phosphate transporters. Kidney Int 2011; 80:535-44. [PMID: 21677638 DOI: 10.1038/ki.2011.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cholesterol is pumped out of the cells in different tissues, including the vasculature, intestine, liver, and kidney, by the ATP-binding cassette transporters. Ligands that activate the liver X receptor (LXR) modulate this efflux. Here we determined the effects of LXR agonists on the regulation of phosphate transporters. Phosphate homeostasis is regulated by the coordinated action of the intestinal and renal sodium-phosphate (NaPi) transporters, and the loss of this regulation causes hyperphosphatemia. Mice treated with DMHCA or TO901317, two LXR agonists that prevent atherosclerosis in ApoE or LDLR knockout mice, significantly decreased the activity of intestinal and kidney proximal tubular brush border membrane sodium gradient-dependent phosphate uptake, decreased serum phosphate, and increased urine phosphate excretion. The effects of DMHCA were due to a significant decrease in the abundance of the intestinal and renal NaPi transport proteins. The same effect was also found in opossum kidney cells in culture after treatment with either agonist. There was increased nuclear expression of the endogenous LXR receptor, a reduction in NaPi4 protein abundance (the main type II NaPi transporter in the opossum cells), and a reduction in NaPi co-transport activity. Thus, LXR agonists modulate intestinal and renal NaPi transporters and, in turn, serum phosphate levels.
Collapse
|
31
|
Gorski JP. Biomineralization of bone: a fresh view of the roles of non-collagenous proteins. Front Biosci (Landmark Ed) 2011; 16:2598-621. [PMID: 21622198 DOI: 10.2741/3875] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of genetics has dramatically affected our understanding of the functions of non-collagenous proteins. Specifically, mutations and knockouts have defined their cellular spectrum of actions. However, the biochemical mechanisms mediated by non-collagenous proteins in biomineralization remain elusive. It is likely that this understanding will require more focused functional testing at the protein, cell, and tissue level. Although initially viewed as rather redundant and static acidic calcium binding proteins, it is now clear that non-collagenous proteins in mineralizing tissues represent diverse entities capable of forming multiple protein-protein interactions which act in positive and negative ways to regulate the process of bone mineralization. Several new examples from the author's laboratory are provided which illustrate this theme including an apparent activating effect of hydroxyapatite crystals on metalloproteinases. This review emphasizes the view that secreted non-collagenous proteins in mineralizing bone actively participate in the mineralization process and ultimately control where and how much mineral crystal is deposited, as well as determining the quality and biomechanical properties of the mineralized matrix produced.
Collapse
Affiliation(s)
- Jeffrey Paul Gorski
- Center of Excellence in the Study of Musculoskeletal and Dental Tissues and Dept. of Oral Biology, Sch. Of Dentistry, Univ. of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
32
|
David V, Martin A, Hedge AM, Drezner MK, Rowe PSN. ASARM peptides: PHEX-dependent and -independent regulation of serum phosphate. Am J Physiol Renal Physiol 2011; 300:F783-91. [PMID: 21177780 PMCID: PMC3064126 DOI: 10.1152/ajprenal.00304.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 12/18/2010] [Indexed: 12/21/2022] Open
Abstract
Increased acidic serine aspartate-rich MEPE-associated motif (ASARM) peptides cause mineralization defects in X-linked hypophosphatemic rickets mice (HYP) and "directly" inhibit renal phosphate uptake in vitro. However, ASARM peptides also bind to phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and are a physiological substrate for this bone-expressed, phosphate-regulating enzyme. We therefore tested the hypothesis that circulating ASARM peptides also "indirectly" contribute to a bone-renal PHEX-dependent hypophosphatemia in normal mice. Male mice (n = 5; 12 wk) were fed for 8 wk with a normal phosphorus and vitamin D(3) diet (1% P(i) diet) or a reduced phosphorus and vitamin D(3) diet (0.1% P(i) diet). For the final 4 wk, transplantation of mini-osmotic pumps supplied a continuous infusion of either ASARM peptide (5 mg·day(-1)·kg(-1)) or vehicle. HYP, autosomal recessive hypophosphatemic rickets (ARHR), and normal mice (no pumps or ASARM infusion; 0.4% P(i) diet) were used in a separate experiment designed to measure and compare circulating ASARM peptides in disease and health. ASARM treatment decreased serum phosphate concentration and renal phosphate cotransporter (NPT2A) mRNA with the 1% P(i) diet. This was accompanied by a twofold increase in serum ASARM and 1,25-dihydroxy vitamin D(3) [1,25 (OH)(2)D(3)] levels without changes in parathyroid hormone. For both diets, ASARM-treated mice showed significant increases in serum fibroblast growth factor 23 (FGF23; +50%) and reduced serum osteocalcin (-30%) and osteopontin (-25%). Circulating ASARM peptides showed a significant inverse correlation with serum P(i) and a significant positive correlation with fractional excretion of phosphate. We conclude that constitutive overexpression of ASARM peptides plays a "component" PHEX-independent part in the HYP and ARHR hypophosphatemia. In contrast, with wild-type mice, ASARM peptides likely play a bone PHEX-dependent role in renal phosphate regulation and FGF23 expression. They may also coordinate FGF23 expression by competitively modulating PHEX/DMP1 interactions and thus bone-renal mineral regulation.
Collapse
Affiliation(s)
- Valentin David
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
33
|
Ghishan FK, Kiela PR. Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 2011; 300:G191-201. [PMID: 21088237 PMCID: PMC3043650 DOI: 10.1152/ajpgi.00496.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/11/2010] [Indexed: 02/08/2023]
Abstract
Chronic inflammatory disorders such as inflammatory bowel diseases (IBDs) affect bone metabolism and are frequently associated with the presence of osteopenia, osteoporosis, and increased risk of fractures. Although several mechanisms may contribute to skeletal abnormalities in IBD patients, inflammation and inflammatory mediators such as TNF, IL-1β, and IL-6 may be the most critical. It is not clear whether the changes in bone metabolism leading to decreased mineral density are the result of decreased bone formation, increased bone resorption, or both, with varying results reported in experimental models of IBD and in pediatric and adult IBD patients. New data, including our own, challenge the conventional views, and contributes to the unraveling of an increasingly complex network of interactions leading to the inflammation-associated bone loss. Since nutritional interventions (dietary calcium and vitamin D supplementation) are of limited efficacy in IBD patients, understanding the pathophysiology of osteopenia and osteoporosis in Crohn's disease and ulcerative colitis is critical for the correct choice of available treatments or the development of new targeted therapies. In this review, we discuss current concepts explaining the effects of inflammation, inflammatory mediators and their signaling effectors on calcium and phosphate homeostasis, osteoblast and osteoclast function, and the potential limitations of vitamin D used as an immunomodulator and anabolic hormone in IBD.
Collapse
Affiliation(s)
- Fayez K Ghishan
- Dept. of Pediatrics, Steele Children's Research Center, Univ. of Arizona Health Sciences Center; 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | | |
Collapse
|
34
|
Fischer DC, Jensen C, Rahn A, Salewski B, Kundt G, Behets GJ, D'Haese P, Haffner D. Ibandronate affects bone growth and mineralization in rats with normal and reduced renal function. Pediatr Nephrol 2011; 26:111-7. [PMID: 20953634 DOI: 10.1007/s00467-010-1660-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 11/28/2022]
Abstract
Bisphosphonates have been shown to attenuate ectopic calcification in experimental uremia. While they are known to reduce bone turnover, the effects on endochondral bone formation have not yet been addressed. To address this issue, we administered male Sprague-Dawley rats weekly subcutaneous injections of either vehicle or ibandronate (1.25 μg/kg body weight) for a total of 10 weeks. The rats were randomly allocated into one of four groups: (1) vehicle-treated, sham-operated rats; (2) ibandronate-treated, sham-operated rats; (3) vehicle-treated, 5/6 nephrectomized rats; (4) ibandronate-treated, 5/6 nephrectomized rats. Bones were double labeled with tetracycline and demeclocycline in vivo, and tibiae were removed for analysis. Weight gain was similar in all groups. Ibandronate reduced body length gain and tibial growth rate in the sham-operated animals but not in the rats showing chronic renal failure (CRF). The height of the proliferative zone of the epiphyseal growth plate was reduced in the ibandronate-treated controls and tended to be reduced in CRF rats. A significant correlation between tibial growth rate and height of the proliferative zone was observed. Mineral apposition rates were significantly reduced in ibandronate-treated, sham-operated rats and tended to be reduced in CRF rats. In conclusion, ibandronate interferes with tibial growth and bone mineralization in young rats with normal and reduced renal function.
Collapse
Affiliation(s)
- Dagmar-Christiane Fischer
- Department of Pediatrics, University Children's Hospital Rostock, Ernst-Heydemann-Str. 8, 18057, Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 2011; 68:205-18. [PMID: 20848155 PMCID: PMC11114507 DOI: 10.1007/s00018-010-0527-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/02/2010] [Accepted: 08/31/2010] [Indexed: 02/07/2023]
Abstract
Although considerable advances in our understanding of the mechanisms of phosphate homeostasis and skeleton mineralization have recently been made, little is known about the initial events involving the detection of changes in the phosphate serum concentrations and the subsequent downstream regulation cascade. Recent data has strengthened a long-established hypothesis that a phosphate-sensing mechanism may be present in various organs. Such a phosphate sensor would detect changes in serum or local phosphate concentration and would inform the body, the local environment, or the individual cell. This suggests that phosphate in itself could represent a signal regulating multiple factors necessary for diverse biological processes such as bone or vascular calcification. This review summarizes findings supporting the possibility that phosphate represents a signaling molecule, particularly in bone and cartilage, but also in other tissues. The involvement of various signaling pathways (ERK1/2), transcription factors (Fra-1, Runx2) and phosphate transporters (PiT1, PiT2) is discussed.
Collapse
Affiliation(s)
- Solmaz Khoshniat
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Annabelle Bourgine
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Marion Julien
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Pierre Weiss
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Jérôme Guicheux
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Laurent Beck
- Growth and Signalling Research Center, INSERM, U845, 75015 Paris, France
- Faculté de Médecine, Centre de Recherche, INSERM U845, Université Paris Descartes, 156 Rue de Vaugirard, 75015 Paris, France
| |
Collapse
|
36
|
Lai JKC, Lucas RM, Clements MS, Harrison SL, Banks E. Assessing vitamin D status: pitfalls for the unwary. Mol Nutr Food Res 2010; 54:1062-71. [PMID: 20397196 DOI: 10.1002/mnfr.200900468] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The use of vitamin D testing has grown rapidly in the recent times as a result of increased interest in the role of vitamin D in health. Although the generally accepted measure of vitamin D status is circulating 25(OH)D concentration, there is little consensus on which assay method should be used. Commonly used assays include competitive protein-binding assay, RIA, enzyme immunoassay, chemiluminescence immunoassays, HPLC, and LC-MS/MS, each with its own advantages and disadvantages. However, there is significant interassay and interlaboratory variability in measurements. Our simulation of the published data showed that using a deficiency cut-point of 50 nmol/L, 57% of samples assessed using a chemiluminescence immunoassay were classified as deficient compared with 41% of samples assessed using LC-MS/MS; a 20% misclassification rate. Similar rates of misclassification were seen at 75 nmol/L. This has implications for clinical practice and decision limits for vitamin D supplementation, suggesting that cut-points should be assay specific rather than universal and that greater harmonization between laboratories is required. Newer assays using alternative biological samples to determine the circulating 25(OH)D have been proposed and advances in the genetics of vitamin D and the role of vitamin D-binding protein may improve future assay accuracy.
Collapse
Affiliation(s)
- Jeffrey K C Lai
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia.
| | | | | | | | | |
Collapse
|
37
|
Majewski PM, Thurston RD, Ramalingam R, Kiela PR, Ghishan FK. Cooperative role of NF-{kappa}B and poly(ADP-ribose) polymerase 1 (PARP-1) in the TNF-induced inhibition of PHEX expression in osteoblasts. J Biol Chem 2010; 285:34828-38. [PMID: 20817730 PMCID: PMC2966098 DOI: 10.1074/jbc.m110.152868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/12/2010] [Indexed: 12/22/2022] Open
Abstract
Reduced bone mass is a common complication in chronic inflammatory diseases, although the mechanisms are not completely understood. The PHEX gene encodes a zinc endopeptidase expressed in osteoblasts and contributes to bone mineralization. The aim of this study was to determine the molecular mechanism involved in TNF-mediated down-regulation of Phex gene transcription. We demonstrate down-regulation of the Phex gene in two models of colitis: naive T-cell transfer and in gnotobiotic IL-10(-/-) mice. In vitro, TNF decreased expression of Phex in UMR106 cells and did not require de novo synthesis of a transrepressor. Transfecting UMR-106 cells with a series of deletion constructs of the proximal Phex promoter identified a region located within -74 nucleotides containing NF-κB and AP-1 binding sites. After TNF treatment, the RelA/p50 NF-κB complex interacted with two cis-elements at positions -70/-66 and -29/-25 nucleotides in the proximal Phex promoter. Inhibition of NF-κB signaling increased the basal level of Phex transcription and abrogated the effects of TNF, whereas overexpression of RelA mimicked the effect of TNF. We identified poly(ADP-ribose) polymerase 1 (PARP-1) binding immediately upstream of the NF-κB sites and showed that TNF induced poly(ADP-ribosyl)ation of RelA when bound to the Phex promoter. TNF-mediated Phex down-regulation was completely abrogated in vitro by PARP-1 inhibitor and overexpression of poly(ADP-ribose) glucohydrolase (PARG) and in vivo in PARP-1(-/-) mice. Our results suggest that NF-κB signaling and PARP-1 enzymatic activity cooperatively contribute to the constitutive and inducible suppression of Phex. The described phenomenon likely contributes to the loss of bone mass density in chronic inflammatory diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Pawel M. Majewski
- From the Department of Pediatrics, Steele Children's Research Center, and
- the Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Robert D. Thurston
- From the Department of Pediatrics, Steele Children's Research Center, and
| | | | - Pawel R. Kiela
- From the Department of Pediatrics, Steele Children's Research Center, and
- Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona 85724 and
| | - Fayez K. Ghishan
- From the Department of Pediatrics, Steele Children's Research Center, and
| |
Collapse
|
38
|
Marks J, Debnam ES, Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol 2010; 299:F285-96. [PMID: 20534868 DOI: 10.1152/ajprenal.00508.2009] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transport of phosphate across intestinal and renal epithelia is essential for normal phosphate balance, yet we know less about the mechanisms and regulation of intestinal phosphate absorption than we do about phosphate handling by the kidney. Recent studies have provided strong evidence that the sodium-phosphate cotransporter NaPi-IIb is responsible for sodium-dependent phosphate absorption by the small intestine, and it might be that this protein can link changes in dietary phosphate to altered renal phosphate excretion to maintain phosphate balance. Evidence is also emerging that specific regions of the small intestine adapt differently to acute or chronic changes in dietary phosphate load and that phosphatonins inhibit both renal and intestinal phosphate transport. This review summarizes our current understanding of the mechanisms and control of intestinal phosphate absorption and how it may be related to renal phosphate reabsorption; it also considers the ways in which the gut could be targeted to prevent, or limit, hyperphosphatemia in chronic and end-stage renal failure.
Collapse
Affiliation(s)
- Joanne Marks
- Dept. of Neuroscience, Physiology, and Pharmacology, Univ. College London Medical School, UK.
| | | | | |
Collapse
|
39
|
David V, Martin A, Hedge AM, Rowe PSN. Matrix extracellular phosphoglycoprotein (MEPE) is a new bone renal hormone and vascularization modulator. Endocrinology 2009; 150:4012-23. [PMID: 19520780 PMCID: PMC2819738 DOI: 10.1210/en.2009-0216] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Increased matrix extracellular phosphoglycoprotein (MEPE) expression occurs in several phosphate and bone-mineral metabolic disorders. To resolve whether MEPE plays a role, we created a murine model overexpressing MEPE protein (MEPE tgn) in bone. MEPE tgn mice displayed a growth and mineralization defect with altered bone-renal vascularization that persisted to adulthood. The growth mineralization defect was due to a decrease in bone remodeling, and MEPE tgn mice were resistant to diet-induced renal calcification. MEPE protein-derived urinary ASARM peptides and reduced urinary Ca X PO4 product mediated the suppressed renal calcification. Osteoblastic cells displayed reduced activity but normal differentiation. Osteoclastic precursors were unable to differentiate in the presence of osteoblasts. In the kidney, NPT2a up-regulation induced an increase in phosphate renal reabsorption, leading to hyperphosphatemia. We conclude MEPE and MEPE-phosphate-regulating gene with homologies to endopeptidases on the X chromosome (MEPE-PHEX) interactions are components to an age-diet-dependent pathway that regulates bone turnover and mineralization and suppresses renal calcification. This novel pathway also modulates bone-renal vascularization and bone turnover.
Collapse
Affiliation(s)
- Valentin David
- The Kidney Institute, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|