1
|
Jiang Q, Yang Q, Zhang C, Hou C, Hong W, Du M, Shan X, Li X, Zhou D, Wen D, Xiong Y, Yang K, Lin Z, Song J, Mo Z, Feng H, Xing Y, Fu X, Liu C, Peng F, Wu L, Li B, Lu W, Yuan JXJ, Wang J, Chen Y. Nephrectomy and high-salt diet inducing pulmonary hypertension and kidney damage by increasing Ang II concentration in rats. Respir Res 2024; 25:288. [PMID: 39080603 PMCID: PMC11290206 DOI: 10.1186/s12931-024-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a significant risk factor for pulmonary hypertension (PH), a complication that adversely affects patient prognosis. However, the mechanisms underlying this association remain poorly understood. A major obstacle to progress in this field is the lack of a reliable animal model replicating CKD-PH. METHODS This study aimed to establish a stable rat model of CKD-PH. We employed a combined approach, inducing CKD through a 5/6 nephrectomy and concurrently exposing the rats to a high-salt diet. The model's hemodynamics were evaluated dynamically, alongside a comprehensive assessment of pathological changes in multiple organs. Lung tissues and serum samples were collected from the CKD-PH rats to analyze the expression of angiotensin-converting enzyme 2 (ACE2), evaluate the activity of key vascular components within the renin-angiotensin-aldosterone system (RAAS), and characterize alterations in the serum metabolic profile. RESULTS At 14 weeks post-surgery, the CKD-PH rats displayed significant changes in hemodynamic parameters indicative of pulmonary arterial hypertension. Additionally, right ventricular hypertrophy was observed. Notably, no evidence of pulmonary vascular remodeling was found. Further analysis revealed RAAS dysregulation and downregulated ACE2 expression within the pulmonary vascular endothelium of CKD-PH rats. Moreover, the serum metabolic profile of these animals differed markedly from the sham surgery group. CONCLUSIONS Our findings suggest that the development of pulmonary arterial hypertension in CKD-PH rats is likely a consequence of a combined effect: RAAS dysregulation, decreased ACE2 expression in pulmonary vascular endothelial cells, and metabolic disturbances.
Collapse
Grants
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- National Key Research and Development Program of China
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Qifeng Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chi Hou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Min Du
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xiaoqian Shan
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xuanyi Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dansha Zhou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dongmei Wen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yuanhui Xiong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Ziying Lin
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jingjing Song
- Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zhanjie Mo
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Huazhuo Feng
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yue Xing
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xin Fu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Fang Peng
- Department of Critical Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Liling Wu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Bing Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510320, Guangdong, China.
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
2
|
Amano H, Inoue T, Kusano T, Fukaya D, Kosakai W, Okada H. Module 4-Deficient CCN2/Connective Tissue Growth Factor Attenuates the Progression of Renal Fibrosis via Suppression of Focal Adhesion Kinase Phosphorylation in Tubular Epithelial Cells. Mol Cell Biol 2023; 43:515-530. [PMID: 37746701 PMCID: PMC10569360 DOI: 10.1080/10985549.2023.2253130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
CCN2/connective tissue growth factor (CTGF) potentially serves as a therapeutic target for chronic kidney disease. Here we investigated CCN2 module-4, encoded by Ccn2 exon 5, through the generation of Ccn2 exon 5 knockout mice (Ex5-/- mice). To investigate renal fibrosis pathogenesis, Ex5-/- mice were employed to model unilateral ureteral obstruction (UUO), unilateral ischemic-reperfusion injury (UIRI), and 5/6 nephrectomy. Interstitial fibrosis was significantly attenuated in the Ex5-/- mice in the three models. Furthermore, phosphorylated focal adhesion kinase (FAK) levels in tubular epithelial cells were significantly lower in the kidneys of the UUO- and UIRI-Ex5-/- mice than those of the Ex5+/+ mice. Moreover, CCN2 module 4-mediated renal tubule FAK and promoted fibrosis. These findings indicate that CCN2 module-4-FAK pathway components will serve as therapeutic targets for effectively attenuating renal fibrosis.
Collapse
Affiliation(s)
- Hiroaki Amano
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takeru Kusano
- General Internal Medicine, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Daichi Fukaya
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Wakako Kosakai
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hirokazu Okada
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
3
|
Filosa A, Sawamiphak S. Heart development and regeneration-a multi-organ effort. FEBS J 2023; 290:913-930. [PMID: 34894086 DOI: 10.1111/febs.16319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
Development of the heart, from early morphogenesis to functional maturation, as well as maintenance of its homeostasis are tasks requiring collaborative efforts of cardiac tissue and different extra-cardiac organ systems. The brain, lymphoid organs, and gut are among the interaction partners that can communicate with the heart through a wide array of paracrine signals acting at local or systemic level. Disturbance of cardiac homeostasis following ischemic injury also needs immediate response from these distant organs. Our hearts replace dead muscles with non-contractile fibrotic scars. We have learned from animal models capable of scarless repair that regenerative capability of the heart does not depend only on competency of the myocardium and cardiac-intrinsic factors but also on long-range molecular signals originating in other parts of the body. Here, we provide an overview of inter-organ signals that take part in development and regeneration of the heart. We highlight recent findings and remaining questions. Finally, we discuss the potential of inter-organ modulatory approaches for possible therapeutic use.
Collapse
Affiliation(s)
- Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suphansa Sawamiphak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany
| |
Collapse
|
4
|
Gabbin B, Meraviglia V, Mummery CL, Rabelink TJ, van Meer BJ, van den Berg CW, Bellin M. Toward Human Models of Cardiorenal Syndrome in vitro. Front Cardiovasc Med 2022; 9:889553. [PMID: 35694669 PMCID: PMC9177996 DOI: 10.3389/fcvm.2022.889553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Heart and kidney diseases cause high morbidity and mortality. Heart and kidneys have vital functions in the human body and, interestingly, reciprocally influence each other’s behavior: pathological changes in one organ can damage the other. Cardiorenal syndrome (CRS) is a group of disorders in which there is combined dysfunction of both heart and kidney, but its underlying biological mechanisms are not fully understood. This is because complex, multifactorial, and dynamic mechanisms are likely involved. Effective treatments are currently unavailable, but this may be resolved if more was known about how the disease develops and progresses. To date, CRS has actually only been modeled in mice and rats in vivo. Even though these models can capture cardiorenal interaction, they are difficult to manipulate and control. Moreover, interspecies differences may limit extrapolation to patients. The questions we address here are what would it take to model CRS in vitro and how far are we? There are already multiple independent in vitro (human) models of heart and kidney, but none have so far captured their dynamic organ-organ crosstalk. Advanced in vitro human models can provide an insight in disease mechanisms and offer a platform for therapy development. CRS represents an exemplary disease illustrating the need to develop more complex models to study organ-organ interaction in-a-dish. Human induced pluripotent stem cells in combination with microfluidic chips are one powerful tool with potential to recapitulate the characteristics of CRS in vitro. In this review, we provide an overview of the existing in vivo and in vitro models to study CRS, their limitations and new perspectives on how heart-kidney physiological and pathological interaction could be investigated in vitro for future applications.
Collapse
Affiliation(s)
- Beatrice Gabbin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, Netherlands
| | - Ton J. Rabelink
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Berend J. van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Cathelijne W. van den Berg
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- *Correspondence: Milena Bellin, ,
| |
Collapse
|
5
|
Soppert J, Frisch J, Wirth J, Hemmers C, Boor P, Kramann R, Vondenhoff S, Moellmann J, Lehrke M, Hohl M, van der Vorst EPC, Werner C, Speer T, Maack C, Marx N, Jankowski J, Roma LP, Noels H. A systematic review and meta-analysis of murine models of uremic cardiomyopathy. Kidney Int 2021; 101:256-273. [PMID: 34774555 DOI: 10.1016/j.kint.2021.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) triggers the risk of developing uremic cardiomyopathy as characterized by cardiac hypertrophy, fibrosis and functional impairment. Traditionally, animal studies are used to reveal the underlying pathological mechanism, although variable CKD models, mouse strains and readouts may reveal diverse results. Here, we systematically reviewed 88 studies and performed meta-analyses of 52 to support finding suitable animal models for future experimental studies on pathological kidney-heart crosstalk during uremic cardiomyopathy. We compared different mouse strains and the direct effect of CKD on cardiac hypertrophy, fibrosis and cardiac function in "single hit" strategies as well as cardiac effects of kidney injury combined with additional cardiovascular risk factors in "multifactorial hit" strategies. In C57BL/6 mice, CKD was associated with a mild increase in cardiac hypertrophy and fibrosis and marginal systolic dysfunction. Studies revealed high variability in results, especially regarding hypertrophy and systolic function. Cardiac hypertrophy in CKD was more consistently observed in 129/Sv mice, which express two instead of one renin gene and more consistently develop increased blood pressure upon CKD induction. Overall, "multifactorial hit" models more consistently induced cardiac hypertrophy and fibrosis compared to "single hit" kidney injury models. Thus, genetic factors and additional cardiovascular risk factors can "prime" for susceptibility to organ damage, with increased blood pressure, cardiac hypertrophy and early cardiac fibrosis more consistently observed in 129/Sv compared to C57BL/6 strains.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Janina Frisch
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Julia Wirth
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Hemmers
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany; Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Mathias Hohl
- Department of Internal Medicine III, Cardiology/Angiology, University of Homburg, Homburg/Saar, Germany
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands; Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Werner
- Department of Internal Medicine III, Cardiology/Angiology, University of Homburg, Homburg/Saar, Germany
| | - Thimoteus Speer
- Translational Cardio-Renal Medicine, Saarland University, Homburg/Saar, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Chiang CY, Huang SC, Chen M, Shih JY, Hong CS, Wu NC, Ho CH, Wu CC, Chen ZC, Chang WT. Effects of renal impairment on cardiac remodeling and clinical outcomes after myocardial infarction. Int J Med Sci 2021; 18:2842-2848. [PMID: 34220312 PMCID: PMC8241772 DOI: 10.7150/ijms.61891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 11/25/2022] Open
Abstract
How renal function influences post-acute myocardial infarction (AMI) cardiac remodeling and outcomes remains unclear. This study evaluated the impact of levels of renal impairment on drug therapy, echocardiographic parameters, and outcomes in patients with AMI undergoing percutaneous coronary intervention (PCI). A total of 611 patients diagnosed with AMI underwent successful PCI, and two echocardiographic examinations were performed within 1 year after AMI. Patients were categorized according to Group 1: severely impaired estimated glomerular filtration rate (eGFR)<30, Group 2: mildly impaired 30≤eGFR<60, Group 3: potentially at risk 60≤eGFR<90 and normal eGFR≥90 ml/min/1.73 m2. During the 5-year follow-up period, the primary endpoints were cardiovascular mortality and outcomes. Patients with worse renal function (eGFR<30) were older and had a higher prevalence of hypertension and diabetes, but relatively few were smokers or had hyperlipidemia. Despite more patients with lesions of the left anterior descending artery, those with worse renal function received suboptimal guideline-directed medical therapy (GDMT). Notably, patients with worse renal function presented with worse left ventricular function at baseline and subsequent follow-up. Kaplan-Meier analysis revealed increased cardiovascular death, development of heart failure, recurrent AMI and revascularization in patients with worse renal function. Notably, as focusing on patients with ST elevation MI, the similar findings were observed. In multivariable Cox regression, impaired renal function showed the most significant hazard ratio in cardiovascular death. Collectively, in AMI patients receiving PCI, outcome differences are renal function dependent. We found that patients with worse renal function received less GDMT and presented with worse cardiovascular outcomes. These patients require more attention.
Collapse
Affiliation(s)
- Chun-Yen Chiang
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan.,Department of Optometry, Chung Hwa University of Medical Technology, Rende District, Tainan
| | - Sheng-Chung Huang
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan
| | - Michael Chen
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan
| | - Jhih-Yuan Shih
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan
| | - Chon-Seng Hong
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan
| | - Nan-Chun Wu
- Division of Cardiovascular Surgery, Department of Surgery, Chi Mei Medical Center, Tainan.,Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan
| | - Chung-Han Ho
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan.,Department of Hospital and Health Care Administration, Chi-Mei Medical Center, Tainan
| | - Chia Chun Wu
- Department of Hospital and Health Care Administration, Chi-Mei Medical Center, Tainan.,Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan
| | - Zhih-Cherng Chen
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan.,Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan
| | - Wei-Ting Chang
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan
| |
Collapse
|
7
|
Aires RS, Vieira LD, Freitas ACN, de Lima ME, Lima NKS, Farias JS, Paixão AD. NO mediates the effect of the synthetic natriuretic peptide NPCdc on kidney and aorta in nephrectomised rats. Eur J Pharmacol 2020; 866:172780. [PMID: 31734277 DOI: 10.1016/j.ejphar.2019.172780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
NPCdc is a synthetic natriuretic peptide that was originally derived from another peptide, the NP2_Casca, isolated from Crotalus durissus cascavella venom. These molecules share 70% structural homology with natriuretic peptides obtained from different species, including humans. NP2_Casca induces vasorelaxation and increases nitric oxide levels independently of natriuretic peptide receptors A and B. This study aimed to investigate whether NPCdc-induced hypotension in control rats and rats with a reduced kidney mass is associated with effects on the glomerular filtration rate, NADPH oxidase activity and components downstream of natriuretic peptide receptor C (NPR-C). Anaesthetized Wistar rats that were subjected to a sham operation and 5/6 nephrectomy (5/6Nx) were infused with saline (vehicle) or NPCdc (7.5 μg/kg/min) for 70 min. The NPCdc treatment decreased the mean arterial pressure and NADPH oxidase activity while simultaneously increasing the glomerular filtration rate, fractional Na+ excretion and nitric oxide level. After 70 min, the levels of p-AKT Ser-473, p-eNOS Ser-1177, p-nNOS Ser-1417 and p-iNOSTyr-151 were not affected. However, p-ERK1/2 Thr-202/Tyr-204 levels were altered. Thus, nitric oxide and components of NPR-C signalling mediate the effects of NPCdc. The results suggest a potential therapeutic application of this peptide for cardiorenal syndrome.
Collapse
Affiliation(s)
- Regina S Aires
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Leucio D Vieira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ana C N Freitas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria E de Lima
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Natalia K S Lima
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Juliane S Farias
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ana D Paixão
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
8
|
Liu S. Heart-kidney interactions: mechanistic insights from animal models. Am J Physiol Renal Physiol 2019; 316:F974-F985. [PMID: 30838876 DOI: 10.1152/ajprenal.00624.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathological changes in the heart or kidney can instigate the release of a cascade of cardiorenal mediators that promote injury in the other organ. Combined dysfunction of heart and kidney is referred to as cardiorenal syndrome (CRS) and has gained considerable attention. CRS has been classified into five distinct entities, each with different major pathophysiological changes. Despite the magnitude of the public health problem of CRS, the underlying mechanisms are incompletely understood, and effective intervention is unavailable. Animal models have allowed us to discover pathogenic molecular changes to clarify the pathophysiological mechanisms responsible for heart-kidney interactions and to enable more accurate risk stratification and effective intervention. Here, this article focuses on the use of currently available animal models to elucidate mechanistic insights in the clinical cardiorenal phenotype arising from primary cardiac injury, primary renal disease with special emphasis of chronic kidney disease-specific risk factors, and simultaneous cardiorenal/renocardiac dysfunction. The development of novel animal models that recapitulate more closely the cardiorenal phenotype in a clinical scenario and discover the molecular basis of this condition will be of great benefit.
Collapse
Affiliation(s)
- Shan Liu
- School of Medicine, South China University of Technology , Guangzhou , China
| |
Collapse
|
9
|
Oosterhuis NR, Bongartz LG, Verhaar MC, Cheng C, Xu YJ, van Koppen A, Cramer MJ, Goldschmeding R, Gaillard CA, Doevendans PA, Braam B, Joles JA. Targeting multiple pathways reduces renal and cardiac fibrosis in rats with subtotal nephrectomy followed by coronary ligation. Acta Physiol (Oxf) 2017; 220:382-393. [PMID: 28168814 DOI: 10.1111/apha.12829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/27/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
AIM Multiple interacting pathways contribute to progression of renal and cardiac damage in chronic kidney disease followed by chronic heart failure (renocardiac syndrome). We hypothesized that simultaneous pharmacological modulation of critical pathways implicated in renocardiac syndrome would effectively reduce fibrosis in and preserve function of heart and kidney. METHODS Rats were subjected to subtotal nephrectomy followed 9 weeks later by coronary artery ligation. From week 11 until week 16, rats received vehicle or losartan, or a combination of the NF-kB inhibitor PDTC, the NO donor molsidomine and superoxide dismutase mimetic tempol, or a combination of all four of these plus metoprolol together. At week 16, renal and cardiac structure, function and gene expression were assessed. RESULTS Individual and combined treatments were similarly effective in limiting cardiac fibrosis and further decline in systolic function. Combined treatment with all five drugs reduced renal fibrosis and CTGF gene expression more effectively than other strategies. Combining all five drugs reduced heart rate, inotropy and mean arterial pressure (MAP). CONCLUSION Thus, in our model of chronic renocardiac syndrome, combined treatments similarly decreased cardiac fibrosis and stabilized systolic function as losartan alone, perhaps suggesting a dominant role for a single factor such as angiotensin II type 1 (AT1) receptor activation or inflammation in the network of aberrant systems in the heart. However, tubulointerstitial fibrosis was most effectively reduced by a five-drug regimen, pointing to additive effects of multiple pathophysiological pathways in the kidney.
Collapse
Affiliation(s)
- N. R. Oosterhuis
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
| | - L. G. Bongartz
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
- Department of Cardiology; University Medical Center Utrecht; Utrecht the Netherlands
| | - M. C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
| | - C. Cheng
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
- Department of Experimental Cardiology; Thorax Center Erasmus University Medical Center; Rotterdam the Netherlands
| | - Y. J. Xu
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
| | - A. van Koppen
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
| | - M. J. Cramer
- Department of Cardiology; University Medical Center Utrecht; Utrecht the Netherlands
| | - R. Goldschmeding
- Department of Pathology; University Medical Center Utrecht; Utrecht the Netherlands
| | - C. A. Gaillard
- Department of Nephrology; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - P. A. Doevendans
- Department of Cardiology; University Medical Center Utrecht; Utrecht the Netherlands
| | - B. Braam
- Division of Nephrology; Departments of Medicine and Physiology; University of Alberta; Edmonton AB Canada
| | - J. A. Joles
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
| |
Collapse
|
10
|
Differential gene expression profile of Buyanghuanwu decoction in rats with ventricular remodeling post-myocardial infarction. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30070-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction. Sci Rep 2017; 7:43920. [PMID: 28266578 PMCID: PMC5339733 DOI: 10.1038/srep43920] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022] Open
Abstract
A peptide vaccine targeting angiotensin II (Ang II) was recently developed as a novel treatment for hypertension to resolve the problem of noncompliance with pharmacotherapy. Ang II plays a crucial role in the pathogenesis of cardiac remodeling after myocardial infarction (MI), which causes heart failure. In the present study, we examined whether the Ang II vaccine is effective in preventing heart failure. The injection of the Ang II vaccine in a rat model of MI attenuated cardiac dysfunction in association with an elevation in the serum anti-Ang II antibody titer. Furthermore, any detrimental effects of the Ang II vaccine were not observed in the rats that underwent sham operations. Treatment with immunized serum from Ang II vaccine-injected rats significantly suppressed post-MI cardiac dysfunction in MI rats and Ang II-induced remodeling-associated signaling in cardiac fibroblasts. Thus, our present study demonstrates that the Ang II vaccine may provide a promising novel therapeutic strategy for preventing heart failure.
Collapse
|
12
|
An angiotensin II type 1 receptor binding molecule has a critical role in hypertension in a chronic kidney disease model. Kidney Int 2017; 91:1115-1125. [PMID: 28081856 DOI: 10.1016/j.kint.2016.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 01/13/2023]
Abstract
Angiotensin II type 1 receptor-associated protein (ATRAP) promotes AT1R internalization along with suppression of hyperactivation of tissue AT1R signaling. Here, we provide evidence that renal ATRAP plays a critical role in suppressing hypertension in a mouse remnant kidney model of chronic kidney disease. The effect of 5/6 nephrectomy on endogenous ATRAP expression was examined in the kidney of C57BL/6 and 129/Sv mice. While 129/Sv mice with a remnant kidney showed decreased renal ATRAP expression and developed hypertension, C57BL/6 mice exhibited increased renal ATRAP expression and resistance to progressive hypertension. Consequently, we hypothesized that downregulation of renal ATRAP expression is involved in pathogenesis of hypertension in the remnant kidney model of chronic kidney disease. Interestingly, 5/6 nephrectomy in ATRAP-knockout mice on the hypertension-resistant C57BL/6 background caused hypertension with increased plasma volume. Moreover, in knockout compared to wild-type C57BL/6 mice after 5/6 nephrectomy, renal expression of the epithelial sodium channel α-subunit and tumor necrosis factor-α was significantly enhanced, concomitant with increased plasma membrane angiotensin II type 1 receptor in the kidneys. Thus, renal ATRAP downregulation is involved in the onset and progression of blood pressure elevation caused by renal mass reduction, and implicates ATRAP as a therapeutic target for hypertension in chronic kidney disease.
Collapse
|
13
|
Shen K, Johnson DW, Gobe GC. The role of cGMP and its signaling pathways in kidney disease. Am J Physiol Renal Physiol 2016; 311:F671-F681. [PMID: 27413196 DOI: 10.1152/ajprenal.00042.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/10/2016] [Indexed: 01/20/2023] Open
Abstract
Cyclic nucleotide signal transduction pathways are an emerging research field in kidney disease. Activated cell surface receptors transduce their signals via intracellular second messengers such as cAMP and cGMP. There is increasing evidence that regulation of the cGMP-cGMP-dependent protein kinase 1-phosphodiesterase (cGMP-cGK1-PDE) signaling pathway may be renoprotective. Selective PDE5 inhibitors have shown potential in treating kidney fibrosis in patients with chronic kidney disease (CKD), via their downstream signaling, and these inhibitors also have known activity as antithrombotic and anticancer agents. This review gives an outline of the cGMP-cGK1-PDE signaling pathways and details the downstream signaling and regulatory functions that are modulated by cGK1 and PDE inhibitors with regard to antifibrotic, antithrombotic, and antitumor activity. Current evidence that supports the renoprotective effects of regulating cGMP-cGK1-PDE signaling is also summarized. Finally, the effects of icariin, a natural plant extract with PDE5 inhibitory function, are discussed. We conclude that regulation of cGMP-cGK1-PDE signaling might provide novel, therapeutic strategies for the worsening global public health problem of CKD.
Collapse
Affiliation(s)
- Kunyu Shen
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia; Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China; and
| | - David W Johnson
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia; Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia;
| |
Collapse
|
14
|
Jahng JWS, Song E, Sweeney G. Crosstalk between the heart and peripheral organs in heart failure. Exp Mol Med 2016; 48:e217. [PMID: 26964833 PMCID: PMC4892881 DOI: 10.1038/emm.2016.20] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Mediators from peripheral tissues can influence the development and progression of heart failure (HF). For example, in obesity, an altered profile of adipokines secreted from adipose tissue increases the incidence of myocardial infarction (MI). Less appreciated is that heart remodeling releases cardiokines, which can strongly impact various peripheral tissues. Inflammation, and, in particular, activation of the nucleotide-binding oligomerization domain-like receptors with pyrin domain (NLRP3) inflammasome are likely to have a central role in cardiac remodeling and mediating crosstalk with other organs. Activation of the NLRP3 inflammasome in response to cardiac injury induces the production and secretion of the inflammatory cytokines interleukin (IL)-1β and IL-18. In addition to having local effects in the myocardium, these pro-inflammatory cytokines are released into circulation and cause remodeling in the spleen, kidney, skeletal muscle and adipose tissue. The collective effects of various cardiokines on peripheral organs depend on the degree and duration of myocardial injury, with systematic inflammation and peripheral tissue damage observed as HF progresses. In this article, we review mechanisms regulating myocardial inflammation in HF and the role of factors secreted by the heart in communication with peripheral tissues.
Collapse
Affiliation(s)
| | - Erfei Song
- Department of Biology, York University, Toronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
15
|
Watanabe R, Suzuki JI, Wakayama K, Kumagai H, Ikeda Y, Akazawa H, Komuro I, Isobe M. Angiotensin II receptor blocker irbesartan attenuates cardiac dysfunction induced by myocardial infarction in the presence of renal failure. Hypertens Res 2015; 39:237-44. [DOI: 10.1038/hr.2015.141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023]
|
16
|
Takamura C, Suzuki JI, Ogawa M, Watanabe R, Tada Y, Maejima Y, Akazawa H, Komuro I, Isobe M. Suppression of murine autoimmune myocarditis achieved with direct renin inhibition. J Cardiol 2015; 68:253-60. [PMID: 26475067 DOI: 10.1016/j.jjcc.2015.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/21/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND The renin angiotensin system (RAS) plays an important role in the pathogenesis of cardiovascular diseases and inflammation. Myocarditis is an inflammatory disease of the heart, and the role of the RAS in its pathophysiology is unknown. Because the direct renin inhibitor, aliskiren, is thought to block RAS completely, we investigated the cardioprotective effect of aliskiren in mice with experimental autoimmune myocarditis (EAM). METHODS A cardiac α-myosin heavy chain peptide was injected in mice on days 0 and 7. Aliskiren 25mg/kg per day (n=10) or vehicle (n=10) was administered to EAM mice starting on day 0 and the animals were killed on day 21. RESULTS Aliskiren significantly prevented the progression of left ventricular wall thickening in EAM hearts compared to the vehicle-treated group. Histologically, the inflammatory cell infiltration and fibrosis area ratios in the aliskiren-treated group were lower than that in the vehicle-treated group. Immunohistochemistry revealed that aliskiren suppressed CD4 positive cell infiltration in EAM hearts compared to vehicle. Moreover, aliskiren decreased mRNA levels of interleukin (IL)-2, interferon-γ, tumor necrosis factor-α, and collagen 1. In vitro study showed that aliskiren inhibited T cell proliferation and IL-2 production induced by myosin stimulation. CONCLUSION Our results suggest that aliskiren ameliorates EAM by suppressing T-cell activation and inflammatory cytokines, and has potential as a treatment for myocarditis.
Collapse
Affiliation(s)
- Chisato Takamura
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun-Ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan.
| | - Masahito Ogawa
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Watanabe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Tada
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
17
|
Du Y, Li X, Liu B. Advances in pathogenesis and current therapeutic strategies for cardiorenal syndrome. Life Sci 2014; 99:1-6. [PMID: 24140889 DOI: 10.1016/j.lfs.2013.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/02/2013] [Accepted: 10/05/2013] [Indexed: 12/28/2022]
Abstract
Cardiorenal syndrome (CRS) is characterized as a syndrome involving both the cardiovascular system and kidneys. Due to its complexity and high mortality, it has becoming a significant burden and a universal clinical challenge to society worldwide. The mechanisms underlying CRS are potentially multifactorial, including hemodynamic alterations, neurohormonal activation, inflammation, oxidative stress, iron disorders, anemia, and mineral metabolic derangements. Despite the understanding and awareness of CRS gaining attention, appropriate approaches to manage CRS remain deficient. Loop diuretic and thiazides, inhibition of the renin-angiotensin system, vitamin D receptor activation and dopamine and natriuretic peptides could potentially be helpful to improve the prognosis of CRS. Ultrafiltration might be an alternative therapeutic strategy for the loss of liquid. However, adenosine receptor antagonists do not appear to be superior to furosemide in CRS treatment. novel therapeutic approaches should be explored.
Collapse
Affiliation(s)
- Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiujiang Li
- Department of Intensive Care Unit, Jilin Tumor Hospital, Changchun 130012, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
18
|
Watanabe R, Azuma RW, Suzuki JI, Ogawa M, Itai A, Hirata Y, Komuro I, Isobe M. Inhibition of NF-κB activation by a novel IKK inhibitor reduces the severity of experimental autoimmune myocarditis via suppression of T-cell activation. Am J Physiol Heart Circ Physiol 2013; 305:H1761-71. [PMID: 24097428 DOI: 10.1152/ajpheart.00159.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NF-κB, which is activated by the inhibitor of NF-κB kinase (IKK), is involved in the progression of inflammatory disease. However, the effect of IKK inhibition on the progression of myocarditis is unknown. We examined the effect of IKK inhibition on the progression of myocarditis. Lewis rats were immunized with porcine cardiac myosin to induce experimental autoimmune myocarditis (EAM). We administered the IKK inhibitor (IMD-0354; 15 mg·kg(-1)·day(-1)) or vehicle to EAM rats daily. Hearts were harvested 21 days after immunization. Although the untreated EAM group showed increased heart weight-to-body weight ratio, and severe myocardial damage, these changes were attenuated in the IKK inhibitor-treated group. Moreover, IKK inhibitor administration significantly reduced NF-κB activation and mRNA expression of IFN-γ, IL-2, and monocyte chemoattractant protein-1 in myocardium compared with vehicle administration. In vitro study showed that the IKK inhibitor treatment inhibited T-cell proliferation and Th1 cytokines production induced by myosin stimulation. The IKK inhibitor ameliorated EAM by suppressing inflammatory reactions via suppression of T-cell activation.
Collapse
Affiliation(s)
- Ryo Watanabe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|