1
|
Sun L, Apweiler M, Normann C, Grathwol CW, Hurrle T, Gräßle S, Jung N, Bräse S, Fiebich BL. Anti-Inflammatory Effects of GPR55 Agonists and Antagonists in LPS-Treated BV2 Microglial Cells. Pharmaceuticals (Basel) 2024; 17:674. [PMID: 38931342 PMCID: PMC11206594 DOI: 10.3390/ph17060674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic inflammation is driven by proinflammatory cytokines such as interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and chemokines, such as c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10. Inflammatory processes of the central nervous system (CNS) play an important role in the pathogenesis of various neurological and psychiatric disorders like Alzheimer's disease, Parkinson's disease, and depression. Therefore, identifying novel anti-inflammatory drugs may be beneficial for treating disorders with a neuroinflammatory background. The G-protein-coupled receptor 55 (GPR55) gained interest due to its role in inflammatory processes and possible involvement in different disorders. This study aims to identify the anti-inflammatory effects of the coumarin-based compound KIT C, acting as an antagonist with inverse agonistic activity at GPR55, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells in comparison to the commercial GPR55 agonist O-1602 and antagonist ML-193. All compounds significantly suppressed IL-6, TNF-α, CCL2, CCL3, CXCL2, and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compounds are partially explained by modulation of the phosphorylation of p38 mitogen-activated protein kinase (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC) pathways, and the transcription factor nuclear factor (NF)-κB, respectively. Due to its potent anti-inflammatory properties, KIT C is a promising compound for further research and potential use in inflammatory-related disorders.
Collapse
Affiliation(s)
- Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (L.S.); (M.A.)
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (L.S.); (M.A.)
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany;
| | - Christoph W. Grathwol
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
| | - Thomas Hurrle
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Simone Gräßle
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
| | - Nicole Jung
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (L.S.); (M.A.)
| |
Collapse
|
2
|
Gao T, Lin L, Yang Q, Zhu Z, Wang S, Xie T, Liao W. The raw and vinegar-processed Curcuma phaeocaulis Val. ameliorate TAA-induced zebrafish liver injury by inhibiting TLR4/MyD88/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117246. [PMID: 37778523 DOI: 10.1016/j.jep.2023.117246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver injury, the main factor in the pathogenesis of most liver diseases, is a known contributor to acute liver failure, liver fibrosis, or liver cancer. Curcuma phaeocaulis Val. (PEZ) has been broadly used in treating liver injury with satisfying therapeutic effects; however, the mechanism is still unclear. AIM OF THE STUDY This study aimed to explore the mechanism of PEZ in ameliorating thioacetamide (TAA)-induced zebrafish liver injury based on a comprehensive method integrating network-based computational prediction and experimental validations. MATERIALS AND METHODS Ultrahigh-performance liquid chromatography-quadrupole exactive mass spectrometry/mass spectrometry (UPLC-Q-Exactive MS/MS) analysis was used to analyze components in raw and vinegar-processed PEZ (VPEZ). Network pharmacology was used to construct a compound-target network for liver injury to predict the possible biological targets of PEZ along with potential signaling pathways. TAA-induced zebrafish larvae liver injury model was established, and the anti-liver injury effect of PEZ by a series of indexes was measured, including liver phenotype analysis, histopathological analysis of liver tissues, and biochemical indexes analysis. Remarkably, the predicted pathway by network pharmacology was further validated using RT-qPCR and Western blotting analyzes in animal experiments. RESULTS 40 chemical constituents derived from PEZ were identified, while 45 chemical components derived from VPEZ were identified. Based on it, 565 genes related to these identified compounds in PEZ and 1023 genes linked to liver injury were collected by network pharmacology. Critically, KEGG analysis indicated that the TLR4/MyD88/NF-κB signaling pathway was recommended as one of the main pathways related to the anti-liver injury effect of PEZ. Experimentally, PEZ could alleviate TAA-induced liver injury. Compared to the liver injury model group without any treatment, the treatment of PEZ significantly reduced the expression of both mRNA and protein targets in the TLR4/MyD88/NF-κB signaling pathway. In addition, the effect of VPEZ was more significant than that of the raw one. CONCLUSION The raw and vinegar-processed PEZ could ameliorate TAA-induced zebrafish liver injury through TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tianhui Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Liting Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Qingsong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Zongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Shuyi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Tian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
3
|
Wang L, Sun Z, Shan X, Peng C, Ding H, Feng S, Zhao C, Wang X, Wu J. MicroRNA-223 Inhibits Soybean Glycinin- and β-Conglycinin-Induced Apoptosis of IPEC-J2 Cells by Targeting NLRP-3 in the IEL/IPEC-J2 Co-culture System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13745-13756. [PMID: 37682935 DOI: 10.1021/acs.jafc.3c01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The apoptosis of intestinal porcine epithelial cells induced by soybean antigen protein allergy is one of the most important mechanisms responsible for enteritis. MicroRNAs (miRNAs) affect the cellular and physiological functions of all multicellular organisms. We hypothesize that microRNA-223 inhibits soybean glycinin- and β-conglycinin-induced apoptosis of intestinal porcine enterocytes (IPEC-J2) by targeting the NLR family pyrin domain containing 3 (NLRP-3). Using the intestinal interepithelial lymphocyte (IEL)/IPEC-J2 co-culture system as an in vitro model, we investigate the role of microRNA-223 in the regulation of soybean glycinin- and β-conglycinin-induced apoptosis. In co-cultured IEL/IPEC-J2 cells incubated with glycinin or β-conglycinin, microRNA-223 decreased NLRP-3, ASC, caspase-1, caspase-3, FAS, BCL-2, and APAF-1 expressions in IPEC-J2 cells; decreased cytokine and cyclooxygenase-2 levels; significantly increased cell activity; and inhibited apoptosis. These data supported a novel antiallergic mechanism to mitigate the sensitization of soybean antigenic protein, which involves the upregulation of microRNA-223-targeting NLRP-3.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Zhifeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Xinggen Shan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Chenglu Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| |
Collapse
|
4
|
Nishi K, Yagi H, Ohtomo M, Nagata S, Udagawa D, Tsuchida T, Morisaku T, Kitagawa Y. A thioacetamide-induced liver fibrosis model for pre-clinical studies in microminipig. Sci Rep 2023; 13:14996. [PMID: 37696857 PMCID: PMC10495379 DOI: 10.1038/s41598-023-42144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Drug-induced liver fibrosis models are used in normal and immunosuppressed small animals for transplantation and regenerative medicine to improve liver fibrosis. Although large animal models are needed for pre-clinical studies, they are yet to be established owing to drug sensitivity in animal species and difficulty in setting doses. In this study, we evaluated liver fibrosis by administering thioacetamide (TA) to normal microminipig and thymectomized microminipig; 3 times for 1 week (total duration: 8 weeks). The pigs treated with TA showed elevated blood cytokine levels and a continuous liver injury at 8 weeks. RNA-seq of the liver showed increased expression of fibrosis-related genes after TA treatment. Histopathological examination showed degenerative necrosis of hepatocytes around the central vein, and revealed fibrogenesis and hepatocyte proliferation. TA treatment caused CD3-positive T cells and macrophages scattered within the hepatic lobule to congregate near the center of the lobule and increased αSMA-positive cells. Thymectomized pigs showed liver fibrosis similar to that of normal pigs, although the clinical signs tended to be milder. This model is similar to pathogenesis of liver fibrosis reported in other animal models. Therefore, it is expected to contribute to research as a drug discovery and pre-clinical transplantation models.
Collapse
Affiliation(s)
- Kotaro Nishi
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan.
| | - Mana Ohtomo
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Shogo Nagata
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Udagawa
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Tomonori Tsuchida
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Toshinori Morisaku
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
5
|
Alqrad MAI, El-Agamy DS, Ibrahim SRM, Sirwi A, Abdallah HM, Abdel-Sattar E, El-Halawany AM, Elsaed WM, Mohamed GA. SIRT1/Nrf2/NF-κB Signaling Mediates Anti-Inflammatory and Anti-Apoptotic Activities of Oleanolic Acid in a Mouse Model of Acute Hepatorenal Damage. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1351. [PMID: 37512162 PMCID: PMC10383078 DOI: 10.3390/medicina59071351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Background and objectives: Oleanolic acid (OA) is a penta-cyclic triterpene with diverse bioactivities such as anticarcinogenic, antiviral, antimicrobial, hepatoprotective, anti-atherosclerotic, hypolipidemic, and gastroprotective. However, its effects on hepatorenal damage remain unclear. The protective activity of OA, separated from Viscum schimperi (Loranthaceae), against TAA (thioacetamide)-produced acute hepatic and renal damage was explored. Materials and Methods: Mice were treated with OA for 7 days before TAA (200 mg/kg, i.p.). Serum indices of hepatorenal injury, pathological lesions, molecular biological indexes, and inflammatory/apoptotic genes were estimated. Results: The tissues of both organs were greatly affected by the TAA injection. That was evident through increased serum markers of hepato-renal injury as well as remarkable histopathological lesions. TAA-induced injury was associated with oxidative and inflammatory responses in both organs as there was an elevation of oxidative stress parameters (4-HNE (4-hydroxy-nonenal), MDA (malondialdehyde), NOx (nitric oxide)), decline of antioxidants (reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC)), and an increase in the gene expression/level of inflammatory mediators (interleukins (1β&6)). The inflammatory response was linked to a significant activation of NF-κB (nuclear-factor kappa-B)/TNF-α (tumor-necrosis factor-alpha) signaling. The inflammatory response in both organs was accompanied by apoptotic changes, including a rise in the gene expression and level of apoptotic parameters (caspase-3 and Bax) along with a decline in Bcl-2 (anti-apoptotic parameter) gene expression and level. These pathogenic events were found to be closely related to the suppression of the antioxidant signaling pathway, Nrf2 (nuclear-factor erythroid 2-related factor-2)/SIRT1 (sirtuin-1)/HO-1 (heme-oxygenase 1). On the other hand, OA significantly ameliorated TAA-induced injury in both organs. On the other hand, OA counterpoised the inflammatory response as it ameliorated NF-κB/TNF-α signaling and cytokine release. OA enhanced Nrf2/SIRT1/HO-1 signaling and counteracted apoptotic damage. Conclusions: OA showed anti-inflammation and antiapoptotic capacities that effectively suppressed TAA-induced acute hepatorenal damage.
Collapse
Affiliation(s)
- Manea A. I. Alqrad
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Dina S. El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (E.A.-S.); (A.M.E.-H.)
| | - Ali M. El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (E.A.-S.); (A.M.E.-H.)
| | - Wael M. Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| |
Collapse
|
6
|
Zhang Y, Gao H, Zhang Y, Shao YM, Zhang RH, Wen XY. Correlation between serum cytokines and clinicopathological features in patients with drug-induced liver injury. Front Pharmacol 2022; 13:1070802. [PMID: 36569295 PMCID: PMC9773069 DOI: 10.3389/fphar.2022.1070802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives: Changes in serum levels of cytokines have been proposed as possible biological markers of tissue damage, including drug-induced liver injury (DILI). Here, we aimed to screen cytokine markers that have guiding significance for the degree of inflammation of DILI. Patients and methods: 54 patients with DILI were retrospectively analyzed as the experimental group, and 14 healthy subjects were randomly selected as the control group. A total of 20 cytokines were detected by using a cytokine protein antibody chip, and differentially expressed proteins were screened. Results: There were significant differences in serum cytokines between DILI patients and healthy controls. Compared with the control group, the DILI group expressed 11 differential proteins. IL-8, TNF RII, TNFα, TNF RI, MIP-1β, MIP-1α, and IL-1β were differentially expressed in DILI patients with different degrees of inflammation from G1 to G4. MIG, IL-12p40, and IL-10 were differentially expressed in the higher degree of inflammation groups (G2, G3, and G4 groups). Tissue inhibitor of metalloproteinases-1 (TIMP-1) was differentially expressed in the group with the highest inflammation degree (G4 group). Chemokine C-C motif ligand 1 (I-309) was only differentially expressed in the lowest inflammation group (G1 group). Conclusion: The changes and differential expression of specific cytokine levels were helpful for evaluating different degrees of inflammation of DILI.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pediatric Endocrinology, Genetics and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Gao
- Department of Hepatology, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Yu Zhang
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin, China,Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yue-Ming Shao
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Rui-Hua Zhang
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin, China,Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-Yu Wen
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin, China,Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Xiao-Yu Wen,
| |
Collapse
|
7
|
Interleukin-6-Production Is Responsible for Induction of Hepatic Synthesis of Several Chemokines as Acute-Phase Mediators in Two Animal Models: Possible Significance for Interpretation of Laboratory Changes in Severely Ill Patients. BIOLOGY 2022; 11:biology11030470. [PMID: 35336843 PMCID: PMC8945369 DOI: 10.3390/biology11030470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/23/2022]
Abstract
Simple Summary The release of acute-phase proteins and cytokine storms are considered critical parameters for the progression of COVID-19 disease. The increase in the serum levels of cytokines such as IL6 and IL8 observed in patients primarily infected with the SARS-CoV-2 virus has been used to determine the severity of clinical conditions resulting from infection and for prognostic purposes. Animal models have been used to understand the mechanisms of the changes in homeostasis observed under pathological conditions. In the present study, we therefore report the changes in serum levels and hepatic gene expression of cytokines and chemokines in two different animal models of acute-phase responses. The acute-phase response is a transient emergency response aimed at preserving life and bringing about the changes necessary to reduce and repair tissue damage after the removal of damaging noxious agents. Our data suggest that the liver may be responsible for the increase in the serum levels of cytokines and chemokines as part of the body’s defense response to tissue damage. It is therefore doubtful that inhibiting this response at any stage after infection could improve the prognosis of patients. These results may help to interpret the laboratory changes observed in critically ill patients, as may be the case following SARS-CoV-2 infection. Abstract A mild to moderate increase in acute-phase proteins (APPs) and a decrease in serum albumin levels are detected in hospitalized COVID-19 patients. A similar trend is also observed for acute-phase cytokines (APC), mainly IL6, besides chemokines (e.g., CXCL8 and CCL2). However, the source of the chemokines in these patients at different stages of disease remains to be elucidated. We investigated hepatic gene expression of CXC- and CC-chemokines in a model of a localized extrahepatic aseptic abscess and in a model of septicemia produced by the intramuscular injection of turpentine oil (TO) into each hindlimb or lipopolysaccharide (LPS) intraperitoneally (i.p.) in rats and mice (wild-type (WT) and IL6-KO). Together with a striking increase in the serum IL6 level, strong serum CXCL2 and CXCL8 concentrations were detected. Correspondingly, rapid (2 h) upregulation of CXCL1, CXCL2, CXCL5, and CXCL8 was observed in rat liver after intramuscular TO injection. The induction of the gene expression of CXCL1 and CXCL8 was the fastest and strongest. The hepatic CXC-chemokines behaved like positive APPs that depend on IL6 production by activated macrophages recruited to extrahepatic damaged tissue. Chemokine upregulation was greatly reduced in IL6-KO mice. However, IL6 was dispensable in the LPS–APR model, as massive induction of hepatic chemokines studied was measured in IL6-KO mice.
Collapse
|
8
|
Shi H, Li Y, Dong C, Si G, Xu Y, Peng M, Li Y. Helicobacter pylori infection and the progression of atherosclerosis: A systematic review and meta-analysis. Helicobacter 2022; 27:e12865. [PMID: 34841620 DOI: 10.1111/hel.12865] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In recent years, many studies have tried to prove whether Helicobacter pylori (H. pylori) can promote the progression of atherosclerosis (AS), but the reported results are conflicting. Carotid intima-media thickness (CIMT), flow-mediated dilation (FMD), or pulse wave velocity (PWV) are the most commonly used indicators to evaluate the progress of AS. So, we collected and evaluated these three indicators to provide evidence-based medicine for the clinic. MATERIALS AND METHODS We included and evaluated studies on H. pylori infection and CIMT, FMD, or PWV from PubMed, Cochrane trials, and Embase databases before September 1, 2021, and language restrictions: English. Research types include cross-sectional studies, cohort studies, and case-control studies. The MINORS scale was used to evaluate the quality of these studies. For all studies, we choose a random-effects model and calculate the weighted mean difference (WMD) for analysis, and all our analyses use STATA software. RESULTS Meta-analysis shows that H. pylori infection can significantly increase CIMT (WMD = 0.059, 95% CI: 0.039, 0.079, p < 0.001). Based on subgroup analysis, we found that the relationship between the two is more significant in the young and middle-aged people younger than 60 years old and people without cardiovascular disease. In addition, we also found an association between H. pylori infection and FMD (WMD = -3.873, 95% CI: -5.684, -2.062, p < 0.001), but it is a pity that there are few literatures that meet the standards. Finally, We concluded that H. pylori infection can significantly increase PWV (WMD = 88.033, 95%CI: 67.297,108.768. I2 = 99.63%, p < 0.001). In the subgroup analysis, we also found that this correlation is similar to CIMT, and it is more significant in the young and middle-aged population under 60 and those without cardiovascular disease. We also found in the sub-analysis that there was a significant increase in CIMT in CagA-positive individuals in H. pylori-infected patients (WMD = 0.16, 95%CI: 0.02, 0.29. p = 0.03). CONCLUSION Helicobacter pylori infection can promote the process of AS, especially in people under the age of 60 and people without cardiovascular risk factors, and we hope that our meta-analysis can provide ideas for the early prevention of AS.
Collapse
Affiliation(s)
- Hongshuo Shi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yinghao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengda Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guomin Si
- Department of Traditional Chinese Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunsheng Xu
- The Second Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, China
| | - Min Peng
- Department of Traditional Chinese Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Li
- The Second Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Hung TH, Hung JT, Wu CE, Huang Y, Lee CW, Yeh CT, Chung YH, Lo FY, Lai LC, Tung JK, Yu J, Yeh CN, Yu AL. Globo H Is a Promising Theranostic Marker for Intrahepatic Cholangiocarcinoma. Hepatol Commun 2022; 6:194-208. [PMID: 34558839 PMCID: PMC8710794 DOI: 10.1002/hep4.1800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/29/2022] Open
Abstract
Recent studies support the development of cancer therapeutics to target Globo H-ceramide, the most prevalent tumor-associated carbohydrate antigen in epithelial cancers. Herein, we evaluated the expression of Globo H and its prognostic significance in intrahepatic cholangiocarcinoma (ICC) and conducted preclinical studies to assess the antitumor activity of Globo H-specific antibody in thioacetamide (TAA)-induced ICC in rats. Globo H-ceramide in tumor specimens was detected by immunohistochemistry (IHC) and mass spectrometry. Antitumor efficacy of anti-Globo H mAbVK9 was evaluated in TAA-induced ICC in rat. Natural killer (NK) cells and their related genes were analyzed by IHC and quantitative real-time polymerase chain reaction. Data mining revealed that B3GALT5 and FUT2, the key enzymes for Globo H biosynthesis, were significantly up-regulated in human ICC. In addition, Globo H expression was detected in 41% (63 of 155) of ICC tumor specimens by IHC staining, and validated by mass spectrometric analysis of two IHC-positive tumors. Patients with Globo H positive tumors had significantly shorter relapse-free survival (RFS) and overall survival (P = 0.0003 and P = 0.002, respectively). Multivariable Cox regression analysis identified Globo H expression as an independent unfavorable predictor for RFS (hazard ratio: 1.66, 95% confidence interval: 1.08-2.36, P = 0.02) in ICC. Furthermore, gradual emergence of Globo H in liver tissues over 6 months in TAA-treated rats recapitulated the multistage progression of ICC in vivo. Importantly, administration of anti-Globo H mAbVK9 in rats bearing TAA-induced ICC significantly suppressed tumor growth with increased NK cells in the tumor microenvironment. Conclusion: Globo H is a theranostic marker in ICC.
Collapse
Affiliation(s)
- Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiao-En Wu
- Department of Hematology-Oncology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Yenlin Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung University, Taoyuan, Taiwan
| | - Chien-Wei Lee
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsiu Chung
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fei-Yun Lo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Li-Chun Lai
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - John K Tung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Chang Gung University, Taoyuan, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery and Liver Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, CA
- Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Dose-Dependent Relationship between Protection of Thioacetamide-Induced Acute Liver Injury and Hyperammonemia and Concentration of Lactobacillus salivarius Li01 in Mice. Microbiol Spectr 2021; 9:e0184721. [PMID: 34937168 PMCID: PMC8694139 DOI: 10.1128/spectrum.01847-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, probiotics have been widely used as an adjuvant therapy to cure, prevent, or improve certain diseases. However, no research has been carried out into the dose of probiotics, especially the maximum dose. Therefore, the effective and safe dosage of probiotics needs to be studied. Recently, L. Yang, X. Bian, W. Wu, L. Lv, et al. (Microb Biotechnol 13:1860–1876, 2020, https://doi.org/10.1111/1751-7915.13629) discovered that Lactobacillus salivarius Li01 had a protective effect on thioacetamide-induced acute liver injury and hyperammonemia, and a fixed concentration (3 × 109 CFU/mL) of L. salivarius Li01 was applied in their study. However, the most effective treatment concentration of L. salivarius Li01 remains unknown. Therefore, four concentration gradients of L. salivarius Li01 suspension were prepared for groups of mice to have different levels of bacterial colonization by gavage. Then, acute liver injury and hyperammonemia were induced via thioacetamide administration. By observation and detection, an inverted U-shaped protective effect from L. salivarius Li01 existed in thioacetamide-induced acute liver injury and hyperammonemia. Of note, significant deterioration was confirmed within the group that was orally administered with an excessive concentration of L. salivarius Li01 suspension, and this was attributed to endotoxemia that resulted from compromised immunity, a damaged intestinal barrier, and bacterial translocation. IMPORTANCE This research investigated the relationship between the concentration of Lactobacillus salivarius Li01 and its impact on mice that had a thioacetamide-induced acute liver injury and hyperammonemia. These findings could provide new insights into the effective, proper, and safe use of probiotics.
Collapse
|
11
|
Bauss J, Morris M, Shankar R, Olivero R, Buck LN, Stenger CL, Hinds D, Mills J, Eby A, Zagorski JW, Smith C, Cline S, Hartog NL, Chen B, Huss J, Carcillo JA, Rajasekaran S, Bupp CP, Prokop JW. CCR5 and Biological Complexity: The Need for Data Integration and Educational Materials to Address Genetic/Biological Reductionism at the Interface of Ethical, Legal, and Social Implications. Front Immunol 2021; 12:790041. [PMID: 34925370 PMCID: PMC8674737 DOI: 10.3389/fimmu.2021.790041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
In the age of genomics, public understanding of complex scientific knowledge is critical. To combat reductionistic views, it is necessary to generate and organize educational material and data that keep pace with advances in genomics. The view that CCR5 is solely the receptor for HIV gave rise to demand to remove the gene in patients to create host HIV resistance, underestimating the broader roles and complex genetic inheritance of CCR5. A program aimed at providing research projects to undergraduates, known as CODE, has been expanded to build educational material for genes such as CCR5 in a rapid approach, exposing students and trainees to large bioinformatics databases and previous experiments for broader data to challenge commitment to biological reductionism. Our students organize expression databases, query environmental responses, assess genetic factors, generate protein models/dynamics, and profile evolutionary insights into a protein such as CCR5. The knowledgebase generated in the initiative opens the door for public educational information and tools (molecular videos, 3D printed models, and handouts), classroom materials, and strategy for future genetic ideas that can be distributed in formal, semiformal, and informal educational environments. This work highlights that many factors are missing from the reductionist view of CCR5, including the role of missense variants or expression of CCR5 with neurological phenotypes and the role of CCR5 and the delta32 variant in complex critical care patients with sepsis. When connected to genomic stories in the news, these tools offer critically needed Ethical, Legal, and Social Implication (ELSI) education to combat biological reductionism.
Collapse
Affiliation(s)
- Jacob Bauss
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Michele Morris
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Rama Shankar
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Rosemary Olivero
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Infectious Disease, Helen DeVos Children's Hospital, Grand Rapids, MI, United States
| | - Leah N Buck
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Department of Mathematics, University of North Alabama, Florence, AL, United States
| | - Cynthia L Stenger
- Department of Mathematics, University of North Alabama, Florence, AL, United States
| | - David Hinds
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Joshua Mills
- Department of Biology, Grand Valley State University, Allendale, MI, United States
| | - Alexandra Eby
- Department of Science, Davenport University, Grand Rapids, MI, United States
| | - Joseph W Zagorski
- Office of Research, Spectrum Health, Grand Rapids, MI, United States
| | - Caitlin Smith
- Department of Biology, Athens State University, Athens, AL, United States
| | - Sara Cline
- Department of Biology, Athens State University, Athens, AL, United States
| | - Nicholas L Hartog
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Allergy & Immunology, Spectrum Health, Grand Rapids, MI, United States
| | - Bin Chen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - John Huss
- Department of Philosophy, The University of Akron, Akron, OH, United States
| | - Joseph A Carcillo
- Department of Critical Care Medicine and Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Office of Research, Spectrum Health, Grand Rapids, MI, United States.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, MI, United States
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Medical Genetics, Spectrum Health, Grand Rapids, MI, United States
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Yuan H, Zheng C, Zhu L, Song Z, Dai L, Hu Q, Wang L, Chen Y, Xiong J. Contribution of TFEB-mediated autophagy to tubulointerstitial fibrosis in mice with adenine-induced chronic kidney disease. Biomed Pharmacother 2021; 133:110949. [PMID: 33227703 DOI: 10.1016/j.biopha.2020.110949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/29/2022] Open
Abstract
Autophagy has been implicated in the pathogenesis of chronic kidney disease (CKD). Transcription factor EB (TFEB) is a master controller of autophagy. However, the pathophysiological roles of TFEB in modulating autophagy and tubulointerstitial injury in CKD are unknown. This study aimed to determine whether TFEB-mediated autophagy contributed to the tubulointerstitial injury in mice with CKD. After the mice were treated with an adenine diet (0.2 % adenine) for 8 weeks, the development of CKD was observed to be characterised by increased levels of plasma blood urea nitrogen (BUN), creatinine (Cre), tubulointerstitial inflammation and fibrosis. Immunohistochemical and Western blot analysis further revealed that TFEB and autophagy genes were significantly up-regulated in the kidney of the mice with adenine-induced CKD, and this increase was mostly found in the tubular epithelial cells. Interestingly, a similar expression pattern of TFEB-autophagy genes was observed in tubular epithelial cells in the kidney tissue of patients with immunoglobulin A (IgA) nephropathy. Moreover, a pathogenic role of TFEB in adenine-induced CKD was speculated because the pharmacological activation of TFEB by trehalose failed to protect mice from tubulointerstitial injuries. In the epithelioid clone of normal rat kidney cells (NRK-52E), the activation of TFEB by trehalose increased autophagy induction, cell death and inflammatory cytokine (Interleukin-6, IL-6) release. Collectively, these results suggested that the activation of TFEB-mediated autophagy might cause autophagic cell death and inflammation in tubular epithelial cells, contributing to renal fibrosis in adenine-induced CKD. This study provided novel insights into the pathogenic role of TFEB in CKD associated with a high purine diet.
Collapse
Affiliation(s)
- Huiqi Yuan
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoyang Zheng
- Department of Cardiology, the Second Clinical Medical College and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziqing Song
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linfeng Dai
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingzong Hu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Yang L, Bian X, Wu W, Lv L, Li Y, Ye J, Jiang X, Wang Q, Shi D, Fang D, Wu J, Wang K, Wang Q, Xia J, Xie J, Lu Y, Li L. Protective effect of Lactobacillus salivarius Li01 on thioacetamide-induced acute liver injury and hyperammonaemia. Microb Biotechnol 2020; 13:1860-1876. [PMID: 32652882 PMCID: PMC7533332 DOI: 10.1111/1751-7915.13629] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/03/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota plays pivotal roles in liver disease onset and progression. The protective effects of Lactobacillus salivarius Li01 on liver diseases have been reported. In this study, we aimed to detect the protective effect of L. salivarius Li01 on thioacetamide (TAA)-induced acute liver injury and hyperammonaemia. C57BL/6 mice were separated into three groups and given a gavage of L. salivarius Li01 or phosphate-buffered saline for 7 days. Acute liver injury and hyperammonaemia were induced with an intraperitoneal TAA injection. L. salivarius Li01 decreased mortality and serum transaminase levels and improved histological liver damage caused by TAA. Serum inflammatory cytokine and chemokine and lipopolysaccharide-binding protein (LBP) concentrations, nuclear factor κB (NFκB) pathway activation and macrophage and neutrophil infiltration into the liver were significantly alleviated by L. salivarius Li01. L. salivarius Li01 also reinforced gut barrier and reshaped the perturbed gut microbiota by upregulating Bacteroidetes and Akkermansia richness and downregulating Proteobacteria, Ruminococcaceae_UCG_014 and Helicobacter richness. Plasma and faecal ammonia levels declined noticeably in the Li01 group, accompanied by improvements in cognitive function, neuro-inflammation and relative brain-derived neurotrophic factor (BDNF) gene expression. Our results indicated that L. salivarius Li01 could be considered a potential probiotic in acute liver injury and hepatic encephalopathy (HE).
Collapse
Affiliation(s)
- Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jianzhong Ye
- The First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jiaojiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| |
Collapse
|
14
|
MHC/class-II-positive cells inhibit corticosterone of adrenal gland cells in experimental arthritis: a role for IL-1β, IL-18, and the inflammasome. Sci Rep 2020; 10:17071. [PMID: 33051554 PMCID: PMC7554037 DOI: 10.1038/s41598-020-74309-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022] Open
Abstract
In experimental arthritis, glucocorticoid secretion is inadequate relative to inflammation. We hypothesized that IL-1 is a key factor for inadequate glucocorticoid secretion in arthritic rats. Collagen type II—induced arthritis (CIA) in DA rats was the model to study effects of IL-1 on adrenal function. In the CIA model, an increase of intraadrenal MHCII-positive cells was observed. MHCII-positive cells or bone marrow-derived dendritic cells inhibited glucocorticoid secretion of adrenal gland cells. IL-1, but also IL-18 and the inflammasome were critical in glucocorticoid inhibition. Arthritic compared to control adrenal gland cells produced higher amounts of CXC chemokines from MHCII+ adrenal cells, particularly CINC-2, which is strongly dependent on presence of IL-1. In CIA, macrophages and/or dendritic cells inhibit glucocorticoid secretion via IL-1 in adrenal glands. These findings show that activated macrophages and/or dendritic cells inhibit glucocorticoid secretion in experimental arthritis and that IL-1β is a decisive factor.
Collapse
|
15
|
El-Kehdy H, Najar M, De Kock J, Agha DM, Rogiers V, Merimi M, Lagneaux L, Sokal EM, Najimi M. Inflammation Differentially Modulates the Biological Features of Adult Derived Human Liver Stem/Progenitor Cells. Cells 2020; 9:cells9071640. [PMID: 32650454 PMCID: PMC7408415 DOI: 10.3390/cells9071640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
The progression of mesenchymal stem cell-based therapy from concept to cure closely depends on the optimization of conditions that allow a better survival and favor the cells to achieve efficient liver regeneration. We have previously demonstrated that adult-derived human liver stem/progenitor cells (ADHLSC) display significant features that support their clinical development. The current work aims at studying the impact of a sustained pro-inflammatory environment on the principal biological features of ADHLSC in vitro. METHODS: ADHLSC from passages 4–7 were exposed to a cocktail of inflammatory cytokines for 24 h and 9 days and subsequently analyzed for their viability, expression, and secretion profiles by using flow cytometry, RT-qPCR, and antibody array assay. The impact of inflammation on the hepatocytic differentiation potential of ADHLSC was also evaluated. RESULTS: ADHLSC treated with a pro-inflammatory cocktail displayed significant decrease of cell yield at both times of treatment while cell mortality was observed at 9 days post-priming. After 24 h, no significant changes in the immuno-phenotype of ADHLSC expression profile could be noticed while after 9 days, the expression profile of relevant markers has changed both in the basal conditions and after inflammation treatment. Inflammation cocktail enhanced the release of IL-6, IL-8, CCL5, monocyte-chemo-attractant protein-2 and 3, CXCL1/GRO, and CXCL5/ENA78. Furthermore, while IP-10 secretion was increased after 24 h priming, granulocyte macrophage colony-stimulating factor enhanced secretion was noticed after 9 days treatment. Finally, priming of ADHLSC did not affect their potential to differentiate into hepatocyte-like cells. CONCLUSION: These results indicate that ADHLSCs are highly sensitive to inflammation and respond to such signals by adjusting their gene and protein expression. Accordingly, monitoring the inflammatory status of patients at the time of cell transplantation, will certainly help in enhancing ADHLSC safety and efficiency.
Collapse
Affiliation(s)
- Hoda El-Kehdy
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (H.E.-K.); (E.M.S.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada;
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.D.K.); (V.R.)
| | - Douaa Moussa Agha
- Laboratory of Experimental Hematology (HEMEXP), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium; (D.M.A.); (M.M.)
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.D.K.); (V.R.)
| | - Makram Merimi
- Laboratory of Experimental Hematology (HEMEXP), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium; (D.M.A.); (M.M.)
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy (LCCT), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (H.E.-K.); (E.M.S.)
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (H.E.-K.); (E.M.S.)
- Correspondence:
| |
Collapse
|
16
|
Kupffer cells mediate the recruitment of hepatic stellate cells into the localized liver damage. Biochem Biophys Res Commun 2020; 529:474-479. [PMID: 32703454 DOI: 10.1016/j.bbrc.2020.06.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Currently, there is a growing interest in understanding the cellular and molecular events of immune-cell trafficking and recruitment of hepatic stellate cells (HSCs) in liver diseases. Aberrant activation of HSCs is the key event leading to chronic liver fibrosis. However, the underlying mechanisms of the recruitment of HSCs in a locally injured liver are not clearly understood. Here, we report a new experimental approach for the study of inflammatory responses as well as the recruitment of HSCs into the localized cryolesion. We observed a significant liver damage accompanied by the up-regulation of plasma ALT and AST. In addition, we also found increased levels of MCP-1, IL-6 and IL-10 cytokines. The peak cytokine levels were detected at 8 h after injury, followed by intrahepatic infiltration of neutrophils and monocytes into the injury site (from 8 h to day 3), while the kupffer cells (KCs) and HSCs were mainly detected on day 3 after injury. Interestingly, the depletion of KCs, but not neutrophils, reduced the directional recruitment and accumulation of HSCs at the injury site. Moreover, the combinatorial recruitment of KCs and HSCs resulted in the gradual restoration of fibrotic area to almost typical histological appearance on day 14 post-injury. In conclusion, our data demonstrated a localized infiltration and accumulation of neutrophils and monocytes at a "predefined loci", and further revealed that KCs are critical for the recruitment of HSCs during injury, and thus, may play an important role in tissue repair.
Collapse
|
17
|
Bloomer SA, Moyer ED, Brown KE, Kregel KC. Aging results in accumulation of M1 and M2 hepatic macrophages and a differential response to gadolinium chloride. Histochem Cell Biol 2019; 153:37-48. [PMID: 31691025 DOI: 10.1007/s00418-019-01827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Macrophages have vital roles in innate immunity by modulating the inflammatory response via their ability to alter their phenotype from pro-inflammatory (M1) to anti-inflammatory (M2). Aging increases activation of the innate immune system, and macrophage numbers increase in the aged liver. Since macrophages also produce free radical molecules, they are a potential source of age-related oxidative injury in the liver. This study evaluated macrophage phenotype in the aged liver and whether the increase in the number of macrophages with aging is associated with enhanced hepatic oxidative stress. Hepatic macrophage phenotype and oxidative stress were evaluated 2 days after a single intraperitoneal injection of saline or gadolinium chloride (GdCl3, 10 mg/kg) in young (6 months) and aged (24 months) Fischer 344 rats. GdCl3 has been shown to decrease the expression of macrophage-specific markers and impair macrophage phagocytosis in the liver. Saline-treated aged rats demonstrated greater numbers of both M1 (HO-1+/iNOS+) and M2 (HO-1+/CD163+) macrophages, without evidence of a phenotypic shift. GdCl3 did not alter levels of dihydroethidium fluorescence or malondialdehyde, suggesting that macrophages are not a major contributor to steady-state levels of oxidative stress. However, GdCl3 decreased M1 and M2 macrophage markers in both age groups, an effect that was attenuated in aged rats. In old animals, GdCl3 decreased iNOS expression to a greater extent than HO-1 or CD163. These results suggest a novel effect of aging on macrophage biology and that GdCl3 shifts hepatic macrophage polarization to the M2 phenotype in aged animals.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State University, Abington College, 1600 Woodland Rd., Abington, PA, 19001, USA.
| | - Eric D Moyer
- Division of Science and Engineering, Penn State University, Abington College, 1600 Woodland Rd., Abington, PA, 19001, USA
| | - Kyle E Brown
- Iowa City Veterans Administration Medical Center, Iowa City, IA, 52242, USA.,Division of Gastroenterology-Hepatology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA.,Program in Free Radical and Radiation Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Kevin C Kregel
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
18
|
MicroRNA 223 3p Negatively Regulates the NLRP3 Inflammasome in Acute and Chronic Liver Injury. Mol Ther 2019; 28:653-663. [PMID: 31585800 DOI: 10.1016/j.ymthe.2019.09.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
The granulocyte-specific microRNA-223 (miR-223) has recently emerged as a negative regulator of NOD-like receptor 3 (NLRP3) expression, a central key player in chronic hepatic injuries such as fibrotic nonalcoholic steatohepatitis (NASH), as well as in other liver conditions including acute hepatitis. In this study, we evaluated the therapeutic effect of the synthetic miR-223 analog miR-223 3p in a murine model of lipopolysaccharide (LPS)/D-GalN-induced endotoxin acute hepatitis (EAH) or fibrotic NASH resultant of long-term feeding with a high-fat, fructose, and cholesterol (FFC) diet. miR-223 3p ameliorated the infiltration of monocytes, neutrophils, and early activated macrophages and downregulated the transcriptional expression of the pro-inflammatory cytokines Il6 and Il12 and the chemokines Ccl2, Ccl3, Cxcl1, and Cxcl2 in EAH. In fibrotic NASH, treatment with miR-223 3p led to a remarkable mitigation of fibrosis development and activation of hepatic stellate cells (HSCs). miR-223 3p disrupted the activation of the NLRP3 inflammasome by impairing the synthesis of cleaved interleukin-1β (IL-1β), mature IL-1β, and NLRP3, and the activation of caspase-1 p10 in both EAH and fibrotic NASH. Our data enlightens miR-223 3p as a post-transcriptional approach to treat acute and chronic hepatitis by silencing the activation of the NLRP3 inflammasome.
Collapse
|
19
|
Hua D, Ju Z, Gan X, Wang Q, Luo C, Gu J, Yu Y. Human amniotic mesenchymal stromal cells alleviate acute liver injury by inhibiting the pro-inflammatory response of liver resident macrophage through autophagy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:392. [PMID: 31555706 DOI: 10.21037/atm.2019.08.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The activation and polarization of macrophages are crucial during the pathogenesis of liver injury induced by the toxin. Human amniotic mesenchymal stromal cells (hAMSCs) are newly identified mesenchymal stem cells and have been shown to have an immunoregulatory ability for multiple autoimmune diseases. Methods Mice were intraperitoneally injected with Acetaminophen (APAP) to establish a liver injury model. hAMSCs were injected through the tail vein, and the liver function was observed through a liver function and pathology analysis. To test the regulative ability of hAMSCs in vitro, the supernatant of hAMSCs were collected and co-cultured with Kupffer cells (KCs). Liposome was used to abolish the function of KCs in vivo. Results Infusion of hAMSCs reduced the level of liver function injury and inflammation expression in APAP-induced liver injury. hAMSCs markedly promoted M2 polarization of KCs instead of M1 polarization in vitro. Furthermore, the mechanism study also proved that hAMSCs reduced autophagy, as revealed by down-regulated LC3B-II levels. The elimination of KCs in vivo abolished the protective ability of hAMSCs in liver injury, which resulted in a significant increase of liver pathogenesis along with an increase in alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) levels. Conclusions Our results proved that hAMSCs suppressed M1 polarization and promoted M2 polarization of KCs through regulating autophagy in the model of APAP-treated livers. Thus, the injury of the liver was attenuated. This study provides us a new therapeutic strategy for the disease of acute liver injury.
Collapse
Affiliation(s)
- Dongxu Hua
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China
| | - Zheng Ju
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China.,Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Xiaojie Gan
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China.,Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Qi Wang
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China.,Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Chenghuan Luo
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China
| | - Jian Gu
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China
| | - Yue Yu
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China
| |
Collapse
|
20
|
Development of A New Mouse Model for Intrahepatic Cholangiocellular Carcinoma: Accelerating Functions of Pecam-1. Cancers (Basel) 2019; 11:cancers11081045. [PMID: 31344919 PMCID: PMC6721446 DOI: 10.3390/cancers11081045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023] Open
Abstract
Due to the lack of suitable in-vivo models, the etiology of intrahepatic cholangiocellular carcinoma (ICC) is poorly understood. We previously showed the involvement of platelet endothelial cell adhesion molecule-1 (Pecam-1/CD31) in acute liver damage. Here, we developed a model of ICC using thioacetamide (TAA) in drinking water of wild-type (WT)-mice and Pecam-1-knock-out (KO)-mice. Gross inspection and microscopy revealed liver-cirrhosis and ICC in both groups after 22 weeks of TAA. The severity of cirrhosis and ICC (Ck-19-positive) was reduced in Pecam-1 KO mice (stage-4 cirrhosis in WT vs. stage-3 in KO mice). Tumor networks (accompanied by neutrophils) were predominantly located in portal areas, with signs of epithelial-to-mesenchymal transition (EMT). In serum, TAA induced an increase in hepatic damage markers, with lower levels in Pecam-1 null mice. With qPCR of liver, elevated expression of Pecam-1 mRNA was noted in WT mice, in addition to Icam-1, EpCam, cytokines, cMyc, and Mmp2. Thereby, levels of EpCAM, cytokines, cMyc, and Mmp2 were significantly lower in Pecam-1 null mice. Lipocalin-2 and Ccl5 were elevated significantly in both WT and Pecam-1 null mice after TAA administration. Also, EMT marker Wnt5a (not Twist-1) was increased in both groups after TAA. We present a highly reproducible mouse model for ICC and show protective effects of Pecam-1 deficiency.
Collapse
|
21
|
Malik G, Wilting J, Hess CF, Ramadori G, Malik IA. PECAM-1 modulates liver damage induced by synergistic effects of TNF-α and irradiation. J Cell Mol Med 2019; 23:3336-3344. [PMID: 30761739 PMCID: PMC6484309 DOI: 10.1111/jcmm.14224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
The mechanisms of radiation‐induced liver damage are poorly understood. We investigated if tumour necrosis factor (TNF)‐α acts synergistically with irradiation, and how its activity is influenced by platelet endothelial cell adhesion molecule‐1 (PECAM‐1). We studied murine models of selective single‐dose (25 Gy) liver irradiation with and without TNF‐α application (2 μg/mouse; i.p.). In serum of wild‐type (wt)‐mice, irradiation induced a mild increase in hepatic damage marker aspartate aminotransferase (AST) in comparison to sham‐irradiated controls. AST levels further increased in mice treated with both irradiation and TNF‐α. Accordingly, elevated numbers of leucocytes and increased expression of the macrophage marker CD68 were observed in the liver of these mice. In parallel to hepatic damage, a consecutive decrease in expression of hepatic PECAM‐1 was found in mice that received radiation or TNF‐α treatment alone. The combination of radiation and TNF‐α induced an additional significant decline of PECAM‐1. Furthermore, increased expression of hepatic lipocalin‐2 (LCN‐2), a hepatoprotective protein, was detected at mRNA and protein levels after irradiation or TNF‐α treatment alone and the combination of both. Signal transducer and activator of transcription‐3 (STAT‐3) seems to be involved in the signalling cascade. To study the involvement of PECAM‐1 in hepatic damage more deeply, the liver of both wt‐ and PECAM‐1‐knock‐out‐mice were selectively irradiated (25 Gy). Thereby, ko‐mice showed higher liver damage as revealed by elevated AST levels, but also increased hepatoprotective LCN‐2 expression. Our studies show that TNF‐α has a pivotal role in radiation‐induced hepatic damage. It acts in concert with irradiation and its activity is modulated by PECAM‐1, which mediates pro‐ and anti‐inflammatory signalling.
Collapse
Affiliation(s)
- Gesa Malik
- Clinic for Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Clemens Friedrich Hess
- Clinic for Radiotherapy and Radiooncology, University Medical Center Göttingen, Göttingen, Germany
| | - Giuliano Ramadori
- Clinic for Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Ihtzaz Ahmed Malik
- Clinic for Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany.,Department of Anatomy and Cell Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Han B, Dai Y, Wu H, Zhang Y, Wan L, Zhao J, Liu Y, Xu S, Zhou L. Cimifugin Inhibits Inflammatory Responses of RAW264.7 Cells Induced by Lipopolysaccharide. Med Sci Monit 2019; 25:409-417. [PMID: 30638197 PMCID: PMC6342062 DOI: 10.12659/msm.912042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND RAW264.7 cells are induced by lipopolysaccharide (LPS) as a rheumatoid arthritis (RA) model. The present study investigated the effect of cimifugin on the proliferation, migration, chemotaxis, and release of inflammation-related factors and inflammation-related signaling pathways of LPS-induced RAW264.7 cells. MATERIAL AND METHODS MTS assay was used to determine the proliferation of RAW264.7 cells. Transwell assay was employed to examine the migration and chemotaxis of the cells. ELISA was performed to measure the contents of chemotactic factors and inflammatory factors in cell culture supernatants. Western blotting was carried out to detect the expression of factors related with MAPKs and NF-κB signaling pathways. RESULTS Cimifugin (0-100 mg/L) had no cytotoxicity for RAW264.7 cells. LPS stimulation induced morphological differentiation of RAW264.7 cells, but intervention by cimifugin inhibited the activation effect by LPS by about 50%. Cimifugin (100 mg/L) decreased the migration and chemotaxis of RAW264.7 cells to 1/3 of that in control cells by decreasing the release of migration- and chemotaxis-associated factors by at least 30%. Cimifugin (100 mg/L) suppressed the release of inflammatory factors from RAW264.7 cells to less than 60% of that in the LPS group. In addition, cimifugin (100 mg/L) inhibited the activities of MAPKs and NF-κB signaling pathways. CONCLUSIONS The present study demonstrates that cimifugin reduces the migration and chemotaxis of RAW264.7 cells and inhibits the release of inflammatory factors and activation of related signaling pathways induced by LPS. Cimifugin may have potential pharmacological effects against RA.
Collapse
Affiliation(s)
- Bin Han
- Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland).,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland).,Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Yuan Dai
- Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland).,Health Rehabilitation Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland)
| | - Haiyan Wu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Lihong Wan
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Jianlei Zhao
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Yuanqi Liu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Shijun Xu
- Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland).,Health Rehabilitation Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland)
| | - Liming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
23
|
Ahmad S, Ramadori G, Moriconi F. Modulation of Chemokine- and Adhesion-Molecule Gene Expression and Recruitment of Neutrophil Granulocytes in Rat and Mouse Liver after a Single Gadolinium Chloride or Zymosan Treatment. Int J Mol Sci 2018; 19:ijms19123891. [PMID: 30563093 PMCID: PMC6321201 DOI: 10.3390/ijms19123891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
Kupffer cells are professional phagocytes of the liver clearing bacteria from portal blood. Their clearance capacity, however, can be overwhelmed, transforming them into critical mediators of hepatic-injury. We investigated the consequences of selective Kupffer cell-overload by intraperitoneally administering pyrogen-free gadolinium chloride (GdCl₃) or Zymosan into rats and into endotoxin-resistant mice (C3H/HeJ). The number of myeloperoxidase-positive (MPO⁺) cells increased at 3 h mainly around the portal vessel after both GdCl₃ and Zymosan treatment. Simultaneously, GdCl₃ administration reduced detectability of ED-1⁺ (but not ED-2) cells near the portal vessel. Serum chemokine (C-X-C motif) ligand 1 (CXCL-1), CXCL-2 and chemokine (C-C motif) ligand 2 (CCL-2) showed a peak at 3 h after both treatment regimens although at a higher extent after Zymosan administration. Accordingly, CXCL-1, CXCL-5 and CCL-2 gene expression in the liver was up-regulated after GdCl₃ treatment at 3 h. After Zymosan administration a significant up-regulation of CXCL-1, CXCL-2, CXCL-10, CCL-2, CCL-3 and CCL-20 gene expression in liver at 3 h was observed. After Zymosan administration intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) gene expression was up-regulated in rat liver tissue. In C3H/HeJ mice both treatment regimens up-regulated CCL-2 and ICAM-1 gene expression after 3 h and down-regulated platelet endothelial cell adhesion molecule 1 (PECAM-1) gene expression. In conclusion, phagocytosis overload of Kupffer cells causes induction of several CXC, CC-chemokines, upregulation of "positive" adhesion molecule gene expression, down-regulation of the "negative" adhesion molecule PECAM-1 and a recruitment of neutrophil granulocytes in the portal area of the liver of treated rats and mice mainly in close contact to the liver macrophages.
Collapse
Affiliation(s)
- Shakil Ahmad
- Department of Gastroenterology and Endocrinology, University Hospital, Georg-August University Goettingen, 37075 Goettingen, Germany.
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, 37075 Goettingen, Germany.
| | - Giuliano Ramadori
- Department of Gastroenterology and Endocrinology, University Hospital, Georg-August University Goettingen, 37075 Goettingen, Germany.
| | - Federico Moriconi
- Department of Gastroenterology and Endocrinology, University Hospital, Georg-August University Goettingen, 37075 Goettingen, Germany.
- GastroCentro, Via Trevano 38, 6900 Lugano, Switzerland.
| |
Collapse
|
24
|
Marchyshak T, Yakovenko T, Shmarakov I, Tkachuk Z. The Potential Protective Effect of Oligoribonucleotides-d-Mannitol Complexes against Thioacetamide-Induced Hepatotoxicity in Mice. Pharmaceuticals (Basel) 2018; 11:ph11030077. [PMID: 30082619 PMCID: PMC6161262 DOI: 10.3390/ph11030077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
This study investigated the potential hepatoprotective effect of oligoribonucleotides-d-mannitol complexes (ORNs-d-M) against thioacetamide (TAA)-induced hepatotoxicity in mice. The hepatoprotective activity of ORNs-d-M was evaluated in thioacetamide (TAA)-treated C57BL/6J. Results indicate that treatment with ORNs-d-M displayed a protective effect at the TAA-induced liver injury. Treatment with ORNs-d-M, starting at 0 h after the administration of TAA, decreased TAA-elevated serum alanine aminotransferase (ALT) and γ-glutamyl transpeptidase (GGT). Activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx), and levels of glutathione (GSH), were enhanced with ORNs-d-M administration, while the hepatic oxidative biomarkers (TBA-reactive substances, protein carbonyl derivatives, protein-SH group) and myeloperoxidase (MPO) activity were reduced. Furthermore, genetic analysis has shown that the ORNs-d-M decreases the expression of mRNA pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), profibrogenic cytokine-transforming growth factor β1 (TGF-β1), as well as the principal protein of the extracellular matrix—collagen I. The present study demonstrates that ORNs-d-M exerts a protective effect against TAA-induced liver injury, which may be associated with its anti-inflammatory effects, inhibition of overexpression of mRNA cytokines, and direct effects on the metabolism of the toxin.
Collapse
Affiliation(s)
- Tetiana Marchyshak
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| | - Tetiana Yakovenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| | - Igor Shmarakov
- Department of Biochemistry and Biotechnology, Yurii Fedkovych Chernivtsi National University, 58012 Chernivtsi, Ukraine.
| | - Zenoviy Tkachuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| |
Collapse
|
25
|
Zhou S, Gu J, Liu R, Wei S, Wang Q, Shen H, Dai Y, Zhou H, Zhang F, Lu L. Spermine Alleviates Acute Liver Injury by Inhibiting Liver-Resident Macrophage Pro-Inflammatory Response Through ATG5-Dependent Autophagy. Front Immunol 2018; 9:948. [PMID: 29770139 PMCID: PMC5940752 DOI: 10.3389/fimmu.2018.00948] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
Liver-resident macrophages (Kupffer cells, KCs) and autophagy play critical roles in the pathogenesis of toxin-induced liver injury. Recent evidence indicates that autophagy can regulate macrophage M1/M2 polarization under different inflammatory conditions. Polyamines, including putrescine, spermidine, and spermine (SPM), are polycations with anti-oxidative, anti-aging, and cell autophagy induction properties. This study aimed to determine the mechanisms by which SPM protects against thioacetamide (TAA)-induced acute liver injury in a mouse model. Pretreatment with SPM significantly alleviated liver injury and reduced intrahepatic inflammation in TAA-induced liver injury compared to controls. SPM markedly inhibited M1 polarization, but promoted M2 polarization of KCs obtained from TAA-exposed livers, as evidenced by decreased IL-1β and iNOS gene induction but increased Arg-1 and Mrc-1 gene induction accompanied by decreased STAT1 activation and increased STAT6 activation. Furthermore, pretreatment with SPM enhanced autophagy, as revealed by increased LC3B-II levels, decreased p62 protein expression, and increased ATG5 protein expression in TAA-treated KCs. Knockdown of ATG5 in SPM-pretreated KCs by siRNA resulted in a significant increase in pro-inflammatory TNF-α and IL-6 secretion and decreased anti-inflammatory IL-10 secretion after TAA treatment, while no significant changes were observed in cytokine production in the TAA treatment alone. Additionally, the effect of SPM on regulation of KC M1/M2 polarization was abolished by ATG5 knockdown in TAA-exposed KCs. Finally, in vivo ATG5 knockdown in KCs abrogated the protective effect of SPM against TAA-induced acute liver injury. Our results indicate that SPM-mediated autophagy inhibits M1 polarization, while promoting M2 polarization of KCs in TAA-treated livers via upregulation of ATG5 expression, leading to attenuated liver injury. This study provides a novel target for the prevention of acute liver injury.
Collapse
Affiliation(s)
- Shun Zhou
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Song Wei
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Haoming Zhou
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Mukwaya A, Lennikov A, Xeroudaki M, Mirabelli P, Lachota M, Jensen L, Peebo B, Lagali N. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization. Angiogenesis 2018; 21:395-413. [PMID: 29445990 PMCID: PMC5878196 DOI: 10.1007/s10456-018-9604-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Anton Lennikov
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Maria Xeroudaki
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Pierfrancesco Mirabelli
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Mieszko Lachota
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden.
| |
Collapse
|
27
|
Malik IA, Wilting J, Ramadori G, Naz N. Reabsorption of iron into acutely damaged rat liver: A role for ferritins. World J Gastroenterol 2017; 23:7347-7358. [PMID: 29151689 PMCID: PMC5685841 DOI: 10.3748/wjg.v23.i41.7347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To studied iron metabolism in liver, spleen, and serum after acute liver-damage, in relation to surrogate markers for liver-damage and repair.
METHODS Rats received intraperitoneal injection of the hepatotoxin thioacetamide (TAA), and were sacrificed regularly between 1 and 96 h thereafter. Serum levels of transaminases and iron were measured using conventional laboratory assays. Liver tissue was used for conventional histology, immunohistology, and iron staining. The expression of acute-phase cytokines, ferritin light chain (FTL), and ferritin heavy chain (FTH) was investigated in the liver by qRT-PCR. Western blotting was used to investigate FTL and FTH in liver tissue and serum. Liver and spleen tissue was also used to determine iron concentrations.
RESULTS After a short initial decrease, iron serum concentrations increased in parallel with serum transaminase (aspartate aminotransferase and alanine aminotransferase) levels, which reached a maximum at 48 h, and decreased thereafter. Similarly, after 48 h a significant increase in FTL, and after 72h in FTH was detected in serum. While earliest morphological signs of inflammation in liver were visible after 6 h, increased expression of the two acute-phase cytokines IFN-γ (1h) and IL-1β (3h) was detectable earlier, with maximum values after 12-24 h. Iron concentrations in liver tissue increased steadily between 1 h and 48 h, and remained high at 96 h. In contrast, spleen iron concentrations remained unchanged until 48 h, and increased mildly thereafter (96 h). Although tissue iron staining was negative, hepatic FTL and FTH protein levels were strongly elevated. Our results reveal effects on hepatic iron concentrations after direct liver injury by TAA. The increase of liver iron concentrations may be due to the uptake of a significant proportion of the metal by healthy hepatocytes, and only to a minor extent by macrophages, as spleen iron concentrations do not increase in parallel. The temporary increase of iron, FTH and transaminases in serum is obviously due to their release by damaged hepatocytes.
CONCLUSION Increased liver iron levels may be the consequence of hepatocyte damage. Iron released into serum by damaged hepatocytes is obviously transported back and stored via ferritins.
Collapse
Affiliation(s)
- Ihtzaz Ahmed Malik
- Institute of Anatomy and Cell Biology, University Medical Center, D-37075 Goettingen, Germany
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical Center, D-37075 Goettingen, Germany
| | - Giuliano Ramadori
- Department of Gastroenterology and Endocrinology, University Medical Center, D-37075 Goettingen, Germany
| | - Naila Naz
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
28
|
Zou Y, Xiong JB, Ma K, Wang AZ, Qian KJ. Rac2 deficiency attenuates CCl 4-induced liver injury through suppressing inflammation and oxidative stress. Biomed Pharmacother 2017; 94:140-149. [PMID: 28759751 DOI: 10.1016/j.biopha.2017.07.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/25/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress is a leading cause to liver injury. Rac2 is a Ras-associated guanosine triphosphatase, an important molecule modulating a large number of cells and involved in the regulation of reactive oxygen species (ROS). For the study described here, we supposed that Rac2 knockout protects mice against CCl4-induced acute liver injury. We found that Rac2 expressed highly in CCl4-induced liver tissues. CCl4-treated Rac2 knockout (Rac2-/-) mice had reduced CD24 levels and steatosis. In addition, CCl4-induced high expression of pro-inflammatory cytokines and chemokine were reversed by Rac2 deficiency compared to CCl4-treated wild type (WT) mice. We also found that fibrosis-related signals of MMP-9, MMP-2 and TGF-β1 were also down-regulated in Rac2 knockout mice induced by CCl4. Significantly, oxidative stress induced by CCl4 was also suppressed owing to the lack of Rac2, evidenced by enhanced superoxide dismutase (SOD) activity, and reduced malondialdehyde (MDA) levels, superoxide radical, H2O2, xanthine oxidase (XO), xanthine dehydrogenase (XDH) and XO/XDH ratio. Moreover, c-Jun N-terminal protein kinase mitogen-activated protein kinases (JNK MAPK) was activated by CCl4, which was reversed in the liver of Rac2-/- mice through western blot and immunohistochemical analysis. In vitro, endotoxin (LPS) was treated to hepatocytes isolated from WT mice and Rac2-/- mice. The data further confirmed the role of Rac2 deficiency suppressed pro-inflammatory cytokines and chemokine, as well as fibrosis-related signals. Of note, production of ROS induced by LPS was reduced in Rac2-/- cells, accompanied with enhanced SOD1, SOD2 and reduced XO and phosphorylated-JNK expressions. Our results indicated that Rac2 played an essential role in acute liver injury induced by CCl4, providing the compelling information of the effects of Rac2 on liver injury, and revealing a novel regulatory mechanism for acute liver injury.
Collapse
Affiliation(s)
- Yan Zou
- Department of Intensive Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 222 Huanhuxisan Road, Pudong, Shanghai 201306, China
| | - Ji-Bin Xiong
- Department of Hyperbaric Oxygen Therapy, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 222 Huanhuxisan Road, Pudong, Shanghai 201306, China
| | - Ke Ma
- Department of Emergency Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 222 Huanhuxisan Road, Pudong, Shanghai 201306, China
| | - Ai-Zhong Wang
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 222 Huanhuxisan Road, Pudong, Shanghai 201306, China
| | - Ke-Jian Qian
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
29
|
Noratto GD, Chew BP, Atienza LM. Red raspberry (Rubus idaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice. Food Chem 2017; 227:305-314. [DOI: 10.1016/j.foodchem.2017.01.097] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 12/29/2022]
|
30
|
Nagata Y, Fujimoto M, Nakamura K, Isoyama N, Matsumura M, Fujikawa K, Uchiyama K, Takaki E, Takii R, Nakai A, Matsuyama H. Anti-TNF-α Agent Infliximab and Splenectomy Are Protective Against Renal Ischemia-Reperfusion Injury. Transplantation 2017; 100:1675-82. [PMID: 27163536 DOI: 10.1097/tp.0000000000001222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Renal ischemia-reperfusion (I/R) injury is associated with delayed graft function and results in poor long-term graft survival. We previously showed that splenectomy (SPLN) protects the kidney from I/R injury and reduces serum TNF-α levels. Herein, we further investigated the effects of SPLN on inflammatory responses and tissue injury in renal I/R by examining the expression of major inflammatory cytokines and heat shock protein 70 (HSP70). Because it was shown previously that the anti-TNF-α agent infliximab (IFX) attenuated renal I/R injury, we also investigated whether IFX administration mimics the effects of SPLN. METHODS The left renal pedicles of adult male Wistar rats were clamped for 45 minutes and then reperfused for 24 hours; right nephrectomy and SPLN were performed immediately. A separate cohort was administered IFX 1 hour before surgery in lieu of SPLN. RESULTS Serum creatinine and blood urea nitrogen levels were markedly elevated by I/R injury; these increases were significantly reversed by IFX. Furthermore, IFX inhibited the induction of inflammatory cytokines and HSP70 during renal I/R injury. Time-dependent profiles revealed that the expression of inflammatory cytokines was elevated immediately after I/R, whereas levels of HSP70, serum creatinine, and blood urea nitrogen began to rise 3 hours postreperfusion. Macrophages/monocytes were significantly increased in I/R-injured kidneys, but not in those administered IFX. The outcomes of SPLN mirrored those of IFX administration. CONCLUSIONS Splenectomy and TNF-α inhibition both protect the kidney from I/R injury by reducing the accumulation of renal macrophages/monocytes and induction of major inflammatory cytokines.
Collapse
Affiliation(s)
- Yudai Nagata
- 1 Department of Urology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.2 Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Qin CC, Liu YN, Hu Y, Yang Y, Chen Z. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J Gastroenterol 2017; 23:3043-3052. [PMID: 28533661 PMCID: PMC5423041 DOI: 10.3748/wjg.v23.i17.3043] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/11/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Macrophage inflammatory protein (MIP)-2 is one of the CXC chemokines and is also known as chemokine CXC ligand (CXCL2). MIP-2 affects neutrophil recruitment and activation through the p38 mitogen-activated-protein-kinase-dependent signaling pathway, by binding to its specific receptors, CXCR1 and CXCR2. MIP-2 is produced by a variety of cell types, such as macrophages, monocytes, epithelial cells, and hepatocytes, in response to infection or injury. In liver injury, activated Kupffer cells are known as the major source of MIP-2. MIP-2-recruited and activated neutrophils can accelerate liver inflammation by releasing various inflammatory mediators. Here, we give a brief introduction to the basic molecular and cellular sources of MIP-2, and focus on its physiological and pathological functions in acute liver injury induced by concanavalin A, lipopolysaccharides, irradiation, ischemia/reperfusion, alcohol, and hypoxia, and hepatectomy-induced liver regeneration and tumor colorectal metastasis. Further understanding of the regulatory mechanisms of MIP-2 secretion and activation may be helpful to develop MIP-2-targeted therapeutic strategies to prevent liver inflammation.
Collapse
|
32
|
Cai Y, Lu D, Zou Y, Zhou C, Liu H, Tu C, Li F, Liu L, Zhang S. Curcumin Protects Against Intestinal Origin Endotoxemia in Rat Liver Cirrhosis by Targeting PCSK9. J Food Sci 2017; 82:772-780. [PMID: 28196290 DOI: 10.1111/1750-3841.13647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022]
Abstract
Intestinal origin endotoxemia always occurs in severe liver injury. The aim of the current study was to test antiendotoxemia effect of curcumin on tetrachloride (CCl4 )-induced liver cirrhosis rats, and to elucidate the underlying molecular mechanism. Rat cirrhosis models were constructed with CCl4 subcutaneous injections with curcumin (200 mg/kg/d) administered via gavages for 12 wk until the rats were sacrificed. We found that the administration of curcumin improved the physiological condition pertaining to activity index and temperature, and ameliorated the liver injury in CCl4 -induced cirrhosis rats. Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (qRT-PCR) showed that curcumin could reduce c-reaction protein levels and inflammatory cytokine (TNF-α, IL-1β, IL-6, and CINC-1/IL-8) concentrations in peripheral serum and liver tissue. Furthermore, curcumin treatment decreased lipopolysaccharide (LPS) levels in peripheral vein, but not in portal vein. As low-density lipoprotein receptor (LDLR) is the important receptor on the surface of hepatocyte during LPS detoxification process, we used qRT-PCR, western blot, and immunohistochemistry (IHC), finding that curcumin significantly increased LDLR protein levels, but not gene levels in the liver tissues. We also tested proprotein convertase subtilisin/kexin type 9 (PCSK9), one negative regulator of LDLR, by qRT-PCR, western blot, and IHC. The results showed that PCSK9 significantly decreased both gene and protein levels in the rat liver tissues of curcumin treatment. Thus, we concluded that curcumin could function to protect against intestinal origin endotoxemia by inhibiting PCSK9 to promote LDLR expression, thereby enhancing LPS detoxification as one pathogen lipid through LDLR in the liver.
Collapse
Affiliation(s)
- Yu Cai
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Di Lu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Yanting Zou
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Chaohui Zhou
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Hongchun Liu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Chuantao Tu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Feng Li
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Lili Liu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Shuncai Zhang
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| |
Collapse
|
33
|
Magdaleno F, Blajszczak CC, Nieto N. Key Events Participating in the Pathogenesis of Alcoholic Liver Disease. Biomolecules 2017; 7:biom7010009. [PMID: 28134813 PMCID: PMC5372721 DOI: 10.3390/biom7010009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is a leading cause of morbidity and mortality worldwide. It ranges from fatty liver to steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. The most prevalent forms of ALD are alcoholic fatty liver, alcoholic hepatitis (AH) and alcoholic cirrhosis, which frequently progress as people continue drinking. ALD refers to a number of symptoms/deficits that contribute to liver injury. These include steatosis, inflammation, fibrosis and cirrhosis, which, when taken together, sequentially or simultaneously lead to significant disease progression. The pathogenesis of ALD, influenced by host and environmental factors, is currently only partially understood. To date, lipopolysaccharide (LPS) translocation from the gut to the portal blood, aging, gender, increased infiltration and activation of neutrophils and bone marrow-derived macrophages along with alcohol plus iron metabolism, with its associated increase in reactive oxygen species (ROS), are all key events contributing to the pathogenesis of ALD. This review aims to introduce the reader to the concept of alcohol-mediated liver damage and the mechanisms driving injury.
Collapse
Affiliation(s)
- Fernando Magdaleno
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA.
| | - Chuck C Blajszczak
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA.
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA.
| |
Collapse
|
34
|
Cüre MC, Cüre E, Kalkan Y, Kırbaş A, Tümkaya L, Yılmaz A, Türkyılmaz AK, Şehitoğlu İ, Yüce S. Infliximab Modulates Cisplatin-Induced Hepatotoxicity in Rats. Balkan Med J 2016. [PMID: 27761277 DOI: 10.5152/balkanmedj.2016.150576.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cisplatin (Cis) is one of the most commonly used antineoplastic drugs. It is used as chemotherapy for many solid organ malignancies such as brain, neck, male and female urogenital, vesical and pulmonary cancers. Infliximab blocks tumor necrosis factor alpha (TNF-α). Several studies have reported that infliximab ameliorates cell damage by reducing cytokine levels. AIMS We aimed to investigate whether infliximab has a preventive effect against cisplatin-induced hepatotoxicity and whether it has a synergistic effect when combined with Cis. STUDY DESIGN Animal experimentation. METHODS Male Wistar albino rats were divided in three groups as follows: Cis group, infliximab + Cis (CIN) group and the control group. Each group comprised 10 animals. Animals in the Cis group received an intraperitoneal single-dose injection of Cis (7 mg/kg). In the CIN group, a single dose of infliximab (7 mg/kg) was administered 72 h prior to the Cis injection. After 72 h, a single dose of Cis (7 mg/kg) was administered. All rats were sacrificed five days after Cis injection. RESULTS TNF-α levels in the Cis group were significantly higher (345.5±40.0 pg/mg protein) than those of the control (278.7±62.1 pg/mg protein, p=0.003) and CIN groups (239.0±64.2 pg/mg protein, p=0.013). The Cis group was found to have high carbonic anhydrase (CA)-II and low carbamoyl phosphate synthetase-1 (CPS-1) levels. Aspartate transaminase (AST) and alanine transaminase (ALT) levels were lower in the CIN group as compared to the Cis group. Total histological damage was greater in the Cis group as compared to the control and CIN groups. CONCLUSION Cis may lead to liver damage by increasing cytokine levels. It may increase oxidative stress-induced tissue damage by increasing carbonic anhydrase II (CA-II) enzyme levels and decreasing CPS-1 enzyme levels. Infliximab decreases Cis-induced hepatic damage by blocking TNF-α and it may also protect against liver damage by regulating CPS-1 and CA-II enzyme levels.
Collapse
Affiliation(s)
- Medine Cumhur Cüre
- Department of Biochemistry, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Erkan Cüre
- Department of Internal Medicine, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Yıldıray Kalkan
- Department of Histology and Embryology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Aynur Kırbaş
- Department of Biochemistry, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Levent Tümkaya
- Department of Histology and Embryology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Arif Yılmaz
- Department of Gastroenterology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Ayşegül Küçükali Türkyılmaz
- Department of Physical Medicine and Rehabilitation, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - İbrahim Şehitoğlu
- Department of Pathology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Süleyman Yüce
- Department of Internal Medicine, Kumru State Hospital, Rize, Turkey
| |
Collapse
|
35
|
Cüre MC, Cüre E, Kalkan Y, Kırbaş A, Tümkaya L, Yılmaz A, Türkyılmaz AK, Şehitoğlu İ, Yüce S. Infliximab Modulates Cisplatin-Induced Hepatotoxicity in Rats. Balkan Med J 2016; 33:504-511. [PMID: 27761277 PMCID: PMC5056652 DOI: 10.5152/balkanmedj.2016.150576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 02/03/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cisplatin (Cis) is one of the most commonly used antineoplastic drugs. It is used as chemotherapy for many solid organ malignancies such as brain, neck, male and female urogenital, vesical and pulmonary cancers. Infliximab blocks tumor necrosis factor alpha (TNF-α). Several studies have reported that infliximab ameliorates cell damage by reducing cytokine levels. AIMS We aimed to investigate whether infliximab has a preventive effect against cisplatin-induced hepatotoxicity and whether it has a synergistic effect when combined with Cis. STUDY DESIGN Animal experimentation. METHODS Male Wistar albino rats were divided in three groups as follows: Cis group, infliximab + Cis (CIN) group and the control group. Each group comprised 10 animals. Animals in the Cis group received an intraperitoneal single-dose injection of Cis (7 mg/kg). In the CIN group, a single dose of infliximab (7 mg/kg) was administered 72 h prior to the Cis injection. After 72 h, a single dose of Cis (7 mg/kg) was administered. All rats were sacrificed five days after Cis injection. RESULTS TNF-α levels in the Cis group were significantly higher (345.5±40.0 pg/mg protein) than those of the control (278.7±62.1 pg/mg protein, p=0.003) and CIN groups (239.0±64.2 pg/mg protein, p=0.013). The Cis group was found to have high carbonic anhydrase (CA)-II and low carbamoyl phosphate synthetase-1 (CPS-1) levels. Aspartate transaminase (AST) and alanine transaminase (ALT) levels were lower in the CIN group as compared to the Cis group. Total histological damage was greater in the Cis group as compared to the control and CIN groups. CONCLUSION Cis may lead to liver damage by increasing cytokine levels. It may increase oxidative stress-induced tissue damage by increasing carbonic anhydrase II (CA-II) enzyme levels and decreasing CPS-1 enzyme levels. Infliximab decreases Cis-induced hepatic damage by blocking TNF-α and it may also protect against liver damage by regulating CPS-1 and CA-II enzyme levels.
Collapse
Affiliation(s)
- Medine Cumhur Cüre
- Department of Biochemistry, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
- Address for Correspondence: Dr. Medine Cumhur Cüre, Department of Biochemistry, Recep Tayyip Erdogan University School of Medicine, Rize, Turkey, Phone: +90 538 930 05 75, e-mail:
| | - Erkan Cüre
- Department of Internal Medicine, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Yıldıray Kalkan
- Department of Histology and Embryology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Aynur Kırbaş
- Department of Biochemistry, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Levent Tümkaya
- Department of Histology and Embryology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Arif Yılmaz
- Department of Gastroenterology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Ayşegül Küçükali Türkyılmaz
- Department of Physical Medicine and Rehabilitation, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - İbrahim Şehitoğlu
- Department of Pathology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Süleyman Yüce
- Department of Internal Medicine, Kumru State Hospital, Rize, Turkey
| |
Collapse
|
36
|
The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury. Toxicol Appl Pharmacol 2016; 304:110-20. [PMID: 27163765 DOI: 10.1016/j.taap.2016.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300mg/kg, i.p.) to control mice resulted in an increase in CD11b(+) infiltrating Ly6G(+) granulocytic and Ly6G(-) monocytic cells in the spleen and the liver. The majority of the Ly6G(+) cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G(-) cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80(+)) and immature (F4/80(-)) pro-inflammatory Ly6C(hi) macrophages and mature anti-inflammatory (Ly6C(lo)) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3(+) macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs.
Collapse
|
37
|
Park EJ, Kim SN, Kang MS, Lee BS, Yoon C, Jeong U, Kim Y, Lee GH, Kim DW, Kim JS. A higher aspect ratio enhanced bioaccumulation and altered immune responses due to intravenously-injected aluminum oxide nanoparticles. J Immunotoxicol 2016; 13:439-48. [PMID: 27042761 DOI: 10.3109/1547691x.2015.1122116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aluminum oxide nanoparticles (AlO NP) have been widely utilized in a variety of areas, including in the optical, biomedical and electronic fields and in the overall development of nanotechnologies. However, their toxicological profiles are still not fully developed. This study compared the distribution and immunotoxicity of two rod-types of AlO NP. As reported previously, the two types of AlO NP had different aspect ratios (long-type: 6.2 ± 0.6, short-type: 2.1 ± 0.4), but the size and surface charge were very similar. On Day 14 after a single intravenous (IV) injection (1.25 or 5 mg/kg), both AlO NP accumulated primarily in the liver and spleen and altered the levels of redox response-related elements. The accumulated level was higher in mice exposed to the long-type AlO NP compared to the short-type. Additionally, it was noted that the levels of IL-1β, IL-8 and MCP-1 were enhanced in the blood of mice exposed to both types of AlO NP and the percentages of neutrophils and monocytes among all white blood cells were increased only in mice injected with the long-type AlO NP (5 mg/kg). In addition, as compared to the control, co-expression of CD80 and CD86 (necessary for antigen presentation) on splenocytes together with a decreased expression of chemotaxis-related marker (CD195) was attenuated by exposure to the AlO NP, especially the long-type. Taken together, the data suggest that accumulation following a single IV injection with rod-types of AlO NP is strengthened by a high aspect ratio and, subsequently, this accumulation has the potential to influence immune functions in an exposed host.
Collapse
Affiliation(s)
- Eun-Jung Park
- a Myunggok Eye Research Institute, Konyang University , Daejeon , Korea
| | - Soo Nam Kim
- b Toxicologic Pathology Center, Korea Institute of Toxicology , Daejeon , Korea
| | - Min-Sung Kang
- b Toxicologic Pathology Center, Korea Institute of Toxicology , Daejeon , Korea
| | - Byoung-Seok Lee
- b Toxicologic Pathology Center, Korea Institute of Toxicology , Daejeon , Korea
| | - Cheolho Yoon
- c Seoul Center, Korea Basic Science Institute , Seoul , Korea
| | - Uiseok Jeong
- d Department of Chemical Engineering , Kwangwoon University , Seoul , Korea
| | - Younghun Kim
- d Department of Chemical Engineering , Kwangwoon University , Seoul , Korea
| | - Gwang-Hee Lee
- e School of Civil, Environmental and Architectural Engineering, Korea University , Seoul , Korea
| | - Dong-Wan Kim
- e School of Civil, Environmental and Architectural Engineering, Korea University , Seoul , Korea
| | - Jong Sung Kim
- f Department of Community Health and Epidemiology , Faculty of Medicine, Dalhousie University , Halifax , NS , Canada
| |
Collapse
|
38
|
Park EJ, Oh SY, Kim Y, Yoon C, Lee BS, Kim SD, Kim JS. Distribution and immunotoxicity by intravenous injection of iron nanoparticles in a murine model. J Appl Toxicol 2015; 36:414-23. [DOI: 10.1002/jat.3232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/27/2015] [Accepted: 08/11/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Eun-Jung Park
- Myunggok Eye Research Institute; Konyang University; Daejeon Korea
| | - Seung Yun Oh
- Department of Chemical Engineering; Kwangwoon University; Seoul Korea
| | - Younghun Kim
- Department of Chemical Engineering; Kwangwoon University; Seoul Korea
| | - Cheolho Yoon
- Seoul Center; Korea Basic Science Institute; Seoul Korea
| | - Byoung-Seok Lee
- Toxicologic Pathology Center; Korea Institute of Toxicology; Daejeon Korea
| | - Sang Doo Kim
- Department of Biological Sciences; Sungkyunkwan University; Suwon Korea
| | - Jong Sung Kim
- Department of Community Health and Epidemiology, Faculty of Medicine; Dalhousie University; Halifax Canada
| |
Collapse
|
39
|
Malik IA, Stange I, Martius G, Cameron S, Rave-Fränk M, Hess CF, Ellenrieder V, Wolff HA. Role of PECAM-1 in radiation-induced liver inflammation. J Cell Mol Med 2015; 19:2441-52. [PMID: 26177067 PMCID: PMC4594685 DOI: 10.1111/jcmm.12630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022] Open
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is known to play an important role in hepatic inflammation. Therefore, we investigated the role of PECAM-1 in wild-type (WT) and knock-out (KO)-mice after single-dose liver irradiation (25 Gy). Both, at mRNA and protein level, a time-dependent decrease in hepatic PECAM-1, corresponding to an increase in intercellular cell adhesion molecule-1 (ICAM-1) (6 hrs) was detected in WT-mice after irradiation. Immunohistologically, an increased number of neutrophil granulocytes (NG) (but not of mononuclear phagocytes) was observed in the liver of WT and PECAM-1-KO mice at 6 hrs after irradiation. The number of recruited NG was higher and prolonged until 24 hrs in KO compared to WT-mice. Correspondingly, a significant induction of hepatic tumour necrosis factor (TNF)-α and CXC-chemokines (KC/CXCL1 interleukin-8/CXCL8) was detected together with an elevation of serum liver transaminases (6–24 hrs) in WT and KO-mice. Likewise, phosphorylation of signal transducer and activator of transcription-3 (STAT-3) was observed in both animal groups after irradiation. The level of all investigated proteins as well as of the liver transaminases was significantly higher in KO than WT-mice. In the cell-line U937, irradiation led to a reduction in PECAM-1 in parallel to an increased ICAM-1 expression. TNF-α-blockage by anti-TNF-α prevented this change in both proteins in cell culture. Radiation-induced stress conditions induce a transient accumulation of granulocytes within the liver by down-regulation/absence of PECAM-1. It suggests that reduction/lack in PECAM-1 may lead to greater and prolonged inflammation which can be prevented by anti-TNFα.
Collapse
Affiliation(s)
- Ihtzaz Ahmed Malik
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Ina Stange
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Gesa Martius
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Silke Cameron
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Margret Rave-Fränk
- Department of Radiotherapy and Radiooncology, University Medical Center Goettingen, Goettingen, Germany
| | - Clemens Friedrich Hess
- Department of Radiotherapy and Radiooncology, University Medical Center Goettingen, Goettingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Hendrik Andreas Wolff
- Department of Radiotherapy and Radiooncology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
40
|
Hanafusa H, Morikawa Y, Uehara T, Kaneto M, Ono A, Yamada H, Ohno Y, Urushidani T. Comparative gene and protein expression analyses of a panel of cytokines in acute and chronic drug-induced liver injury in rats. Toxicology 2014; 324:43-54. [PMID: 25051504 DOI: 10.1016/j.tox.2014.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 12/29/2022]
Abstract
Drug-induced liver injury (DILI) is a significant safety issue associated with medication use, and is the major cause of failures in drug development and withdrawal in post marketing. Cytokines are signaling molecules produced and secreted by immune cells and play crucial roles in the progression of DILI. Although there are numerous reports of cytokine changes in several DILI models, a comprehensive analysis of cytokine expression changes in rat liver injury induced by various compounds has, to the best of our knowledge, not been performed. In the past several years, we have built a public, free, large-scale toxicogenomics database, called Open TG-GATEs, containing microarray data and toxicity data of the liver of rats treated with various hepatotoxic compounds. In this study, we measured the protein expression levels of a panel of 24 cytokines in frozen liver of rats treated with a total of 20 compounds, obtained in the original study that formed the basis of the Open TG-GATEs database and analyzed protein expression profiles combined with mRNA expression profiles to investigate the correlation between mRNA and protein expression levels. As a result, we demonstrated significant correlations between mRNA and protein expression changes for interleukin (IL)-1β, IL-1α, monocyte chemo-attractant protein (MCP)-1/CC-chemokine ligand (Ccl)2, vascular endothelial growth factor A (VEGF-A), and regulated upon activation normal T cell expressed and secreted (RANTES)/Ccl5 in several different types of DILI. We also demonstrated that IL-1β protein and MCP-1/Ccl2 mRNA were commonly up-regulated in the liver of rats treated with different classes of hepatotoxicants and exhibited the highest accuracy in the detection of hepatotoxicity. The results also demonstrate that hepatic mRNA changes do not always correlate with protein changes of cytokines in the liver. This is the first study to provide a comprehensive analysis of mRNA-protein correlations of factors involved in various types of DILI, as well as additional insights into the importance of understanding complex cytokine expression changes in assessing DILI.
Collapse
Affiliation(s)
- Hiroyuki Hanafusa
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan
| | - Yuji Morikawa
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan; Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan
| | - Takeki Uehara
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan; Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan,.
| | - Masako Kaneto
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan
| | - Atsushi Ono
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan,; National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Hiroshi Yamada
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan
| | - Yasuo Ohno
- National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Tetsuro Urushidani
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan,; Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, Japan
| |
Collapse
|
41
|
Whitehead KA, Dorkin JR, Vegas AJ, Chang PH, Veiseh O, Matthews J, Fenton OS, Zhang Y, Olejnik KT, Yesilyurt V, Chen D, Barros S, Klebanov B, Novobrantseva T, Langer R, Anderson DG. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun 2014; 5:4277. [PMID: 24969323 PMCID: PMC4111939 DOI: 10.1038/ncomms5277] [Citation(s) in RCA: 433] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/02/2014] [Indexed: 12/16/2022] Open
Abstract
One of the most significant challenges in the development of clinically viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. Here, we have synthesized 1,400 degradable lipidoids and evaluate their transfection ability and structure-function activity. We show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations on IV administration to mice (siRNA EC50 values as low as 0.01 mg kg(-1)). We identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing.
Collapse
Affiliation(s)
- Kathryn A. Whitehead
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - J. Robert Dorkin
- Department of Biology, Massachusetts Institute of Technology, 77
Massachusetts Ave., Cambridge, MA 02139 USA
| | - Arturo J. Vegas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Philip H. Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Omid Veiseh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Jonathan Matthews
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Owen S. Fenton
- Department of Chemistry, Massachusetts Institute of Technology, 77
Massachusetts Ave., Cambridge, MA 02139 USA
| | - Yunlong Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Karsten T. Olejnik
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Volkan Yesilyurt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Delai Chen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Scott Barros
- Alnylam Pharmaceuticals, 300 Third St., Cambridge, MA 02142
| | - Boris Klebanov
- Alnylam Pharmaceuticals, 300 Third St., Cambridge, MA 02142
| | | | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology,
77 Massachusetts Ave., Cambridge, MA 02139 USA
- The Institute for Medical Engineering and Science, Massachusetts Institute
of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| | - Daniel G. Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology,
77 Massachusetts Ave., Cambridge, MA 02139 USA
- The Institute for Medical Engineering and Science, Massachusetts Institute
of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
| |
Collapse
|